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Abstract

Measuring the activity of neuronal populations with calcium imaging can capture emergent
functional properties of neuronal circuits with single cell resolution. However, the motion of
freely behaving animals, together with the intermittent detectability of calcium sensors, can
hinder automatic monitoring of neuronal activity and their subsequent functional characteri-
zation. We report the development and open-source implementation of a multi-step cellular
tracking algorithm (Elastic Motion Correction and Concatenation or EMC?) that compen-
sates for the intermittent disappearance of moving neurons by integrating local deformation
information from detectable neurons. We demonstrate the accuracy and versatility of our
algorithm using calcium imaging data from two-photon volumetric microscopy in visual cor-
tex of awake mice, and from confocal microscopy in behaving Hydra, which experiences
major body deformation during its contractions. We quantify the performance of our algo-
rithm using ground truth manual tracking of neurons, along with synthetic time-lapse
sequences, covering a wide range of particle motions and detectability parameters. As a
demonstration of the utility of the algorithm, we monitor for several days calcium activity of
the same neurons in layer 2/3 of mouse visual cortex in vivo, finding significant turnover
within the active neurons across days, with only few neurons that remained active across
days. Also, combining automatic tracking of single neuron activity with statistical clustering,
we characterize and map neuronal ensembles in behaving Hydra, finding three major non-
overlapping ensembles of neurons (CB, RP1 and RP2) whose activity correlates with con-
tractions and elongations. Our results show that the EMC? algorithm can be used as a
robust and versatile platform for neuronal tracking in behaving animals.
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study (avi and tiff files) can be downloaded from
the BioStudies platform (https:/www.ebi.ac.uk/
biostudies/studies/S-BSST428).
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Author summary

Calcium imaging of neuron populations has enabled mapping the neuronal circuits that
control animal behavior. However, animal movement, together with the intermittent
detectability of calcium sensors, hinders the automatic tracking of individual neuron
activity. Here we introduce a novel algorithm and open-access software to track the posi-
tion of individual neurons in a calcium imaging movie in behaving animals. To handle
the motion and the deformation of the animal our method combines state-of-the art algo-
rithms to track neurons, with algorithms to estimate the deformation and predict the posi-
tions of neurons when they are silent and undetectable. Our method and software are
robust and versatile in various animal models, from two-photon imaging of mouse visual
cortex over days, to the highly deforming Hydra. Efficient image analysis and software for
monitoring the activity of neuron populations in a wide range of animal models are
needed to fully reconstruct the activity of neural circuits and study the emergent func-
tional properties of neuronal ensembles that control animal state and behavior.

This is a PLOS Computational Biology Methods paper.

Introduction

Measuring the activity of neuronal populations in freely behaving animals can help a detailed
understanding of how neural circuits integrate external information, compute, learn and con-
trol animal behavior. Calcium imaging has become widespread for measuring single neuron
activity as it is non-invasive and allows the simultaneous measurement of hundreds to thou-
sands of cells, with single cell resolution [1]. Moreover, monitoring single neuron activity in
freely moving animals such as rodents can be achieved with miniaturized microscopes
attached to the head [2]. However, technical limitations of current microscopy techniques and
of mathematical analysis hinder a more complete imaging and analysis of entire brains. Alter-
native strategies consist of monitoring single neuron activity in targeted brain regions of
rodents using two-photon microscopy [3], or imaging the nervous system of a smaller animal,
one that can fit entirely within a microscope’s field of view, such as Caenorhabditis elegans [4],
Hydpra [5], Zebrafish [6] or Drosophila larvae [7]. An advantage of simple model organisms is
that they contain many fewer neurons than mammals and have a limited repertoire of behav-
iors [8] that may be entirely characterized in the near future.

Aside from the difficulties in imaging entire nervous systems with high temporal and spatial
resolution [3, 6, 9], an important bottleneck in analyzing calcium imaging data is to achieve
robust and automatic tracking of individual cells” position while the animal is behaving. Sin-
gle-cell tracking is challenging for three main reasons: First, there may be a large number of
cells in a cluttered environment. Therefore, false positives and negatives during single cell
detection and localization impede the association of detected neurons between successive time
frames and call for more elaborate tracking algorithms. Second, neurons can remain undetect-
able over large periods of time because calcium sensors may be significantly brighter than
background only when neurons are firing. Third, tracking methods in behaving animals have
to handle animal motion and body deformations [10]. To tackle these issues, numerous hard-
ware solutions have been proposed, including fixation of animal (usually the head) [3, 6, 11],
high-speed motorization of microscopes to track animal movements [4, 12] and dual-color
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labeling of neurons with a calcium-insensitive probe that can be detected and localized even
when neurons are not firing [4, 9]. However, even when (some of) these solutions are imple-
mented, the residual motion of neurons, the limited spatial resolution of the microscope and
the intermittency of the fluorescence signal (when single-channel calcium imaging is used)
hinder the robust tracking of single neuron activity, particularly over long periods of time.
Therefore, elaborate post-processing of acquired movies is required. Most current image pro-
cessing methods consist of registering images (volumes) to reference image(s) (volume(s))
using either the local fluorescence intensity of images [13, 14], or the extracted neuron posi-
tions directly [4, 10, 15, 16]. Then, additional image processing, such as non-negative matrix
factorization [17, 18], might be required for demixing and denoising cellular calcium activity.

Despite these software developments, the difficult implementation of hardware solutions,
such as the dual-labeling and imaging of calcium-insensitive probes, together with the signifi-
cant deformability of challenging animal models such as Hydra, prevent the robust automatic
tracking of single neurons in many experiments. Tracking has then to be performed manually
[5] or semi-manually [19]. This limits the analysis to a few hundred frames, introduces opera-
tor bias and, ultimately, hinders our understanding of the functional organization of nervous
systems.

To robustly track particles with intermittent detectability (neurons) in a cluttered and
deforming environment, we report the development of an algorithm named Elastic Motion
Correction and Concatenation (EMC?). EMC? is based on the versatile framework of single-
particle-tracking (SPT), enabling the robust monitoring of single neuron activity in most, if
not all, animal models. In contrast to traditional SPT, EMC? does not set expected priors for
particle motion (typically diffusion and/or linear motion). Instead, it uses information about
local motion and deformation from detectable and tracked particles in the neighborhood of
undetectable particles. EMC? is therefore more versatile, and does not require motion priors
or heuristics to close tracking gaps. In addition, for the local tracking of detectable particles,
EMC? uses a probabilistic method and is therefore robust to very cluttered conditions. We val-
idate the robustness and accuracy of EMC? with manual tracking of neurons in two calcium
imaging datasets from behaving animals. Our first dataset consists of two-photon calcium
imaging of few tens of neurons in the visual cortex of awake mice. We show that our algorithm
accurately tracks the limited motion of single neurons in the two-photon field-of-view,
enabling the fast analysis of long recordings of individual neuron activity. We then monitor
single neurons of Hydra’s nervous system while the animal is behaving and deforming. Hydra
imaging datasets represent perhaps the worst possible scenario for tracking purposes, since
animals can have major changes in body size with non-isometric deformations. We also quan-
tify the performance of EMC? using simulations of fluorescence time-lapse sequences with dif-
ferent types of motion (confined diffusion, linear displacement and elastic deformation), and
show that EMC? outperforms state-of-the art tracking algorithms.

After integrating EMC? in an open-source and freely available platform Icy [20] (icy.
bioimageanalysis.org), we explore the utility of the algorithm in two experimental scenarios.
We first monitor the activity of single neurons in two-photon calcium imaging of layer 2/3 of
mouse visual cortex over multiple days and show that there is an important turnover of active
neurons and that very few neurons remain active across days. We then track complete neuron
activity in behaving Hydra, and find functional clustering of individual neurons into co-active
ensembles [21]. Consistent with previous observations [5], we find that Hydra contains three
main neuronal ensembles (CB, RP1 and RP2); and, after mapping the positions of individual
neurons from each ensemble, we also confirm that these ensembles are not overlapping, i.e.,
they do not share neurons, and that they are correlated with contraction bursts and elongation
behaviors.
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These results demonstrate that EMC? is an effective and versatile tracking algorithm for the
tracking of single neuron activity in calcium imaging of living animals. Robust tracking consti-
tutes a prerequisite for the statistical analysis of the functional organization of neural circuits,
the description of emergent computational units such as neuronal ensembles, and ultimately,
for the understanding and prediction of animals’ adaptive behavior.

