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We propose a model for memory-based movement of an individual. The dynamics are modeled by a
stochastic differential equation, coupled with an eikonal equation, whose potential depends on the indi-
vidual’s memory and perception. Under a simple periodic environment, we discover that both long and
short-term memory with appropriate time scales are essential for producing expected periodic
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1. Introduction

The interaction between dynamic landscapes and animal move-
ments has been an important research topic in biology, particularly
with regard to the process of migration. For instance, insufficient
spatio-temporal change in the distribution of resources may
‘short-circuit’ migration in some seasons (Bartlam-Brooks et al.,
2013). In other cases, the age structure of an animal population
can create new migratory patterns in response to environmental
changes (Teitelbaum et al., 2016). From theoretical work, we know
that gathering of nonlocal information is beneficial for resource
uptake in dynamic landscapes (Fagan et al., 2017).

Among the long list of factors that one could consider as a vari-
able in this rich topic, the effects of spatial memory on animal
movements in dynamic landscapes has attracted considerable
recent attention. Many works have demonstrated the essential role
of memory in animal migration patterns (Abrahms et al., 2019;
Bracis and Mueller, 2017; Fagan, 2019). A variety of models have
been proposed to explore this memory effect, some of which have
been quite complex (Bennett and Tang, 2006; Schldgel and Lewis,
2014). Memory and environmental persistence are both clearly
connected with migratory movement (Berbert and Fagan, 2012).
However, even with abundant existing results, the underlying
memory mechanism and its relation with animal movement
remain unclear.
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The goal of this work is to obtain a better understanding of the
effects of memory on animal migration patterns. For this purpose,
we propose a memory-driven movement model at an individual
level. Our model consists of a stochastic transport equation, the
evolution equations for memory and fitness, and an eikonal equa-
tion with a potential depending on the animal’s perception and
memory. Our model explicitly describes a wide range of different
memory mechanisms, and the corresponding migration patterns
can be directly observed by numerical simulations. However, it
should be pointed out that the interactions between individuals
have not been considered in this work, and hence our model can-
not be regarded as a mean-field approximation.

Migration patterns have long been known to follow seasonal
changes in the environment and it is natural to expect that such
periodic changes in the environment are the main factor contribut-
ing to such migrations (Bartlam-Brooks et al., 2013; Fagan et al.,
2013). We thus test our model under a simple, idealized time-
periodic environment to investigate memory effects on the migra-
tion patterns.

The use of the eikonal equation was inspired by the Hughes
model for pedestrians (Hughes, 2002, 2003). There are many works
in the Hughes model from both analytical (Amadori et al., 2014; Di
Francesco et al, 2011) and numerical aspects (Cartee and
Vladimirsky, 2018; Twarogowska et al., 2014). The Hughes model
contains a conservation law for pedestrian flow, and an eikonal
equation with a potential depending on the density of pedestrians.
In our case, the potential of the eikonal equation depends on the ani-
mal’s memory and perception. The article (Xia et al., 2009) combined
both the conservation law of pedestrians and an eikonal equation
with memory to discuss the memory effect for pedestrian flows.
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One advantage of using the eikonal equation is that it provides a
natural interpretation for an animal’s decision-making process
under the context of optimal control theory. This view of optimal
individual-level movement strategies complements mathematical
theory on optimal population-level movement that has sought to
identify the best movement strategies for different resource land-
scapes in an evolutionary context using invasibility criteria (e.g.,
Cantrell et al., 2010; Lam and Lou, 2014). As an optimal control
problem at the individual level, an animal’s migratory journey con-
sists of a series of movements in which the animal relocates to the
region with the best resources by choosing an optimal path that
minimizes a certain cost function. The cost function therefore
offers an easy way of introducing environmentally based prefer-
ences in the individual’'s movement. A similar concept of utilizing
a cost function for memory-based movements can also be seen
in Jesmer et al. (2018). Another advantage of the eikonal equation
is that efficient algorithms are available; see for example Chacon
and Vladimirsky (2012), Sethian (1996) and Zhao (2005). These
algorithms help accelerate our computations and make our numer-
ical simulations much less expensive.

This paper is organized as follows. The mathematical model is
introduced in Section 2. Its application to the migration behaviors
under a periodic environment is in Section 3. After the numerical
simulations, we shall discuss the model components and the time
scales of memory in Section 4. Several examples of simulations
under more complicated environments are provided in Section 5.
Finally, we conclude our findings in Section 6.

