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Abstract

Measuring the activity of neuronal populations with calcium imaging can capture emergent

functional properties of neuronal circuits with single cell resolution. However, the motion of

freely behaving animals, together with the intermittent detectability of calcium sensors, can

hinder automatic monitoring of neuronal activity and their subsequent functional characteri-

zation. We report the development and open-source implementation of a multi-step cellular

tracking algorithm (Elastic Motion Correction and Concatenation or EMC2) that compen-

sates for the intermittent disappearance of moving neurons by integrating local deformation

information from detectable neurons. We demonstrate the accuracy and versatility of our

algorithm using calcium imaging data from two-photon volumetric microscopy in visual cor-

tex of awake mice, and from confocal microscopy in behaving Hydra, which experiences

major body deformation during its contractions. We quantify the performance of our algo-

rithm using ground truth manual tracking of neurons, along with synthetic time-lapse

sequences, covering a wide range of particle motions and detectability parameters. As a

demonstration of the utility of the algorithm, we monitor for several days calcium activity of

the same neurons in layer 2/3 of mouse visual cortex in vivo, finding significant turnover

within the active neurons across days, with only few neurons that remained active across

days. Also, combining automatic tracking of single neuron activity with statistical clustering,

we characterize and map neuronal ensembles in behaving Hydra, finding three major non-

overlapping ensembles of neurons (CB, RP1 and RP2) whose activity correlates with con-

tractions and elongations. Our results show that the EMC2 algorithm can be used as a

robust and versatile platform for neuronal tracking in behaving animals.
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Author summary

Calcium imaging of neuron populations has enabled mapping the neuronal circuits that

control animal behavior. However, animal movement, together with the intermittent

detectability of calcium sensors, hinders the automatic tracking of individual neuron

activity. Here we introduce a novel algorithm and open-access software to track the posi-

tion of individual neurons in a calcium imaging movie in behaving animals. To handle

the motion and the deformation of the animal our method combines state-of-the art algo-

rithms to track neurons, with algorithms to estimate the deformation and predict the posi-

tions of neurons when they are silent and undetectable. Our method and software are

robust and versatile in various animal models, from two-photon imaging of mouse visual

cortex over days, to the highly deforming Hydra. Efficient image analysis and software for

monitoring the activity of neuron populations in a wide range of animal models are

needed to fully reconstruct the activity of neural circuits and study the emergent func-

tional properties of neuronal ensembles that control animal state and behavior.

This is a PLOS Computational Biology Methods paper.

Introduction

Measuring the activity of neuronal populations in freely behaving animals can help a detailed

understanding of how neural circuits integrate external information, compute, learn and con-

trol animal behavior. Calcium imaging has become widespread for measuring single neuron

activity as it is non-invasive and allows the simultaneous measurement of hundreds to thou-

sands of cells, with single cell resolution [1]. Moreover, monitoring single neuron activity in

freely moving animals such as rodents can be achieved with miniaturized microscopes

attached to the head [2]. However, technical limitations of current microscopy techniques and

of mathematical analysis hinder a more complete imaging and analysis of entire brains. Alter-

native strategies consist of monitoring single neuron activity in targeted brain regions of

rodents using two-photon microscopy [3], or imaging the nervous system of a smaller animal,

one that can fit entirely within a microscope’s field of view, such as Caenorhabditis elegans [4],

Hydra [5], Zebrafish [6] or Drosophila larvae [7]. An advantage of simple model organisms is

that they contain many fewer neurons than mammals and have a limited repertoire of behav-

iors [8] that may be entirely characterized in the near future.

Aside from the difficulties in imaging entire nervous systems with high temporal and spatial

resolution [3, 6, 9], an important bottleneck in analyzing calcium imaging data is to achieve

robust and automatic tracking of individual cells’ position while the animal is behaving. Sin-

gle-cell tracking is challenging for three main reasons: First, there may be a large number of

cells in a cluttered environment. Therefore, false positives and negatives during single cell

detection and localization impede the association of detected neurons between successive time

frames and call for more elaborate tracking algorithms. Second, neurons can remain undetect-

able over large periods of time because calcium sensors may be significantly brighter than

background only when neurons are firing. Third, tracking methods in behaving animals have

to handle animal motion and body deformations [10]. To tackle these issues, numerous hard-

ware solutions have been proposed, including fixation of animal (usually the head) [3, 6, 11],

high-speed motorization of microscopes to track animal movements [4, 12] and dual-color

PLOS COMPUTATIONAL BIOLOGY Tracking calcium dynamics from individual neurons in behaving animals

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009432 October 8, 2021 2 / 25

study (avi and tiff files) can be downloaded from

the BioStudies platform (https://www.ebi.ac.uk/

biostudies/studies/S-BSST428).

Funding: R.Y. was supported by the NSF (CRCNS

1822550), the NEI (R01EY011787), the NIMH

(R01MH115900), and Vannevar Bush Faculty

Award (ONR N000142012828). T.L. was

supported by the Fondation pour la Recherche

Médicale (https://www.frm.org/) and the Philippe

Foundation (https://www.philippefoundation.org/).

A.H. was supported by the NIMH (T32MH018870).

J.P.-O. was supported by the CONACYT

(CVU365863). ALF was supported by NSF (CRCNS

1822550), the Simons Foundation Collaboration

for the Global Brain (542975SPI) and the Weill

NeuroHub (https://www.weillneurohub.org/). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009432
https://www.ebi.ac.uk/biostudies/studies/S-BSST428
https://www.ebi.ac.uk/biostudies/studies/S-BSST428
https://www.frm.org/
https://www.philippefoundation.org/
https://www.weillneurohub.org/


labeling of neurons with a calcium-insensitive probe that can be detected and localized even

when neurons are not firing [4, 9]. However, even when (some of) these solutions are imple-

mented, the residual motion of neurons, the limited spatial resolution of the microscope and

the intermittency of the fluorescence signal (when single-channel calcium imaging is used)

hinder the robust tracking of single neuron activity, particularly over long periods of time.

Therefore, elaborate post-processing of acquired movies is required. Most current image pro-

cessing methods consist of registering images (volumes) to reference image(s) (volume(s))

using either the local fluorescence intensity of images [13, 14], or the extracted neuron posi-

tions directly [4, 10, 15, 16]. Then, additional image processing, such as non-negative matrix

factorization [17, 18], might be required for demixing and denoising cellular calcium activity.

Despite these software developments, the difficult implementation of hardware solutions,

such as the dual-labeling and imaging of calcium-insensitive probes, together with the signifi-

cant deformability of challenging animal models such as Hydra, prevent the robust automatic

tracking of single neurons in many experiments. Tracking has then to be performed manually

[5] or semi-manually [19]. This limits the analysis to a few hundred frames, introduces opera-

tor bias and, ultimately, hinders our understanding of the functional organization of nervous

systems.

To robustly track particles with intermittent detectability (neurons) in a cluttered and

deforming environment, we report the development of an algorithm named Elastic Motion

Correction and Concatenation (EMC2). EMC2 is based on the versatile framework of single-

particle-tracking (SPT), enabling the robust monitoring of single neuron activity in most, if

not all, animal models. In contrast to traditional SPT, EMC2 does not set expected priors for

particle motion (typically diffusion and/or linear motion). Instead, it uses information about

local motion and deformation from detectable and tracked particles in the neighborhood of

undetectable particles. EMC2 is therefore more versatile, and does not require motion priors

or heuristics to close tracking gaps. In addition, for the local tracking of detectable particles,

EMC2 uses a probabilistic method and is therefore robust to very cluttered conditions. We val-

idate the robustness and accuracy of EMC2 with manual tracking of neurons in two calcium

imaging datasets from behaving animals. Our first dataset consists of two-photon calcium

imaging of few tens of neurons in the visual cortex of awake mice. We show that our algorithm

accurately tracks the limited motion of single neurons in the two-photon field-of-view,

enabling the fast analysis of long recordings of individual neuron activity. We then monitor

single neurons of Hydra’s nervous system while the animal is behaving and deforming. Hydra
imaging datasets represent perhaps the worst possible scenario for tracking purposes, since

animals can have major changes in body size with non-isometric deformations. We also quan-

tify the performance of EMC2 using simulations of fluorescence time-lapse sequences with dif-

ferent types of motion (confined diffusion, linear displacement and elastic deformation), and

show that EMC2 outperforms state-of-the art tracking algorithms.

After integrating EMC2 in an open-source and freely available platform Icy [20] (icy.

bioimageanalysis.org), we explore the utility of the algorithm in two experimental scenarios.