Results
1 Statistical mapping of neuron positions versus single-particle-tracking

Most of the methods that have been developed for tracking single neuron activity in the well-
documented animal model C. Elegans are based on the statistical mapping of neuron positions
to a reference set of coordinates within the animal [10, 16, 22]. An important advantage of
these methods is their robustness to the length of the analyzed time-lapse sequence, as the dif-
ferent images are registered independently from each other to the reference set of positions. In
these methods, reference positions are extracted from reference frames and cell identities can
be obtained either from stereotyped fluorescent color maps of all neurons (NeuroPAL [23]) or
online cell atlases (e.g. WormAtlas [24] and OpenWorm [25]). Therefore, mapping methods
heavily rely on the stable repertoire of neurons (position and/or type) within single worms,
when mapping is used for tracking neurons along time [10, 18, 26], and even across different
worms when different animals or strains are compared [16, 22].

Unfortunately, in Hydra, the number and position of neurons differ from one animal to
another [27]. Moreover, even within a single animal, the accurate mapping of a reference set of
neuron positions is prevented by the important and continual deformations of the animal (typ-
ically, the length of the animal is reduced by more than half during longitudinal contraction),
and the 2D imaging of transparent 3D tissues that induces apparent changes in neuron posi-
tions even between stereotypical poses of the animal. Finally, while the aforementioned map-
ping methods used in C. Elegans can accommodate moderate changes in the total number of
neurons between frames due to missing or spurious detections (counting noise), the intermit-
tent and sparse detectability of neurons in calcium imaging, without a reference fluorophore
like calcium-insensitive red fluorescent proteins (RFP) [10], definitely hinders the applicability
of mapping methods.

Therefore, to track neurons in Hydra, we used the SPT framework. SPT methods sequen-
tially link cell detections through time [8], with no need for a reference set of positions. They
are more versatile than statistical mapping, and can handle the large deformations of Hydra
and the intermittent detectability of cells in calcium imaging.

2 Limitations of standard SPT Algorithms

Most SPT algorithms rely on the automatic detection of particles (cells, molecules. . .) that are
significantly brighter than the noisy background in each frame of the time-lapse sequence (see
[28] and [29] for review) and, subsequently, the linking of detections between frames corre-
sponding to the reconstruction of coherent particle trajectories (see Table 1). The prevalence
of false positives (i.e. background signal) and negatives (i.e. missing detections) in the detec-
tion of particles, together with the influence of high particle density and stochastic dynamics
have, over the last two decades, motivated the development of algorithms that go beyond naive
tracking methods that simply associate nearest-neighbor detections between consecutive time
frames (see Table 1 and [30, 31] for a review of existing methods). Indeed, the erroneous asso-
ciation of one detection to a track, or the premature ending of a track due to missing detection
(s), can lead to important error propagation as detections are sequentially associated to existing
tracks.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009432  October 8, 2021 4/25


https://doi.org/10.1371/journal.pcbi.1009432

PLOS COMPUTATIONAL BIOLOGY

Tracking calcium dynamics from individual neurons in behaving animals

Table 1. Tracking methods in bio-imaging.

Algorithm
Sage et al.

Bonneau
etal.

NeRVE

fDLC

CRF_ID

Mosaic

TrackMate

eMHT

MAP-
4D-DAE

Type
Global

Global

Detect &
Mapping

Detect &
Mapping

Detect &
Mapping

Detect &
Link

Detect &
Link

Detect &
Link

Detect &
Link

Detection
None

None

Watershed
Segmentation

Watershed
Segmentation

Gaussian mixture
model fitting

Gaussian
Convolution &
Thresholding

Wavelet
transformation or
Gaussian
convolution &
thresholding

Wavelet
transformation &
thresholding

Not specified

https://doi.org/10.1371/journal.pcbi.1009432.t001

Linking
Energy minimization

Energy minimization

Point-set registration &
clustering—Animal
deformation estimated with
elastic transformations

Point-set registration to
reference set of positions—
learning of animal
deformation

Point-set registration to
reference & temporally-
nearby frames-Use of
graphical model (neighbors)
to predict identities

Global distance
minimization

Global distance
minimization

Probabilistic (Multiple
Hypothesis)

Probabilistic (Multiple
Hypothesis) + Autoencoding
for particle motion modeling

Gap
closing

Yes

Yes

Yes

Yes

Yes

Yes

Pros
Global.

Global. Robust gap
closing with minimal-
path algorithm

Robust to dense packing
of particles. Handles
non-linear
deformations.
Time-independent (i.e.
robust even in long
time-lapse sequences)

Robust to dense packing
of particles. Handles
non-linear
deformations.
Time-independent

Robust to dense packing
of particles. Handles
non-linear
deformations.
Time-independent

Fast. Accounts for spot
intensity and size in
distance computation.

Fast. Handles split &
merge events.

Robust in cluttered
environment. Few user-
defined parameters

Robust in cluttered
environment. Few user-
defined parameters.
Handles non-linear
deformations

Cons

Designed for one or few
sparse particles

Designed for few sparse
particles. High
computational load.

High computational load.
Not robust to many
missing detections and
long gaps in highly
deforming environments.

Not robust to many
missing detections and
long gaps in highly
deforming environments.

High computational load.
Not robust to many
missing detections and
long gaps in highly
deforming environments.
Gap closing does not
handle large motion. Not
robust in very cluttered
conditions.

Gap closing does not
handle large, non-linear
motion. Many user-
defined parameters

Slower than global distance | Spot Tracking

minimization. Cannot
close large gaps (> ~5
frames) due to
computational load

Slower than global distance
minimization. Cannot
close large gaps (> ~5

frames) due to
computational load

Freely
available
Image]
plugin
No

Matlab GUI

Python
(Github
repository)

Matlab
(Github
repository)

Particle
Tracker
plugin
(Image])
TrackMate
plugin
(Image])

plugin (Icy)

No

[16]

(22]

(32]

(33]

[30]

[10]

One category of elaborated tracking algorithms is based on global distance minimization

(GDM) between all pairs of detections in consecutive time frames. The distance measure

between detections can be simply the Euclidean distance, or can additionally take into account

the similarity of the intensity and/or shape of the detected particle [32]. To handle possible

missing and false detections, heuristics for track termination and initiation are defined by the

user [33]. GDM methods are fast and robust, but user-defined parameters that regulate the

ending, the initiation and the fusion of tracks hinder their applicability in very cluttered condi-
tions with numerous missing and spurious detections [30]. Moreover, the limitations of cur-
rent particle motion models (confined diffusion and linear directed motion [32-34]) prevent
the robust estimation of particle positions when they remain undetectable over long periods of

time, as for sparsely firing neurons in calcium imaging. This limits the ability to close gaps in

the trajectories of tracked particles to a very few frames.
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Probabilistic methods are an attractive alternative to GDM methods, even if their computa-
tional cost is higher. Probabilistic algorithms model both the stochastic motion of the particles
and their detectability, and then compute the optimal tracking solution by maximizing the
model likelihood of observed detections [30, 35, 36]. The gold standard of probabilistic associ-
ation is multiple hypothesis tracking (MHT) in which one computes all the possible tracking
solutions over the entire time-lapse sequence, before inferring the tracking solution that maxi-
mizes the observation’s likelihood. However, MHT is generally not computationally tractable.
Approximate solutions that iteratively compute a nearly optimal solution over a limited num-
ber of frames (typically up to 5) have been proposed [30]. As probabilistic methods model the
particles’ detectability, they are usually more robust than GDM methods in cluttered condi-
tions. However, the small number of frames considered when approximating the MHT solu-
tion, together with limited particle motion models (again diffusion and/or linear
displacements [30, 35]), reduce the capability of probabilistic algorithms to close large tracking
gaps and keep track of particles’ putative position when they remain undetectable over many
frames.

3 EMC? Algorithm

To increase the capability of SPT algorithms to track single particles with intermittent detect-
ability in cluttered and deforming environments, we have developed EMC?. This multi-step
algorithm and software is particularly well-suited for tracking single neuron activity with cal-
cium imaging in a behaving animal. The EMC? algorithm can be decomposed into four main
steps (Fig 1).