2. Mathematical model
2.1. Overview of the model

For this section we shall construct a model for an individual’s
movement, which depends on its health status, the local environ-
ment conditions, and its memory for the global environment. The
dynamics follow the following assumptions:

e The animal tries to move to, or stay in, the places with the most
resources that it remembers.

e An animal’s desire to move depends on its fitness and the con-
dition of the animal’s current location. We assume one would
be less likely to move if it is in good health, or its surrounding
is full of resources.

o The movement has a small stochastic effect for the explorations
for the local environment.

The dynamics are recorded by the individual’s position X(t) for
time t € R*. The first two important factors that affect our dynam-
ics are the individual’s fitness and the environment condition. We
consider the fitness P(t), and the environment E(t,x) on R* x R".
The value of E(t,x) indicates the condition of environment at time
t and location x. The larger the value is, the more resources (or
fewer predators) are available for the individual. P is therefore
evolving according to the condition of local environment,

aP
i
where P > 0 is the optimal fitness, which quantifies the maximal
strength that the individual possesses and is an intrinsic quality
of the individual. The description for P and E in our model are sim-
plified. As our main interest for this model is the effect of memory
on movement, we only keep those parts necessary to our focus.

We model the dynamics with the above hypotheses by the fol-
lowing stochastic differential equation:

dX = adW, + 1 (P(t), E(t,x)) vdt,

E(t,X(t))(P - P(t)),
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where ¢ > 0, W, is the Brownian motion, and y(P,E) := (P — P)e F is
called the desire function, which modifies the magnitude of veloc-
ity. Consistent with our second assumption of the dynamics, the
value of y is close to 0 when Pis close to P, or when E is large.

The velocity v would be chosen according to the information in
memory and perception. We shall introduce our model for memory
and perception in Section 2.2, and clarify the choice of velocity in
Section 2.2.1.

2.2. Mechanism of memory

While a memory mechanism could be quite complicated (e.g.
Bennett and Tang, 2006), here we extract only some basic features
that we consider important for our purpose. The assumptions are
as follows.

e A memory system consists of multiple channels of memory.

e Each channel of memory fades over time with a rate depending
on the intensity of the memory. The stronger the memory inten-
sity is, the slower it would be forgotten. The weaker, the faster.

e Each channel is updated independently over time with new infor-
mation gathered by the individual within its perception range.

We assume all memory channels operate on the same principle
but with different decay and update rates. We first clarify the evo-
lution of each channel, and finish this subsection with a description
of a whole memory system.

2.2.1. Evolution of one memory channel

One memory channel is modeled by a memory function M(t, x)
on R* x R". The value reflects how the individual remembers the
situation of environment at time ¢ and point x.

The evolution of memory contains two terms, one is losing
information, another is gaining. Each channel is characterized by
two positive indices, the decay rate d and update rate u. We
assume the two rates are in the same order, otherwise the channel
would fail to capture information correctly over time.

What the second assumption above suggests is a nonlinear term
for the fading memory. For the desired behavior we choose the
function —sgn(M)\/[M]. (In fact every function in the form
—sgn(M)|MF, 0 < s < 1 will do.) —sgn(M) guarantees positive mem-
ory decays and negative memory increases.

Comparing to the linear function M, which has its slope identically 1,
the function /|M] possesses the characteristic that when [M]| is large, its
slope is smaller than 1, while when |M| is small, it is larger than 1. This
matches our description that when the intensity of memory [M] is large,
the change of the forgetting rate is slower than when the strength is
small. Moreover, another feature of using —sgn(M)/|M]|, is any memory
with finite intensity shall return to zero within finite time.

The memory update is assumed to depend on the individual’s
perception of the actual environment. To introduce this factor,
we define a perceptual kernel K(x,y) = k(|x — y|), where k is a pos-
itive function on R, decreases to zero within a finite distance, and
with maximum 1. The magnitude of K(x,y) represents the percent-
age of information for E(x, t) that an animal can gather when stand-
ing at location y.

