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Abstract: Compressive spectral imaging reconstruction is performed using smoothness
on graphs. In doing so, a highly effective and parallelizable graph-smoothness prior recon-
struction algorithm is developed based on simple direct matrix inversion.
© 2021 The Author(s)

1. Spectral Image Estimation using Smoothness on Graphs

Compressive spectral imaging (CSI) systems capture large volumes of spatio-spectral information in a compressed
format, enabling such an information to be collected in settings such as autonomous navigation and exploration.
To do so, CSI systems take a single spatio-spectrally coded image of the scene, and then iterative algorithms,
relying on image priors, can be used to reconstruct the spectral scene [1]. The reconstructed scene is thus the one
that best describes our prior knowledge of the scene and simultaneously fits the measurements. To date, many
ways to inject prior knowledge into CSI reconstruction algorithms exist, from the most traditional priors based on
compressive sensing to the most recent plug-and-play priors based on deep learning [2].

Our goal is to advance on the same front, but from a different perspective. We use ideas from the field of graph
signal processing (GSP), and thus assume that the spectral image of interest is the smoothest with respect to a
collection of pre-specified graphs. An advantage of this standpoint is that we can search for smooth signals on
a graph by minimizing a differentiable function, referred to as the graph Laplacian quadratic form, over the set
of signals that satisfy the measurements [3]. To benefit from this, we thus propose a block-based reconstruction
algorithm, which approximates the solution to the problem through a series of sub-problems, which can be solved
each independently by direct inversion or Gaussian elimination.

1.1. GSP preliminaries

An undirected graph G = (V,E,w) is a triple, consisting of a vertex set V = {vi}n
i=1, an edge set E ⊂V ×V , and a

non-negative weight function w : E 7→ [0,∞) s.t. w(i, j) = w( j, i) for (i, j) ∈ E, and w(i, j) = 0 for (i, j) /∈ E. Also,
it is assumed that the graph has no self-loops and thus (i, i) /∈ E for i ∈ V . A graph signal x on G is a function
x : V 7→ R such that the value of x at i ∈ V is given by xi ∈ R. The smoothness of x with respect to G is given
by x 7→ xT LGx, where LG ∈ Rn×n is the graph Laplacian of G with diagonal entries Lii defined by ∑

n
j=1 w(i, j),

and off-diagonal entries Li j defined by −w(i, j). Also important is that there are numerous methods of designing
graphs from a set of signals so that the subject signals are optimally smooth.

1.2. Block-Based Smoothness on Graphs Algorithm for CSI

We now consider the estimation of a spectral image X of L bands, X1, . . . ,XL ∈ Rn1×n2 from a set of non-adaptive
measurements Y ∈ Rn1×(n2+L−1), obeying

y = Hx, (1)

where y = vec(Y ), x = (vec(X1)
T , . . . ,vec(XL)

T )T , and H denotes the discretization of a CASSI system [1]. Since
(1) is underdetermined, we cannot simply invert H to find x, and we thus propose to regularize the system using
smoothness on graphs. To do so, x is regarded as a graph signal, residing on the vertex set V := {1, . . . ,n1}×
{1, . . . ,n2}×{1, . . . ,L}. To simplify the problem, we now partition the system (1) into K small systems as follows:

1. Define a collection of overlapping subsets {S j}K
j=1, where S j ⊂ {1, . . . ,n1}×{1, . . . ,n2 +L−1} indexes a

patch YS j from Y of size w1×w2.

2. Find the subset Ω j ⊂V , which indexes a spatial-spectral patch XΩ j of X and maps into YS j through H. That
is, yS j = HS j ,Ω j xΩ j , where HS j ,Ω j is the submatrix of H with rows and columns indexed by S j and Ω j.



3. Given a suitable collection of graphs G j = {Ω j,E j,w j} on Ω j such that X at Ω j is smooth on G j, we can
find a local estimate x̂( j) of X at Ω j by solving the problem:

x̂( j) = arg min
z∈R|Ω j |

zT LG j z s.t. yS j = HS j ,Ω j z, j = 1, . . . ,K. (2)

4. Based on the local estimates x̂( j) of x at Ω j, the spectral image estimate x̂ of x is defined by x̂i =

∑
K
j=1

1{i∈Ω j} x̂
( j)
τ j(i)

∑
K
j=1 1{i∈Ω j}

, for all i ∈ V , where τ j : Ω j 7→ {1, . . . , |Ω j|} is such that x̂( j)
τ j(i)

is the entry of x̂( j) asso-

ciated with i ∈Ω j.

1.3. The Choice of the Collection of Graphs

Like Gaussian mixture models [4], a suitable collection of graphs may be learned from either examples or from
side information. Here, however, we do not yet concern ourselves with this problem. Instead, to illustrate the
concept, we use the simplifying assumption that the graphs belong to the family of k-nearest-neighbor (knn)
graphs, and the k-nn graphs are then learned from the local statistics of the signal of interest itself. Specifically, let
G j be a k-nn graph on the vertex set V := Ω j, and assume that there is access to a graph signal x̃ : Ω j 7→ Rb such
that the value of x̃ at i ∈ Ω j is given by a vectorized spatio-spectral patch of X centered at i whose size is b. The
edge set E j of G j is defined by ∪i∈Ω j{(i, ip) : p = 1, . . . ,k}, where ‖x̃i− x̃i1‖2 ≤ . . .≤ ‖x̃i− x̃ik‖2, and the weight
function w(r,s) = exp(−‖x̃r− x̃s‖2

2/σ2) for (r,s) ∈ E j, where σ2 = mean({‖x̃r− x̃s‖2
2}(r,s)∈Ek

).

1.4. Numerical Experiment

We now test our method on reconstructing the spectral image of a butterfly from its compressive snapshot as
displayed in Fig. 1. To do so, let w1 = w2 = 21, and S j = {(iy, ix) : jx ≤ ix ≤ jx +w2−1, jy ≤ iy ≤ jy +w1−1},
where ix, iy denote the (y,x) coordinates of i. We define {S j}K

j=1 such that there is at most 75 percent overlap
between any two pair of adjacent subsets S j1 and S j2 , and ∪ jS j = {1, . . . ,n1}×{1, . . . ,n2 +L−1}, and set as the
number of neighbors and signals k = 27 and b = 33, respectively. Figure 1 shows our graph-based estimate, and a
total-variation estimate, included for completeness.

Fig. 1. From left to right, simulated CASSI snapshot; RGB rendering of the spectral scene of in-
terest, consising of 31 bands of size 256 by 256; RGB renderings of the reconstructed scenes using
total variation and the proposed graph-smoothness prior; and single point reconstructed spectral sig-
natures. For TV, PSNR=20.12 and SAM=18.98. For for graph-smoothness prior, PSNR=30.76 and
SAM=14.82.

1.5. Conclusion

As observed in Fig. 1, when prior knowledge in the form of a graph is available, not only can we obtain highly
accurate estimates, but we also can design simple reconstruction algorithms. As of a future step, to move this idea
forward it is important to learn those graphs from data.
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