First, bright spots (e.g. firing neurons in calcium imaging sequence) are automatically
detected with a robust method based on wavelet decomposition of time-lapse sequence and
statistical thresholding of wavelet coefficients (Materials and Methods). Second, detected spots
are linked into single particle trajectories with a state-of-the-art probabilistic algorithm, a vari-
ant of multiple hypothesis tracking (eMHT [30]), which is particularly robust in cluttered con-
ditions. Obtained track(let)s correspond to trajectories of detectable particles. However, in
many time-lapse sequences such as calcium imaging of neuron activity, tracks would be termi-
nated prematurely when particles switch to an undetectable state (e.g. non-firing neuron) and
new tracks would be generated when particles can be detected again (e.g. firing neurons). This
creates time-gaps in individual tracks that need to be closed to allow the accurate tracking of
each particle’s identity over the time-lapse sequence. Thus, the two last steps of our method
aim to close gaps in trajectories using information about the motion and deformation of the
field of view along the time-lapse sequence. We considered that tracked particles are embed-
ded in a deformable medium (e.g. neurons within tissue) and that local estimation of the
deformation of the field-of-view should allow the inference of particles’ positions even when
they are undetectable.

The third step of EMC? is therefore the computation of the elastic deformation of the field-
of-view at each time using the information contained in tracklets of detectable particles. For
this, we used the positions of tracked particles between consecutive time frames as fiducial
source and target points. We then computed the forward and backward elastic deformations of
the whole field by interpolating the deformation at any position between fiducials with a thin-
plate-spline function. The thin-plate spline is a popular poly-harmonic spline whose robust-
ness in image alignment and point-set matching has been demonstrated [37], and which has
been recently applied for automatic neuron registration in time-lapse sequences [10]. In our
hands, the Neuron Registration Vector Encoding (NeRVE) method developed to map single
neurons in C. elegans [10] is unfortunately not sufficiently robust for tracking neurons in
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Fig 1. Multi-step EMC? for tracking neuron activity in calcium imaging data. a- Time-lapse imaging (N frames) of
intermittent fluorescence activity of a neuron in a deforming environment (e.g. behaving animal). b- Fluorescent spots
(neurons), that are significantly brighter than background, are automatically detected with a wavelet-based algorithm. c-
Tracklets of detectable neurons are robustly reconstructed using probabilistic tracking algorithm (eMHT). d- Short tracklets
of detectable particles are used to compute the elastic deformation of the field of view at each time frame. Associated
detections in neuron tracklets are used as fiducials, and the whole deformation is interpolated using a poly-harmonic thin-
plate spline function. Forward- and backward-propagated positions of tracklet particle positions are shown with a thin blue
line. e- After having corrected for the deformation of the field-of-view where neurons are embedded, gaps between the end-
and starting-points of tracklets are closed by minimizing the global Euclidean distance between points (dotted line). f- Finally,
complete single neuron tracks over the time-lapse sequence are obtained by applying the elastic transformation of the field-
of-view to concatenated tracklets.

https://doi.org/10.1371/journal.pcbi.1009432.9001

calcium imaging of behaving Hydra, as shown in [15]. In addition to the inherent limitations
of mapping methods when applied to calcium imaging of Hydra (see paragraph “Statistical
Mapping of Neuron Positions versus Single-Particle-Tracking”), the poor tracking accuracy of
the NeRVE method when applied to Hydra is also due to the fact that, contrary to C. elegans,
one cannot map the Hydra neuron positions in fixed cylindrical coordinates along the princi-
pal axis of the animal. This reflects a much lower level of effective deformation in C. elegans
and consequently a lower complexity of neuron registration. To increase the robustness and
accuracy of single neuron tracking, we rather implement, in EMC?, a local concatenation of
short tracklets after having propagated forward and backward the estimated deformation of
the field of view.

Therefore, the fourth and last step of our method is the iterative estimation and correction
of the elastic deformation of the field-of-view, followed by the optimal concatenation of
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tracklets. In this last step, we used the elastic transformation computed with thin-plate splines
to propagate forward (and backward) the putative positions of undetectable particles, follow-
ing the termination of their detectable tracklets (or preceding the initiation of novel tracklets).
After having corrected for the elastic deformation of the field-of-view, we then linked short
tracklets by minimizing the global distance between the end-points of prematurely terminated
tracklets with the starting-points of newly appearing tracklets (Materials and Methods).
Finally, single-particle tracks over the time-lapse sequence are obtained by applying the com-
puted elastic transformation to the concatenated tracklets.

Contrary to gap-closing GDM approaches [33], EMC” contains only two free parameters:
the maximal distance between forward-propagated ending-points and backward-propagated
starting-points of short tracklets for concatenation, and, to avoid important error propagation,
a maximum time-lag between ending- and starting-point candidates. We highlight that
concatenated tracklets do not necessarily span the entire time lapse sequence: each track begins
with the first detection of its first concatenated tracklet and ends with its last detection of the
last concatenated tracklet. Moreover, EMC? algorithm handles complex natural motions and
deformations, contrary to GDM methods that only account for confined or linear motion.
EMC? is therefore more robust and versatile. For the sake of reproducibility and dissemination
of our method, we implemented the EMC? multi-step procedure in the bio-image analysis
software suite Icy [20] (http://icy.bioimageanalysis.org/). Icy is an open-source platform that is
particularly well-suited for multi-step analysis thanks to graphical programming (plugin proto-
cols) where each step of the analysis can be implemented as a block with inputs and outputs
that can be linked to the other blocks (Fig 2 and Materials and Methods). Our method builds
on well-established Icy preprocessing functions for spot detection and tracking.

4 Validation of EMC?

a Manual tracking of calcium dataset in behaving animals. To validate the capabilities of
EMC?, we first compared the results of our algorithm with manual tracking in calcium imaging
sequences of neuron activity in behaving Hydra [5]. We used the first 250 frames (25 seconds at
10 Hz) of a time-lapse sequence previously acquired in a genetically-engineered animal [5] and
automatically detected the active neurons (bright spots) using the multi-step detection process
described in the Materials and Methods. We tracked the detected particles with the eMHT algo-
rithm ([30], implemented in Spot tracking plugin in Icy) and obtained short Bayesian tracklets
(n =784 tracklets) for the detected neurons (step 4 of the Icy protocol in Fig 2). We then manu-
ally concatenated all the corresponding tracklets, i.e. we closed gaps, and obtained complete
neuron tracks (n = 444 tracks). We observed that, before gap closing, tracklets were significantly
shorter than concatenated tracks, meaning that many tracklets are indeed terminated prema-
turely by the undetectability of silent (non-firing) neurons. We measured the accuracy of EMC?
by comparing the computed tracks with those obtained after manual association of tracklets,
which we took as an approximate ground truth (see Materials and Methods and S2 Fig). We
also measured how tracks obtained with TrackMate [33] implemented in Fiji [34] matched this
manual ground truth. TrackMate is a GDM method, based on optimal linear assignment
between closest detections. To handle the gaps in tracking when particles are undetectable,
TrackMate again uses a GDM algorithm to compute the optimal linear assignment between
ending- and starting-points of previously computed tracks. As a result, TrackMate uses the
same type of gap closing algorithm as EMC? but without correcting for potential elastic defor-
mation of the field-of-view. Finally, to evaluate how well the algorithm performs to generate the
initial set of short tracklets, i.e. to compare the probabilistic eMHT used in EMC? with the
GDM algorithm used in TrackMate, we also measured the accuracy of EMC?, but without
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Fig 2. Implementation of the EMC? algorithm in Icy platform. Time-lapse sequence of fluorescent particles is the input to a
multi-step, automatic protocol in Icy. A first series of blocks, highlighted in blue, detects the position of fluorescent neurons
(spots) in each frame of the time-lapse sequence. Block 1 uses the wavelet transform of each image and statistical thresholding of
wavelet coefficients to determine spots that are significantly brighter than background. To separate close spots that form clusters
in the wavelet-based mask of the image, the thresholded sequence is convolved with a log-gaussian kernel to enhance single
spots (block 2), and local maxima algorithm is applied (block 3). A second series of blocks, highlighted in red, computes single
particle tracks from computed spot positions. First, the Bayesian tracking algorithm (eMHT) computes tracklets of detectable
particles (block 4). Due to fluctuating particle detectability, many Bayesian tracklets are terminated prematurely and new
tracklets are created when particles can be detected again. To close detection gaps in single particle tracks, block 5 applies the
EMC? algorithm. Final output of the Icy protocol is the collection of single particle tracks over the time-lapse sequence.
Tracking protocol can be found here: http://icy.bioimageanalysis.org/protocol/detection-with-cluster-un-mixing-and-tracking-
of-neurons-with-emc2/ and is also directly accessible through the search bar of the Icy software (see step-by-step Supplementary
Icy tutorial).

https://doi.org/10.1371/journal.pchi.1009432.9002

elastic motion correction before gap closing. Compared algorithms are summarized in Table 2.
First, we found that EMC? (n = 453 tracks, with 410 (90.5%) matched tracks) outperformed
TrackMate (n = 474 tracks, with 259 (54.6%) matched tracks) and EMC? without elastic

Table 2. Tested tracking algorithms in manual validation.