Combining the above discussion, the evolution of M is governed
by the following equation:

OM(t,x) =17 {—d -sgn(M)/IM] + u - K(X(t), x)(E(t,x) — M(t, x))] ,
(1)

where 7 is the time scale of this channel. The introduction of tis for
convenience for later discussion when multiple channels are
present.
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The perception can also be included in our definition as one
memory channel, simply by taking its time scale close to zero.
Indeed, when 1 tends to zero, the memory is forgotten and updated
almost immediately. In this case, the corresponding memory func-
tion works just like visual perception, which receives instant infor-
mation for nearby landscapes, but with almost no persistence. As a
result, this channel attains almost the same value as the environ-
ment function within its perceptual range.

2.2.2. Description of a memory system

We call a collection of independent memory channels a memory
system. Assume we have m channels, M;(t,x) where i=1,...,m.
Each channel is tagged with a decay rate d;, an update rate u;, a
time scale 7; and a perceptual kernel K;. And each M; is governed
by the following evolution equation:

aMi(t,x) = 771 [—d,- - sgn(Mi)/IMi] + u; - Ki(X(t), X) (E(t,x) — Mi(t,x))] 7
(2)

fori=1,2,...,m.

2.3. Choice of velocity and optimal control

An animals’ decision-making is modeled in the context of opti-
mal control theory, with a cost function depending on the memory
and perception of its environment. Precisely, we consider the
Hamilton-Jacobian-Bellman equation:

2
o =50 ep(-Hit.x), ®

where 1> 0 is a fixed parameter, and H(t,x) = Y"1, wi(t,X(t),x)
M;(t, x), with weight functions w; with (32", w;)(t,y,x) = 1, for all
t,x,y. The value of H(t,x) represents how an individual evaluates
the location x at time t, using the information it gathered and stored
in its memory system. The protocol for environment assessment is
encoded in the weight functions.

A classical argument in optimal control theory (Bardi and
Capuzzo-Dolcetta, 2008) shows that the solution y in (3) is the
value realizing the minimum over of every route x(s), starting from
x at time s =t to s = T by the value function:
w(t.x)=_inf C({X(s),T}), 4)

$).X(t)=x

X(

where

T A / 2
Cllx(s).H) = [ |exp(-Hisx() +5 K (5)F s

with a fixed time horizon T > 0. The cost functional consists of the
evaluation of environment and the kinetic energy, which penalizes
high speed. For completeness, the derivation from (4) to (3) assum-
ing € C' can be found in Appendix A.

As our setting does not carry a specific finite time horizon, we
take time horizon T to infinity. This leads us from (3) to the eikonal
equation:

IVl
55 = exp(=H(t.x)). (5)
We assume that the individual would choose to move along the
path that minimizes the cost function. The velocity of our choice is

therefore the gradient of :

v=-2"'V,

where / solves (5).
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3. Migration behaviors under periodic environments

We shall now simulate our general model under a simple peri-
odic environment with two types of evaluation functions H. Our
goal is to see which settings allow the animal to successfully follow
resources and generate a periodic migration pattern.

3.1. Simple time-periodic environment

We assume there are two potential habitats, modeled by two
disjoint circular regions A and B; see Fig. 1. The region with positive
values of E (good resources area) is alternating between A and B
with a fixed duration T. E is assumed uniformly negative (poor
resources area) outside the one region with positive values. For
our interest in memory effect, we also assume A and B are far
enough from each other so that the individual cannot observe
the environmental condition of the other region when it locates
inside one. That is, we assume

d(A,B)=inf {|x —y|:x €A,y € B} >sup{|x —y|:x,y € supp(K)},
where K is the perceptual kernel. Note that there can be multiple
points inside A and B, which provides us an option to model envi-
ronments with finer resolutions. Nevertheless, it is assumed for
now that each patch has a uniform environmental condition in this
simple setting.

3.2. Two simple memory models

3.2.1. Memory model I: One single memory channel
We first consider a memory system with only one memory
channel M, with H in the following form:

H=KE+M, (6)

where K is a perceptual kernel. This form means when a place x is
close to where the individual stands, the evaluation mainly depends
on what it sees. For distant places, it depends mainly on memory.

To encourage the first migration from A to B, we initiated the
memory function M with positive values in both A and B, and zero
otherwise. We also set the decay rate d small and update rate u
large. While memory model I appears reasonable, it cannot pro-
duce a periodic migration pattern under the simple periodic envi-
ronment as one expected, see Fig. 2.

After the individual’s first return for A, the value of M was
updated negative in both A and B. The individual thus explores
the other places that haven’t been visited before, instead of return-
ing to A or B.