We first monitor the activity of single neurons in two-photon calcium imaging of layer 2/3 of

mouse visual cortex over multiple days and show that there is an important turnover of active

neurons and that very few neurons remain active across days. We then track complete neuron

activity in behaving Hydra, and find functional clustering of individual neurons into co-active

ensembles [21]. Consistent with previous observations [5], we find that Hydra contains three

main neuronal ensembles (CB, RP1 and RP2); and, after mapping the positions of individual

neurons from each ensemble, we also confirm that these ensembles are not overlapping, i.e.,

they do not share neurons, and that they are correlated with contraction bursts and elongation

behaviors.
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These results demonstrate that EMC2 is an effective and versatile tracking algorithm for the

tracking of single neuron activity in calcium imaging of living animals. Robust tracking consti-

tutes a prerequisite for the statistical analysis of the functional organization of neural circuits,

the description of emergent computational units such as neuronal ensembles, and ultimately,

for the understanding and prediction of animals’ adaptive behavior.

Results

1 Statistical mapping of neuron positions versus single-particle-tracking

Most of the methods that have been developed for tracking single neuron activity in the well-

documented animal model C. Elegans are based on the statistical mapping of neuron positions

to a reference set of coordinates within the animal [10, 16, 22]. An important advantage of

these methods is their robustness to the length of the analyzed time-lapse sequence, as the dif-

ferent images are registered independently from each other to the reference set of positions. In

these methods, reference positions are extracted from reference frames and cell identities can

be obtained either from stereotyped fluorescent color maps of all neurons (NeuroPAL [23]) or

online cell atlases (e.g. WormAtlas [24] and OpenWorm [25]). Therefore, mapping methods

heavily rely on the stable repertoire of neurons (position and/or type) within single worms,

when mapping is used for tracking neurons along time [10, 18, 26], and even across different

worms when different animals or strains are compared [16, 22].

Unfortunately, in Hydra, the number and position of neurons differ from one animal to

another [27]. Moreover, even within a single animal, the accurate mapping of a reference set of

neuron positions is prevented by the important and continual deformations of the animal (typ-

ically, the length of the animal is reduced by more than half during longitudinal contraction),

and the 2D imaging of transparent 3D tissues that induces apparent changes in neuron posi-

tions even between stereotypical poses of the animal. Finally, while the aforementioned map-

ping methods used in C. Elegans can accommodate moderate changes in the total number of

neurons between frames due to missing or spurious detections (counting noise), the intermit-

tent and sparse detectability of neurons in calcium imaging, without a reference fluorophore

like calcium-insensitive red fluorescent proteins (RFP) [10], definitely hinders the applicability

of mapping methods.

Therefore, to track neurons in Hydra, we used the SPT framework. SPT methods sequen-

tially link cell detections through time [8], with no need for a reference set of positions. They

are more versatile than statistical mapping, and can handle the large deformations of Hydra
and the intermittent detectability of cells in calcium imaging.

2 Limitations of standard SPT Algorithms

Most SPT algorithms rely on the automatic detection of particles (cells, molecules. . .) that are

significantly brighter than the noisy background in each frame of the time-lapse sequence (see

[28] and [29] for review) and, subsequently, the linking of detections between frames corre-

sponding to the reconstruction of coherent particle trajectories (see Table 1). The prevalence

of false positives (i.e. background signal) and negatives (i.e. missing detections) in the detec-

tion of particles, together with the influence of high particle density and stochastic dynamics

have, over the last two decades, motivated the development of algorithms that go beyond naïve

tracking methods that simply associate nearest-neighbor detections between consecutive time

frames (see Table 1 and [30, 31] for a review of existing methods). Indeed, the erroneous asso-

ciation of one detection to a track, or the premature ending of a track due to missing detection

(s), can lead to important error propagation as detections are sequentially associated to existing

tracks.
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One category of elaborated tracking algorithms is based on global distance minimization

(GDM) between all pairs of detections in consecutive time frames. The distance measure

between detections can be simply the Euclidean distance, or can additionally take into account

the similarity of the intensity and/or shape of the detected particle [32]. To handle possible

missing and false detections, heuristics for track termination and initiation are defined by the

user [33]. GDM methods are fast and robust, but user-defined parameters that regulate the

ending, the initiation and the fusion of tracks hinder their applicability in very cluttered condi-

tions with numerous missing and spurious detections [30]. Moreover, the limitations of cur-

rent particle motion models (confined diffusion and linear directed motion [32–34]) prevent

the robust estimation of particle positions when they remain undetectable over long periods of

time, as for sparsely firing neurons in calcium imaging. This limits the ability to close gaps in

the trajectories of tracked particles to a very few frames.

Table 1. Tracking methods in bio-imaging.

Algorithm Type Detection Linking Gap

closing

Pros Cons Freely

available

Ref.

Sage et al. Global None Energy minimization Yes Global. Designed for one or few

sparse particles

ImageJ

plugin

[53]

Bonneau

et al.

Global None Energy minimization Yes Global. Robust gap

closing with minimal-

path algorithm

Designed for few sparse

particles. High

computational load.

No [54]

NeRVE Detect &

Mapping

Watershed

Segmentation

Point-set registration &

clustering–Animal

deformation estimated with

elastic transformations

Yes Robust to dense packing

of particles. Handles

non-linear

deformations.

Time-independent (i.e.

robust even in long

time-lapse sequences)

High computational load.

Not robust to many

missing detections and

long gaps in highly

deforming environments.

Matlab GUI [10]

fDLC Detect &

Mapping

Watershed

Segmentation

Point-set registration to

reference set of positions–

learning of animal

deformation

Yes Robust to dense packing

of particles. Handles

non-linear

deformations.

Time-independent

Not robust to many

missing detections and

long gaps in highly

deforming environments.

Python

(Github

repository)

[16]

CRF_ID Detect &

Mapping

Gaussian mixture

model fitting

Point-set registration to

reference & temporally-

nearby frames–Use of

graphical model (neighbors)

to predict identities

Yes Robust to dense packing

of particles. Handles

non-linear

deformations.

Time-independent

High computational load.

Not robust to many

missing detections and

long gaps in highly

deforming environments.

Matlab

(Github

repository)

[22]

Mosaic Detect &

Link

Gaussian

Convolution &

Thresholding

Global distance

minimization

Yes Fast. Accounts for spot

intensity and size in

distance computation.

Gap closing does not

handle large motion. Not

robust in very cluttered

conditions.

Particle
Tracker
plugin

(ImageJ)

[32]

TrackMate Detect &

Link

Wavelet

transformation or

Gaussian

convolution &

thresholding

Global distance

minimization

Yes Fast. Handles split &

merge events.

Gap closing does not

handle large, non-linear

motion. Many user-

defined parameters

TrackMate
plugin

(ImageJ)

[33]

eMHT Detect &

Link

Wavelet

transformation &

thresholding

Probabilistic (Multiple

Hypothesis)

Yes Robust in cluttered

environment. Few user-

defined parameters

Slower than global distance

minimization. Cannot

close large gaps (> ~5

frames) due to

computational load

Spot Tracking
plugin (Icy)

[30]

MAP-

4D-DAE

Detect &

Link

Not specified Probabilistic (Multiple

Hypothesis) + Autoencoding

for particle motion modeling

Yes Robust in cluttered

environment. Few user-

defined parameters.

Handles non-linear

deformations

Slower than global distance

minimization. Cannot

close large gaps (> ~5

frames) due to

computational load

No [10]

https://doi.org/10.1371/journal.pcbi.1009432.t001
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Probabilistic methods are an attractive alternative to GDM methods, even if their computa-

tional cost is higher. Probabilistic algorithms model both the stochastic motion of the particles

and their detectability, and then compute the optimal tracking solution by maximizing the

model likelihood of observed detections [30, 35, 36]. The gold standard of probabilistic associ-

ation is multiple hypothesis tracking (MHT) in which one computes all the possible tracking

solutions over the entire time-lapse sequence, before inferring the tracking solution that maxi-

mizes the observation’s likelihood. However, MHT is generally not computationally tractable.

Approximate solutions that iteratively compute a nearly optimal solution over a limited num-

ber of frames (typically up to 5) have been proposed [30]. As probabilistic methods model the

particles’ detectability, they are usually more robust than GDM methods in cluttered condi-

tions. However, the small number of frames considered when approximating the MHT solu-

tion, together with limited particle motion models (again diffusion and/or linear

displacements [30, 35]), reduce the capability of probabilistic algorithms to close large tracking

gaps and keep track of particles’ putative position when they remain undetectable over many

frames.