Name Local association of detected particles Elastic Motion Correction? Gap closing % match
Manual Bayesian (eMHT) No Manual 100% (ground truth)
EMC? Bayesian (eMHT) Yes GDM 90.5%
TrackMate Global distance minimization (GDM) No GDM 54.6%
EMC? without Correction Bayesian (eMHT) No GDM 54.3%

https://doi.org/10.1371/journal.pcbi.1009432.t002
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correction (n = 514 tracks, with 279 (54.3%) matched tracks). The similar capabilities of Track-
Mate and EMC? without elastic motion correction indicate that Bayesian eMHT and the GDM
tracking method perform similarly for local association of detectable spots, but fail at closing
longer tracking gaps in deformable media. This highlights the importance of elastic motion cor-
rection before the optimal concatenation of short tracks.

Using the same methodology, we compared manual and automatic (EMC?) tracking of sin-
gle neurons in the less challenging case of two-photon imaging of the visual cortex (layer 2/3)
of mice (we used the first day calcium recording from the first animal [38]). Here, the defor-
mation of the field-of-view is much more limited and the motion of embedded neurons can be
assimilated to confined diffusion. As expected, we obtained an EMC? accuracy that was close
to 100% (64 correct tracks over 65, i.e. 98.5% accuracy) for a time lapse sequence of 3,700
frames (5 minutes).

b Synthetic time-lapse sequences. Manual gap closing in time-lapse sequences is tedious
and prone to operator bias. Moreover, the ground truth, i.e. the identity of each individual neu-
ron along the whole time-lapse sequence, is unknown. Therefore, we designed a reproducible,
synthetic approach where we simulated individual neurons’ activity and animal motion with
different sets of parameters.

We modeled three different types of motion and/or deformation (Materials & Methods):
Confined diffusion, where blinking neurons diffuse within a confined area (as in two-photon
imaging of targeted brain areas), Linear motion, where neurons all move together in the same
direction at constant velocity, and finally, using deformation fields measured in Hydra experi-
mental data, we simulated naturalistic Hydra deformations. We further modeled the intermit-
tent activity of neuronal ensembles with a probabilistic Poisson model. We also modeled the
fluorescence dynamics of individual spikes using a parametric curve that we fitted to experi-
mental data. Finally, using neuron positions, firing activity and fluorescence dynamics, we
generated synthetic time-lapse sequences using a mixed Poisson-Gaussian noise model ([30]
and Materials & Methods).

For confined diffusion (150 simulated tracks, n = 10 simulations), both EMC? and Track-
Mate gave excellent results, with track matches of 93.5% * 1.6% (144.4 + 1.8 correct tracks
over 154.6 + 0.9 reconstructed tracks) for EMC? and 92.9% + 0.8% for TrackMate (140.3 + 1.0
correct tracks over 151.0 + 0.3 reconstructed tracks) (Fig 3A). The good performance of Track-
Mate was expected as this algorithm was initially designed to track confined endocytic spots at
the cell membrane [33]. In addition to confined motion, TrackMate can also model linear
motion of particles when computing the optimal gap closing between short tracks. Therefore,
in linear motion simulations (337.6 + 1.0 simulated tracks, n = 10 simulations), we used Track-
Mate with linear motion correction instead of standard confined motion correction. However,
even with linear correction, the performance of Trackmate (76.3% * 0.6% (262.6 + 1.4 correct
tracks over 358.2.0 + 1.8 reconstructed tracks)) was significantly worse than EMC®s perfor-
mance (97.7 + 0.5% (326.1 + 1.6 correct tracks over 337.3 + 1.1 reconstructed tracks)). This dif-
ference is due to the different estimation methods that are used in the two tracking algorithms
to estimate the direction of tracks: in TrackMate, the estimation of track directions is local,
based on the last detection within each short track, whereas the estimation of track direction
in EMC? uses global information provided by neighbouring short tracks and is therefore more
robust. Finally, in the third case, we used the deformation field that we estimated over 250
frames within a time-lapse experimental sequence of Hydra (500 simulated tracks, n = 10 sim-
ulations, see section 2.a and Materials & Methods). We found that Trackmate had similar per-
formances with (matching score 69.4 + 1.1%, or 414.8 + 3.7 correct tracks over 598.2 + 4.8
reconstructed tracks) or without (72.4 + 0.9%, or 427.2 + 3.0 correct tracks over 590.7 + 3.5
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Fig 3. Testing EMC? robustness with synthetic simulations. For each simulated type of motion (confined diffusion (a), linear motion (b) and “Hydra-like” elastic
deformation (c)), we simulated the stochastic firing of neuronal ensembles and corresponding fluorescence dynamics in synthetic time-lapse sequences (see Materials
and Methods for details). We then compared the performances of EMC? (blue) with TrackMate (no motion correction (red) or linear motion correction (magenta)).
P-values are obtained with the Wilcoxon rank sum test over n = 10 simulations in each case. (d-e) Using “Hydra-like” synthetic deformation, we measured the
accuracy of EMC? for increasing proportion of stable (i.e. non-blinking) particles (neuronal cells) and increasing number of simulated particles. (f) After having
estimated the deformation-field in three different animals (animal 1 (black), 4 (blue) and 6 (green)), we measured the accuracy of EMC? for simulated sequences with
increasing length (25, 50, 100 and 240 seconds. Imaging and simulations were performed at 10 Hz). For comparison purposes, the performance of TrackMate
algorithm for 25 seconds (animal 1), extracted from (c), is shown.

https://doi.org/10.1371/journal.pcbi.1009432.9003

reconstructed tracks) linear motion correction, and that both were outperformed by EMC?
(98.6 + 0.3%, or 493.4 + 1.6 correct tracks over 500.4 + 0.2 reconstructed tracks).

We also measured the robustness of EMC? to parameter change in synthetic motion simu-
lations. In particular, we measured the performance of the algorithm for an increased percent-
age of stable cells (Fig 3D) (see Material and Methods), an increased number of neurons (Fig
3E) and an increased length of simulated sequences (Fig 3F and Table 3). First, we found that
even without stable cells (0410 = 0), the accuracy of EMC? remained high (77.7% + 3.6%
(398.8 + 18.4 correct tracks over 513.3 + 1.7 reconstructed tracks), and rapidly increased to
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Table 3. Results of synthetic simulations (Hydra-like deformation, increasing length).