3.2.2. Memory model II: Long and short-term memory

Because memory model [ is too simple to produce a periodic
movement in a periodic environment, we increase the complexity
and introduce the concept of short-term memory.

Memory model I contains two memory channels, including the
long-term memory M,(t,x) and short-term memory M;(t,x). We
assume M; has larger decay and update rates than M,, so that it

.
\\ o
~_ P

Fig. 1. Time-periodic Setting: The location of the good resources alternates
between A and B with duration T.
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Fig. 2. Trajectory for memory model I. The blue dashed line represents the
trajectory and the red dot is the location of the individual at the end of the
experiment. In this case, the individual was not able to repeat the migratory process
because its memory structure was mismatched to the dynamics of the resource
landscape. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Trajectory for memory model II. In this case, a periodic migration pattern is
successfully produced.

takes longer time to update and forget for information in M,, while
M; responds to changes quickly, and fades easily.
In this model, we define H as:

H(t,x) = Ms + M,. (7)

With (7), the individual makes a decision depending more on its
local environment when it is in an extreme condition. Otherwise, it
tends to rely more on the long-term memory. The following exper-
iment shows a successful result.

Under the same simple periodic environment, memory model Il
successfully produced the desired migration patterns, see Fig. 3.
Observe that the individual will leave an exhausted region after a
bit of explorations because of M;, and return to A or B according
to M(.

4. Discussion
4.1. Remarks on model components
Our main model components include the position, memory, and

fitness. The eikonal equation is also important as a policy that uti-
lizes the information in memory to make travel decisions. To inves-
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tigate memory effects on animal migrations, the position and
memory are indispensable in our model.

The fitness P has two roles in this work. It not only provides a
universal measurement for different experiments, but also
becomes an index to indicate when an animal would have the
desire to move. Recall that we assume an animal would not want
to move when the value of P is large.

Note that one could easily increase the complexity of memory
and fitness models, by adding more assumptions or even introduc-
ing more functions to describe them. Here we intended to keep our
model as simple as possible, and only considered essential
features.

The eikonal equation, on the other hand, can be replaced by any
other reasonable policy. Even though it is not the only option, the
existence of efficient algorithms for the eikonal equation acceler-
ates the numerical simulations. This advantage makes the eikonal
equation a practical choice for us here.

4.2. Cognitive capacity of our memory model

Our memory model can be utilized to simulate a wide range of
cognitive capacity, owing to its flexibility in the number of memory
channels. Each channel can be considered as a single cognitive map
that stores certain spatial information in the individual’s memory.
It has been agreed among biologists that cognitive maps are at
least parts of the memory mechanism that numerous taxa utilize
for different types of movement. For instance, it is employed to
record the flower locations for the trapline nectaring of bees
(Osborne et al., 1999) and hummingbirds (Gill, 1988). For the case
with at least two channels, long and short-term memory can be
imitated. From a biological perspective, long and short-term mem-
ory are believed to be relied on by diverse species (including inver-
tebrates and vertebrates) for seasonal or long-distance migration
(Kitchin et al., 2002). More examples of memory-aided movement
and its corresponding mechanism can be found in Fagan et al.
(2013).

4.3. Comparison between memory model I and II: Time scales of
memory channels

Both memory model I and II have two memory channels but
with different time scales. In fact, the perception in memory model
I can be seen as a channel with its scale close to zero. This obser-
vation combining with the experimental outcomes in Section 3.2,
shows that the time scales play a decisive role on whether periodic
dynamics can be produced. We shall demonstrate the relation
between time scales and dynamic patterns with simulation results.

Consider 0 < 7, < 71, where 7; is the time scale for the long-
term memory, and 7, for the short-term. We again perform exper-
iments with the same environment introduced in Section 3.1, and
initiate M, with positive value in both A and B. Fig. 4 shows the
simulation results for time scales in different orders.

We see from Fig. 4 that there are roughly three different issues
that could prevent us from having periodic dynamics:

1. The individual does not return to habitats if t, is not large
enough.
The larger 7, is, the more enduring the long-term memory
would be. With a rather small 7, the individual would lose a
positive long-term memory of both habitats A and B relatively
quickly. Hence the individual ends up wandering around,
instead of returning to A or B directly. See Fig. 5 as an example.
2. The individual does not leave an exhausted habitat, if T, is not
small enough.
The smaller 7, is, the faster the short-term memory is updated.
If the short-term memory is not updated fast enough, the indi-
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Fig. 4. This graph shows the outcomes for several combinations of time scales. The
different symbols correspond to different qualitative outcomes, whereas the color
bar on the right hand side indicates the time step at which the periodic dynamic
breaks. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

vidual cannot respond to the environmental change rapidly.
Therefore, in this case the individual never leaves its current
habitat; see for example Fig. 6.