3 EMC2 Algorithm

To increase the capability of SPT algorithms to track single particles with intermittent detect-

ability in cluttered and deforming environments, we have developed EMC2. This multi-step

algorithm and software is particularly well-suited for tracking single neuron activity with cal-

cium imaging in a behaving animal. The EMC2 algorithm can be decomposed into four main

steps (Fig 1).

First, bright spots (e.g. firing neurons in calcium imaging sequence) are automatically

detected with a robust method based on wavelet decomposition of time-lapse sequence and

statistical thresholding of wavelet coefficients (Materials and Methods). Second, detected spots

are linked into single particle trajectories with a state-of-the-art probabilistic algorithm, a vari-

ant of multiple hypothesis tracking (eMHT [30]), which is particularly robust in cluttered con-

ditions. Obtained track(let)s correspond to trajectories of detectable particles. However, in

many time-lapse sequences such as calcium imaging of neuron activity, tracks would be termi-

nated prematurely when particles switch to an undetectable state (e.g. non-firing neuron) and

new tracks would be generated when particles can be detected again (e.g. firing neurons). This

creates time-gaps in individual tracks that need to be closed to allow the accurate tracking of

each particle’s identity over the time-lapse sequence. Thus, the two last steps of our method

aim to close gaps in trajectories using information about the motion and deformation of the

field of view along the time-lapse sequence. We considered that tracked particles are embed-

ded in a deformable medium (e.g. neurons within tissue) and that local estimation of the

deformation of the field-of-view should allow the inference of particles’ positions even when

they are undetectable.

The third step of EMC2 is therefore the computation of the elastic deformation of the field-

of-view at each time using the information contained in tracklets of detectable particles. For

this, we used the positions of tracked particles between consecutive time frames as fiducial

source and target points. We then computed the forward and backward elastic deformations of

the whole field by interpolating the deformation at any position between fiducials with a thin-

plate-spline function. The thin-plate spline is a popular poly-harmonic spline whose robust-

ness in image alignment and point-set matching has been demonstrated [37], and which has

been recently applied for automatic neuron registration in time-lapse sequences [10]. In our

hands, the Neuron Registration Vector Encoding (NeRVE) method developed to map single

neurons in C. elegans [10] is unfortunately not sufficiently robust for tracking neurons in
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calcium imaging of behaving Hydra, as shown in [15]. In addition to the inherent limitations

of mapping methods when applied to calcium imaging of Hydra (see paragraph “Statistical
Mapping of Neuron Positions versus Single-Particle-Tracking”), the poor tracking accuracy of

the NeRVE method when applied to Hydra is also due to the fact that, contrary to C. elegans,
one cannot map the Hydra neuron positions in fixed cylindrical coordinates along the princi-

pal axis of the animal. This reflects a much lower level of effective deformation in C. elegans
and consequently a lower complexity of neuron registration. To increase the robustness and

accuracy of single neuron tracking, we rather implement, in EMC2, a local concatenation of

short tracklets after having propagated forward and backward the estimated deformation of

the field of view.

Therefore, the fourth and last step of our method is the iterative estimation and correction

of the elastic deformation of the field-of-view, followed by the optimal concatenation of

Fig 1. Multi-step EMC2 for tracking neuron activity in calcium imaging data. a- Time-lapse imaging (N frames) of

intermittent fluorescence activity of a neuron in a deforming environment (e.g. behaving animal). b- Fluorescent spots

(neurons), that are significantly brighter than background, are automatically detected with a wavelet-based algorithm. c-

Tracklets of detectable neurons are robustly reconstructed using probabilistic tracking algorithm (eMHT). d- Short tracklets

of detectable particles are used to compute the elastic deformation of the field of view at each time frame. Associated

detections in neuron tracklets are used as fiducials, and the whole deformation is interpolated using a poly-harmonic thin-

plate spline function. Forward- and backward-propagated positions of tracklet particle positions are shown with a thin blue

line. e- After having corrected for the deformation of the field-of-view where neurons are embedded, gaps between the end-

and starting-points of tracklets are closed by minimizing the global Euclidean distance between points (dotted line). f- Finally,

complete single neuron tracks over the time-lapse sequence are obtained by applying the elastic transformation of the field-

of-view to concatenated tracklets.

https://doi.org/10.1371/journal.pcbi.1009432.g001
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tracklets. In this last step, we used the elastic transformation computed with thin-plate splines

to propagate forward (and backward) the putative positions of undetectable particles, follow-

ing the termination of their detectable tracklets (or preceding the initiation of novel tracklets).

After having corrected for the elastic deformation of the field-of-view, we then linked short

tracklets by minimizing the global distance between the end-points of prematurely terminated

tracklets with the starting-points of newly appearing tracklets (Materials and Methods).

Finally, single-particle tracks over the time-lapse sequence are obtained by applying the com-

puted elastic transformation to the concatenated tracklets.

Contrary to gap-closing GDM approaches [33], EMC2 contains only two free parameters:

the maximal distance between forward-propagated ending-points and backward-propagated

starting-points of short tracklets for concatenation, and, to avoid important error propagation,

a maximum time-lag between ending- and starting-point candidates. We highlight that

concatenated tracklets do not necessarily span the entire time lapse sequence: each track begins

with the first detection of its first concatenated tracklet and ends with its last detection of the

last concatenated tracklet. Moreover, EMC2 algorithm handles complex natural motions and

deformations, contrary to GDM methods that only account for confined or linear motion.

EMC2 is therefore more robust and versatile. For the sake of reproducibility and dissemination

of our method, we implemented the EMC2 multi-step procedure in the bio-image analysis

software suite Icy [20] (http://icy.bioimageanalysis.org/). Icy is an open-source platform that is

particularly well-suited for multi-step analysis thanks to graphical programming (plugin proto-
cols) where each step of the analysis can be implemented as a block with inputs and outputs

that can be linked to the other blocks (Fig 2 and Materials and Methods). Our method builds

on well-established Icy preprocessing functions for spot detection and tracking.

4 Validation of EMC2

a Manual tracking of calcium dataset in behaving animals. To validate the capabilities of

EMC2, we first compared the results of our algorithm with manual tracking in calcium imaging

sequences of neuron activity in behaving Hydra [5]. We used the first 250 frames (25 seconds at

10 Hz) of a time-lapse sequence previously acquired in a genetically-engineered animal [5] and

automatically detected the active neurons (bright spots) using the multi-step detection process

described in the Materials and Methods. We tracked the detected particles with the eMHT algo-

rithm ([30], implemented in Spot tracking plugin in Icy) and obtained short Bayesian tracklets

(n = 784 tracklets) for the detected neurons (step 4 of the Icy protocol in Fig 2). We then manu-

ally concatenated all the corresponding tracklets, i.e. we closed gaps, and obtained complete

neuron tracks (n = 444 tracks). We observed that, before gap closing, tracklets were significantly

shorter than concatenated tracks, meaning that many tracklets are indeed terminated prema-

turely by the undetectability of silent (non-firing) neurons. We measured the accuracy of EMC2

by comparing the computed tracks with those obtained after manual association of tracklets,

which we took as an approximate ground truth (see Materials and Methods and S2 Fig). We

also measured how tracks obtained with TrackMate [33] implemented in Fiji [34] matched this

manual ground truth. TrackMate is a GDM method, based on optimal linear assignment

between closest detections. To handle the gaps in tracking when particles are undetectable,

TrackMate again uses a GDM algorithm to compute the optimal linear assignment between

ending- and starting-points of previously computed tracks. As a result, TrackMate uses the

same type of gap closing algorithm as EMC2 but without correcting for potential elastic defor-

mation of the field-of-view. Finally, to evaluate how well the algorithm performs to generate the

initial set of short tracklets, i.e. to compare the probabilistic eMHT used in EMC2 with the

GDM algorithm used in TrackMate, we also measured the accuracy of EMC2, but without
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elastic motion correction before gap closing. Compared algorithms are summarized in Table 2.

