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SUMMARY
Although much is known about how the structure of the nervous system develops, it is still unclear how its
functional modularity arises. A dream experiment would be to observe the entire development of a nervous
system, correlating the emergence of functional units with their associated behaviors. This is possible in the
cnidarian Hydra vulgaris, which, after its complete dissociation into individual cells, can reassemble itself
back together into a normal animal. We used calcium imaging to monitor the complete neuronal activity of
dissociated Hydra as they reaggregated over several days. Initially uncoordinated neuronal activity became
synchronized into coactive neuronal ensembles. These local modules then synchronized with others, build-
ing larger functional ensembles that eventually extended throughout the entire reaggregate, generating
neuronal rhythms similar to those of intact animals. Global synchronization was not due to neurite outgrowth
but to strengthening of functional connections between ensembles. We conclude that Hydra’s nervous sys-
tem achieves its functional reassembly through the hierarchical modularity of neuronal ensembles.
INTRODUCTION

Modularity plays an essential role in evolution, as the compart-

mentalization of components of a system allows their indepen-

dent optimization, minimizing potentially deleterious system-

wide effects.1 Modularity plays a key role in the nervous system

as well, allowing the compartmentalization of specific structural

and functional units.2 In turn, modularity may be decomposed

further, from modules to submodules, establishing a scaling

hierarchy hypothesized to confer fast adaptation to changing

environmental conditions through stable intermediates, which

drastically curtails the time required for the evolution of complex

forms.3 Thus, observing the development of the hierarchical

modularity of the nervous system and correlating it with the

emergence of specific behaviors can help reveal the functional

design logic of nervous systems.

To explore principles that guide the functional development of

the nervous system, it would be ideal to study the process in its

entirety. As an alternative to the complexity of commonly used

model organisms, one can use Hydra vulgaris, a small trans-

parent Cnidarian that is an extant representative of one of the

earliest and arguably simplest nervous systems in evolution.4,5

Hydra’s nervous system has an apparently simple structure

distributed through the animal’s ectoderm and endoderm,

without any cephalization or ganglia. Furthermore, Hydra pos-

sesses unusual regenerative abilities and can reassemble itself

after complete dissociation of animals into individual cells, a pro-

cess termed ‘‘reaggregation.’’6 Importantly, this process is

based on the transformation of existing body tissues—morphal-

laxis—removing the confound of continuous cell division in
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standard neurodevelopment or epimorphosis-based regenera-

tion.7 Together with Hydra’s optical transparency, this remark-

able regenerative ability provides a unique opportunity to

observe the complete de novo functional development of a ner-

vous system. Our goal was to document the activity of neurons

as they assemble into circuits throughout the process, providing

insight into the emergence of modularity and its role in shaping

network topology and dynamics.

Here, we imaged the activity of neurons in reaggregating Hy-

dra preparations as normal neuronal rhythms recover during

the first 72 h post-dissociation. We report that Hydra’s nervous

system synchronizes during its reassembly through a two-step

process in which the initially uncoordinated activity of small

groups of neurons clusters into coactive ensembles, concomi-

tant with pronounced local increases in connectivity and neurite

outgrowth, followed by the synchronization of these local en-

sembles across the entire body of the animal and re-establish-

ment of behavioral rhythms at 72 h.

RESULTS

Circuit synchronization re-established 72 h after
dissociation
To study the functional development of Hydra’s nerve nets as

they regenerate, wemechanically dissociated tissue into individ-

ual cells by triturating GCaMP6s neuronal transgenic animals

with a glass Pasteur pipette after incubation in relatively high-os-

molarity media (Figure 1), similarly to established protocols

(STAR Methods).6 Regenerating aggregates were imaged for

30-min periods on an epifluorescence microscope at 8, 24, 48,
blished by Elsevier Inc.
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Figure 1. Hydra dissociation and reaggre-

gation

(A) Experiment workflow. Hydra were mechani-

cally dissociated into individual cells after a 2-h

incubation in higher osmolarity dissociation me-

dia. At various intervals throughout the process,

regenerating cellular aggregates were mounted

and imaged to monitor changes in the functional

architecture of developing neural circuits. After

enough time, aggregates re-established body

axes, grew tentacles, and were indistinguishable

from undisturbed animals.

(B) Representative images of neuronal GCaMP

fluorescence in aggregates at experimental time

points. Scale bar, 200 mm.

(C) Representative images of neuronal GFP in re-

aggregates diluted 1:25 with wild-type animals to

isolate neurite outgrowth for analysis at different

time points. Scale bar, 50 mm.

See also Figure S1 and Data S1G.
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and 72 h post-dissociation in mounted coverslip preparations,4,8

while intact animals were imaged on a dissectionmicroscope, as

previously described.4 Animals in all experiments eventually re-

generated to yield normal hydranths.

We first investigated how long after dissociation it takes for

normal contractile rhythms to reappear. Visual inspection of

the movies showed that, after 72 h, aggregates already dis-

played the two major forms of synchronized neuronal activity

found in mature animals: rhythmic potentials (RPs) and contrac-

tion bursts (CBs) (Figure 2A; Video S1; n = 5/6 experiments; p = 1;

Fisher’s exact test). To analyze circuit activity, we measured the

fluorescence intensity changes of all neurons and manually an-

notated RPs and CBs.4,9,10 We observed a significantly higher

frequency of CBs in 72-h aggregates versus intact animals (Fig-

ure 2B; Data S1B; n = 5 experiments), complemented by a

decrease in the number of pulses per CB (Figure 2B; Data

S1B). At the same time, there were no significant differences in

total percentage of time spent in burst (Figure 2B; Data S1B) or

in CBs pulse frequency (Figure 2B; Data S1B). Given the

increased CB frequency at 72 h and the independence of

opposing RP and CB circuit activity, we observed decreased

RP circuit activity at 72 h (Figure 2B; Data S1B). We concluded

that aggregates recuperated animal-wide neuronal activity pat-

terns by 72 h and concentrated the rest of the study on earlier

changes in circuit activity.

