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SUMMARY

Although much is known about how the structure of the nervous system develops, it is still unclear how its
functional modularity arises. A dream experiment would be to observe the entire development of a nervous
system, correlating the emergence of functional units with their associated behaviors. This is possible in the
cnidarian Hydra vulgaris, which, after its complete dissociation into individual cells, can reassemble itself
back together into a normal animal. We used calcium imaging to monitor the complete neuronal activity of
dissociated Hydra as they reaggregated over several days. Initially uncoordinated neuronal activity became
synchronized into coactive neuronal ensembles. These local modules then synchronized with others, build-
ing larger functional ensembles that eventually extended throughout the entire reaggregate, generating
neuronal rhythms similar to those of intact animals. Global synchronization was not due to neurite outgrowth
but to strengthening of functional connections between ensembles. We conclude that Hydra’s nervous sys-

tem achieves its functional reassembly through the hierarchical modularity of neuronal ensembles.

INTRODUCTION

Modularity plays an essential role in evolution, as the compart-
mentalization of components of a system allows their indepen-
dent optimization, minimizing potentially deleterious system-
wide effects.’ Modularity plays a key role in the nervous system
as well, allowing the compartmentalization of specific structural
and functional units.? In turn, modularity may be decomposed
further, from modules to submodules, establishing a scaling
hierarchy hypothesized to confer fast adaptation to changing
environmental conditions through stable intermediates, which
drastically curtails the time required for the evolution of complex
forms.® Thus, observing the development of the hierarchical
modularity of the nervous system and correlating it with the
emergence of specific behaviors can help reveal the functional
design logic of nervous systems.

To explore principles that guide the functional development of
the nervous system, it would be ideal to study the process in its
entirety. As an alternative to the complexity of commonly used
model organisms, one can use Hydra vulgaris, a small trans-
parent Cnidarian that is an extant representative of one of the
earliest and arguably simplest nervous systems in evolution.*®
Hydra’s nervous system has an apparently simple structure
distributed through the animal’s ectoderm and endoderm,
without any cephalization or ganglia. Furthermore, Hydra pos-
sesses unusual regenerative abilities and can reassemble itself
after complete dissociation of animals into individual cells, a pro-
cess termed “reaggregation.”® Importantly, this process is
based on the transformation of existing body tissues —morphal-
laxis—removing the confound of continuous cell division in

standard neurodevelopment or epimorphosis-based regenera-
tion.” Together with Hydra’s optical transparency, this remark-
able regenerative ability provides a unique opportunity to
observe the complete de novo functional development of a ner-
vous system. Our goal was to document the activity of neurons
as they assemble into circuits throughout the process, providing
insight into the emergence of modularity and its role in shaping
network topology and dynamics.

Here, we imaged the activity of neurons in reaggregating Hy-
dra preparations as normal neuronal rhythms recover during
the first 72 h post-dissociation. We report that Hydra’s nervous
system synchronizes during its reassembly through a two-step
process in which the initially uncoordinated activity of small
groups of neurons clusters into coactive ensembles, concomi-
tant with pronounced local increases in connectivity and neurite
outgrowth, followed by the synchronization of these local en-
sembles across the entire body of the animal and re-establish-
ment of behavioral rhythms at 72 h.

RESULTS

Circuit synchronization re-established 72 h after
dissociation

To study the functional development of Hydra’s nerve nets as
they regenerate, we mechanically dissociated tissue into individ-
ual cells by triturating GCaMP6s neuronal transgenic animals
with a glass Pasteur pipette after incubation in relatively high-os-
molarity media (Figure 1), similarly to established protocols
(STAR Methods).® Regenerating aggregates were imaged for
30-min periods on an epifluorescence microscope at 8, 24, 48,
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and 72 h post-dissociation in mounted coverslip preparations,*®
while intact animals were imaged on a dissection microscope, as
previously described.* Animals in all experiments eventually re-
generated to yield normal hydranths.

We first investigated how long after dissociation it takes for
normal contractile rhythms to reappear. Visual inspection of
the movies showed that, after 72 h, aggregates already dis-
played the two major forms of synchronized neuronal activity
found in mature animals: rhythmic potentials (RPs) and contrac-
tion bursts (CBs) (Figure 2A; Video S1; n=5/6 experiments; p=1;
Fisher’'s exact test). To analyze circuit activity, we measured the
fluorescence intensity changes of all neurons and manually an-
notated RPs and CBs.*'° We observed a significantly higher
frequency of CBs in 72-h aggregates versus intact animals (Fig-
ure 2B; Data S1B; n = 5 experiments), complemented by a
decrease in the number of pulses per CB (Figure 2B; Data
S1B). At the same time, there were no significant differences in
total percentage of time spent in burst (Figure 2B; Data S1B) or
in CBs pulse frequency (Figure 2B; Data S1B). Given the
increased CB frequency at 72 h and the independence of
opposing RP and CB circuit activity, we observed decreased
RP circuit activity at 72 h (Figure 2B; Data S1B). We concluded
that aggregates recuperated animal-wide neuronal activity pat-
terns by 72 h and concentrated the rest of the study on earlier
changes in circuit activity.

Hydra neurites elongate during the first 48 h of
reaggregation

To understand the structural underpinnings of reaggregation, we
next explored neurite outgrowth. To visualize individual neural
processes, we mixed neuronal GFP animals into a reaggregation
of wild-type (AEP) Hydra. Albeit with large variability likely due to
intrinsic differences in neuronal subtypes,®'' by 48 h, Hydra’s
neural processes were similar to those observed at 72 h in the
length of neurites (Figures 1 and S1A; Data S1G) and number
of branches per neurite (Data S1G). We concluded that a majority
of neurite outgrowth occurred during the first 48 h of reaggrega-
tion, indicating that neuronal outgrowth alone cannot explain the
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Figure 1. Hydra dissociation and reaggre-
gation

(A) Experiment workflow. Hydra were mechani-
cally dissociated into individual cells after a 2-h
incubation in higher osmolarity dissociation me-
dia. At various intervals throughout the process,
regenerating cellular aggregates were mounted
and imaged to monitor changes in the functional
architecture of developing neural circuits. After
enough time, aggregates re-established body
axes, grew tentacles, and were indistinguishable
from undisturbed animals.

(B) Representative images of neuronal GCaMP
fluorescence in aggregates at experimental time
points. Scale bar, 200 pm.

(C) Representative images of neuronal GFP in re-
aggregates diluted 1:25 with wild-type animals to
isolate neurite outgrowth for analysis at different
time points. Scale bar, 50 um.

See also Figure S1 and Data S1G.

changes in functional connectivity leading to the re-establish-
ment of animal-wide activity from 48 to 72 h.

Changes in neuronal activity during reaggregation

To better quantify synchronization during reaggregation, we
imaged calcium activity of individual neurons in 30-min time lap-
ses collected at 0, 8, 24, 48, and 72 h. Images were prepro-
cessed, and the positions of GCaMP6s-labeled neurons visible
on the aggregate were tracked with ICY (STAR Methods).>'° Af-
ter thresholding and manual curation of the dataset to fix errors in
tracking,”'? we found a gradual decline in the number of active
neurons per aggregate (Figure S1B; Data S1G; STAR Methods),
consistent with the expected loss of unintegrated cells.’®'*
Spike rasters were then generated for each experiment (STAR
Methods; Figure S1C; Video S2). We observed a gradual in-
crease in neuron firing rate from 8 h to 48 h, with a drop at
72 h to levels similar to dissociated cells (Figure S2A; Data
S1H). Interspike intervals (ISls) showed a reverse pattern (Fig-
ure S2B; Data S1H). We observed that the ISI variance-to-
mean ratio (VMR) of neurons across all time points underwent
a pivotal intersection around 100 s—approximately 60% of ISI
VMR values —with increasingly larger values with time until this
point and smaller values beyond it (Figures S2B and S2C; Data
S1H). At 72 h, the narrower distribution of values captured the
re-establishment of Hydra’s contraction burst circuitry, as these
neurons have a larger ISI VMR in 72-h aggregates and the intact
animal (Figures 2 and S2C; Data S1B and S1H). From single-cell
analysis of neuronal firing, we concluded firing frequency during
reaggregation displays biphasic dynamics, with initial increases
followed by decreases in activity, while burstiness displays a
reverse dynamics, ending with a normal pattern of contraction
bursts.