First, we found that EMC2 (n = 453 tracks, with 410 (90.5%) matched tracks) outperformed

TrackMate (n = 474 tracks, with 259 (54.6%) matched tracks) and EMC2 without elastic

Fig 2. Implementation of the EMC2 algorithm in Icy platform. Time-lapse sequence of fluorescent particles is the input to a

multi-step, automatic protocol in Icy. A first series of blocks, highlighted in blue, detects the position of fluorescent neurons

(spots) in each frame of the time-lapse sequence. Block 1 uses the wavelet transform of each image and statistical thresholding of

wavelet coefficients to determine spots that are significantly brighter than background. To separate close spots that form clusters

in the wavelet-based mask of the image, the thresholded sequence is convolved with a log-gaussian kernel to enhance single

spots (block 2), and local maxima algorithm is applied (block 3). A second series of blocks, highlighted in red, computes single

particle tracks from computed spot positions. First, the Bayesian tracking algorithm (eMHT) computes tracklets of detectable

particles (block 4). Due to fluctuating particle detectability, many Bayesian tracklets are terminated prematurely and new

tracklets are created when particles can be detected again. To close detection gaps in single particle tracks, block 5 applies the

EMC2 algorithm. Final output of the Icy protocol is the collection of single particle tracks over the time-lapse sequence.

Tracking protocol can be found here: http://icy.bioimageanalysis.org/protocol/detection-with-cluster-un-mixing-and-tracking-

of-neurons-with-emc2/ and is also directly accessible through the search bar of the Icy software (see step-by-step Supplementary

Icy tutorial).

https://doi.org/10.1371/journal.pcbi.1009432.g002

Table 2. Tested tracking algorithms in manual validation.

Name Local association of detected particles Elastic Motion Correction? Gap closing % match

Manual Bayesian (eMHT) No Manual 100% (ground truth)

EMC2 Bayesian (eMHT) Yes GDM 90.5%

TrackMate Global distance minimization (GDM) No GDM 54.6%

EMC2 without Correction Bayesian (eMHT) No GDM 54.3%

https://doi.org/10.1371/journal.pcbi.1009432.t002
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correction (n = 514 tracks, with 279 (54.3%) matched tracks). The similar capabilities of Track-

Mate and EMC2 without elastic motion correction indicate that Bayesian eMHT and the GDM

tracking method perform similarly for local association of detectable spots, but fail at closing

longer tracking gaps in deformable media. This highlights the importance of elastic motion cor-

rection before the optimal concatenation of short tracks.

Using the same methodology, we compared manual and automatic (EMC2) tracking of sin-

gle neurons in the less challenging case of two-photon imaging of the visual cortex (layer 2/3)

of mice (we used the first day calcium recording from the first animal [38]). Here, the defor-

mation of the field-of-view is much more limited and the motion of embedded neurons can be

assimilated to confined diffusion. As expected, we obtained an EMC2 accuracy that was close

to 100% (64 correct tracks over 65, i.e. 98.5% accuracy) for a time lapse sequence of 3,700

frames (5 minutes).

b Synthetic time-lapse sequences. Manual gap closing in time-lapse sequences is tedious

and prone to operator bias. Moreover, the ground truth, i.e. the identity of each individual neu-

ron along the whole time-lapse sequence, is unknown. Therefore, we designed a reproducible,

synthetic approach where we simulated individual neurons’ activity and animal motion with

different sets of parameters.

We modeled three different types of motion and/or deformation (Materials & Methods):

Confined diffusion, where blinking neurons diffuse within a confined area (as in two-photon

imaging of targeted brain areas), Linear motion, where neurons all move together in the same

direction at constant velocity, and finally, using deformation fields measured in Hydra experi-

mental data, we simulated naturalistic Hydra deformations. We further modeled the intermit-

tent activity of neuronal ensembles with a probabilistic Poisson model. We also modeled the

fluorescence dynamics of individual spikes using a parametric curve that we fitted to experi-

mental data. Finally, using neuron positions, firing activity and fluorescence dynamics, we

generated synthetic time-lapse sequences using a mixed Poisson-Gaussian noise model ([30]

and Materials & Methods).

For confined diffusion (150 simulated tracks, n = 10 simulations), both EMC2 and Track-

Mate gave excellent results, with track matches of 93.5% ± 1.6% (144.4 ± 1.8 correct tracks

over 154.6 ± 0.9 reconstructed tracks) for EMC2 and 92.9% ± 0.8% for TrackMate (140.3 ± 1.0

correct tracks over 151.0 ± 0.3 reconstructed tracks) (Fig 3A). The good performance of Track-

Mate was expected as this algorithm was initially designed to track confined endocytic spots at

the cell membrane [33]. In addition to confined motion, TrackMate can also model linear

motion of particles when computing the optimal gap closing between short tracks. Therefore,

in linear motion simulations (337.6 ± 1.0 simulated tracks, n = 10 simulations), we used Track-

Mate with linear motion correction instead of standard confined motion correction. However,

even with linear correction, the performance of Trackmate (76.3% ± 0.6% (262.6 ± 1.4 correct

tracks over 358.2.0 ± 1.8 reconstructed tracks)) was significantly worse than EMC2’s perfor-

mance (97.7 ± 0.5% (326.1 ± 1.6 correct tracks over 337.3 ± 1.1 reconstructed tracks)). This dif-

ference is due to the different estimation methods that are used in the two tracking algorithms

to estimate the direction of tracks: in TrackMate, the estimation of track directions is local,

based on the last detection within each short track, whereas the estimation of track direction

in EMC2 uses global information provided by neighbouring short tracks and is therefore more

robust. Finally, in the third case, we used the deformation field that we estimated over 250

frames within a time-lapse experimental sequence of Hydra (500 simulated tracks, n = 10 sim-

ulations, see section 2.a and Materials & Methods). We found that Trackmate had similar per-

formances with (matching score 69.4 ± 1.1%, or 414.8 ± 3.7 correct tracks over 598.2 ± 4.8

reconstructed tracks) or without (72.4 ± 0.9%, or 427.2 ± 3.0 correct tracks over 590.7 ± 3.5
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reconstructed tracks) linear motion correction, and that both were outperformed by EMC2

(98.6 ± 0.3%, or 493.4 ± 1.6 correct tracks over 500.4 ± 0.2 reconstructed tracks).

We also measured the robustness of EMC2 to parameter change in synthetic motion simu-

lations. In particular, we measured the performance of the algorithm for an increased percent-

age of stable cells (Fig 3D) (see Material and Methods), an increased number of neurons (Fig

3E) and an increased length of simulated sequences (Fig 3F and Table 3). First, we found that

even without stable cells (αstable = 0), the accuracy of EMC2 remained high (77.7% ± 3.6%

(398.8 ± 18.4 correct tracks over 513.3 ± 1.7 reconstructed tracks), and rapidly increased to

Fig 3. Testing EMC2 robustness with synthetic simulations. For each simulated type of motion (confined diffusion (a), linear motion (b) and “Hydra-like” elastic

deformation (c)), we simulated the stochastic firing of neuronal ensembles and corresponding fluorescence dynamics in synthetic time-lapse sequences (see Materials

and Methods for details). We then compared the performances of EMC2 (blue) with TrackMate (no motion correction (red) or linear motion correction (magenta)).

P-values are obtained with the Wilcoxon rank sum test over n = 10 simulations in each case. (d-e) Using “Hydra-like” synthetic deformation, we measured the

accuracy of EMC2 for increasing proportion of stable (i.e. non-blinking) particles (neuronal cells) and increasing number of simulated particles. (f) After having

estimated the deformation-field in three different animals (animal 1 (black), 4 (blue) and 6 (green)), we measured the accuracy of EMC2 for simulated sequences with

increasing length (25, 50, 100 and 240 seconds. Imaging and simulations were performed at 10 Hz). For comparison purposes, the performance of TrackMate

algorithm for 25 seconds (animal 1), extracted from (c), is shown.

https://doi.org/10.1371/journal.pcbi.1009432.g003
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91.8% ± 1.2% for αstable = 5%, before reaching a plateau above 95% accuracy for αstable�10%.

Conversely, we found that EMC2 was very sensitive to the number of neurons, with poor per-

formance for very few neurons (for simulations with only 10 neurons, the accuracy was 11.6%

± 0.6%, or 5.6 ± 0.3 correct tracks over 49.8 ± 0.8 reconstructed tracks). The accuracy rapidly

increased to > 90% when more than 100 neurons were simulated. Tracking errors in simula-

tions with few neurons are due to the inaccurate estimation of the deformation field, and itera-

tive error propagation, when few fiducial source and target points are used. Finally, we

measured how the performance of the EMC2 evolved with the length of the simulated

sequence, for three different animals (animals 1, 4 and 6, see Table 4). We chose animals with

a high and homogeneous density of neurons so that we could accurately estimate, and there-

fore simulate, their body deformation. We found that the EMC2 accuracy decreased with the

sequence length, but remained high (i.e. >80%) for up to 2 to 4 minutes of simulation at 10

Hz, depending on the animal (animal 1 ~ 1200 frames = 2 min., animal 4 ~ 1500 frames = 2

min. 30s and animal 6 ~ 2400 frames = 4 min.). For longer simulations, the accuracy dropped

below 80% and reached a mean of 72% at the end of the simulation (4 minutes). The number

of reconstructed tracks remained close to 500 even for longer sequences (Fig 3F and Table 3).