Hydra neurites elongate during the first 48 h of
reaggregation
To understand the structural underpinnings of reaggregation, we

next explored neurite outgrowth. To visualize individual neural

processes, wemixed neuronal GFP animals into a reaggregation

of wild-type (AEP) Hydra. Albeit with large variability likely due to

intrinsic differences in neuronal subtypes,4,11 by 48 h, Hydra’s

neural processes were similar to those observed at 72 h in the

length of neurites (Figures 1 and S1A; Data S1G) and number

of branches per neurite (Data S1G).We concluded that amajority

of neurite outgrowth occurred during the first 48 h of reaggrega-

tion, indicating that neuronal outgrowth alone cannot explain the
changes in functional connectivity leading to the re-establish-

ment of animal-wide activity from 48 to 72 h.

Changes in neuronal activity during reaggregation
To better quantify synchronization during reaggregation, we

imaged calcium activity of individual neurons in 30-min time lap-

ses collected at 0, 8, 24, 48, and 72 h. Images were prepro-

cessed, and the positions of GCaMP6s-labeled neurons visible

on the aggregate were tracked with ICY (STAR Methods).9,10 Af-

ter thresholding andmanual curation of the dataset to fix errors in

tracking,4,12 we found a gradual decline in the number of active

neurons per aggregate (Figure S1B; Data S1G; STAR Methods),

consistent with the expected loss of unintegrated cells.13,14

Spike rasters were then generated for each experiment (STAR

Methods; Figure S1C; Video S2). We observed a gradual in-

crease in neuron firing rate from 8 h to 48 h, with a drop at

72 h to levels similar to dissociated cells (Figure S2A; Data

S1H). Interspike intervals (ISIs) showed a reverse pattern (Fig-

ure S2B; Data S1H). We observed that the ISI variance-to-

mean ratio (VMR) of neurons across all time points underwent

a pivotal intersection around 100 s—approximately 60% of ISI

VMR values—with increasingly larger values with time until this

point and smaller values beyond it (Figures S2B and S2C; Data

S1H). At 72 h, the narrower distribution of values captured the

re-establishment of Hydra’s contraction burst circuitry, as these

neurons have a larger ISI VMR in 72-h aggregates and the intact

animal (Figures 2 and S2C; Data S1B and S1H). From single-cell

analysis of neuronal firing, we concluded firing frequency during

reaggregation displays biphasic dynamics, with initial increases

followed by decreases in activity, while burstiness displays a

reverse dynamics, ending with a normal pattern of contraction

bursts.

Increases in functional connectivity during
reaggregation
To detail the synchronization inHydra’s nerve net, we used graph

theory, treating neurons as nodes and significant functional con-

nections thresholded from coactivity between neurons as edges
Current Biology 31, 3784–3796, September 13, 2021 3785



Figure 2. Animal-wide synchronization

restored 72 h after dissociation

(A) At 72 h, synchronized rhythmic potentials (red)

and contraction burst (green) activity are clearly

discernable in manually annotated whole-animal

calcium (GCaMP6s) fluorescence.

(B) 72-h aggregates show a significantly higher

frequency of contraction bursts (CBs) yet fewer

pulses per burst, leading to a similar percentage of

time spent in CB. No significant differences in

contraction pulse frequency were seen, while

rhythmic potential activity (RP) was less in the 72-h

aggregates compared to intact animals (n = 5 ex-

periments).

(C) No significant differences between 72-h and

intact animal CB inter-stimulus intervals (ISIs) were

observed, with a higher variance-to-mean ratio

(VMR) observed in intact animals. 72-h aggregates

had larger RP ISIs, with similar RP ISI VMRs. Note

the larger CB ISI VMRs compared to RP ISI VMRs,

indicative of circuit ‘‘burstiness’’ (n = 5 experi-

ments).

See also Figure S2 and Data S1B and S1H.
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(n = 6; STAR Methods; Figure S3A). Consistent with the peak of

neurite outgrowth at 48 h, we observed the most dramatic in-

crease in the number and strength of significant functional con-

nections between 24 and 48 h (Figure 3; Data S1C). The shorter

distance between significant functional connections observed at

48 h could underlie differences in aggregate behavior, when

compared to 72 h (Figure 3; Data S1C). These results support

two phases of functional self-assembly, with pronounced local

increases in connectivity and neurite outgrowth during the first

48 h, followed by the re-establishment of behavioral rhythms at

72 h.

Network restructuring during reaggregation
These observations suggested the synchronization of Hydra’s

nerve nets began locally. In one scenario, this synchronization

could arise rapidly across the entire aggregate, akin to the devel-

opment of a coarse topology along morphogenic gradients

before activity-dependent refinement.15,16 In our Hydra data,

however, this time course was not as steep as other models (Fig-

ure 3).17,18 In the absence of extensive structural patterning, we

wondered whether an alternate mechanism relating to the emer-

gence of hierarchical modularity might be in play, given that

modularity confers evolvability and robustness, allowing nature

to act independently on duplicates of a single module.1

To explore this, several standard graph theoretic metrics of

network structure and function were applied to binarized

network models, thresholded at the a = 0.005 significance

level, with controls for network size and connection density

(Figures 4A, 4B, 4D, and 4E, dashed lines; Data S1D) and the

removal of unintegrated neurons from the developing network

(STAR Methods; Figure S3B; Data S1I).19 We analyzed degree

distributions, clustering coefficients, and betweenness
3786 Current Biology 31, 3784–3796, September 13, 2021
centrality of the binarized networks, as

these metrics can be used to infer hierar-

chical modularity. We found an expected

increase in mean degree (k) with aggre-
gate age (Figure 4A; Data S1D). The heavy tail in the degree

distributions at earlier time points, before the saturating effect

of network size, was reminiscent of ‘‘scale-free’’ network struc-

tures in which the ratios of values in the log-log linear distribu-

tion are the same regardless of the scale of observation (Fig-

ure S3C; Data S1I). Truncating our distributions to nodes with

a degree less than one-third of the size of the network yielded

better fits at 48 and 72 h (Figure S3B; Data S1I).