Increases in functional connectivity during
reaggregation

To detail the synchronization in Hydra’s nerve net, we used graph
theory, treating neurons as nodes and significant functional con-
nections thresholded from coactivity between neurons as edges
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(n = 6; STAR Methods; Figure S3A). Consistent with the peak of
neurite outgrowth at 48 h, we observed the most dramatic in-
crease in the number and strength of significant functional con-
nections between 24 and 48 h (Figure 3; Data S1C). The shorter
distance between significant functional connections observed at
48 h could underlie differences in aggregate behavior, when
compared to 72 h (Figure 3; Data S1C). These results support
two phases of functional self-assembly, with pronounced local
increases in connectivity and neurite outgrowth during the first
48 h, followed by the re-establishment of behavioral rhythms at
72 h.

Network restructuring during reaggregation

These observations suggested the synchronization of Hydra’s
nerve nets began locally. In one scenario, this synchronization
could arise rapidly across the entire aggregate, akin to the devel-
opment of a coarse topology along morphogenic gradients
before activity-dependent refinement.'>'® In our Hydra data,
however, this time course was not as steep as other models (Fig-
ure 3).7"8 |n the absence of extensive structural patterning, we
wondered whether an alternate mechanism relating to the emer-
gence of hierarchical modularity might be in play, given that
modularity confers evolvability and robustness, allowing nature
to act independently on duplicates of a single module.

To explore this, several standard graph theoretic metrics of
network structure and function were applied to binarized
network models, thresholded at the o = 0.005 significance
level, with controls for network size and connection density
(Figures 4A, 4B, 4D, and 4E, dashed lines; Data S1D) and the
removal of unintegrated neurons from the developing network
(STAR Methods; Figure S3B; Data S11)."® We analyzed degree
distributions, clustering coefficients, and betweenness
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Figure 2. Animal-wide synchronization
restored 72 h after dissociation

(A) At 72 h, synchronized rhythmic potentials (red)
and contraction burst (green) activity are clearly
discernable in manually annotated whole-animal
calcium (GCaMP6s) fluorescence.

(B) 72-h aggregates show a significantly higher
frequency of contraction bursts (CBs) yet fewer
pulses per burst, leading to a similar percentage of
time spent in CB. No significant differences in
contraction pulse frequency were seen, while
rhythmic potential activity (RP) was less in the 72-h
aggregates compared to intact animals (n = 5 ex-
periments).

(C) No significant differences between 72-h and
intact animal CB inter-stimulus intervals (ISIs) were
observed, with a higher variance-to-mean ratio
(VMR) observed in intact animals. 72-h aggregates
had larger RP ISls, with similar RP ISI VMRs. Note
the larger CB ISI VMRs compared to RP ISI VMRs,
indicative of circuit “burstiness” (n = 5 experi-
001 l:‘:l:I ments).

See also Figure S2 and Data S1B and S1H.
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© centrality of the binarized networks, as
® these metrics can be used to infer hierar-
A hasreae et chical modularity. We found an expected
increase in mean degree (k) with aggre-
gate age (Figure 4A; Data S1D). The heavy tail in the degree
distributions at earlier time points, before the saturating effect
of network size, was reminiscent of “scale-free” network struc-
tures in which the ratios of values in the log-log linear distribu-
tion are the same regardless of the scale of observation (Fig-
ure S3C; Data S1l). Truncating our distributions to nodes with
a degree less than one-third of the size of the network yielded
better fits at 48 and 72 h (Figure S3B; Data S1l).

Although Hydra’s developing networks in our experiments
were not large enough to confirm the presence of scale-free
network structures, we were intrigued by the heavy-tailed trend
in the data, because scale-free networks are moderately hierar-
chical and can reflect dynamics on the verge of a phase transi-
tion.?022

Hydra’s nerve net becomes increasingly distributed
during reaggregation

We tested for the existence of hierarchical modularity by
analyzing additional network properties. We observed an in-
crease in the clustering coefficients of nodes—any two signifi-
cant functional connections to a neuron were increasingly likely
to also be significantly coactive with each other—both in terms
of the number of nodes with any clustering (Figures 4B and 4E;
Data S1D), as well as the strength of this coefficient (Figure 4B;
Data S1D). In addition, a key feature of hierarchical modularity
in networks is the presence of nodes with high “betweenness
centrality,” which form interconnections between densely intra-
connected modules to route the graph’s shortest paths.?
Indeed, measures to calculate the betweenness centrality of
large networks exploit hierarchical structure for efficiency.”*
While no significant differences in node betweenness centrality
emerged between 8 and 24 h, at later stages, we detected a
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gradual redistribution of Hydra’s network structure, both interms
of the number of nodes with any betweenness centrality (Figures
4C and 4F; Data S1D), as well as the strength of this coefficient
(Figure 4D; Data S1D). Edge betweenness values showed a
similar trend (Figures 4D and 4F; Data S1D). Thus, the redistribu-
tion of Hydra’s network structure supported the hypothesis that
the emergence of synchronization can be explained by increases
in the strength of functional connections between ensembles.

Network hierarchical depth diminishes during
reaggregation

We next considered these node metrics as a function of node de-
gree (Figures 4E and 4F). Hierarchical modularity can be inferred
from a decrease in the clustering coefficient (C) of nodes with
increasing degree (k), as low-C and high-k nodes may link dispa-
rate, otherwise weakly connected modules of nodes.?? Indeed,
we found a decline in clustering coefficients of nodes as their de-
gree centrality increased from 8 to 48 h (Figure 4E; Data S1D).
The negative fit slopes along the log-log plot indicated a hierar-
chically modular network structure at 8 and 24 h, and the gradual
decrease of the slope magnitude with time indicated a loss of
hierarchical depth, consistent with our observations of the redis-
tribution of betweenness centrality values. While the trend
persisted to 48 and 72 h, this decline suggested the disparate
modules these nodes linked increasingly shared additional
edges with each other, a potential “module overlap” supported
by the dramatic increase in the number of nodes with values
above what would be expected in random graphs of the same
density, as visualized by the gray cloud of values reflecting p =
0.05 C(k) (STAR Methods; Figure 4E; Data S1D). Similarly,
when examining node betweenness centrality (B) as a function
of k, at 24 h, we noticed nodes with smaller B(k) values than
would be expected at random (Figure 4F; Data S1D). This sug-
gested an early increase in modularity from 8 to 24 h, as nodes
deep in densely intraconnected modules have lower between-
ness centrality values relative to their degree. This trend grows
increasingly prevalent at 48 and 72 h, accompanied by increases
in the number of nodes with /arger B(k) values versus the same
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Figure 3. Synchronization increases during
reaggregation

(A) Heatmaps of pairwise connection strengths (y
axis) between neurons as a function of distance (x
axis) for significantly connected neurons at the o. =
0.005 threshold, determined by circularly
permuting binary neuron spiking rasters at random
initiations 1,000 times. Note the local increases in

12

connection strength before synchronization
‘ | across the animal at 72 h.
o A (B) We detect a significant increase in the number
il of significant connections at the « = 0.005
/ threshold moving from 24 to 48 h. Within these
significant connections, connection strength
gradually increases until a plateau at 48 h. A sig-
nificant increase in the distance of these connec-
tions from 48 to 72 h highlights the local optimi-
zation of circuitry before synchronization across
the entire animal.
See also Figure S3 and Data S1C and S1l.
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isopycnic random networks (Figure 4F; Data S1D). At 48 h, these
relatively high B(k) nodes likely correspond to links between
modules, and the increase in the number of nodes with lower
B(k) values than expected suggests the presence of modules
linked by these high B(k) nodes, a feature that extends to data
at72 h.