The decreased performance of EMC2 for longer time-lapse sequences is an expected drawback

of SPT-based tracking algorithms. Indeed, the probability of false associations between newly

detected particles and existing tracks increases with time. Yet, the EMC2 tracking algorithm, in

contrast with state-of-the-art SPT algorithms, allows the robust, automatic tracking of individ-

ual neurons over few (~2–3) minutes in the highly deforming Hydra model. This sustained

performance is particularly desirable as it allows the robust analysis of single neuron activity

and functional coupling during different animal behaviors (section 4).

Table 3. Results of synthetic simulations (Hydra-like deformation, increasing length).

250 frames (25 s.) 500 frames (50 s.) 1000 frames (100 s.) 2400 frames (240 s.)

Accuracy Nb. Tracks Accuracy Nb. Tracks Accuracy Nb. Tracks Accuracy Nb. Tracks
Animal 1 98.6±0.3% 500.4±0.2 87.5±0.8% 511.7±1.0 83.8±1.8% 512.0±3.1 67.4±4.1% 538.8±8.0

Animal 4 98.0±0.2% 503.5±0.4 95.9±0.4% 507.9±1.1 88.7±1.2% 521.5±2.6 66.7±2.5% 571.9±8.5

Animal 6 97.8±0.2% 502.9±0.7 96.9±0.3% 505.6±0.7 92.0±1.3% 515.7±2.3 81.7±1.9% 540.7±5.4

https://doi.org/10.1371/journal.pcbi.1009432.t003

Table 4. Results of statistical extraction of neuronal ensembles in Hydra (n = 8 animals).

Animal Movie length (frames) Tracks (>150 frames) Activity peaks Ensembles CB neurons RP1 neurons RP2 neurons
1 900 411 11 2 139 (33.8%) 37 (9.0%)
1 1636 723 37 3 202(27.9%) 121(16.7%) 49(6.8%)
1 1371 607 27 3 222(36.6%) 78(12.9%) 41(6.8%)
1 988 516 23 3 220(42.6%) 49(9.5%) 55(10.7%)
2 1000 531 17 2 34(6.4%) 29(5.5%)
2 1000 518 17 2 59(11.4%) 29(5.6%)
3 1000 191 20 2 16(8.4%) 11(5.8%)
4 1000 243 13 2 16(6.6%) 17(7.0%)
4 1000 173 16 2 24(13.9%) 8(4.6%)
5 1000 147 15 2 14(9.5%) 7(4.8%)
6 1000 379 11 2 14(3.7%) 10(2.6%)
7 1000 173 9 2 59(34.1%) 25(14.5%)
8 1000 244 10 2 44(18.0%) 18(7.4%)
Mean 1067 374 17.3 82(18.7%) 43(10.8%) 38(7.6%)

Standard error 56 53 2.2 26(4.4%) 12(2.3%) 8(1.8%)

https://doi.org/10.1371/journal.pcbi.1009432.t004
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Altogether these simulations show that EMC2 is a robust tracking algorithm for different

types of particle motions, and is therefore a versatile method for single particle tracking.

5 Tracking and analyzing single neuron activity in behaving animals

a. Monitoring neuron activity with two-photon microscopy in mouse cortex. Two-pho-

ton calcium imaging is widely used to monitor single neuron activity in targeted brain regions

of awake and behaving animals [3]. The head of the animal is usually fixed under the objective

of the microscope, which limits the motion of neurons and facilitates their individual tracking.

However, residual neuron motion due to animal movements, breathing or heartbeats requires

computational post-processing of acquired time-lapse sequences to robustly monitor calcium

activity of single neurons. The most popular technique for (slight) motion correction in time-

lapse sequences is the elastic registration of fluorescence images with respect to one (or multi-

ple) reference frame(s) using image intensity [13]. The computational load of image registra-

tion is important, especially for long sequences with large images, and algorithms have been

developed to speed up the registration process and decrease the computational time to a few

minutes for ~2,000 frame time-lapse sequences (with ~256x256 images) [14]. After image reg-

istration, the segmentation of neuronal masks for calcium fluorescence monitoring is then per-

formed with standard intensity thresholding [38] or more elaborate techniques when neuronal

masks are overlapping, such as non-negative matrix factorization [17].

To simultaneously localize and correct for neuron motion, we applied the EMC2 Icy track-

ing protocol (Fig 2) to two-photon time-lapse calcium images of mouse visual cortex (Fig 4

and Material and Methods). Imaging was performed for 5 minutes at 12.3 Hz (~3,700 frame

sequences) at days 1, 2 and 46. The entire EMC2 protocol with neuron spot detection and

tracking for each ~3,700 frame sequence ran in ~3 minutes with a 2.7 GHz Intel Core i7 pro-

cessor. Consistent with [38], we observed a significant turn-over of active neurons (Fig 4A)

with few neurons (median = 22% (15/68 neurons), n = 4 animals) that remained active across

all days. We observed a similar number of active neurons on day 1 and 2, but a decreased num-

ber at day 46 which is probably due to several factors, such as decreased transgene expression

or repeated experimental procedures [38]. We then analyzed single neuron trajectories

obtained with EMC2 (Fig 4B). Even if the animal’s head was fixed under the microscope, resid-

ual motion of the field-of-view led to confined stochastic trajectories for single neurons. The

positions of single neurons at each time were either computed with the intensity center of

detected spots when neurons were detectable, or estimated using the computed elastic defor-

mation of the field of view when neurons were silent and undetectable. We measured a median

neuron displacement between frames of ~ 0.25 pixels, and a median maximum distance of

excursion (relative to the center point of the trajectory) of ~ 4 pixels (Fig 4B).

Altogether, these results show that EMC2 tracking protocol is a robust and fast method to

post-process two-photon calcium imaging from awake mice. Trajectory analysis revealed the

stochastic confined motion of single neuron positions, even in head-fixed animals. This resid-

ual motion is partly due to the animal’s movements, but also to the uncertainty of sub-pixel

localization of neuron spots at each time frame [39]. Moreover, the analysis of single neuron

activity across days in the same cortical region showed a significant turn-over within the pool

of active neurons each day, with few neurons remaining active over all days. Statistical analysis

recently showed that this latter pool of active neurons could be a stable neuronal ensemble

[38].

b. Characterizing neuronal ensembles in behaving Hydra. There is increasing experi-

mental evidence that neurons are organized into neuronal ensembles composed of a few tens

of highly coupled neurons, and that these co-active ensembles are the fundamental
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computational units of the brain rather than single neurons themselves [21, 40]. Using manual

annotation, it has been shown that Hydra’s nervous system, one of the simplest of the animal

kingdom, may be dominated by three main functional networks that are distributed through

the entire animal [5, 41]. To confirm (or refute) these observations, we used EMC2 and auto-

matically tracked single neurons in n = 13 time-lapse sequences (length 1067±56 frames at 10

Hz (Materials and Methods) from 8 different animals (Table 4 and Fig 5). Movies used in this

study (avi and tiff files) can be downloaded from the BioStudies platform (https://www.ebi.ac.

uk/biostudies/studies/S-BSST428). Analyzed movies were significantly longer than the manu-

ally annotated one (length = 200 frames at 10 Hz [5]). Ensemble activity, corresponding to the

co-firing of neurons, can be detected as significant peaks within the raster plot of single neuron

activity (Fig 5 and Materials and Methods). We detected a mean number of 1.7±2.2 peaks per

movie, corresponding to a mean rate of 1 activity peak every 63 frames (6.3 s) which corre-

sponds well with the 4 peaks observed previously in the 200 frame movie [5]. To associate each

peak with a putative neuronal ensemble, we adopted a similar approach as in [42] and mea-

sured the similarity between these events in terms of the identities of the participating neurons

(Fig 5 and Materials and Methods). We then performed k-means clustering of peak similarity,

Fig 4. Monitoring the activity of individual neurons in two-photon calcium imaging of mouse visual cortex with EMC2.

a- Two-photon calcium imaging of single neuron activity in visual cortex of awake mice is performed at Day 1, Day 2 and