Although Hydra’s developing networks in our experiments

were not large enough to confirm the presence of scale-free

network structures, we were intrigued by the heavy-tailed trend

in the data, because scale-free networks are moderately hierar-

chical and can reflect dynamics on the verge of a phase transi-

tion.20–22

Hydra’s nerve net becomes increasingly distributed
during reaggregation
We tested for the existence of hierarchical modularity by

analyzing additional network properties. We observed an in-

crease in the clustering coefficients of nodes—any two signifi-

cant functional connections to a neuron were increasingly likely

to also be significantly coactive with each other—both in terms

of the number of nodes with any clustering (Figures 4B and 4E;

Data S1D), as well as the strength of this coefficient (Figure 4B;

Data S1D). In addition, a key feature of hierarchical modularity

in networks is the presence of nodes with high ‘‘betweenness

centrality,’’ which form interconnections between densely intra-

connected modules to route the graph’s shortest paths.23

Indeed, measures to calculate the betweenness centrality of

large networks exploit hierarchical structure for efficiency.24

While no significant differences in node betweenness centrality

emerged between 8 and 24 h, at later stages, we detected a



Figure 3. Synchronization increases during

reaggregation

(A) Heatmaps of pairwise connection strengths (y

axis) between neurons as a function of distance (x

axis) for significantly connected neurons at the a =

0.005 threshold, determined by circularly

permuting binary neuron spiking rasters at random

initiations 1,000 times. Note the local increases in

connection strength before synchronization

across the animal at 72 h.

(B) We detect a significant increase in the number

of significant connections at the a = 0.005

threshold moving from 24 to 48 h. Within these

significant connections, connection strength

gradually increases until a plateau at 48 h. A sig-

nificant increase in the distance of these connec-

tions from 48 to 72 h highlights the local optimi-

zation of circuitry before synchronization across

the entire animal.

See also Figure S3 and Data S1C and S1I.
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gradual redistribution ofHydra’s network structure, both in terms

of the number of nodes with any betweenness centrality (Figures

4C and 4F; Data S1D), as well as the strength of this coefficient

(Figure 4D; Data S1D). Edge betweenness values showed a

similar trend (Figures 4D and 4F; Data S1D). Thus, the redistribu-

tion of Hydra’s network structure supported the hypothesis that

the emergence of synchronization can be explained by increases

in the strength of functional connections between ensembles.

Network hierarchical depth diminishes during
reaggregation
Wenext considered these nodemetrics as a function of node de-

gree (Figures 4E and 4F). Hierarchical modularity can be inferred

from a decrease in the clustering coefficient (C) of nodes with

increasing degree (k), as low-C and high-k nodes may link dispa-

rate, otherwise weakly connected modules of nodes.22 Indeed,

we found a decline in clustering coefficients of nodes as their de-

gree centrality increased from 8 to 48 h (Figure 4E; Data S1D).

The negative fit slopes along the log-log plot indicated a hierar-

chically modular network structure at 8 and 24 h, and the gradual

decrease of the slope magnitude with time indicated a loss of

hierarchical depth, consistent with our observations of the redis-

tribution of betweenness centrality values. While the trend

persisted to 48 and 72 h, this decline suggested the disparate

modules these nodes linked increasingly shared additional

edges with each other, a potential ‘‘module overlap’’ supported

by the dramatic increase in the number of nodes with values

above what would be expected in random graphs of the same

density, as visualized by the gray cloud of values reflecting p =

0.05 C(k) (STAR Methods; Figure 4E; Data S1D). Similarly,

when examining node betweenness centrality (B) as a function

of k, at 24 h, we noticed nodes with smaller B(k) values than

would be expected at random (Figure 4F; Data S1D). This sug-

gested an early increase in modularity from 8 to 24 h, as nodes

deep in densely intraconnected modules have lower between-

ness centrality values relative to their degree. This trend grows

increasingly prevalent at 48 and 72 h, accompanied by increases

in the number of nodes with larger B(k) values versus the same
isopycnic random networks (Figure 4F; Data S1D). At 48 h, these

relatively high B(k) nodes likely correspond to links between

modules, and the increase in the number of nodes with lower

B(k) values than expected suggests the presence of modules

linked by these high B(k) nodes, a feature that extends to data

at 72 h.

Taken together with the increases in the strength of functional

connections (Figure 3), these results suggested a mechanism of

synchronization where a small number of significantly connected

nodes routed a more significant portion of network traffic at

earlier time points at the top of a hierarchy, which grew increas-

ingly distributed as clustering increased and these smaller

groups of significantly connected nodes began to overlap in ac-

tivity. Our results suggested a role for modularity in this process,

so we then explored this with a more formal definition of the

concept.