3. The individual could have an early return and never reach the
other habitat, when 7, is too small while 7, is large.
We mentioned in the second case that 7, needs to be small
enough for the fast update of short-term memory, but there is
also a lower bound for 7,. The purpose of this lower bound is
to make sure that the short-term memory has a high enough
strength, so that the individual remembers the previous habitat
is exhausted at least until it moves past the middle point of A
and B. Otherwise, an early return could happen and the migra-
tion would not be successful.
See Fig. 7 as an example. The individual starts to leave A when
the resources in A become exhausted, but the individual forgets
that A lacks of resources before it moves past the middle point
of its journey. Because the individual has a positive long-term
memory of both habitats and it is closer to A, the individual
chooses to return before reaching B.

0.8F N 1

06¢ ‘ ‘ ‘ ]

Fig. 5. Trajectory when 7; ~ T, ~ 0.1. In this case the animal does not return to A
directly after visiting B.

Journal of Theoretical Biology 508 (2021) 110486

0.7+ \ il

0.6 1

0.5 1 1
X

Fig. 6. Trajectory when 7; ~ 7, ~ 10. The individual never leaves A because of the
large 7,.

5. Examples of further experiments

Beyond the simple time-periodic environment introduced in
Section 3.1, several different environments could also be tested
for further experiments. Four examples are given in the following:

e Three habitats. Our model was tested under a time-periodic
environment with three habitats A, B and C. With the appropri-
ate time scales of long and short-term memory, a periodic
dynamic in this environment can also be recovered; see Fig. 8.

¢ Changing habitats. Here we again have two habitats A and B,
but with A shrinking and B growing. At the end of the experi-
ment, the region A disappears entirely. See Fig. 9 for an example
of resulting trajectory of this experiment.

o Intermediate habitats/Dangerous locations. In this example,
dangerous areas in the middle of A and B and two intermediate
habitats above the dangerous regions were added; see Fig. 10.
Our simulation shows that the dangerous regions are always
avoided and the intermediate habitats are good enough to
retain the migrants. This type of phenomena has been observed
in nature; see for example the article (Teitelbaum et al., 2016).

o Two habitats with random seasonal changes. In this example,
it is again assumed that the good habitat alternates between A
and B. But different from before, each duration that resources

1.2r 1
b AL B
7/ N 7 N
/ \ / \
1 ol - ( -
\ \ / \ /
> N N/ N s
0.9 ~__X -~__ - 1
\
\
0.8F AN ]
\
\
0.7 N 1
0.6 1
0.5 1 1
X

Fig. 7. Trajectory when 7; ~ 100, 7, ~ 0.01. Because of the small 7, the information
of M; has been lost before the individual moves past the middle point of A and B.
Hence the return to A happens early and the individual never reaches B.
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Three Habitats: trajectory at time step: 531
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Fig. 8. Here we have periodic dynamics, but the migration dynamics and
environmental change do not have the same period. This result can be observed
from the animation: https://github.com/hsinyilin19/memory_model/blob/master/
habi3_movie.gif

Changing Habitats: trajectory at time step: 798

| N

0.2

0 0.5 1 1.5 2
X

Fig. 9. This is a result with an relatively small 7;. The trajectory shows that the
individual does not return to the area of A after the disappearance of that habitat.
The animation can be found in: https://github.com/hsinyilin19/memory_model/
blob/master/change_movie.gif

stay in A or B is a random variable. The random variable is pos-
itive and uniformly distributed with the mean T and variance
a2

We say the individual succeeds one journey, if it reaches one
habitat from the other before the destination becomes
exhausted. If the location of good resources changes n times
across an experiment, it is considered there are totally n possi-
ble journeys.

In our experiments the time scales of long and short-term mem-
ory are fixed, and T is chosen such that the individual can suc-
ceed all possible journeys when the environment is time-
periodic with T as the fixed duration for both habitats.