Taken together with the increases in the strength of functional
connections (Figure 3), these results suggested a mechanism of
synchronization where a small number of significantly connected
nodes routed a more significant portion of network traffic at
earlier time points at the top of a hierarchy, which grew increas-
ingly distributed as clustering increased and these smaller
groups of significantly connected nodes began to overlap in ac-
tivity. Our results suggested a role for modularity in this process,
so we then explored this with a more formal definition of the
concept.

Emergence of modularity accompanies loss of
hierarchical depth

The modularity of biological networks generally increases with
complexity in metazoans,?® and modules are often hierarchically
structured.?®?” Given the recent discovery of pattern completion
neurons and their implications for the hierarchical structure of
neural circuits in mammalian cortex,”® we explored whether
the hierarchical structure of Hydra’s nervous system was related
to modularity. To do so, we used the Louvain algorithm to parti-
tion weighted network models of multineuronal activity into en-
sembles, i.e., modules, or “communities” (STAR Methods; Fig-
ure S4).2°°" We observed both increases in community
strength and changes in community structure as reaggregation
progressed (Figure 5). The average coactivity of each node
with every other node in its community increased with time (Fig-
ure 5A; Data S1E). A similar although less extreme trend was
observed comparing the ratio of intra- to intercommunity
connection strengths (Figure 5B; Data S1E). Taken together,
these observations indicated that increases in intracommunity
strength drove this effect, given that the majority of values of
the intra- or intercommunity strength were greater than unity.
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Consistent with our observations of strong edge weights at low
distances at 48 h (Figure 3), intracommunity distances were
significantly smaller at this time point (Figure 5C; Data S1E).
Correspondingly, ratio of intra- to intermodule physical overlap
of nodes peaked at 48 h, determined using a radius of the
average neurite length at 48 h as potential physical connectivity
(Figure S5; Data S1K). This intermediate state of relatively high
functional and spatial modularity prompted us to explore how
it evolved during the process.

Modularity arises from synchronization of smaller
ensembles

We hypothesized that our observed modules might be built from
the interaction of small ensembles that form early during reag-
gregation. To dissect this potential containment hierarchy, we
used the Louvain algorithm again to partition our initial detected
modules into sub-communities (Figures 5G and 5H), inspired by
previously described methods.®? While the maximum modularity
of our initial partitions was similar at 24 and 48 h (Figure 5H; Data
S1E), the modularity of the entire subdivided network decreased
more at 48 h, compared to 24 h (Figure 5H; Data S1E). Corre-
spondingly, the modularity of partitions of initial modules was
highest at 24 h (Figure 5H; Data S1E), and more subdivisions
of the modules were made (Figure 5H; Data S1E). At every
time point, the distance between members of the sub-commu-
nities was smaller than distances between neurons of their
parent communities (Figures 5G and 5H; Data S1E). Further-
more, the increase in the ratio of intra- to intermodule spatial
overlap, moving from our initial to sub-partitions, was largest at
24 h (Figure S5; Data S1K). Taken together, this indicated the
emergence of modularity through the interaction of smaller en-
sembles of neurons and provided initial evidence to distinguish
the similar maximum modularity values of the initial partitions
at 24 and 48 h.

We obtained further insight into the hierarchical structure of
detected Louvain communities by examining community metrics
at different resolutions, using a sweep of the modularity resolu-
tion parameter gamma from 0.6 to 3 in increments of 0.01
(STAR Methods; Data S1J).%"*° We found an increase in the sta-
bility of partitions with increasing aggregate age (Figure S4B), as
indicated by the dramatic increase in the number of plateaus
from 8 to 24 h (Data S1J) and the significant increase in plateau

¢? CellPress

length from 24 to 48 h, consistent with the maximum modularity
observed at 24 and 48 h (Data S1J).%” While aggregates at 24 and
48 h showed the highest modularity at the peak near unity, values
at 24 h declined less rapidly as gamma increased (Figures S4B
and S4C; Data S1J). This accompanied a larger increase in the
number of communities at 24 h compared to later time points
(Data S1J), indicating the network was more efficiently parti-
tioned into smaller communities. This stability at 24 h represents
another form of containment hierarchy, as smaller communities
are necessarily derived from the larger communities at the start
of the sweep.

Phase transition through a critical regime of activity
A striking feature of the process of vertebrate neural development
is waves of activity that spread throughout locations of the ner-
vous system.*®*° In some cases, these “neuronal avalanches”
follow a power-law distribution indicative of a scale-free critical
regime of activity.*>*! The presence of power-law scaling sup-
ports the hypothesis that the cortex operates at a state of self-
organized criticality, on the verge of a phase transition.**™*?
Consistent with this, waves of activity were present in aggregates
at all time points when examining the propagation of coactivity
between neurons (STAR Methods; Figures 6 and S6; Video S3).
Features of these waves, such as duration or size, showed
heavy-tailed trends, more pronounced at earlier time points. At
8 h, Hydra’s dynamics appeared close to a critical regime of ac-
tivity and became increasingly supercritical thereafter, indicative
of what may be considered a phase transition (Figure 6A; Data
S1F).*® The lack of clear differences in the duration of avalanches
across time points suggested that larger avalanches may be due
to the coincident activity of modules, the spreading of activity be-
tween modules, and increased “burstiness” of modules re-re-
cruited to spreading waves (Figure 6B; Data S1F). Indeed, com-
parison of the duration of avalanches as a function of their size
supports this (Figures 6C and 6D). The burstiness of synchronized
CB circuitry at 72 h and the drop in the distribution of avalanche
durations compared to earlier time points aligns well with
modeling of contractions of the bell of the jellyfish Aurelia aurita,
where the refractory period of neurons limits the spread of waves
of activity to a single contraction.**

The increased dynamic range of hierarchical modular network
architectures supports sustained critical activity more effectively

Figure 4. Hierarchy decreases during reaggregation

(A) Using binary networks thresholded at o = 0.005, we see a gradual increase in the distribution of node degree with time in the log/log descending cumulative
distribution plot. Dotted lines represent the distribution of values obtained with 20 network randomizations; diagonals on the “significance matrices” (bottom left
of plots) represent comparison of experiment values to this random distribution.

(B) Increases in the distribution of node clustering coefficient follow a similar trend, indicating that two nodes connected to any given node are increasingly likely to
be connected themselves.

(C and D) Node betweenness (C) and edge betweenness (D) reveal the gradual shift toward a distributed network structure at 72 h, when normalized to the total
number of edges in the network.

(E) An increasing number of nodes show any clustering with time (top left). Node degree and clustering coefficient, taken together, allow analysis of any hier-
archical modularity as conceptualized by Ravasz and Barabasi, as depicted in a representative experiment (middle). A significant increase in the number of nodes
above C(k) values that would be expected compared to 20 network randomizations (plotted in gray for a representative experiment, middle) is observed from 24 to
48 h (lower left). The decreasing slope of the fits at 8 and 24 h is indicative of hierarchical modularity, while this trend is lost at 48 and 72 h as Hydra's nervous
system synchronizes (right).