Emergence of modularity accompanies loss of
hierarchical depth
The modularity of biological networks generally increases with

complexity in metazoans,25 and modules are often hierarchically

structured.26,27 Given the recent discovery of pattern completion

neurons and their implications for the hierarchical structure of

neural circuits in mammalian cortex,28 we explored whether

the hierarchical structure of Hydra’s nervous system was related

to modularity. To do so, we used the Louvain algorithm to parti-

tion weighted network models of multineuronal activity into en-

sembles, i.e., modules, or ‘‘communities’’ (STAR Methods; Fig-

ure S4).29–31 We observed both increases in community

strength and changes in community structure as reaggregation

progressed (Figure 5). The average coactivity of each node

with every other node in its community increased with time (Fig-

ure 5A; Data S1E). A similar although less extreme trend was

observed comparing the ratio of intra- to intercommunity

connection strengths (Figure 5B; Data S1E). Taken together,

these observations indicated that increases in intracommunity

strength drove this effect, given that the majority of values of

the intra- or intercommunity strength were greater than unity.
Current Biology 31, 3784–3796, September 13, 2021 3787
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Consistent with our observations of strong edge weights at low

distances at 48 h (Figure 3), intracommunity distances were

significantly smaller at this time point (Figure 5C; Data S1E).

Correspondingly, ratio of intra- to intermodule physical overlap

of nodes peaked at 48 h, determined using a radius of the

average neurite length at 48 h as potential physical connectivity

(Figure S5; Data S1K). This intermediate state of relatively high

functional and spatial modularity prompted us to explore how

it evolved during the process.

Modularity arises from synchronization of smaller
ensembles
We hypothesized that our observed modules might be built from

the interaction of small ensembles that form early during reag-

gregation. To dissect this potential containment hierarchy, we

used the Louvain algorithm again to partition our initial detected

modules into sub-communities (Figures 5G and 5H), inspired by

previously described methods.32 While the maximummodularity

of our initial partitions was similar at 24 and 48 h (Figure 5H; Data

S1E), the modularity of the entire subdivided network decreased

more at 48 h, compared to 24 h (Figure 5H; Data S1E). Corre-

spondingly, the modularity of partitions of initial modules was

highest at 24 h (Figure 5H; Data S1E), and more subdivisions

of the modules were made (Figure 5H; Data S1E). At every

time point, the distance between members of the sub-commu-

nities was smaller than distances between neurons of their

parent communities (Figures 5G and 5H; Data S1E). Further-

more, the increase in the ratio of intra- to intermodule spatial

overlap, moving from our initial to sub-partitions, was largest at

24 h (Figure S5; Data S1K). Taken together, this indicated the

emergence of modularity through the interaction of smaller en-

sembles of neurons and provided initial evidence to distinguish

the similar maximum modularity values of the initial partitions

at 24 and 48 h.

We obtained further insight into the hierarchical structure of

detected Louvain communities by examining community metrics

at different resolutions, using a sweep of the modularity resolu-

tion parameter gamma from 0.6 to 3 in increments of 0.01

(STARMethods; Data S1J).32–36We found an increase in the sta-

bility of partitions with increasing aggregate age (Figure S4B), as

indicated by the dramatic increase in the number of plateaus

from 8 to 24 h (Data S1J) and the significant increase in plateau
Figure 4. Hierarchy decreases during reaggregation

(A) Using binary networks thresholded at a = 0.005, we see a gradual increase in

distribution plot. Dotted lines represent the distribution of values obtained with 20

of plots) represent comparison of experiment values to this random distribution.

(B) Increases in the distribution of node clustering coefficient follow a similar trend,

be connected themselves.

(C and D) Node betweenness (C) and edge betweenness (D) reveal the gradual sh

number of edges in the network.

(E) An increasing number of nodes show any clustering with time (top left). Node

archical modularity as conceptualized by Ravasz and Barabasi, as depicted in a re

aboveC(k) values that would be expected compared to 20 network randomization

48 h (lower left). The decreasing slope of the fits at 8 and 24 h is indicative of hie

system synchronizes (right).

(F) In the case of both edges and nodes, significantly more elements are particip

opposed to the handful of nodes at 8 and 24 h handling most of the shortest path

node degree, with values for 20 network randomizations plotted in gray (middle),

nodes above the p = 0.05 gray probability cloud and a significant increase from 8

See also Figure S3 and Data S1D and S1I.
length from 24 to 48 h, consistent with the maximum modularity

observed at 24 and 48 h (Data S1J).37While aggregates at 24 and

48 h showed the highestmodularity at the peak near unity, values

at 24 h declined less rapidly as gamma increased (Figures S4B

and S4C; Data S1J). This accompanied a larger increase in the

number of communities at 24 h compared to later time points

(Data S1J), indicating the network was more efficiently parti-

tioned into smaller communities. This stability at 24 h represents

another form of containment hierarchy, as smaller communities

are necessarily derived from the larger communities at the start

of the sweep.

Phase transition through a critical regime of activity
A striking feature of the process of vertebrate neural development

is waves of activity that spread throughout locations of the ner-

vous system.38,39 In some cases, these ‘‘neuronal avalanches’’

follow a power-law distribution indicative of a scale-free critical

regime of activity.40,41 The presence of power-law scaling sup-

ports the hypothesis that the cortex operates at a state of self-

organized criticality, on the verge of a phase transition.40–42

Consistent with this, waves of activity were present in aggregates

at all time points when examining the propagation of coactivity

between neurons (STAR Methods; Figures 6 and S6; Video S3).