250 frames (25 s.) 500 frames (50 s.) 1000 frames (100 s.) 2400 frames (240 s.)
Accuracy Nb. Tracks Accuracy Nb. Tracks Accuracy Nb. Tracks Accuracy Nb. Tracks
Animal 1 98.6£0.3% 500.4+0.2 87.5£0.8% 511.7£1.0 83.8£1.8% 512.0+3.1 67.4+4.1% 538.8+8.0
Animal 4 98.0£0.2% 503.5+0.4 95.9+0.4% 507.9+1.1 88.7£1.2% 521.5+2.6 66.7+2.5% 571.9£8.5
Animal 6 97.8+0.2% 502.9+0.7 96.9+0.3% 505.6+0.7 92.0+1.3% 515.7+2.3 81.7+1.9% 540.7+5.4

https:/doi.org/10.1371/journal.pchi.1009432.t003

91.8% *+ 1.2% for aapr. = 5%, before reaching a plateau above 95% accuracy for o,p.>10%.
Conversely, we found that EMC? was very sensitive to the number of neurons, with poor per-
formance for very few neurons (for simulations with only 10 neurons, the accuracy was 11.6%
+0.6%, or 5.6 £ 0.3 correct tracks over 49.8 + 0.8 reconstructed tracks). The accuracy rapidly
increased to > 90% when more than 100 neurons were simulated. Tracking errors in simula-
tions with few neurons are due to the inaccurate estimation of the deformation field, and itera-
tive error propagation, when few fiducial source and target points are used. Finally, we
measured how the performance of the EMC? evolved with the length of the simulated
sequence, for three different animals (animals 1, 4 and 6, see Table 4). We chose animals with
a high and homogeneous density of neurons so that we could accurately estimate, and there-
fore simulate, their body deformation. We found that the EMC? accuracy decreased with the
sequence length, but remained high (i.e. >80%) for up to 2 to 4 minutes of simulation at 10
Hz, depending on the animal (animal 1 ~ 1200 frames = 2 min., animal 4 ~ 1500 frames = 2
min. 30s and animal 6 ~ 2400 frames = 4 min.). For longer simulations, the accuracy dropped
below 80% and reached a mean of 72% at the end of the simulation (4 minutes). The number
of reconstructed tracks remained close to 500 even for longer sequences (Fig 3F and Table 3).
The decreased performance of EMC? for longer time-lapse sequences is an expected drawback
of SPT-based tracking algorithms. Indeed, the probability of false associations between newly
detected particles and existing tracks increases with time. Yet, the EMC? tracking algorithm, in
contrast with state-of-the-art SPT algorithms, allows the robust, automatic tracking of individ-
ual neurons over few (~2-3) minutes in the highly deforming Hydra model. This sustained
performance is particularly desirable as it allows the robust analysis of single neuron activity
and functional coupling during different animal behaviors (section 4).

Table 4. Results of statistical extraction of neuronal ensembles in Hydra (n = 8 animals).

Animal Movie length (frames)
900
1636
1371
988
1000
1000
1000
1000
1000
1000
1000
1000
1000
Mean 1067
Standard error 56

https://doi.org/10.1371/journal.pchi.1009432.t004
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Tracks (>150 frames) Activity peaks Ensembles CB neurons RP1 neurons RP2 neurons

411 11 2 139 (33.8%) 37(9.0%)
723 37 3 202(27.9%) 121(16.7%) 49(6.8%)
607 27 3 222(36.6%) 78(12.9%) 41(6.8%)
516 23 3 220(42.6%) 49(9.5%) 55(10.7%)
53] 17 2 34(6.4%) 29(5.5%)

518 17 2 59(11.4%) 29(5.6%)

191 20 2 16(8.4%) 11(5.8%)

243 13 2 16(6.6%) 17(7.0%)

173 16 2 24(13.9%) 8(4.6%)
147 15 2 14(9.5%) 7(4.8%)

379 11 2 14(3.7%) 10(2.6%)

173 9 2 59(34.1%) 25(14.5%)

244 10 2 44(18.0%) 18(7.4%)

374 17.3 82(18.7%) 43(10.8%) 38(7.6%)
53 2.2 26(4.4%) 12(2.3%) 8(1.8%)
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Altogether these simulations show that EMC? is a robust tracking algorithm for different
types of particle motions, and is therefore a versatile method for single particle tracking.

5 Tracking and analyzing single neuron activity in behaving animals

a. Monitoring neuron activity with two-photon microscopy in mouse cortex. Two-pho-
ton calcium imaging is widely used to monitor single neuron activity in targeted brain regions
of awake and behaving animals [3]. The head of the animal is usually fixed under the objective
of the microscope, which limits the motion of neurons and facilitates their individual tracking.
However, residual neuron motion due to animal movements, breathing or heartbeats requires
computational post-processing of acquired time-lapse sequences to robustly monitor calcium
activity of single neurons. The most popular technique for (slight) motion correction in time-
lapse sequences is the elastic registration of fluorescence images with respect to one (or multi-
ple) reference frame(s) using image intensity [13]. The computational load of image registra-
tion is important, especially for long sequences with large images, and algorithms have been
developed to speed up the registration process and decrease the computational time to a few
minutes for ~2,000 frame time-lapse sequences (with ~256x256 images) [14]. After image reg-
istration, the segmentation of neuronal masks for calcium fluorescence monitoring is then per-
formed with standard intensity thresholding [38] or more elaborate techniques when neuronal
masks are overlapping, such as non-negative matrix factorization [17].

To simultaneously localize and correct for neuron motion, we applied the EMC? Icy track-
ing protocol (Fig 2) to two-photon time-lapse calcium images of mouse visual cortex (Fig 4
and Material and Methods). Imaging was performed for 5 minutes at 12.3 Hz (~3,700 frame
sequences) at days 1, 2 and 46. The entire EMC? protocol with neuron spot detection and
tracking for each ~3,700 frame sequence ran in ~3 minutes with a 2.7 GHz Intel Core i7 pro-
cessor. Consistent with [38], we observed a significant turn-over of active neurons (Fig 4A)
with few neurons (median = 22% (15/68 neurons), n = 4 animals) that remained active across
all days. We observed a similar number of active neurons on day 1 and 2, but a decreased num-
ber at day 46 which is probably due to several factors, such as decreased transgene expression
or repeated experimental procedures [38]. We then analyzed single neuron trajectories
obtained with EMC? (Fig 4B). Even if the animal’s head was fixed under the microscope, resid-
ual motion of the field-of-view led to confined stochastic trajectories for single neurons. The
positions of single neurons at each time were either computed with the intensity center of
detected spots when neurons were detectable, or estimated using the computed elastic defor-
mation of the field of view when neurons were silent and undetectable. We measured a median
neuron displacement between frames of ~ 0.25 pixels, and a median maximum distance of
excursion (relative to the center point of the trajectory) of ~ 4 pixels (Fig 4B).

Altogether, these results show that EMC? tracking protocol is a robust and fast method to
post-process two-photon calcium imaging from awake mice. Trajectory analysis revealed the
stochastic confined motion of single neuron positions, even in head-fixed animals. This resid-
ual motion is partly due to the animal’s movements, but also to the uncertainty of sub-pixel
localization of neuron spots at each time frame [39]. Moreover, the analysis of single neuron
activity across days in the same cortical region showed a significant turn-over within the pool
of active neurons each day, with few neurons remaining active over all days. Statistical analysis
recently showed that this latter pool of active neurons could be a stable neuronal ensemble

[38].

b. Characterizing neuronal ensembles in behaving Hydra. There is increasing experi-
mental evidence that neurons are organized into neuronal ensembles composed of a few tens
of highly coupled neurons, and that these co-active ensembles are the fundamental
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Fig 4. Monitoring the activity of individual neurons in two-photon calcium imaging of mouse visual cortex with EMCZ,
a- Two-photon calcium imaging of single neuron activity in visual cortex of awake mice is performed at Day 1, Day 2 and
Day 46 during 5 minutes at 12.3 Hz. Tracking of neuron positions is performed with EMC? and reveals an important turn-
over of active neurons across days. Examples of neurons that are active at Day 1, Day 2 or Day 46 are respectively highlighted
with red, green or blue arrows. Neurons active at Day 1&2 are highlighted with yellow arrows, at Day 2&46 with cyan arrows,
and at Day 1,2&46 with white arrows. The median number of active neurons each day is also plotted (n = 4 animals). The
number of neurons that are active from Day 1, 2 or 3 are respectively represented in red, green or blue. b- Single neuron
trajectories can be modeled with confined stochastic motion. Two example trajectories are shown (green & blue trajectories)
with a maximum excursion distance of ~ 4 pixels. Boxplots of single neuron displacement between two consecutive frames,
and maximum excursion distance (in pixels) are plotted (n = 590 trajectories).