(F) In the case of both edges and nodes, significantly more elements are participating in the routing of information across the network with aggregate age, as
opposed to the handful of nodes at 8 and 24 h handling most of the shortest paths within the network (left). Node betweenness centrality plotted as a function of
node degree, with values for 20 network randomizations plotted in gray (middle), is shown. From 24 to 48 h, we observe a significant increase in the number of
nodes above the p = 0.05 gray probability cloud and a significant increase from 8 h to 24 h in the number of nodes with values below the probability cloud (right).
See also Figure S3 and Data S1D and S1lI.
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Figure 5. Decrease in modularity during reaggregation

Taking Louvain consensus communities of the partition with the maximum modularity of all plateaus across a modularity resolution sweep for each experiment,
details of community structure across the course of reaggregation are revealed.

(A) During reaggregation, we see a drastic increase in the distribution of intracommunity strengths by node with aggregate age.

(B) This trend is also present for the ratio of intra- to intercommunity strength, indicating that, while the strength of connections within communities is increasing,
the strength of intercommunity connections is increasing as well. Importantly, most values of the ratio of intra- to intercommunity strength are greater than 1,
indicating that intracommunity strength is increasing at a greater rate.

(C) The local synchronization of circuitry before the global synchronization observed at 48 h is captured by the reduced distance between nodes of the partition
with maximum modularity at 48 h.

(D) Intracommunity strength as a function of community size (left) and mean distance between members (right) for all detected communities.

(E) Intra- and intercommunity strength ratio as a function of community size (left) and mean distance between members (right) for all detected communities.
(F) From 8 h to later time points, we observe a decline in the number of detected communities (top) and an increase in the community size relative to network size
(bottom).

(G) Adjacency matrices of neuron connection strength at 24 and 48 h organized by Louvain partitions of the network (larger red squares) and sub-partitions of
these initial detections (smaller red squares). Spatial arrangement of the partition of the entire network indicated by panels to the left of adjacency matrices, color
coded by membership in community sub-partitions (between the spatial arrangement and adjacency matrices). Note the smaller distance between members of
strongly connected sub-partitions (edge weight scale bar to the left of adjacency matrices).

(H) From left to right: modularity of partitions of the entire network is highest and similar at 24 and 48 h. The modularity of the entire subdivided network is highest at
24 h. The largest drop in modularity for sub-partitioning occurs at 48 h. The modularity of individual subdivisions is highest at 24 h. There is a decline in the number
of communities with sub-partitioning after 24 h. At all time points, the average distance between community members decreases with sub-partitioning of the
network.

See also Figure S4 and Data ST1E and S1J.
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than distributed architectures.*® To explore this, we examined
avalanches within our initial Louvain communities (Figures 6E-
6G; Video S4). We were increasingly likely to see intracommunity
coactivity as part of a wave to 48 h (Figure 6E; Data S1F) and less
likely to see intercommunity activity (Figure 6E; Data S1F). In
addition, considering the “dominant module” as that with the
most nodes comprising the wave, we detected a decreasing per-
centage of nodes from non-dominant communities to 48 h and,
similarly, a smaller probability of observing waves traveling be-
tween communities (Figure 6E; Data S1F).

Synchronization of modules via shared neurons
To further distinguish the similar maximum modularity values at 24
and 48 h (Figure 5G), we examined interactions between initial Lou-
vain modules by generating raster plots of the combined activity of
all neurons in a module. Consistent with the synchronization
observed by 72 h (Figure 2) and the gradually increasing firing
rate of neurons up to 48 h (Figure S3), we found a decrease in
the probability of finding any node from a particular community
active at 72 h (Figure 6G; Data S1F) and a gradual increase in the
proportion of nodes of a community active during any activity at
72 h (Figure 6G; Data S1F). In contrast to the reduced spread of
waves of activity between any modules at 48 h (Figure 6E), we
found the probability of observing coincident activity of two
compared communities rises at 48 h (Figure 6G; Data S1F), a
reflection of the increased firing rate of neurons at this time point
(Figure S2A), the radius of detection wave activity (STAR Methods),
and community size, in combination with the reduced distance be-
tween module neurons at 48 h (Figure 5C). The cosine similarity of
the activity of each community with each other was largest at 48 h,
indicating that parts of distinct modules increasingly fired together
(Figure 6G; Data S1F). To confirm this, we divided any coactivity
between communities into a dominant and subordinate commu-
nity based on the number of nodes each contributed. We observed
gradual increases in the proportion of nodes in any coactivity in
both the dominant and, importantly, the subordinate community,
across our experiment time points (Figure 6G; Data S1F).

These results helped distinguish observations of similar
maximum modularity at 24 and 48 h, putting the stability of

Current Biology

modularity at 24 h into context. Our observations of local in-
creases in strength at 48 h to levels almost that of 72 h sug-
gests higher modularity than at 24 h (Figure 2). However, at
48 h, any coactivity of two modules on average contains
26% of the nodes of the more active, as well as 8% of the no-
des of the less active module, which necessarily increases the
out-of-module connection strength with our observed in-
creases in within-module strength (Figures 5 and 6). This sug-
gests a route to synchronization where smaller groups of
coactive cells increasingly share occasional coactivity with
multiple other groups. More regular coactivity between groups
defines the detected modularity, while coactivity outside these
defined communities raises the valley between detected mod-
ules and detracts from our observed modularity values
(Figure 6G).

DISCUSSION

Local self-assembly of the nervous system during
Hydra’s reaggregation

In this study, we leveraged the ability to image the activity of the
entire nervous system in Hydra® to study the mechanism of
neural circuit assembly during the de novo self-assembly of its
nervous system from dissociated cells (Figure 7). Neural circuit
synchronization was largely recovered across the entire animal
after 72 h (Figure 2). Examining earlier time points, neurite
outgrowth slowed at 48 h (Figures 1 and S2), and the strength
of most functional connections was as strong as at 72 h (Fig-
ure 3). Intriguingly, the distance between functional connections
was significantly shorter at 48 h, suggesting a local optimization
of circuitry before synchronization across the entire animal. This
developmental trajectory shares key similarities with increasingly
complex systems. For example, in the zebrafish spinal cord,
although cellular migration plays an essential role before the
onset of neural activity, a rapid synchronization is observed
from 18 to 22 hpf. Reminiscent of the changes that occur in Hy-
dra, small “ensembles” form at distinct points before recruiting
additional neurons and eventually synchronizing across
segments.’”"®

Figure 6. Avalanches recruit module sub-circuits during synchronization

(A) During the course of reaggregation, distributions of the sizes of neuronal avalanches (left) and critical exponents (top right) suggest a phase transition in activity
of the regenerating nervous system as the system becomes increasingly supercritical. Note the clear shift in sizes along the x axis is due to normalization to the
number of nodes in the network and that waves of activity were generated using a 115-pm radius of coactivity (twice the average neurite length at 48 h; Figure S1).
(B) Distributions of avalanche duration are not as distinct.

(C) Dot plot of avalanche duration as a function of size. Note the distinct cluster at 48 h.

(D) Heatmaps providing more resolution of densely clustered points near the origin of the duration (size) plots.

(E) Superimposition of neuronal avalanches on detected Louvain communities at maximum modularity. From left to right: coactivity of neurons within the
avalanche wave radius of 115 pm is increasingly likely to be in the same community to 48 h. Coactivity between communities declines to 48 h. Fewer nodes from a
non-dominant community are likely to be recruited to a wave to 48 h. Waves are increasingly less likely to spread between communities to 48 h. A trend toward
more communities per wave normalized to the total number of communities with time is present. A trend toward an increasing number of waves traveling through
all communities is present.