Features of these waves, such as duration or size, showed

heavy-tailed trends, more pronounced at earlier time points. At

8 h, Hydra’s dynamics appeared close to a critical regime of ac-

tivity and became increasingly supercritical thereafter, indicative

of what may be considered a phase transition (Figure 6A; Data

S1F).43 The lack of clear differences in the duration of avalanches

across time points suggested that larger avalanches may be due

to the coincident activity of modules, the spreading of activity be-

tween modules, and increased ‘‘burstiness’’ of modules re-re-

cruited to spreading waves (Figure 6B; Data S1F). Indeed, com-

parison of the duration of avalanches as a function of their size

supports this (Figures 6C and 6D). The burstiness of synchronized

CB circuitry at 72 h and the drop in the distribution of avalanche

durations compared to earlier time points aligns well with

modeling of contractions of the bell of the jellyfish Aurelia aurita,

where the refractory period of neurons limits the spread of waves

of activity to a single contraction.44

The increased dynamic range of hierarchical modular network

architectures supports sustained critical activity more effectively
the distribution of node degree with time in the log/log descending cumulative

network randomizations; diagonals on the ‘‘significance matrices’’ (bottom left

indicating that two nodes connected to any given node are increasingly likely to

ift toward a distributed network structure at 72 h, when normalized to the total

degree and clustering coefficient, taken together, allow analysis of any hier-

presentative experiment (middle). A significant increase in the number of nodes

s (plotted in gray for a representative experiment,middle) is observed from 24 to

rarchical modularity, while this trend is lost at 48 and 72 h as Hydra’s nervous

ating in the routing of information across the network with aggregate age, as

s within the network (left). Node betweenness centrality plotted as a function of

is shown. From 24 to 48 h, we observe a significant increase in the number of

h to 24 h in the number of nodes with values below the probability cloud (right).
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Figure 5. Decrease in modularity during reaggregation

Taking Louvain consensus communities of the partition with the maximummodularity of all plateaus across a modularity resolution sweep for each experiment,

details of community structure across the course of reaggregation are revealed.

(A) During reaggregation, we see a drastic increase in the distribution of intracommunity strengths by node with aggregate age.

(B) This trend is also present for the ratio of intra- to intercommunity strength, indicating that, while the strength of connections within communities is increasing,

the strength of intercommunity connections is increasing as well. Importantly, most values of the ratio of intra- to intercommunity strength are greater than 1,

indicating that intracommunity strength is increasing at a greater rate.

(C) The local synchronization of circuitry before the global synchronization observed at 48 h is captured by the reduced distance between nodes of the partition

with maximum modularity at 48 h.

(D) Intracommunity strength as a function of community size (left) and mean distance between members (right) for all detected communities.

(E) Intra- and intercommunity strength ratio as a function of community size (left) and mean distance between members (right) for all detected communities.

(F) From 8 h to later time points, we observe a decline in the number of detected communities (top) and an increase in the community size relative to network size

(bottom).

(G) Adjacency matrices of neuron connection strength at 24 and 48 h organized by Louvain partitions of the network (larger red squares) and sub-partitions of

these initial detections (smaller red squares). Spatial arrangement of the partition of the entire network indicated by panels to the left of adjacency matrices, color

coded by membership in community sub-partitions (between the spatial arrangement and adjacency matrices). Note the smaller distance between members of

strongly connected sub-partitions (edge weight scale bar to the left of adjacency matrices).

(H) From left to right: modularity of partitions of the entire network is highest and similar at 24 and 48 h. Themodularity of the entire subdivided network is highest at

24 h. The largest drop inmodularity for sub-partitioning occurs at 48 h. Themodularity of individual subdivisions is highest at 24 h. There is a decline in the number

of communities with sub-partitioning after 24 h. At all time points, the average distance between community members decreases with sub-partitioning of the

network.

See also Figure S4 and Data S1E and S1J.
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than distributed architectures.45 To explore this, we examined

avalanches within our initial Louvain communities (Figures 6E–

6G; Video S4). We were increasingly likely to see intracommunity

coactivity as part of a wave to 48 h (Figure 6E; Data S1F) and less

likely to see intercommunity activity (Figure 6E; Data S1F). In

addition, considering the ‘‘dominant module’’ as that with the

most nodes comprising thewave, we detected a decreasing per-

centage of nodes from non-dominant communities to 48 h and,

similarly, a smaller probability of observing waves traveling be-

tween communities (Figure 6E; Data S1F).

Synchronization of modules via shared neurons
To further distinguish the similar maximummodularity values at 24

and48h (Figure5G),weexamined interactionsbetween initial Lou-

vainmodules by generating raster plots of the combined activity of

all neurons in a module. Consistent with the synchronization

observed by 72 h (Figure 2) and the gradually increasing firing

rate of neurons up to 48 h (Figure S3), we found a decrease in

the probability of finding any node from a particular community

active at 72 h (Figure 6G; Data S1F) and a gradual increase in the

proportion of nodes of a community active during any activity at

72 h (Figure 6G; Data S1F). In contrast to the reduced spread of

waves of activity between any modules at 48 h (Figure 6E), we

found the probability of observing coincident activity of two

compared communities rises at 48 h (Figure 6G; Data S1F), a

reflection of the increased firing rate of neurons at this time point

(FigureS2A), the radiusofdetectionwaveactivity (STARMethods),

and community size, in combinationwith the reduceddistancebe-

tween module neurons at 48 h (Figure 5C). The cosine similarity of

the activity of each community with each otherwas largest at 48 h,

indicating that parts of distinctmodules increasingly fired together

(Figure 6G; Data S1F). To confirm this, we divided any coactivity

between communities into a dominant and subordinate commu-

nitybasedon thenumberofnodeseachcontributed.Weobserved

gradual increases in the proportion of nodes in any coactivity in

both the dominant and, importantly, the subordinate community,

across our experiment time points (Figure 6G; Data S1F).

These results helped distinguish observations of similar

maximum modularity at 24 and 48 h, putting the stability of
Figure 6. Avalanches recruit module sub-circuits during synchronizati

(A) During the course of reaggregation, distributions of the sizes of neuronal avalan

of the regenerating nervous system as the system becomes increasingly supercr

number of nodes in the network and that waves of activity were generated using a

(B) Distributions of avalanche duration are not as distinct.