https://doi.org/10.1371/journal.pcbi.1009432.9004

computational units of the brain rather than single neurons themselves [21, 40]. Using manual
annotation, it has been shown that Hydra’s nervous system, one of the simplest of the animal
kingdom, may be dominated by three main functional networks that are distributed through
the entire animal [5, 41]. To confirm (or refute) these observations, we used EMC? and auto-
matically tracked single neurons in n = 13 time-lapse sequences (length 1067+56 frames at 10
Hz (Materials and Methods) from 8 different animals (Table 4 and Fig 5). Movies used in this
study (avi and tiff files) can be downloaded from the BioStudies platform (https://www.ebi.ac.
uk/biostudies/studies/S-BSST428). Analyzed movies were significantly longer than the manu-
ally annotated one (length = 200 frames at 10 Hz [5]). Ensemble activity, corresponding to the
co-firing of neurons, can be detected as significant peaks within the raster plot of single neuron
activity (Fig 5 and Materials and Methods). We detected a mean number of 1.7+2.2 peaks per
movie, corresponding to a mean rate of 1 activity peak every 63 frames (6.3 s) which corre-
sponds well with the 4 peaks observed previously in the 200 frame movie [5]. To associate each
peak with a putative neuronal ensemble, we adopted a similar approach as in [42] and mea-
sured the similarity between these events in terms of the identities of the participating neurons
(Fig 5 and Materials and Methods). We then performed k-means clustering of peak similarity,
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Fig 5. Neuron tracking and mapping of neuronal ensembles in behaving Hydra. a- Calcium imaging of single neuron
activity in behaving Hydra. The images and analysis of the 3"! movie of animal 1 are given as representative examples. b-
Single neuron tracks and fluorescence intensity are obtained with EMC? algorithm. c- For each neuron, spikes are extracted
from fluorescence traces. Peaks of activity (highlighted with red stars) correspond to significant co-activity of individual
neurons (sum of individual activities (solid red line) > statistical threshold (dashed red line), p = 0.001 see Materials and
Methods). Each peak putatively corresponds to the activation of one neuronal ensemble. d- Similarity between activity peaks
is computed using the identities of individual neurons that are firing at each peak (see Materials and Methods). e- The
optimal number of peak classes (that putatively corresponds to the number of neuronal ensembles) is computed using the
Silhouette index on k-means clustering of the similarity matrix (see Material and Methods). Median fluorescence trace of
each neuronal ensemble and corresponding activity peaks are shown. The classification of individual neurons in each
ensemble is determined based on their firing at ensemble peaks (see Materials and Methods). f- Individual neurons of each
ensemble can be dynamically mapped in the original time-lapse sequence.

https://doi.org/10.1371/journal.pcbi.1009432.9005

and used the Silhouette criterion [43] to determine the most likely number of neuronal ensem-
bles causing the detected peaks of activity. We found 2 or 3 neuronal ensembles in each movie
(3 neuronal ensembles were detected in 3 out of the 13 movies, or 23%). We then categorized
each detected ensemble into one of the previously defined ensembles [5, 41]: Contraction
Burst (CB) neurons that fire during longitudinal contraction of the animal, Rhythmic Potential
1 (RP1) that fire during the longitudinal elongation of the animal, and Rhythmic Potential 2
(RP2) neurons that fire independently of RP1 and CB activity. We found CB neuronal ensem-
bles in almost all movies (11/13, or 85% of movies) and all animals (8/8, 100%), RP1 ensembles
in all movies and animals and RP2 ensembles in fewer movies (5/13, or 38%) and only 2/8
(25%) animals. The absence of detected CB ensembles in 2 movies corresponds to the observed
absence of contraction cycles within these movies. On the other hand, we hypothesize that the
absence of RP2 ensembles in 6/8 (75%) of the animals is due to the limited depth of the field-
of-view in confocal microscopy (see Materials and Methods). Indeed, RP2 neurons lie in the
thin ectoderm of the animal [5] that may not have been imaged in some animals. Finally, we
classified and mapped each individual neuron in the detected ensembles (see Materials and
Methods). As in [5], we found that the CB ensemble was the most important group of neurons
with a mean number of 82426 neurons representing 18.7%+4.4% of the total number of neu-
rons (a mean of 374453 neurons were tracked over >150 frames in the different movies). The
RP1 ensemble, with 43+12 neurons (10.8%+2.3%), was the next largest ensemble and RP2,
with 3848 (7.6+£1.8%), was the third. The relative number of neurons in the different
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ensembles is in agreement with previous observations [5]. However, the overall size of each
ensemble is smaller than the size reported previously. This is due to the fact that automatic
classification of each individual neuron in an ensemble is more stringent than the manual clas-
sification that had been previously performed. Finally, we measured the overlap between
ensembles, i.e. the proportion of single neurons that belonged to more than one ensemble. For
each pair of ensembles, we computed the ratio between the number of shared neurons and the
total number of neurons in both ensembles. We obtained ratios of 2.1%+0.7%, 2.4%+0.4% and
1.6%=0.6% respectively for CB-RP1, CB-RP2 and RP1-RP2 ensemble overlap. These very low
values confirm the near non-overlap of the main neuronal ensembles in Hydra [5]. By cou-
pling the automatic tracking of individual neurons in multiple Hydra with robust clustering
analysis of neuronal activity, we were therefore able to confirm the previous observations that
the Hydra nervous system is dominated by three main non-overlapping ensembles that are
involved in different animal behaviors.

Altogether, these results show that EMC? is sufficiently robust to monitor single neuron
activity in behaving animals. This constitutes a fundamental prerequisite for the analysis of
neurons’ functional organization and, ultimately, for our understanding of their emergent
computational properties.

Discussion

When using calcium imaging in living animals, an important challenge is the sustained track-
ing of neuronal positions over extended times in a moving, and potentially also deformable,
environment. To tackle this issue, we have developed an algorithm, EMC?, that tracks detect-
able particles with a state-of-the-art probabilistic tracking algorithm and uses the information
contained in reconstructed tracks about the local deformation of the field-of-view (e.g. animal)
to estimate the position of undetectable particles and potentially close tracking gaps. We vali-
dated the performance and versatility of EMC? by comparing its performance with a state-of-
the-art tracking algorithm on manually tracked neurons in time-lapse calcium-imaging of
behaving animals, including imaging over days of the same neurons from mouse visual cortex,
the challenging deformable Hydra, and also on synthetic time-lapse sequences that modeled
different types of motion/deformation of the field-of-view (confined diffusion, linear motion
and Hydra-like elastic deformation). In all cases, EMC? showed high accuracy and outper-
formed state-of-the-art tracking methods.

Compared to traditional tracking approaches, composed only of particle detection and link-
ing (see Table 1), our hybrid algorithm is better equipped to handle tracking gaps and general
particle motion. Recently, tracking methods based on artificial neural networks [44, 45] have
been introduced to handle more general particle motion, not only diffusion and/or linear
motion. However, these methods are designed to link two sets of particle detections in conse-
cutive time frames and, even if they can handle some missing or false detections, they do not
appear well suited for tracking gaps such as those encountered in calcium imaging of neuronal
activity.

On-going development of high-speed three-dimensional microscopes enables the imaging
of neuronal activity with high temporal and spatial resolution in an increasing number of ani-
mal models [6, 9]. In the near future, the extension of EMC? tracking method to three-dimen-
sional movies should not present important technical issues. Indeed, the thin-plate-spline
transform used here to estimate the deformation of the field-of-view in two dimensions is
actually a special case of polyharmonic splines that have been specifically designed for robust
interpolation between data points in any dimensional space[46].
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After having implemented EMC? in the open-source bio-imaging platform Icy [20], we
tracked single neuron activity in behaving mouse visual cortex and also Hydra. In mouse cor-
tex, our algorithm performed essentially flawlessly, and reveals the presence of neurons that
continue to respond to the same stimulus over several days. In addition, using statistical clus-
tering, we confirmed the previous observations that neural activity of Hydra is dominated by
three major, non-overlapping neuronal ensembles that are involved in the animal’s repetitive
contraction and elongation. At the same time, automatic clustering of neuronal activity was
not able to extract other smaller ensembles of the animal’s nervous system, such as the tentacle
and sub-tentacle ensembles [5] that we could observe by eye. Indeed, the coordinated activity
of small ensembles is difficult to detect from individual neuronal spiking because of sparse
activity and noise. Moreover, the activation of these smaller ensembles is less frequent than the
activation of the three major ensembles and happened in only few movies. Therefore, the com-
plete mapping of neuronal ensembles of Hydra, with the characterization of even the smallest
neuronal ensembles with less frequent activity, will require in the near future further develop-
ment of better imaging and tracking of single neuron activity over longer periods of time. For
tracking neurons over longer time (several minutes or even hours), hardware implementations
such as dual-color imaging with calcium-insensitive dye or partial immobilization of the ani-
mal [47] will be required. Another possible software strategy for increasing the robustness of
EMC? tracking over long times would be the characterization and use of stereotypical poses of
the animal [8] as reference frames for mapping the (almost) stable positions of neuronal sub-
sets.