Day 46 during 5 minutes at 12.3 Hz. Tracking of neuron positions is performed with EMC2 and reveals an important turn-

over of active neurons across days. Examples of neurons that are active at Day 1, Day 2 or Day 46 are respectively highlighted

with red, green or blue arrows. Neurons active at Day 1&2 are highlighted with yellow arrows, at Day 2&46 with cyan arrows,

and at Day 1,2&46 with white arrows. The median number of active neurons each day is also plotted (n = 4 animals). The

number of neurons that are active from Day 1, 2 or 3 are respectively represented in red, green or blue. b- Single neuron

trajectories can be modeled with confined stochastic motion. Two example trajectories are shown (green & blue trajectories)

with a maximum excursion distance of ~ 4 pixels. Boxplots of single neuron displacement between two consecutive frames,

and maximum excursion distance (in pixels) are plotted (n = 590 trajectories).

https://doi.org/10.1371/journal.pcbi.1009432.g004
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and used the Silhouette criterion [43] to determine the most likely number of neuronal ensem-

bles causing the detected peaks of activity. We found 2 or 3 neuronal ensembles in each movie

(3 neuronal ensembles were detected in 3 out of the 13 movies, or 23%). We then categorized

each detected ensemble into one of the previously defined ensembles [5, 41]: Contraction

Burst (CB) neurons that fire during longitudinal contraction of the animal, Rhythmic Potential

1 (RP1) that fire during the longitudinal elongation of the animal, and Rhythmic Potential 2

(RP2) neurons that fire independently of RP1 and CB activity. We found CB neuronal ensem-

bles in almost all movies (11/13, or 85% of movies) and all animals (8/8, 100%), RP1 ensembles

in all movies and animals and RP2 ensembles in fewer movies (5/13, or 38%) and only 2/8

(25%) animals. The absence of detected CB ensembles in 2 movies corresponds to the observed

absence of contraction cycles within these movies. On the other hand, we hypothesize that the

absence of RP2 ensembles in 6/8 (75%) of the animals is due to the limited depth of the field-

of-view in confocal microscopy (see Materials and Methods). Indeed, RP2 neurons lie in the

thin ectoderm of the animal [5] that may not have been imaged in some animals. Finally, we

classified and mapped each individual neuron in the detected ensembles (see Materials and

Methods). As in [5], we found that the CB ensemble was the most important group of neurons

with a mean number of 82±26 neurons representing 18.7%±4.4% of the total number of neu-

rons (a mean of 374±53 neurons were tracked over >150 frames in the different movies). The

RP1 ensemble, with 43±12 neurons (10.8%±2.3%), was the next largest ensemble and RP2,

with 38±8 (7.6±1.8%), was the third. The relative number of neurons in the different

Fig 5. Neuron tracking and mapping of neuronal ensembles in behaving Hydra. a- Calcium imaging of single neuron

activity in behaving Hydra. The images and analysis of the 3rd movie of animal 1 are given as representative examples. b-

Single neuron tracks and fluorescence intensity are obtained with EMC2 algorithm. c- For each neuron, spikes are extracted

from fluorescence traces. Peaks of activity (highlighted with red stars) correspond to significant co-activity of individual

neurons (sum of individual activities (solid red line) > statistical threshold (dashed red line), p = 0.001 see Materials and

Methods). Each peak putatively corresponds to the activation of one neuronal ensemble. d- Similarity between activity peaks

is computed using the identities of individual neurons that are firing at each peak (see Materials and Methods). e- The

optimal number of peak classes (that putatively corresponds to the number of neuronal ensembles) is computed using the

Silhouette index on k-means clustering of the similarity matrix (see Material and Methods). Median fluorescence trace of

each neuronal ensemble and corresponding activity peaks are shown. The classification of individual neurons in each

ensemble is determined based on their firing at ensemble peaks (see Materials and Methods). f- Individual neurons of each

ensemble can be dynamically mapped in the original time-lapse sequence.

https://doi.org/10.1371/journal.pcbi.1009432.g005
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ensembles is in agreement with previous observations [5]. However, the overall size of each

ensemble is smaller than the size reported previously. This is due to the fact that automatic

classification of each individual neuron in an ensemble is more stringent than the manual clas-

sification that had been previously performed. Finally, we measured the overlap between

ensembles, i.e. the proportion of single neurons that belonged to more than one ensemble. For

each pair of ensembles, we computed the ratio between the number of shared neurons and the

total number of neurons in both ensembles. We obtained ratios of 2.1%±0.7%, 2.4%±0.4% and

1.6%±0.6% respectively for CB-RP1, CB-RP2 and RP1-RP2 ensemble overlap. These very low

values confirm the near non-overlap of the main neuronal ensembles in Hydra [5]. By cou-

pling the automatic tracking of individual neurons in multiple Hydra with robust clustering

analysis of neuronal activity, we were therefore able to confirm the previous observations that

the Hydra nervous system is dominated by three main non-overlapping ensembles that are

involved in different animal behaviors.

Altogether, these results show that EMC2 is sufficiently robust to monitor single neuron

activity in behaving animals. This constitutes a fundamental prerequisite for the analysis of

neurons’ functional organization and, ultimately, for our understanding of their emergent

computational properties.

Discussion

When using calcium imaging in living animals, an important challenge is the sustained track-

ing of neuronal positions over extended times in a moving, and potentially also deformable,

environment. To tackle this issue, we have developed an algorithm, EMC2, that tracks detect-

able particles with a state-of-the-art probabilistic tracking algorithm and uses the information

contained in reconstructed tracks about the local deformation of the field-of-view (e.g. animal)

to estimate the position of undetectable particles and potentially close tracking gaps. We vali-

dated the performance and versatility of EMC2 by comparing its performance with a state-of-

the-art tracking algorithm on manually tracked neurons in time-lapse calcium-imaging of

behaving animals, including imaging over days of the same neurons from mouse visual cortex,

the challenging deformable Hydra, and also on synthetic time-lapse sequences that modeled

different types of motion/deformation of the field-of-view (confined diffusion, linear motion

and Hydra-like elastic deformation). In all cases, EMC2 showed high accuracy and outper-

formed state-of-the-art tracking methods.

Compared to traditional tracking approaches, composed only of particle detection and link-

ing (see Table 1), our hybrid algorithm is better equipped to handle tracking gaps and general

particle motion. Recently, tracking methods based on artificial neural networks [44, 45] have

been introduced to handle more general particle motion, not only diffusion and/or linear

motion. However, these methods are designed to link two sets of particle detections in conse-

cutive time frames and, even if they can handle some missing or false detections, they do not

appear well suited for tracking gaps such as those encountered in calcium imaging of neuronal

activity.

On-going development of high-speed three-dimensional microscopes enables the imaging

of neuronal activity with high temporal and spatial resolution in an increasing number of ani-

mal models [6, 9]. In the near future, the extension of EMC2 tracking method to three-dimen-

sional movies should not present important technical issues. Indeed, the thin-plate-spline

transform used here to estimate the deformation of the field-of-view in two dimensions is

actually a special case of polyharmonic splines that have been specifically designed for robust

interpolation between data points in any dimensional space[46].

PLOS COMPUTATIONAL BIOLOGY Tracking calcium dynamics from individual neurons in behaving animals

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009432 October 8, 2021 16 / 25

https://doi.org/10.1371/journal.pcbi.1009432


After having implemented EMC2 in the open-source bio-imaging platform Icy [20], we

tracked single neuron activity in behaving mouse visual cortex and also Hydra. In mouse cor-

tex, our algorithm performed essentially flawlessly, and reveals the presence of neurons that

continue to respond to the same stimulus over several days. In addition, using statistical clus-

tering, we confirmed the previous observations that neural activity of Hydra is dominated by

three major, non-overlapping neuronal ensembles that are involved in the animal’s repetitive

contraction and elongation. At the same time, automatic clustering of neuronal activity was

not able to extract other smaller ensembles of the animal’s nervous system, such as the tentacle

and sub-tentacle ensembles [5] that we could observe by eye. Indeed, the coordinated activity

of small ensembles is difficult to detect from individual neuronal spiking because of sparse

activity and noise. Moreover, the activation of these smaller ensembles is less frequent than the

activation of the three major ensembles and happened in only few movies. Therefore, the com-

plete mapping of neuronal ensembles of Hydra, with the characterization of even the smallest

neuronal ensembles with less frequent activity, will require in the near future further develop-

ment of better imaging and tracking of single neuron activity over longer periods of time. For

tracking neurons over longer time (several minutes or even hours), hardware implementations

such as dual-color imaging with calcium-insensitive dye or partial immobilization of the ani-

mal [47] will be required. Another possible software strategy for increasing the robustness of

EMC2 tracking over long times would be the characterization and use of stereotypical poses of

the animal [8] as reference frames for mapping the (almost) stable positions of neuronal sub-

sets.