(C) Dot plot of avalanche duration as a function of size. Note the distinct cluster

(D) Heatmaps providing more resolution of densely clustered points near the orig

(E) Superimposition of neuronal avalanches on detected Louvain communities

avalanchewave radius of 115 mm is increasingly likely to be in the same communit

non-dominant community are likely to be recruited to a wave to 48 h. Waves are i

more communities per wave normalized to the total number of communities with t

all communities is present.

(F) Demonstration of circuit and sub-circuit activity at 48 h. Outer circle colors re

partitions.

(G) Rasters of the summed activity of all neurons in each of the detected comm

(Figure S3), communities are less likely to be active at 72 h.When communities are

consistent with increased recruitment to neurons to developing circuitry. The cosin

activity is more similar than earlier time points. The probability of finding coactivity

similarity of community activity at 48 h, when community coactivity is divided into a

at each point of coactivity, the proportion of nodes of the dominant community a

See also Figure S6 and Data S1F and S1L.
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modularity at 24 h into context. Our observations of local in-

creases in strength at 48 h to levels almost that of 72 h sug-

gests higher modularity than at 24 h (Figure 2). However, at

48 h, any coactivity of two modules on average contains

26% of the nodes of the more active, as well as 8% of the no-

des of the less active module, which necessarily increases the

out-of-module connection strength with our observed in-

creases in within-module strength (Figures 5 and 6). This sug-

gests a route to synchronization where smaller groups of

coactive cells increasingly share occasional coactivity with

multiple other groups. More regular coactivity between groups

defines the detected modularity, while coactivity outside these

defined communities raises the valley between detected mod-

ules and detracts from our observed modularity values

(Figure 6G).

DISCUSSION

Local self-assembly of the nervous system during
Hydra’s reaggregation
In this study, we leveraged the ability to image the activity of the

entire nervous system in Hydra4 to study the mechanism of

neural circuit assembly during the de novo self-assembly of its

nervous system from dissociated cells (Figure 7). Neural circuit

synchronization was largely recovered across the entire animal

after 72 h (Figure 2). Examining earlier time points, neurite

outgrowth slowed at 48 h (Figures 1 and S2), and the strength

of most functional connections was as strong as at 72 h (Fig-

ure 3). Intriguingly, the distance between functional connections

was significantly shorter at 48 h, suggesting a local optimization

of circuitry before synchronization across the entire animal. This

developmental trajectory shares key similarities with increasingly

complex systems. For example, in the zebrafish spinal cord,

although cellular migration plays an essential role before the

onset of neural activity, a rapid synchronization is observed

from 18 to 22 hpf. Reminiscent of the changes that occur in Hy-

dra, small ‘‘ensembles’’ form at distinct points before recruiting

additional neurons and eventually synchronizing across

segments.17,18
on

ches (left) and critical exponents (top right) suggest a phase transition in activity

itical. Note the clear shift in sizes along the x axis is due to normalization to the

115-mm radius of coactivity (twice the average neurite length at 48 h; Figure S1).

at 48 h.

in of the duration (size) plots.

at maximum modularity. From left to right: coactivity of neurons within the

y to 48 h. Coactivity between communities declines to 48 h. Fewer nodes from a

ncreasingly less likely to spread between communities to 48 h. A trend toward

ime is present. A trend toward an increasing number of waves traveling through

present larger Louvain network partitions; smaller circle colors represent sub-

unities at maximum modularity. From left to right: consistent with firing rate

active, an increasing proportion of nodes of a community are likely to be active,

e similarity of these community rasters increases at 48 h, indicating community

between communities increases to 48 h. Consistent with the increased cosine

dominant and subordinate community based on the number of neurons active

s well as the subordinate community increases with aggregate age.
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Network activity becomes distributed during
reaggregation
Using network modeling, we observed the early formation of a

containment hierarchy from 8 to 24 h, as measured by the rela-

tionship of node clustering coefficients to node degree (Figures

4A, 4B, and 4E). This aligned well with the observed heavy-

tailed degree distributions at earlier time points, a characteristic

of log-log linear distributions of putative scale-free network

structures (Figures 4A and S3). In addition, measures of

betweenness centrality revealed a shift to a distributed network

structure over the course of reaggregation (Figures 4C, 4D, and

4F). This transition from a hierarchical structure to a distributed

structure can be interpreted in light of the fact that distributed

systems are generally more scalable and resilient than other ar-

chitectures. Indeed, it might be argued that Hydra’s distributed

nervous system facilitates this extreme regeneration in the first

place, allowing immature ensembles to form and resume their

function less discriminately than more highly patterned sys-

tems. Our analysis suggests that the C(k) containment hierar-

chy mediates interconnections between these immature en-

sembles via hub nodes. The loss of this rigid hierarchical

structure is inherent in the eventual fusion of these ensembles

as regeneration progresses.

Self-assembly during reaggregation is mediated by
hierarchical modularity
To understand hierarchical modularity further, we partitioned the

network into modules and submodules and explored the dy-

namics of their activity. With time, our detectedmodules showed

increases in intracommunity strength and the ratio of intra- to

intercommunity strength, driven by increased intracommunity

strength (Figures 5A and 5B), and nodes of detected modules

at 48 h were generally less distant (Figure 5C). By partitioning

the network into submodules, we observed more stability of

modularity and a larger increase in the number of communities

at 24 h, indicating more smaller, densely connected ensembles

(Figures 5G, 5H, and S5).