To conclude, our results show that EMC? is a robust and versatile tracking algorithm that
allows monitoring and quantification of single neuron activity in behaving animals. Robust
tracking of neural activity is a first step towards a better understanding of the neural code, i.e.
how connected neuronal ensembles integrate information, underlie adaptive behavior and,
more generally, compute the animal’s behavioral or internal states.

Materials and methods
1 Elastic motion correction and concatenation (EMC?) of short tracks

The eMHT algorithm returns a set of N short tracks (tracklets) 7;, for 1 <i<N, of detectable
particles; the i tracklet 1, starts at position x,(£;) at time £ and ends at position x,(#) at time
t¢. To concatenate tracklets, i.e. to link the tracklets that putatively correspond to the same neu-
ron, we then estimate the backward position x?(t) of the particle (neuron) corresponding to
the i tracklet before the starting-point (t < ) of the tracklet. To estimate x*(t) for t < £, we
iteratively apply backward thin-plate-spline transformation x?(t — 1) = TPS, . ..(X(1)),
with the initial condition %! (£) = x,(#;). Similarly, to estimate the forward position &/ (t) after
the ending-point of the tracklet, i.e. for t > ¢¢, we iteratively apply the forward transformation
(1) = TPSfbrwmd(fcf (t — 1)) with the initial condition &/ (£°) = x,(#°). From the estimated
positions of particles corresponding to each tracklet, we then compute the distance d; ; between
tracklets 7;7#7; with

0, iftf>t]?ort}?>tj

d,. = mintfgtgt; [&{ - &j)](t)H? lf tze S tj S tze +gapmax

ij

mintjeététf [ﬁjf - &f}](t) H7 lf t]E S tf S tje + gapmax

where gap,,q. is a user-defined maximum time gap that EMC? is allowed to close (typically a
few hundreds of frames). We need to apply a maximum time gap for time-lapse sequences
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with particles that remain undetectable over long periods of time due to the error growth dur-
ing backward/forward estimation of the putative position of undetectable particles.
Using the computed distances between tracklets, we then define an association cost matrix,

(15171 ¢1,N

¢N,1 ¢N,N

with ¢;; = d;; if d; j<d,ax, and ¢;j = 0o otherwise. d,;,4x is the second user-defined parameter of
our tracking algorithm that specifies the maximum distance allowed between the forward-
propagated end-point of a tracklet and the backward-propagated starting-point of another
tracklet. Finally, among all possible associations for which the cost ¢; ;< oo, the optimum set of
concatenated tracklets 7. — 7, among all the tracklets {z;, 7;}, 1<i,j<Nis the solution of the
global minimization problem

Pl = ij Suchr})};{ld)i_j<oo Z (bi‘i.

This minimization problem, known as the assignment problem, is similar to the problem
solved in GDM methods of tracking, where algorithms determine the optimal association
between particle detections by minimizing the global distance between detections in consecu-
tive time frames of the sequence. One of the first and most popular algorithms to solve assign-
ment problems is the Hungarian algorithm [48]. However, due to its computational load,
faster algorithms have been proposed over the years. We used here the Jonker-Volgenant algo-
rithm [49] implemented in the TrackMate plugin in Image] (see Table 1).

Finally each particle (neuron) track T; for 1<<i<N', with N'<N the number of “long”
tracks, results from the concatenation of n; tracklets: T, = 7, — 1, — - — T, with

tt <t <--- <t . Wehighlight that, by construction, each long track T; does not necessarily

i — Vip —
span the whole time-lapse imaging sequence, but begins at the starting-time #; of the first

tracklet 7; and ends at the ending-time #; of the last tracklet 7, .

2 Icy protocol

a Detection of spots (e.g. neurons) in time-lapse sequences. To detect automatically the
positions of fluorescent spots, corresponding to detectable particles, in each frame of the time
lapse sequence, we designed a multi-step algorithm (see Fig 2) where we first detected fluores-
cent spots that are significantly brighter than background with a fast and robust algorithm
based on a wavelet transformation of the image and statistical thresholding of the wavelet coef-
ficients (block number 1 in Icy protocol (Fig 2)) [50]. These spots correspond to individual par-
ticles or clusters of particles (e.g. neurons). To separate individual particles in the detected
clusters, we then multiplied the original sequence with the binary mask obtained with wavelet
thresholding and convolved the result of the multiplication with a log-Gaussian transforma-
tion (block number 2). The log-Gaussian convolution is similar to the point-spread function of
microscopes and thus enhances individual particles [51]. Finally, we extracted the positions of
single particles by applying a local-maxima algorithm (block number 3) to the convolved
sequence.

b Tracking (EMC?). After having detected the positions of fluorescent spots in each time
frame, a second series of blocks computed the tracks of each single particle. First, block number
4 used the positions of spots and a robust Bayesian algorithm (eMHT [30]) to compute single
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tracks of detectable particles. Due to fluctuating detectability, many computed tracks are ter-
minated prematurely and new tracks are created when particles are detectable again. We thus
applied the EMC? algorithm (block number 5) to close gaps and reconstruct single-particle
tracks over the entire time lapse sequence.

The tracking protocol can be found here: http://icy.bioimageanalysis.org/protocol/
detection-with-cluster-un-mixing-and-tracking-of-neurons-with-emc2/ and is also directly
accessible through the search bar of the Icy software. A step-by-step tutorial for tracking neu-
rons and exporting track intensity with Icy is provided as Supplementary material.

3 Validation of EMC?

a Comparison metric. To compare the tracks obtained with EMC? and other automatic
tracking algorithms with ground truth tracks, we first considered the whole set of detections
x;(t), 1<i<N(t), with N() the number of detections at time 1<t<T (T being the length of the
time sequence) and assigned each detection to the closest active track at time ¢. Therefore, for
each reference track 0], 1<j<|©’, with |©’ the total number of reference tracks, and for each

test track 0, 1 <k<|@'|, with |©’| the total number of test tracks, we obtained a set of associated
detections. We then considered that a test track matched a reference track if it shared at least
80% of common detections. Finally, for each reference track, we either obtained no test track
that matched, exactly one test track that matched or more than one.

b Synthetic motions. To validate the robustness and accuracy of EMC” in different sce-
narios, we simulated three classes of motions: confined diffusion, linear motion and elastic
deformation. For confined diffusion, each simulated spot (e.g. fluorescent neuron) can dif-
fuse with coefficient D = I pixel” per frame and is confined to a 10 pixel disk area. For linear
motion, each simulated spot moves linearly at speed v = 1 pixel per frame. When a track
reaches the boundary of the field-of-view (a rectangle of 200x200 pixels), it is terminated and
another track is initiated at the other side of the FOV. Finally, for elastic deformation, we
used the experimental tracks in Hydra to estimate iteratively (i.e. from one frame to the follow-
ing one) the local deformation for each synthetic track position.

c Firing rates of individual neurons. To model the stochastic firing rates of individual
neurons (total number of neurons #,,,,0,5), We first determined a proportion (@) of stable
spots, i.e. non-blinking cells, with constant fluorescent intensity. In Hydra, stable cells typically
correspond to nematocytes or other cell types that also express fluorescent proteins after the
genetic editing of the animal, but that don’t fire as neurons do [5]. To simulate the correlated
activity patterns observed in Hydra, we then divided the (1-Qapie)Mneurons firing neurons, with
intermittent activity and detectability, into 7, ensembles. All neurons in each ensemble fire
simultaneously with Poisson rate Agoup = Siz€group Aindividuab With Aingiviauar the firing rate of
individual neurons and sizegup = (1=Cstabic) neurons! igroup the number of neurons in each
group. Parameters for each simulation used for the validation of EMC? algorithm are summa-
rized in Table 5.

d Generation of synthetic images. To generate synthetic fluorescence time-lapse
sequences, we used a mixed Poisson-Gaussian model [31]. In this model, the intensity I[x,y] at
pixel location [x,y] is equal to I[x,y] = Ulx,y]+N(0,0,) where U is a random Poisson variable
and N(0,0,) is additive white Gaussian noise with standard deviation o,,. The intensity A[x,y] of
the Poisson variable varies spatially because it depends on the presence or not of particle spots
(neurons). Therefore, A[x,y] = P[x,y]+B with B a constant background value and P[x,y] the
spots’ intensity at position [x,y]. Assuming an additive model for the intensity of the spots,
Plx,y|] = Zi:l..nneums
approximated the point-spread-function (PSF) of the microscope with a Gaussian profile.