(F) Demonstration of circuit and sub-circuit activity at 48 h. Outer circle colors represent larger Louvain network partitions; smaller circle colors represent sub-
partitions.

(G) Rasters of the summed activity of all neurons in each of the detected communities at maximum modularity. From left to right: consistent with firing rate
(Figure S3), communities are less likely to be active at 72 h. When communities are active, an increasing proportion of nodes of a community are likely to be active,
consistent with increased recruitment to neurons to developing circuitry. The cosine similarity of these community rasters increases at 48 h, indicating community
activity is more similar than earlier time points. The probability of finding coactivity between communities increases to 48 h. Consistent with the increased cosine
similarity of community activity at 48 h, when community coactivity is divided into a dominant and subordinate community based on the number of neurons active
at each point of coactivity, the proportion of nodes of the dominant community as well as the subordinate community increases with aggregate age.

See also Figure S6 and Data S1F and S1L.
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Network activity becomes distributed during
reaggregation

Using network modeling, we observed the early formation of a
containment hierarchy from 8 to 24 h, as measured by the rela-
tionship of node clustering coefficients to node degree (Figures
4A, 4B, and 4E). This aligned well with the observed heavy-
tailed degree distributions at earlier time points, a characteristic
of log-log linear distributions of putative scale-free network
structures (Figures 4A and S3). In addition, measures of
betweenness centrality revealed a shift to a distributed network
structure over the course of reaggregation (Figures 4C, 4D, and
4F). This transition from a hierarchical structure to a distributed
structure can be interpreted in light of the fact that distributed
systems are generally more scalable and resilient than other ar-
chitectures. Indeed, it might be argued that Hydra’s distributed
nervous system facilitates this extreme regeneration in the first
place, allowing immature ensembles to form and resume their
function less discriminately than more highly patterned sys-
tems. Our analysis suggests that the C(k) containment hierar-
chy mediates interconnections between these immature en-
sembles via hub nodes. The loss of this rigid hierarchical
structure is inherent in the eventual fusion of these ensembles
as regeneration progresses.

Self-assembly during reaggregation is mediated by
hierarchical modularity

To understand hierarchical modularity further, we partitioned the
network into modules and submodules and explored the dy-
namics of their activity. With time, our detected modules showed
increases in intracommunity strength and the ratio of intra- to
intercommunity strength, driven by increased intracommunity
strength (Figures 5A and 5B), and nodes of detected modules
at 48 h were generally less distant (Figure 5C). By partitioning
the network into submodules, we observed more stability of
modularity and a larger increase in the number of communities
at 24 h, indicating more smaller, densely connected ensembles
(Figures 5G, 5H, and S5).

Hierarchical modularity plays a role in the evolvability of com-
plex systems by generating stable intermediates during evolu-
tionary processes.® Several studies indicate that modularity
arises from temporally and modularly varying sub-goals—where
each new sub-goal shares problems with the previous sub-
goal’®*”"—and that the emergence of hierarchical modularity
during network development is a result of placing selective pres-
sure to minimize connection costs.*®*° Hydra’s need to synchro-
nize the nervous system likely takes utmost priority in regenera-
tion and arguably provides motivation to break the process into
sub-goals and minimize connection costs. Amid significant cell
death due to the traumatic process of dissociation,'®'* Hydra
must establish body axes in the appropriate orientation via
morphallaxis,®® re-establish neuromuscular transmission to
allow active osmoregulation,”’ and synchronize the nervous sys-
tem so animal-wide behavior can be coordinated. Given that
each of these related sub-goals can be initiated at independent
sites in the aggregate and share a need for intact circuitry, it can
be argued that the modularity we see reflects effort to address
these sub-goals with a common need for local optimization of
circuitry as opposed to extensive neurite outgrowth. The syn-
chronization of wounded neurons, particularly at longer
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distances, clearly poses a risk to aggregate integrity if these cells
are eventually lost. From this, our observed modularity may arise
from a process of sorting and viability assessment locally before
synchronization across the animal, as opposed to the rapid co-
ordination observed in grafting experiments, where halves of
grafted Hydra synchronize within hours.> The necessity of mini-
mizing connection costs during reaggregation stands in contrast
to the redundancy of the circuitry of the intact animal, whose
behavior is constant over a wide range of sizes of animal,>®
with variable numbers of neurons depending on the nutritional
status of the animal.>* Thus, the loss of an intermediate state
of hierarchical modularity in Hydra fits well into the strategies
used by the animal to negotiate the new goals that arise with
changing complexity.

Self-organized criticality with scale-free properties in
Hydra’s reaggregating networks
We noticed neuronal avalanches with statistics reflective of a
phase transition through a critical regime of activity (Figures
6A-6D). While the coactivity of neurons comprising smaller
waves at 24 h traveled through communities more readily,
when one community was active at 48 h, it generally recruited
more nodes of additional communities, as another distinction
of the increased modularity values observed at 24 and 48 h (Fig-
ures 6E-6G). As modules gradually became more defined, they
eventually became coactive with each other as synchronization
spread across the entire animal (Figure 6). This fusion of modules
late in the process likely contributed to the decline in modularity
we observe at 72 h, an extension of the sub-circuit coactivity
across modules observed at 48 h (Figure 6H). While a majority
of circuit activity was synchronous, defined sub-circuits occa-
sionally fired in isolation (analogous to CB and CB’ sub-circuitry
in the intact animal), creating detectable partitions in the network
that diminished modularity at this time point.**""12
Hierarchical modular networks sustain critical activity across a
wider range of parameter spaces (e.g., synapse strengths) than
sparse networks without hierarchical modularity.>>° Consistent
with our observations (Figure 6), theory suggests that modules
may act as subsystems, providing weak input to others to prop-
agate neuronal avalanches in a delicate balance compromised
by too much or too little modularity.*>~>” The present study pro-
vides in vivo support of this theory (Figure 7), given that the loss
of hierarchical modularity is coincident with the shift in avalanche
dynamics into what might be considered an increasingly super-
critical regime of activity. In addition, this supercritical burstiness
at later time points aligns well with observations of deflections of
the avalanche size probability distribution due to stimulus-eli-
cited activity in zebrafish, where self-generated behavior results
in faster, larger, and longer avalanches due to the recruitment of
intact circuitry.*®

Functional considerations

Our observations of diminishing hierarchy during circuit consolida-
tion integrates well with Simon’s notions of “near decompos-
ability” in symbolic information-processing systems. The C(k)
containment hierarchy suggests the existence of hub nodes medi-
ating interconnections between proto-modules and immature en-
sembles formed on their way to the intermediate state of maximum
modularity (Figure 4). The position of these nodes at the top of the
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Figure 7. Proposed model for nervous sys-
tem reassembly

As Hydra cellular aggregates regenerate, patterns
of neural activity indicate an early peak in the hi-
erarchical structure of the network as proto-cir-
cuits begin to form. Network activity then pro-
gresses through an intermediate state of high
modularity, beginning with a containment hierar-
chy at 24 h as proto-circuits begin to synchronize
into the larger modules observed at 48 h. Modu-
larity at 24 and 48 h is characterized by loss of
hierarchical depth during the transition to a

distributed system. At 48 h, intermodule interaction of submodules appears, leading to synchronization across the entire animal at 72 h in a distributed network

structure.

hierarchy places them in a unique position for “pattern comple-
tion” between the proto-modules or the Hydra equivalent. The
data support a model where pattern completion may arise at this
near decomposability of circuits into their subordinate functions
and information representations and also suggest a flexibility for
this feature, depending on circuit stability, given that, as Hydra’s
circuits mature, this feature is lost. The flexibility of processing in
the mammalian cortex potentially leaves this feature open,
creating an inherent hierarchy at the overlap of this functional
decomposition.