Hierarchical modularity plays a role in the evolvability of com-

plex systems by generating stable intermediates during evolu-

tionary processes.3 Several studies indicate that modularity

arises from temporally and modularly varying sub-goals—where

each new sub-goal shares problems with the previous sub-

goal46,47—and that the emergence of hierarchical modularity

during network development is a result of placing selective pres-

sure tominimize connection costs.48,49Hydra’s need to synchro-

nize the nervous system likely takes utmost priority in regenera-

tion and arguably provides motivation to break the process into

sub-goals and minimize connection costs. Amid significant cell

death due to the traumatic process of dissociation,13,14 Hydra

must establish body axes in the appropriate orientation via

morphallaxis,50 re-establish neuromuscular transmission to

allow active osmoregulation,51 and synchronize the nervous sys-

tem so animal-wide behavior can be coordinated. Given that

each of these related sub-goals can be initiated at independent

sites in the aggregate and share a need for intact circuitry, it can

be argued that the modularity we see reflects effort to address

these sub-goals with a common need for local optimization of

circuitry as opposed to extensive neurite outgrowth. The syn-

chronization of wounded neurons, particularly at longer
distances, clearly poses a risk to aggregate integrity if these cells

are eventually lost. From this, our observed modularity may arise

from a process of sorting and viability assessment locally before

synchronization across the animal, as opposed to the rapid co-

ordination observed in grafting experiments, where halves of

grafted Hydra synchronize within hours.52 The necessity of mini-

mizing connection costs during reaggregation stands in contrast

to the redundancy of the circuitry of the intact animal, whose

behavior is constant over a wide range of sizes of animal,53

with variable numbers of neurons depending on the nutritional

status of the animal.54 Thus, the loss of an intermediate state

of hierarchical modularity in Hydra fits well into the strategies

used by the animal to negotiate the new goals that arise with

changing complexity.

Self-organized criticality with scale-free properties in
Hydra’s reaggregating networks
We noticed neuronal avalanches with statistics reflective of a

phase transition through a critical regime of activity (Figures

6A–6D). While the coactivity of neurons comprising smaller

waves at 24 h traveled through communities more readily,

when one community was active at 48 h, it generally recruited

more nodes of additional communities, as another distinction

of the increased modularity values observed at 24 and 48 h (Fig-

ures 6E–6G). As modules gradually became more defined, they

eventually became coactive with each other as synchronization

spread across the entire animal (Figure 6). This fusion of modules

late in the process likely contributed to the decline in modularity

we observe at 72 h, an extension of the sub-circuit coactivity

across modules observed at 48 h (Figure 6H). While a majority

of circuit activity was synchronous, defined sub-circuits occa-

sionally fired in isolation (analogous to CB and CB’ sub-circuitry

in the intact animal), creating detectable partitions in the network

that diminished modularity at this time point.4,9,11,12

Hierarchical modular networks sustain critical activity across a

wider range of parameter spaces (e.g., synapse strengths) than

sparse networks without hierarchical modularity.55,56 Consistent

with our observations (Figure 6), theory suggests that modules

may act as subsystems, providing weak input to others to prop-

agate neuronal avalanches in a delicate balance compromised

by too much or too little modularity.55–57 The present study pro-

vides in vivo support of this theory (Figure 7), given that the loss

of hierarchical modularity is coincident with the shift in avalanche

dynamics into what might be considered an increasingly super-

critical regime of activity. In addition, this supercritical burstiness

at later time points aligns well with observations of deflections of

the avalanche size probability distribution due to stimulus-eli-

cited activity in zebrafish, where self-generated behavior results

in faster, larger, and longer avalanches due to the recruitment of

intact circuitry.58

Functional considerations
Our observationsofdiminishinghierarchyduringcircuit consolida-

tion integrates well with Simon’s notions of ‘‘near decompos-

ability’’ in symbolic information-processing systems. The C(k)

containment hierarchy suggests the existence of hub nodesmedi-

ating interconnections between proto-modules and immature en-

sembles formedon theirway to the intermediatestateofmaximum

modularity (Figure 4). The position of these nodes at the top of the
Current Biology 31, 3784–3796, September 13, 2021 3793



Figure 7. Proposed model for nervous sys-

tem reassembly

As Hydra cellular aggregates regenerate, patterns

of neural activity indicate an early peak in the hi-

erarchical structure of the network as proto-cir-

cuits begin to form. Network activity then pro-

gresses through an intermediate state of high

modularity, beginning with a containment hierar-

chy at 24 h as proto-circuits begin to synchronize

into the larger modules observed at 48 h. Modu-

larity at 24 and 48 h is characterized by loss of

hierarchical depth during the transition to a

distributed system. At 48 h, intermodule interaction of submodules appears, leading to synchronization across the entire animal at 72 h in a distributed network

structure.
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hierarchy places them in a unique position for ‘‘pattern comple-

tion’’ between the proto-modules or the Hydra equivalent. The

data support a model where pattern completion may arise at this

near decomposability of circuits into their subordinate functions

and information representations and also suggest a flexibility for

this feature, depending on circuit stability, given that, as Hydra’s

circuits mature, this feature is lost. The flexibility of processing in

the mammalian cortex potentially leaves this feature open,

creating an inherent hierarchy at the overlap of this functional

decomposition.