To conclude, our results show that EMC2 is a robust and versatile tracking algorithm that

allows monitoring and quantification of single neuron activity in behaving animals. Robust

tracking of neural activity is a first step towards a better understanding of the neural code, i.e.
how connected neuronal ensembles integrate information, underlie adaptive behavior and,

more generally, compute the animal’s behavioral or internal states.

Materials and methods

1 Elastic motion correction and concatenation (EMC2) of short tracks

The eMHT algorithm returns a set of N short tracks (tracklets) τi, for 1�i�N, of detectable

particles; the ith tracklet τi starts at position xiðtsi Þ at time tsi and ends at position xiðtei Þ at time

tei . To concatenate tracklets, i.e. to link the tracklets that putatively correspond to the same neu-

ron, we then estimate the backward position x̂b
i ðtÞ of the particle (neuron) corresponding to

the ith tracklet before the starting-point (t � tsi ) of the tracklet. To estimate x̂b
i ðtÞ for t � tsi , we

iteratively apply backward thin-plate-spline transformation x̂b
i ðt � 1Þ ¼ TPSbackwardðx̂b

i ðtÞÞ,

with the initial condition x̂b
i ðt

s
i Þ ¼ xiðtsiÞ. Similarly, to estimate the forward position x̂f

i ðtÞ after

the ending-point of the tracklet, i.e. for t � tei , we iteratively apply the forward transformation

x̂f
i ðtÞ ¼ TPSforwardðx̂

f
i ðt � 1ÞÞ with the initial condition x̂f

i ðtei Þ ¼ xiðtei Þ: From the estimated

positions of particles corresponding to each tracklet, we then compute the distance di,j between

tracklets τi6¼τj with

di;j ¼

1; if tei > tsj or t
e
j > tsi

mintei �t�tsj
k½x̂ f

i � x̂b
j �ðtÞk; if tei � tsj � tei þ gapmax

mintej �t�tsi
k½x̂ f

j � x̂b
i �ðtÞk; if tej � tsi � tej þ gapmax

8
>>><

>>>:

where gapmax is a user-defined maximum time gap that EMC2 is allowed to close (typically a

few hundreds of frames). We need to apply a maximum time gap for time-lapse sequences
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with particles that remain undetectable over long periods of time due to the error growth dur-

ing backward/forward estimation of the putative position of undetectable particles.

Using the computed distances between tracklets, we then define an association cost matrix,

Φ ¼

�1;1 � � � �1;N

..

. . .
. ..

.

�N;1 � � � �N;N

0

B
B
B
@

1

C
C
C
A

;

with ϕi,j = di,j if di,j<dmax, and ϕi,j = 1 otherwise. dmax is the second user-defined parameter of

our tracking algorithm that specifies the maximum distance allowed between the forward-

propagated end-point of a tracklet and the backward-propagated starting-point of another

tracklet. Finally, among all possible associations for which the cost ϕi,j<1, the optimum set of

concatenated tracklets ti� ! tj� among all the tracklets {τi, τj}, 1�i,j�N is the solution of the

global minimization problem

i� ! j� ¼ min
i;j such that �i;j<1

X
�i;j:

This minimization problem, known as the assignment problem, is similar to the problem

solved in GDM methods of tracking, where algorithms determine the optimal association

between particle detections by minimizing the global distance between detections in consecu-

tive time frames of the sequence. One of the first and most popular algorithms to solve assign-

ment problems is the Hungarian algorithm [48]. However, due to its computational load,

faster algorithms have been proposed over the years. We used here the Jonker-Volgenant algo-

rithm [49] implemented in the TrackMate plugin in ImageJ (see Table 1).

Finally each particle (neuron) track Ti for 1�i�N0, with N0�N the number of “long”

tracks, results from the concatenation of ni tracklets: Ti ¼ ti1 ! ti2 ! � � � ! tini
with

tei1 � tsi2 � � � � � tsini . We highlight that, by construction, each long track Ti does not necessarily

span the whole time-lapse imaging sequence, but begins at the starting-time tsi1 of the first

tracklet τi and ends at the ending-time teini of the last tracklet tini
.

2 Icy protocol

a Detection of spots (e.g. neurons) in time-lapse sequences. To detect automatically the

positions of fluorescent spots, corresponding to detectable particles, in each frame of the time

lapse sequence, we designed a multi-step algorithm (see Fig 2) where we first detected fluores-

cent spots that are significantly brighter than background with a fast and robust algorithm

based on a wavelet transformation of the image and statistical thresholding of the wavelet coef-

ficients (block number 1 in Icy protocol (Fig 2)) [50]. These spots correspond to individual par-

ticles or clusters of particles (e.g. neurons). To separate individual particles in the detected

clusters, we then multiplied the original sequence with the binary mask obtained with wavelet

thresholding and convolved the result of the multiplication with a log-Gaussian transforma-

tion (block number 2). The log-Gaussian convolution is similar to the point-spread function of

microscopes and thus enhances individual particles [51]. Finally, we extracted the positions of

single particles by applying a local-maxima algorithm (block number 3) to the convolved

sequence.

b Tracking (EMC2). After having detected the positions of fluorescent spots in each time

frame, a second series of blocks computed the tracks of each single particle. First, block number

4 used the positions of spots and a robust Bayesian algorithm (eMHT [30]) to compute single
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tracks of detectable particles. Due to fluctuating detectability, many computed tracks are ter-

minated prematurely and new tracks are created when particles are detectable again. We thus

applied the EMC2 algorithm (block number 5) to close gaps and reconstruct single-particle

tracks over the entire time lapse sequence.

The tracking protocol can be found here: http://icy.bioimageanalysis.org/protocol/

detection-with-cluster-un-mixing-and-tracking-of-neurons-with-emc2/ and is also directly

accessible through the search bar of the Icy software. A step-by-step tutorial for tracking neu-

rons and exporting track intensity with Icy is provided as Supplementary material.

3 Validation of EMC2

a Comparison metric. To compare the tracks obtained with EMC2 and other automatic

tracking algorithms with ground truth tracks, we first considered the whole set of detections

xi(t), 1�i�N(t), with N(t) the number of detections at time 1�t�T (T being the length of the

time sequence) and assigned each detection to the closest active track at time t. Therefore, for

each reference track y
r
j , 1�j�|Θr|, with |Θr| the total number of reference tracks, and for each

test track y
t
k, 1�k�|Θt|, with |Θt| the total number of test tracks, we obtained a set of associated

detections. We then considered that a test track matched a reference track if it shared at least

80% of common detections. Finally, for each reference track, we either obtained no test track

that matched, exactly one test track that matched or more than one.

b Synthetic motions. To validate the robustness and accuracy of EMC2 in different sce-

narios, we simulated three classes of motions: confined diffusion, linear motion and elastic

deformation. For confined diffusion, each simulated spot (e.g. fluorescent neuron) can dif-

fuse with coefficient D = 1 pixel2 per frame and is confined to a 10 pixel disk area. For linear

motion, each simulated spot moves linearly at speed v = 1 pixel per frame. When a track

reaches the boundary of the field-of-view (a rectangle of 200x200 pixels), it is terminated and

another track is initiated at the other side of the FOV. Finally, for elastic deformation, we

used the experimental tracks in Hydra to estimate iteratively (i.e. from one frame to the follow-

ing one) the local deformation for each synthetic track position.

c Firing rates of individual neurons. To model the stochastic firing rates of individual

neurons (total number of neurons nneurons), we first determined a proportion (αstable) of stable

spots, i.e. non-blinking cells, with constant fluorescent intensity. In Hydra, stable cells typically

correspond to nematocytes or other cell types that also express fluorescent proteins after the

genetic editing of the animal, but that don’t fire as neurons do [5]. To simulate the correlated

activity patterns observed in Hydra, we then divided the (1−αstable)nneurons firing neurons, with

intermittent activity and detectability, into ngroup ensembles. All neurons in each ensemble fire

simultaneously with Poisson rate λgroup = sizegroup λindividual, with λindividual the firing rate of

individual neurons and sizegroup = (1−αstable)nneurons/ngroup the number of neurons in each

group. Parameters for each simulation used for the validation of EMC2 algorithm are summa-

rized in Table 5.