This initial work characterizing the de novo reassembly of a
nervous system could lead to additional experimental and theo-
retic efforts toward understanding biological self-organization
and the functional development of neural circuitry, particularly
with respect to neuronal ensembles as natural functional mod-
ules present from cnidarians to mammals. Future studies using
improved transgenic animals, tracking protocols, and optoge-
netic methods may allow further interrogation of Hydra's devel-
oping neural circuitry and its emergent function. Our results
demonstrate a change in the influence of individual neurons as
circuits stabilize with development, a finding that may have impli-
cations beyond development for more complex nervous
systems.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental models: organisms/strains

Hydra vulgaris strain AEP Dr. Robert Steele, UC Irvine N/A

Recombinant DNA

pHyVect Addgene RRID: Addgene_34789
GCaMP6s Synthetic Gene GeneArt Custom

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jonathan
Lovas (jl4548@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

The data and codes generated or analyzed during this study are available through Dryad. Ensemble synchronization in the reassem-
bly of Hydra’s nervous system, Dryad, Dataset, https://doi.org/10.5061/dryad.k6djh9w6k. All data are archived at the NeuroTechnol-
ogy Center at Columbia University.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Hydra
Hydravulgaris (Strain AEP) expressing GCaMP6s in the interstitial stem cell lineage under control of an actin promoter were culturedinthe
dark at 18°C in standard media as previously described.***¢° Freshly hatched Artemia nauplii were fed to the animals every other day.

METHOD DETAILS

Hydra dissociation/reaggregation

For experiments, the dissociation and reaggregation of Hydra were performed as previously described® with minor modifications. In
brief, after 48hrs starvation, 40-50 medium-sized Hydra were collected in a 3.5cm dish, washed thoroughly with room-temperature
Hydra medium (RTHM) five times, washed quickly with ice-cold deionized water five times, and resuspended in ice-cold Gierer disso-
ciation media (DM) - prepared from frozen concentrate - in a 1.5mL tube with one DM exchange. Hydra were incubated at 4°C for 2
hours, with media exchanges every ¥z hour after vigorous resuspension of the animals with an unpolished Pasteur pipette. After 2
hours, DM was exchanged again and Hydra were triturated until the media became cloudy, indicating the start of tissue dissociation.
After this, DM was exchanged one last time, and Hydra were mechanically dissociated with a new unpolished Pasteur pipette firmly at
a constant rate avoiding bubbles ~75-125 times until approximately one-half to one third of the volume of intact tissue remained.
Tissue fragments were allowed to sediment 90 s and the top %, of the cell suspension was gently collected.

Cells were counted on a hemocytometer and seeded in 0.5mL microcentrifuge tubes in numbers according to the requirements of
the experiment, in this case 9k cells. We note that while most cells were single in suspension, a small percentage of cells (< 10%)
remained in tiny aggregates of ~2-10 cells. Due to their small size, filtration through standard filters was unable to break these ag-
gregates, assuming the cells were not aggregating after complete dissociation in the time before cell counting. Cells were allowed
to sediment on ice for 5 minutes, then centrifuged at 4°C for 4 minutes at 300 g in an Eppendorf 5430 R centrifuge. From here, pellets
in 0.5mL microcentrifuge tubes were placed at 18°C and incubated for 2 hours, 3cm above a bed of melting ice to slow the temper-
ature transition. Pellets were transferred to 800uL dissociation media after two hours. At 8 hours after dissociation, media was diluted
50% with 800uL Hydra media at 18°C, and again with a 50% HM replacement at 22 hours, 46 hours, and 70 hours. Hydra in all ex-
periments survived the dissociation procedure and developed into normal Hydra.

Imaging
Hydra were imaged as previously described,” using 100 um spacers between coverslips for the imaging sessions. Analyzed images
were acquired on an Olympus IX70 inverted fluorescence microscope equipped with a GFP filter set, 10x Plan Apo air objective, and a
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Hamamatsu C9913-EMCCD camera using Micromanager.®' This setup was illuminated by a mercury arc lamp. Images were ac-
quired at 100% illumination intensity, at 260ms exposure, 1x binning, for 7200 frames (~42.1 minutes with CCD charge transfer
time). Intact animals were imaged on a Leica M165 FC fluorescence dissection microscope as previously described.*

QUANTIFICATION AND STATISTICAL ANALYSIS

Image pre-processing

Images were pre-processed in Fidi. For tracking, either 2 (Intact Animals; 48, 72 hour aggregates) or 10 (Dissociated Cells; 8, 24 hour
aggregates) frames were summed, background was subtracted with a 10 pixel rolling ball radius, and a 3-pixel diameter median filter
was applied. After tracking, all 7200 frames of each experiment were similarly background subtracted and median filtered for extrac-
tion of continuous track fluorescence, interpolating (x,y) positions across 10 or 2 frames, depending on the time point.

Cell tracking and neuron identification

Cells were tracked using the open-source cell tracking software IC using parameters tuned to the unique requirements of ex-
periments across time points (Data S1A). Spatial coordinates of each track were imported into MATLAB and used to extract fluores-
cence intensity from pre-processed images with the maximum values along each axis of a 7x7 pixel square around the detected
track. The deformable hydrostatic skeleton of Hydra makes tracking cells over large movements difficult. While this problem is reme-
died to some extent in reaggregating Hydra, especially at early time points when there is not much movement, inaccuracies in cell
tracking still exist (Figure S1; Data S1G). Even under static conditions of fluorescence, cell tracking is an unresolved problem and
manual curation is necessary to approach flawless results.®® To ensure accuracy in tracking across experiments, misaligned or
broken tracks were manually corrected, and inaccuracies in neuron identification (e.g., autofluorescent spots passing under tissue)
were excluded (Video S1; Data S1G).

The final analysis was conducted on frames 571-5700 of the original 7200 frames acquired at 2.85hz for several reasons. The drop-
ped time at the start of the experiments allowed the animals to equilibrate to the intense illumination. In addition, this period of time
offset some of the effects of photobleaching, as autofluorescent spots on the aggregate bleached rapidly with intense illumination,
and GCaMP began to dim toward the end of the imaging session (Figure S1A). Finally, the tracking software ICY did not handle the
ends of some tracks well, and cutting time removed some bouts of track activity that weren’t picked up at either end of the
experiment.

Y,1O’62

Manual annotation of animal-wide activity

The two main forms of neural activity in Hydra — contraction bursts and rhythmic potentials — were manually annotated in 72 hour
aggregates and intact animals for analysis. We began analysis on the first contraction burst that followed a period of quiescence
and ended analysis on the last complete contraction burst followed by a period of quiescence within the 30 minute period of analysis.
Given that a subset of contraction burst neurons sometimes fires before the remaining CB neurons are recruited to the burst, we
began our annotation of pulses of contraction burst activity with the first firing of the dominant, early subset of neurons in the burst.
We note that the analysis of rhythmic potentials was conducted on the Rhythmic Potential 1 circuitry, as the activity of Rhythmic Po-
tential 2 was very rare, if present at all, in the 30 minute imaging sessions.”