Recall from Section 4.3, we showed there is only a small region
of appropriate time scales that the individual can successfully
produce periodic dynamics under a time-periodic environment.
When the duration of resources changes, the appropriate time
scales change accordingly. The appropriate time scales should
be smaller for a shorter duration, while larger when the dura-
tion is longer.
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Intermediate Habitats: trajectory at time step: 493
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Fig. 10. We see from the trajectory that the individual always avoids the dangerous
areas, and sometimes chooses to reside in the intermediate habitats over A and B.
Those intermediate habitats could retain the migrants. An example of simulation
can be found in: https://github.com/hsinyilin19/memory_model/blob/master/in-
termediate_movie.gif

Now the duration of resources staying in one habitat is random
each time, the appropriate time scales for each possible journey
can be different. Every time our prior fixed time scales locate
outside of the appropriate region corresponding to a certain
duration in the experiment, the corresponding possible journey
fails. For instance, if one of the duration of resources is really
short, the individual could miss the corresponding possible
journey because the fixed 7, is not small enough to respond
to the fast environmental change, (which is the second case dis-
cussed in Section 4.3).

Therefore, the larger the variance in environmental duration is,
the more likely that migratory journeys will fail. To visualize
this tendency, we ran a series of experiments. All experiments
have a total of 10 possible journeys and the time scales are fixed
(t1 ~ 10,72 ~ 0.1). Tis set at 60 time steps, such that all 10 pos-
sible journeys are successful when there is no variance. A small
(0% ~ 10), moderate (6% ~ 100) and large variance (¢ ~ 1000)
case are then considered. We run 10 trials for each case. There
are on average 9.5 successful journeys for the small variance
case, 7.7 for moderate variance, and only 3.3 for large variance;
see Fig. 11. Roughly speaking, it becomes harder for the individ-
ual to follow the resources when the variance in the resource
duration is increased. From this point of view, environmental
persistence is very important for a memory-based migration
to have a periodic pattern.

Number of Successful Journeys Made by the Individual

10 9.5
7.7
' !

no variance small variance moderate variance large variance

Fig. 11. This chart indicates how many journeys on average the individual succeeds
for the entire experiment time. A tendency is shown from this chart that the larger
the variance in environmental duration is, the less successful journeys the
individual has.
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6. Conclusion

In this paper we develop a model for memory-based migrations
of one individual over a broad range of memory mechanisms.
Through numerical simulations under a simple time-periodic envi-
ronment, periodic migration patterns are successfully recovered.
Furthermore, we discover that in order to produce a periodic
movement, the individual must be able to gather and carry enough
information from both short and long-term memory, and capable
of discriminating which information is more important with
appropriate time scales.

While periodic movements can be recovered, the memory sys-
tems in our model do not include any intrinsic, a priori periodicity.
The resulting periodic migration patterns are developed by the
individual as its adaptation to periodic environmental changes.

A memory model with spatio-temporal information that leads
to avoidance of recently visited locations can be used to discuss
the efficiency of resource detection (Schldgel and Lewis, 2014),
and can even give rise to territoriality (Schldgel et al., 2017). Our
model can simulate a similar avoidance process by initiating a
memory channel to record the last visited region, with the length
of avoidance time as its timescale. With the ability to model avoid-
ance from memory, our model renders a general framework for
memory effects in applications such as territoriality, foraging,
and home residency.

Here we have considered the dynamics of one individual. For
future research, it would be interesting to extend this memory-
based model to a model for multiple individuals. Information shar-
ing behaviors have been observed in many different species and
shown beneficial for foraging efficiency (Martinez-Garcia et al.,
2013). For a future extension, the spatial memory of the individual
will be regarded as a type of information that can be exchanged
among individuals within a population. In this way, memory could
be not only updated by perception, but also affected by the mem-
ory of another individual. Consequently, the interplay between
information exchanges, individual memory, and group dynamics
can be further explored.
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Appendix A. Derivation of Hamilton-Jacobian-Bellman
equation

Proposition 1. Assume the value function y is C' in (x,t), then y
solves

Journal of Theoretical Biology 508 (2021) 110486

o =sup{ -p - V.~ exp(-H) - 5 P}

Moreover, the optimal trajectory is the one starting with velocity
— AW, in which case gives the Hamilton—jacobian-Bellman
equation

2
o =2V exp(-He ).