d Generation of synthetic images. To generate synthetic fluorescence time-lapse

sequences, we used a mixed Poisson-Gaussian model [31]. In this model, the intensity I[x,y] at

pixel location [x,y] is equal to I[x,y] = U[x,y]+N(0,σn) where U is a random Poisson variable

and N(0,σn) is additive white Gaussian noise with standard deviation σn. The intensity λ[x,y] of

the Poisson variable varies spatially because it depends on the presence or not of particle spots

(neurons). Therefore, λ[x,y] = P[x,y]+B with B a constant background value and P[x,y] the

spots’ intensity at position [x,y]. Assuming an additive model for the intensity of the spots,

P½x; y� ¼
P

i¼1::nneurons
Pi½x; y�, where Pi[x,y] is the signal originating from the ith spot. We

approximated the point-spread-function (PSF) of the microscope with a Gaussian profile.
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Thus, for a particle located at position ½xi
0
; yi

0
�, its intensity at position [x,y] is given by

Pi x; y½ � ¼ Ai exp �
ðx�xi

0
Þ2þðy�yi

0
Þ2

2s2
PSF

, with Ai the amplitude of the ith particle and σPSF the standard

deviation of the 2D Gaussian profile of the PSF. We chose a constant amplitude for each parti-

cle A = Ai, for all 1�i�nneurons. Parameters used in simulations are summarized in Table 5.

e Fluorescence kinetics. When a neuron fires at time t0, we model its fluorescence time

course with the general kinetics equation

f tð Þ ¼ A
exp �

t�t0
tdecay

� �b
� �

1 þ exp �
t�t0�m

trise

� � ;

where the numerator models a power-law exponential decay of the fluorescence (β = 1 models

a standard single exponential decay), with a decay time constant τdecay, and the denominator

models a sigmoidal increase of fluorescence with median τrise and time constant μ. Kinetic

parameters for each synthetic simulation are summarized in Table 5. These parameters were

obtained by fitting n = 3075 individual spikes from 444 individual neuron tracks in an experi-

mental time-lapse sequence (250 frames at 10 Hz) of GCAMP-labeled Hydra [5] (S1 Fig). We

highlight that, for Hydra elastic simulations, we used a long decay time constant and a power

index β = 2 instead of 1 for standard confined diffusion and linear motion simulations.

4 Tracking and analyzing single neuron activity in living animals

a Two-photon calcium imaging of mouse visual cortex. Movies used in this study are

issued from [38], and experimental protocol for two-photon volumetric imaging of tar-

geted brain regions in mouse visual cortex can be found in the Methods section of this

manuscript.

b Hydra maintenance. Hydra were cultured using standard methods [52] in Hydra

medium at 18˚C in the dark. They were fed freshly hatched Artemia nauplii twice per week.

c Hydra Imaging. Transgenic Hydra expressing GCaMP6s in the interstitial cell lineage

were used and prepared for imaging studies as previously described [5]. Calcium imaging was

performed using a custom spinning disc confocal microscope (Solamere Yokogawa CSU-X1).

Samples were illuminated with a 488 nm laser (Coherent OBIS) and emission light was

detected with an ICCD camera (Stanford Photonics XR-MEGA10). Images were captured

with a frame rate of 10 frames per second using either a 6X objective (Navitar HRPlanApo 6X/

0.3) or a 10X objective (Olympus UMPlanFl 10x/0.30 W).

Table 5. Parameters used for synthetic simulations.

Parameters nneuron αstable ngroup λindividual A τdecay β μ τrise σPSF σn B SNR ¼ A
Bþσ2n

Name Total

number

of

neurons

% of

non-

firing

spots

Number

of

neuron

groups

Individual

firing rate

Amplitude Fluorescence

decay time

constant

Decay

power

Median

rising

time

Rising

time

constant

St. Dev.

of the

PSF

St. Dev.

of the

Gaussian

noise

Poisson

background

Signal-to-

noise ratio

Confined

diffusion &

Linear

motion

150 20% 10 0.01

frame-1
100 3 frames 1 1 frame 0.5

frames

1 pixel 5 10 �3

Elastic

deformation

(Hydra)

500 20% 10 0.0002

frame-1
100 15 frames 2 2

frames

0.5

frames

1 pixel 5 10 �3

https://doi.org/10.1371/journal.pcbi.1009432.t005
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All movies used in this study can be downloaded from the BioStudies website https://www.

ebi.ac.uk/biostudies/studies/S-BSST428.

d Extracting single neuron activity. We extracted the fluorescence trace of each individual

neuron using the Track Processor Intensity profilewithin the TrackManager plugin in Icy [20] (a

step-by-step tutorial for tracking neurons and exporting track intensity with Icy can be found on

the EMC2 plugin web documentation: http://icy.bioimageanalysis.org/plugin/elastic-motion-

correction-concatenation-emc2-of-tracks/). For each detection within the track, the extracted inten-

sity corresponded to the mean intensity over a disk centered at the detection’s position, with a 2 pix-

els diameter. When detections are missing (tracking gap), the intensity was set to 0. Then, for each

individual neuron, we denoised its non-zero fluorescence trace using wavelet denoising (wdenoise)
in Matlab. We then automatically extracted spikes with a custom procedure where we first com-

puted the discrete derivative of the smoothed fluorescence signal, then set to 0 all negative variations

and finally, we detected significant positive variations of the signal (discrete positive derivative >

quantile at 98% of all empirical positive variations) that putatively corresponded to spikes.

e Statistical characterization of neuronal ensembles in Hydra. Neuronal ensembles are

groups of neurons that repeatedly fire together. Therefore, the activity of neuronal ensembles

can be detected as significant co-activity peaks in the raster plot of single neuron firing. To

detect significant peaks of activity, we applied the procedure described in [42], and identified

as peaks times at which the sum of single neuron activity within a time step of 100 ms fell

within the quantile at 0.999% obtained empirically by circularly shuffling the individual spikes

in the activity raster plot.

Then, to relate detected peaks of activity to putative neuronal ensembles, we constructed a

vector describing the activity of each individual neuron at the detected peaks with entries 1 if

the neuron fires at that peak, and 0 otherwise. We then computed the similarity between these

vectors for each of the activity peaks, using the Jaccard index:

Jaccard peak i; peak jð Þ ¼
number of neurons that fire at peak i and peak j
number of neurons that fire at peak i or peak j

:

Then, to estimate the number of neuronal ensembles underlying the detected peaks of activ-

ity, we clustered the peaks with a k-means algorithm based on their similarity for different num-

bers of classes (from 1 to 5 classes typically). K-means clustering was performed using the cosine

distance. The optimal number of classes in the k-means clustering algorithms, and therefore the

putative number of neuronal ensembles, was computed using the Silhouette index [43]. For a

clustering of N peaks into k classes, the Silhouette index is given by Silhouette kð Þ ¼ 1

N

PN
i¼1

ðbi �

aiÞ=maxðai; biÞ where ai is the average distance from the ith peak to the other peaks in the same

cluster as i, and bi is the minimum average distance from the ith peak to peaks in a different clus-

ter, minimized over clusters. An advantage of the Silhouette evaluation criterion over other clus-

tering criteria is its versatility, as it can be used with any distance (cosine distance was used here

for the k-means clustering). Finally, we assigned each individual neuron to an ensemble if that

neuron fired in more than 50% of the activity peaks of the identified ensemble.

Supporting information

S1 Fig. Fitting the fluorescence kinetics of firing neurons in calcium imaging of Hydra.

Fluorescence time course of a firing neuron (at time t0) is modeled with the kinetics equation

f tð Þ ¼ A
exp �

t�t0
tdecay

� �b
� �

1 þ exp �
t�t0�m

trise

� � ;
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where the numerator models a power-law exponential decay of the fluorescence with a decay

time constant τdecay, and the denominator models a sigmoidal increase of fluorescence with

median τrise and time constant μ. Boxplot for fitted parameters (n = 3075 individual spikes

from 444 individual neuron tracks) are shown.

(EPS)

S2 Fig. Comparing tracking methods with manual ground truth on calcium imaging data

in behaving Hydra. Tracks obtained with TrackMate (red), EMC2 without motion correction

(purple) and EMC2 are compared to manual ground truth obtained by manual concatenation

of tracklets in calcium imaging of behaving Hydra (see Material and Methods).

(EPS)

Acknowledgments

We thank John Wang for help, lab members, MBL staff and members of the MBL Hydra lab

for support and advice.

Author Contributions

Conceptualization: Thibault Lagache, Adrienne Fairhall, Rafael Yuste.

Data curation: Thibault Lagache, Alison Hanson, Jesús E. Pérez-Ortega.
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