Spike extraction

To account for the effects of mild photobleaching on fluorescence intensity traces, aggregates were segmented in MATLAB and
changes in the overall fluorescence intensity across the entire segmented aggregate were subtracted from fluorescence intensity
traces using an X-frame sliding window (Figure S2), after smoothing raw fluorescence traces with a 2"-degree polynomial Sa-
vitzky-Golay filter. From here, MATLAB’s ‘findpeaks’ algorithm was used to detect both the maximum of the filtered fluorescence
intensity as well as the maximum and minima of the local first derivative of fluorescence intensity of the peaks, using a threshold
of standard deviation and wider sliding averages exclude peaks in the signal generated by noise or broad sub-spike-threshold cal-
cium fluctuations. ‘Spikes’ were defined around the maximum and minimum of the first derivative of fluorescence intensity to account
for differences in spiking kinetics of different classes of neurons (Figures S1 and S2; Data S1H). From here, two additional thresholds
were applied to compensate for the effects of photobleaching on the intensity of tracks throughout the experiment, and to exclude
noisy autofluorescent spots from analysis. The final analysis was conducted on tracks that were active at least 1/3 of the 30 minute
experiment, firing at a frequency of at least 1/180/p(active)hz (10 spikes).

Data analysis

Spike rasters were used to generate adjacency matrices for analysis. To account for the differences in the duration of spiking events
of individual neurons at the imaging framerate, correlations between neurons were based on the normalized coactivity (a final value
between zero and one, if they never or always fired together, respectively). Studies of functional connectivity did not take the distance
between neurons into account. Studies of neuron distribution within communities and waves of neuronal activity that permeate the
system took into account the fact that Hydra’s neuron’s limited number of neurites don’t project long distances in most cases (Fig-
ure 1; Data S1G).*°? To provide a rough proxy for structural connectivity in analysis of propagation of activity through the network, we
used conservative estimates: the average length of the longest neurite per neuron of 48 hour aggregates (62 um; Figures S1 and S5),
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the average length of neurites multiplied by 2 to allow connections between distal neurites (115 um; Figures 6 and S1), as well as a
more liberal estimate: the average length of the longest neurite per neuron, multiplied by 3, to account for any potential incomplete
labeling in neurons of aggregates or dim distal extremities of neurites (185 um; Figures S1 and S6).

To determine ‘significant functional connections’ for edges in metrics calling for unweighted, undirected networks, for each pair of
nodes in the network we circularly shifted the spike trains at uniformly distributed random intervals 1000 times to reveal a probability
distribution for the observed coactivity between the neurons. To avoid error propagation within a fairly liberal null model thresholded
at a standard a standard o. = 0.05, we used the most stringent threshold that would allow analysis of our chosen network properties to
limit the chance addition of spuriously significant edges to the network (e.g., significant network o = 0.005 versus o = 0.05, Figures 3
and S3A; Data S1C and S1l). We note that significant coactivity is presumably mediated by chains of physical connections/synapses
if this distance was longer than twice our observed neurite lengths.

As controls to understand effects of network size and connection density, we compared our network metrics to binary networks
randomized by circularly shifting adjacency matrices along both axes 20 times to generate p = 0.05 density-preserving null distribu-
tions for our metrics (Figures 4A, 4B, 4D, and 4E, dashed lines; Data S1D). As a control for the inevitable removal of nodes from the
developing network, we also analyzed our models with random subsets of 20% of the nodes removed, approximately the number lost
at each successive time point (18.21+/—5.8%; Figure S3B, dashed lines; Data S1l).

To uncover community structure in our network models, we use the Louvain method of modularity maximization. This greedy
method is fast and precise, and performs better than other methods when presented with network modules comprised of different
numbers of nodes.®* In addition to other graph theoretic analysis in the present work, Louvain consensus community clustering
makes use of the Brain Connectivity Toolbox.'® In brief, the method heuristically optimizes modularity, a measure of the density
of edges inside communities to edges outside communities, by first optimizing modularity locally on all nodes, then grouping these
small communities into a node and reiterating.®° The Louvain method is particularly appropriate for studies of hierarchical modularity,
as the iterative method inherently reflects any containment hierarchy in the network structure. To reconcile variability in detected
communities due to the random initiation of nodes at the start of each iteration of the algorithm, we use the final consensus commu-
nities after 1000 runs of the algorithm, clustering the final consensus matrix of agreement values reflecting similar partitioning be-
tween nodes with T = 0 to ensure as many nodes as possible were clustered (Figure S4A; Data S1J).*’

With consensus communities in place, to ensure optimal partitioning with the method we then varied the resolution parameter v, a
modification to the modularity objective function which increasingly penalizes out-of-community connections to tune the density of
detected communities.**345%% |n essence, higher gamma values favor detection of smaller, more densely intraconnected commu-
nities. Given the stochastic initiation of the algorithm, to ensure we were looking at a stable partition of the weighted network we used
the ‘plateau method’, sweeping the resolution parameter y of the modularity objective function Q from 0.6 to 3 (e.g., Figure S4B and
Data S1J), using communities from the plateau of identical partitions across at least 3 increasing y increments of 0.01 that gave the
largest value of Q.%*°” Sub-partitioning of the modules of this initial partition was performed with y = 1. Analysis of trends in the values
vy sweep in Figures S4B and S4C was performed with plateaus of length > = 0.02 v increments to provide more data points for
analysis.

Waves of activity, or ‘neuronal avalanches,’” depending on the field, were determined using the metrics of structural connectivity
defined above (Data S1G). Power-law plots where created using the MATLAB ‘plplot’ function.”’ Waves of activity were superim-
posed on Louvain communities using custom MATLAB code (supplemental material).

Statistics

We tested the significance of synchronization observed in our experiments against the null hypothesis that the synchronous firing of
neurons is governed by a random process.®® Randomized networks were used to establish confidence intervals to determine signif-
icant connectivity in analyses. Due to the variable length of spiking of Hydra neurons, random networks were created by randomly
circularly shifting individual neuron tracks around the length of the experiment at uniformly distributed random locations, repeated
1000 times for each experiment.

For tests of the significance of network structure, the weights or binary values of the original adjacency matrix were randomized 20
times to generate p = 0.05 null distributions (Data S1D). The significance of data plotted in power law form was assessed using the
non-parametric Wilcoxon Rank-Sum test of significance. Data presented in bar graphs was assessed using the non-parametric
Mann-Whitney-Wilcoxon U-test. Bar graphs were generated using custom MATLAB code, and violin plots were generated using
a modification of the ‘violinplot’ function in MATLAB (Bastian Bechtold, 2016).
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Figure S1. Neurites elongate during the first 48 hours of Hydra reaggregation and neuron

tracking and GCaMP6s signal processing, Related to Figures 1, 6, S5, S6, STAR Methods,

and Data S1G



A) Although previously characterized variability between neuron subtypes precludes statistically
significant findings, trends exist toward an increase in the length of the longest visible neurite to
48 hours, the overall length of visible neurites to 48 hours, and the total visible arbor length per
neuron and neurite to 48 hours. A trend toward an increase in the number of visible neurites and
the number of visible branches per neuron and neurite exists to 48 hours. B) Significantly more
tracks were detected at 8 hours and 72 hours, in part due to individual motility and sporadic activity
of neurons at 8 hours and collective movement of the aggregate at 72 hours. After manually linking
shorter tracks belonging to the same neuron, we observe fewer tracks in all cases, with the same
trend of more tracks at 8 hours and 72 hours. After thresholding our tracks of interest to fluorescent
points that spiked at a rate of 1/60hz for at least 10 minutes during the experiment, we observe a
declining trend in the number of neurons per aggregate, consistent with the previously
characterized cell loss that occurs during the process. Detected track length is significantly shorter
at 8 and 72 hours for the same reason. Track length increases in all cases with the same trend.
Active length increases after thresholding to remove autofluorescence. C) Traces of parameters
used to threshold spikes from neurons, in this case a putative CB neuron at 48 hours (top, STAR
Methods). Zooming in on the segment from 5 minutes to 10 minutes, the spike raster plot (bottom,
detected spikes in black) corresponds well to the peaks of raw GCaMP6s fluorescence (light blue)

obtained in experiments.
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Figure S2. Detected spike statistics, Related to STAR Methods and Data S1H