P.[x, y), where P;[x,y] is the signal originating from the i spot. We
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Table 5. Parameters used for synthetic simulations.

Parameters Nyeuron | Ostable Neroup

Name Total % of | Number
number | non- of
of firing | neuron
neurons | spots | groups
Confined 150 20% 10
diffusion &
Linear
motion
Elastic 500 20% 10
deformation
(Hydra)

https://doi.org/10.1371/journal.pcbi.1009432.t1005

;Lindividual A Tdecay ﬁ u Trise OpsF Op B SNR = B:;n'f,
Individual | Amplitude | Fluorescence | Decay | Median | Rising | St.Dev. | St.Dev. Poisson Signal-to-
firing rate decay time | power | rising time of the ofthe | background | noise ratio
constant time | constant| PSF Gaussian
noise
0.01 100 3 frames 1 1 frame 0.5 1 pixel 5 10 ~3

frame™ frames

0.0002 100 15 frames 2 2 0.5 1 pixel 5 10 ~3

frame™ frames | frames

Thus, for a particle located at position [x;, y], its intensity at position [x,y] is given by

_4i)2 _i)2
Plx,y] = A, exp — w’ with A; the amplitude of the i"" particle and opgy the standard
PSF

deviation of the 2D Gaussian profile of the PSF. We chose a constant amplitude for each parti-
cle A = A;, for all 1<i<#n,,,,,7ons. Parameters used in simulations are summarized in Table 5.
e Fluorescence kinetics. When a neuron fires at time ¢;, we model its fluorescence time
course with the general kinetics equation
B
[t
exp(~(52)')

1+ exp(— w) 7

Trise

flt)=A

where the numerator models a power-law exponential decay of the fluorescence (5 = 1 models
a standard single exponential decay), with a decay time constant 7, and the denominator
models a sigmoidal increase of fluorescence with median 7,;, and time constant . Kinetic
parameters for each synthetic simulation are summarized in Table 5. These parameters were
obtained by fitting n = 3075 individual spikes from 444 individual neuron tracks in an experi-
mental time-lapse sequence (250 frames at 10 Hz) of GCAMP-labeled Hydra [5] (S1 Fig). We
highlight that, for Hydra elastic simulations, we used a long decay time constant and a power
index B = 2 instead of 1 for standard confined diffusion and linear motion simulations.

4 Tracking and analyzing single neuron activity in living animals

a Two-photon calcium imaging of mouse visual cortex. Movies used in this study are
issued from [38], and experimental protocol for two-photon volumetric imaging of tar-
geted brain regions in mouse visual cortex can be found in the Methods section of this
manuscript.

b Hydra maintenance. Hydra were cultured using standard methods [52] in Hydra
medium at 18°C in the dark. They were fed freshly hatched Artemia nauplii twice per week.

c Hydra Imaging. Transgenic Hydra expressing GCaMP6s in the interstitial cell lineage
were used and prepared for imaging studies as previously described [5]. Calcium imaging was
performed using a custom spinning disc confocal microscope (Solamere Yokogawa CSU-X1).
Samples were illuminated with a 488 nm laser (Coherent OBIS) and emission light was
detected with an ICCD camera (Stanford Photonics XR-MEGA10). Images were captured
with a frame rate of 10 frames per second using either a 6X objective (Navitar HRPlanApo 6X/
0.3) or a 10X objective (Olympus UMPlanFl 10x/0.30 W).
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All movies used in this study can be downloaded from the BioStudies website https://www.
ebi.ac.uk/biostudies/studies/S-BSST428.

d Extracting single neuron activity. We extracted the fluorescence trace of each individual
neuron using the Track Processor Intensity profile within the TrackManager plugin in Icy [20] (a
step-by-step tutorial for tracking neurons and exporting track intensity with Icy can be found on
the EMC? plugin web documentation: http://icy.bioimageanalysis.org/plugin/elastic-motion-
correction-concatenation-emc2-of-tracks/). For each detection within the track, the extracted inten-
sity corresponded to the mean intensity over a disk centered at the detection’s position, with a 2 pix-
els diameter. When detections are missing (tracking gap), the intensity was set to 0. Then, for each
individual neuron, we denoised its non-zero fluorescence trace using wavelet denoising (wdenoise)
in Matlab. We then automatically extracted spikes with a custom procedure where we first com-
puted the discrete derivative of the smoothed fluorescence signal, then set to 0 all negative variations
and finally, we detected significant positive variations of the signal (discrete positive derivative >
quantile at 98% of all empirical positive variations) that putatively corresponded to spikes.

e Statistical characterization of neuronal ensembles in Hydra. Neuronal ensembles are
groups of neurons that repeatedly fire together. Therefore, the activity of neuronal ensembles
can be detected as significant co-activity peaks in the raster plot of single neuron firing. To
detect significant peaks of activity, we applied the procedure described in [42], and identified
as peaks times at which the sum of single neuron activity within a time step of 100 ms fell
within the quantile at 0.999% obtained empirically by circularly shuffling the individual spikes
in the activity raster plot.

Then, to relate detected peaks of activity to putative neuronal ensembles, we constructed a
vector describing the activity of each individual neuron at the detected peaks with entries 1 if
the neuron fires at that peak, and 0 otherwise. We then computed the similarity between these
vectors for each of the activity peaks, using the Jaccard index:

number of neurons that fire at peak i and peak j

Jaccard(peak i peak ) = number of neurons that fire at peak i or peakj

Then, to estimate the number of neuronal ensembles underlying the detected peaks of activ-
ity, we clustered the peaks with a k-means algorithm based on their similarity for different num-
bers of classes (from 1 to 5 classes typically). K-means clustering was performed using the cosine
distance. The optimal number of classes in the k-means clustering algorithms, and therefore the
putative number of neuronal ensembles, was computed using the Silhouette index [43]. For a

1

clustering of N peaks into k classes, the Silhouette index is given by Silhouette(k) = L S°Y (b, —

N
a,)/max(a,, b,) where a; is the average distance from the i"" peak to the other peaks in the same
cluster as i, and b, is the minimum average distance from the " peak to peaks in a different clus-
ter, minimized over clusters. An advantage of the Silhouette evaluation criterion over other clus-
tering criteria is its versatility, as it can be used with any distance (cosine distance was used here
for the k-means clustering). Finally, we assigned each individual neuron to an ensemble if that

neuron fired in more than 50% of the activity peaks of the identified ensemble.

Supporting information

S1 Fig. Fitting the fluorescence kinetics of firing neurons in calcium imaging of Hydra.
Fluorescence time course of a firing neuron (at time #,) is modeled with the kinetics equation

B
(- (:2))

1+ exp(— —tjqfu) 7

flt)=A
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where the numerator models a power-law exponential decay of the fluorescence with a decay
time constant 7ge,,, and the denominator models a sigmoidal increase of fluorescence with
median 7, and time constant y. Boxplot for fitted parameters (n = 3075 individual spikes
from 444 individual neuron tracks) are shown.

(EPS)

S2 Fig. Comparing tracking methods with manual ground truth on calcium imaging data

in behaving Hydra. Tracks obtained with TrackMate (red), EMC* without motion correction
(purple) and EMC? are compared to manual ground truth obtained by manual concatenation
of tracklets in calcium imaging of behaving Hydra (see Material and Methods).

(EPS)
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