Proof. For a h > 0, for any vector p, we consider the line segment
() =x+p(s—t) froms=ttos=t+ h. Connecting ¢ and any path
X(s) from the point x + ph at time s = t + h to s = T, we get a path x
starting from x at time s = t and end at time s = T. By the definition of y,

Y(t,%) < infC(®)
pX

/‘t+h
t

So

t+h s
W(t+h,x+lfh)—l//(t,x) . _% t {exp(—H(s,E(s)))+%|p|2

exp(—H(s, £(s))) + % uﬂ ds +y(t +h,x + ph)

Taking h — 0, we derive
Oub > —p- Vi — exp(—H(t.X)) 5 IpP.
This inequality holds for every p, hence
inf {aﬂ/j +p -V + exp(—H(t,x)) + % |p\2} > 0.

In fact the equality holds as zero is realized when p is chosen as
the velocity of the optimal trajectory at s = t. Let X,, be the optimal
trajectory from s =t to t + h, then

ot+h
l//(t,X):/t {e)q:)(—H(s,xop(s)))+%|xl’,p|2 ds+y(t+h,Xep(t +h)).

So
Y(t+hXp(t+h) —y(t,x)
h
1 exp(—H(s, X (s)))+£\x/ *| ds
R o [EPEHE X 2 %o

Taking h — 0,

A
Oy (t,%) = —X,, - Vi — exp(=H(L, X)) = 5[x,, ",
for some vector x;,.

We rewrite

inf {00+ p- Vot + exp(-H(E.0) + 5o} =0
das
00 = sup{ —p- V. - exp(-H(t.0) ~ 519" .

Notice inside the parentheses is a quadratic form in p,

o = SLplp{—p - Vb — exp(—H(t, x)) — % W}

B ) Vo \: |V
= st;p{—z (p +T> -‘rT— EXP(—H(t,X))

2
_ % —exp(—H(t,x)),

which is realized when p = —2"'V,. O
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Appendix B. Implementation details for memory model II

Consider Q =1[0,1] x [0,1] and the final time T > 0. We dis-
cretize [0, T] x Q uniformly for N; x N* increments.

1. Update the fitness P with the implicit scheme if E is positive and
explicit if negative:
P(t)+E(t X (6).Y () PAE
P(ter) = T+E (6 X (6 Y (1) A
P(te) + E(tx, X (te), Y (t)) (P — P(te)) At.

Stop if P(t,) < P

2. Update the memory functions M,, M;:
M (a1, %i,Y;) = Mo (ti xi,y;)
+ Atr{—d IM, (ti, Xi, ;) [IM (e, X3, ¥7) | + Perception},

where

Perception = uK (X(ty), Y(tx), X, ¥;) [E(te, Xi, ¥;) — Me(te, %, ¥;)]-

If M, changes sign, M, is updated zero. M; is updated similarly.
3. Update H:

H(ty1,%:,Y;) = Ms(te, X3, y;) + Mo (e, X, Y;).

4. Solve the eikonal equation |V,y’| = \/2exp(—H)with bound-
aries {x:H(x)=b} for infq(H) < b <supy(H). Then take
¥ =y where b, minimizes the total cost cy®(X,Y) + exp(—b),
with the penalty coefficient ¢ for moving around. exp(—b) is
the exit cost imposed on the boundary.

5. Update the position (X,Y):

Wtk Xie1, ¥5) — W (tioxio, )]/ CA%) if <X <14
AX = —y(te,x1,9;)/(2A%) if 0 <X <
Wt xn1,y;)/(2M%) if <X < 1.
AY is defined similarly. Let (ry,r,) be the normal distribution
with zero mean and variance ¢? in 2d. Then take

X(tker) = X(te) — 1(P, (E(t,X(tx), Y (t)))) AXAEL + re /At
Y(tier) = Y(te) — % (P, (E(t, X(t), Y (ti))))AYAE + 1y VAE.

Repeat this procedure until t = T.

We conclude this section with two remarks as follows: First,
because sgn(M)./|[M| is not smooth and the finite difference
method is unstable near zero, whenever M changes sign, we put
it as zero at the new step.

Second, to contain the experiment inside a bounded domain Q
for all time, we solve the eikonal equation for multiple level sets
inside Q, instead of 9Q, and choose the path with the smallest cost.
Otherwise the dynamics will eventually escape as the cost of mov-
ing around forever will eventually become larger than one fixed
exit cost.
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