Freshly dissociated cells were allowed to sediment in a 96-well glass bottom plate for thirty
minutes, and were then imaged and analyzed similarly to aggregates. A) From left to right: We
note significant increases in the firing rate of neurons to 48 hours, with a decline at 72 hours to
frequencies similar to freshly dissociated cells. Spikes in neurons were generally longer at 72 hours
and in freshly dissociated cells, consistent with residual calcium broadening spike peaks during
animal-wide contraction bursts. Similar trends were observed for mean values by experiment, and
the standard deviations of spike length by neuron and experiment, as would be expected with the
stepwise increase in residual calcium during contraction bursts. B) From left to right: Conversely

to neuron firing rate, spike inter-stimulus interval (ISI) was generally larger at 72 hours and in



freshly dissociated cells. The same trend holds true looking at experiment means. The ISI standard
deviation was slightly higher in neurons of 72 hour aggregates and freshly dissociated neurons,
and the trend was preserved for experiment means of the ISI standard deviations. The ISI variance
to mean ratio was slightly lower at 72 hours and in dissociated cells. C) Descending cumulative
distributions of all ISI values illustrate the reemergence of rhythmic patterns of activity (left).
Vertical lines for the CB pulse ISI (green, left), CB overall ISI (green right), and RP ISI represent
values obtained from analysis of animal-wide fluorescence (Figure 2). Note the from 8 hours to 48
hours as increasingly larger percentages of ISIs fall below the ‘CB pulse’ ISI vertical line,
indicating the reestablishment of CB dynamics in absence of animal-wide synchronization. ISI
variance-to-mean ratio by neuron indicates increasingly larger values to 72 hours until just after
our values for whole animal CB ISI VMR (green vertical line), again consistent with the

reestablishment of busting dynamics.
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Figure S3. Validation of network thresholding, network analysis with neuron loss, and
scaling exponents for degree distribution power law fits, Related to Figures 3, 4, S4, and Data
S11

A) Adjacency matrices of networks of a representative experiment binarized at increasingly
stringent thresholding alpha values, as determined by circularly shifting firing patterns between
pairs of neurons at uniformly distributed random intervals 1000 times. Between pairs of neurons
(along x and y axes) significant connections are depicted in yellow. Note the diminishing effect of
increasing stringency at later time points. Binarized networks were ultimately analyzed at the
a=0.005 time point to avoid error propagation within the fairly liberal standard threshold of
0=0.05. B) To validate our network analysis given the previously characterized gradual loss of
neurons from the regenerating animal, we removed 20% of nodes and their respective edges from
the a=0.005 significant networks at random 20 times and conducted the same analysis on these
randomly attacked networks. No significant differences exist in the degree distributions,
comparing experimental values to the randomly truncated values along the diagonal of the
significance matrix (top left). The clustering coefficient was generally lower in our randomly
truncated networks at 8 hours and 24 hours, as would be expected in sparsely connected networks
in which the clustering coefficient is more likely based on a single triangles (top right). A similar
finding was observed for node betweenness (bottom left). Conversely, as edges are removed at
later time points from denser graphs, these shortest paths must be redistributed, leading to an
increase in betweenness centrality of the edges involved in redistribution. Note that in this case the
probability of a node routing shortest-edge traffic remains unchanged (bottom right). C) The slope
of the fit to give our scaling coefficient to characterize scale-free networks declines to 48 hours. If

we consider that this metric saturates with the size of the circuits of our network, as is seen in the



shoulders of the distributions at 48 and 72 hours, fitting a distribution truncated to 1/3 the size of

the network gives more accurate scaling coefficients across the first decade of the degree values.
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Figure S4. Consensus community clustering at maximum modularity and varied community

detection gamma resolution, Related to Figures 5, 6, and Data S1J



Iterating the randomly-initialized Louvain community detection algorithm on a network 1000
times yields an agreement matrix with the number of times pairs of neurons were assigned the
same community. We note gradual improvements in agreement, indicating increased stability of
clustering until 48 hours — nodes are more likely to be grouped into the same community even with
random initialization (left). Distributions of imperfect agreement, excluding values equal to zero
or 1 (right). B) Modularity (top left), modularity of networks binarized at 0=0.005 (bottom left),
number of detected communities (top middle) and the proportion of nodes clustered into
communities (bottom middle) as a function of varying the Louvain resolution parameter gamma
from 0.6 to 3 in increments of 0.01. Given that the increases we observe in intra-/inter-community
strength are largely driven by increasing intracommunity strength over time, the drastic increase
in modularity and stability over our range of gamma values in networks binarized at the a=0.005
significance level is not surprising. We also observe an increase in the number of stable plateaus
of at least 2 identical network partitions with increasing gamma values from 8 hours to 24 hours
(top right) and a significant increase in the length of these stable plateaus from 24 to 48 hours
(bottom right, extreme outliers >3xIQR not depicted). C) Slope and R? values of a first degree

polynomial fit of the values in (B).
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Figure SS5. Local interactions mediate the increases in modularity observed during
reaggregation, Related to Figures 3, 5, and Data S1K

A) Representative spatial distribution of potential connections between neurons, using the average
length of the longest neurite per neuron at 48 hours (61.83um). Neurons are color coded by
community based on the initial partition (top row) and sub-partition (bottom row). The outer
boundary of the aggregate is depicted as the shortest path around the most peripheral neuron
centers of the aggregate. B) Neurons are increasingly likely to overlap with others over time, and
no significant differences in density are observed. Normalized to density, then either to the number
of intra- or intercommunity nodes (top row), or network size (bottom row), we observe increases
in the proportion of intracommunity overlap with time in both the initial and sub-partitions, as well
as a decrease in intercommunity overlap at 48 hours for the initial partition, while 72 hour
aggregates had the largest degree of intercommunity overlap for the sub-partition. C) Examining
the ratios of intra- to intercommunity overlap, we first note small percentage of nodes with no
intercommunity overlap which were excluded from analysis to avoid infinite values in the ratio,
then gradual increases in this ratio to 48 hours in both the initial and sub-partitions. Importantly,
as we move from the sub-partition to the initial partition in a ‘ratio-of-ratios’ we observe the largest
increase at 24 hours, a reflection of the local optimization of protocircuits before their fusion into
the larger, more spatially compact modules of the initial partition at 48 hours. Extreme outliers

>3xIQR not depicted.
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Figure S6. Avalanches recruit module sub-circuits during synchronization with a more
liberal wave determination distance of 185pum, Related to Figure 6 and Data S1L

A) During the course of reaggregation, distributions of the sizes of neuronal avalanches (left) and
critical exponents (top right) indicate a phase transition in activity of the regenerating nervous
system as the system becomes increasingly supercritical. Note the clear shift in sizes along the x-
axis is due to normalization to the number of nodes in the network, and that waves of activity were
generated using a 185um radius of coactivity (3 times the average neurite length of the longest

neurite at 48 hours, Figure S1). B) Distributions of avalanche duration are not as distinct. C) Dots



plot of avalanche duration as a function of size. Note the distinct cluster at 48 hours. D) Heat maps
providing more resolution of densely clustered points near the origin of the duration(size) plots.
E) Superimposition of neuronal avalanches on detected Louvain communities at maximum
modularity. From left to right: Coactivity of neurons within the avalanche wave radius of 115pum
is increasingly likely to be in the same community to 48 hours. Coactivity between communities
declines to 48 hours. Fewer nodes from a non-dominant community are likely to be recruited to a
wave to 48 hours. Waves are increasingly less likely to spread between communities to 48 hours.
A trend toward more communities per wave normalized to the total number of communities with
time is present. A trend toward an increasing number of waves traveling through all communities

is present.
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