This initial work characterizing the de novo reassembly of a

nervous system could lead to additional experimental and theo-

retic efforts toward understanding biological self-organization

and the functional development of neural circuitry, particularly

with respect to neuronal ensembles as natural functional mod-

ules present from cnidarians to mammals. Future studies using

improved transgenic animals, tracking protocols, and optoge-

netic methods may allow further interrogation of Hydra’s devel-

oping neural circuitry and its emergent function. Our results

demonstrate a change in the influence of individual neurons as

circuits stabilize with development, a finding thatmay have impli-

cations beyond development for more complex nervous

systems.
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Experimental models: organisms/strains

Hydra vulgaris strain AEP Dr. Robert Steele, UC Irvine N/A

Recombinant DNA

pHyVec1 Addgene RRID: Addgene_34789

GCaMP6s Synthetic Gene GeneArt Custom
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jonathan

Lovas (jl4548@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data and codes generated or analyzed during this study are available through Dryad. Ensemble synchronization in the reassem-

bly of Hydra’s nervous system, Dryad, Dataset, https://doi.org/10.5061/dryad.k6djh9w6k. All data are archived at the NeuroTechnol-

ogy Center at Columbia University.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Hydra
Hydravulgaris (StrainAEP)expressingGCaMP6s in the interstitial stemcell lineageunder control ofanactinpromoterwerecultured in the

dark at 18�C in standardmedia as previously described.4,59,60 Freshly hatched Artemia nauplii were fed to the animals every other day.

METHOD DETAILS

Hydra dissociation/reaggregation
For experiments, the dissociation and reaggregation of Hydra were performed as previously described6 with minor modifications. In

brief, after 48hrs starvation, 40-50 medium-sized Hydra were collected in a 3.5cm dish, washed thoroughly with room-temperature

Hydramedium (RTHM) five times, washed quickly with ice-cold deionizedwater five times, and resuspended in ice-cold Gierer disso-

ciation media (DM) - prepared from frozen concentrate - in a 1.5mL tube with one DM exchange. Hydra were incubated at 4�C for 2

hours, with media exchanges every ½ hour after vigorous resuspension of the animals with an unpolished Pasteur pipette. After 2

hours, DMwas exchanged again and Hydrawere triturated until the media became cloudy, indicating the start of tissue dissociation.

After this, DMwas exchanged one last time, andHydraweremechanically dissociatedwith a new unpolished Pasteur pipette firmly at

a constant rate avoiding bubbles ~75-125 times until approximately one-half to one third of the volume of intact tissue remained.

Tissue fragments were allowed to sediment 90 s and the top 3/4 of the cell suspension was gently collected.

Cells were counted on a hemocytometer and seeded in 0.5mLmicrocentrifuge tubes in numbers according to the requirements of

the experiment, in this case 9k cells. We note that while most cells were single in suspension, a small percentage of cells (< 10%)

remained in tiny aggregates of ~2-10 cells. Due to their small size, filtration through standard filters was unable to break these ag-

gregates, assuming the cells were not aggregating after complete dissociation in the time before cell counting. Cells were allowed

to sediment on ice for 5 minutes, then centrifuged at 4�C for 4 minutes at 300 g in an Eppendorf 5430 R centrifuge. From here, pellets

in 0.5mL microcentrifuge tubes were placed at 18�C and incubated for 2 hours, 3cm above a bed of melting ice to slow the temper-

ature transition. Pellets were transferred to 800mL dissociationmedia after two hours. At 8 hours after dissociation, media was diluted

50% with 800mL Hydra media at 18�C, and again with a 50% HM replacement at 22 hours, 46 hours, and 70 hours. Hydra in all ex-

periments survived the dissociation procedure and developed into normal Hydra.

Imaging
Hydra were imaged as previously described,4 using 100 mm spacers between coverslips for the imaging sessions. Analyzed images

were acquired on anOlympus IX70 inverted fluorescencemicroscope equippedwith aGFP filter set, 10x Plan Apo air objective, and a
Current Biology 31, 3784–3796.e1–e3, September 13, 2021 e1
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Hamamatsu C9913-EMCCD camera using Micromanager.61 This setup was illuminated by a mercury arc lamp. Images were ac-

quired at 100% illumination intensity, at 250ms exposure, 1x binning, for 7200 frames (~42.1 minutes with CCD charge transfer

time). Intact animals were imaged on a Leica M165 FC fluorescence dissection microscope as previously described.4

QUANTIFICATION AND STATISTICAL ANALYSIS

Image pre-processing
Images were pre-processed in FiJi. For tracking, either 2 (Intact Animals; 48, 72 hour aggregates) or 10 (Dissociated Cells; 8, 24 hour

aggregates) frames were summed, background was subtracted with a 10 pixel rolling ball radius, and a 3-pixel diameter median filter

was applied. After tracking, all 7200 frames of each experiment were similarly background subtracted and median filtered for extrac-

tion of continuous track fluorescence, interpolating (x,y) positions across 10 or 2 frames, depending on the time point.

Cell tracking and neuron identification
Cells were tracked using the open-source cell tracking software ICY,10,62 using parameters tuned to the unique requirements of ex-

periments across time points (Data S1A). Spatial coordinates of each track were imported into MATLAB and used to extract fluores-

cence intensity from pre-processed images with the maximum values along each axis of a 7x7 pixel square around the detected

track. The deformable hydrostatic skeleton ofHydramakes tracking cells over large movements difficult. While this problem is reme-

died to some extent in reaggregating Hydra, especially at early time points when there is not much movement, inaccuracies in cell

tracking still exist (Figure S1; Data S1G). Even under static conditions of fluorescence, cell tracking is an unresolved problem and

manual curation is necessary to approach flawless results.63 To ensure accuracy in tracking across experiments, misaligned or

broken tracks were manually corrected, and inaccuracies in neuron identification (e.g., autofluorescent spots passing under tissue)

were excluded (Video S1; Data S1G).

The final analysis was conducted on frames 571-5700 of the original 7200 frames acquired at 2.85hz for several reasons. The drop-

ped time at the start of the experiments allowed the animals to equilibrate to the intense illumination. In addition, this period of time

offset some of the effects of photobleaching, as autofluorescent spots on the aggregate bleached rapidly with intense illumination,

and GCaMP began to dim toward the end of the imaging session (Figure S1A). Finally, the tracking software ICY did not handle the

ends of some tracks well, and cutting time removed some bouts of track activity that weren’t picked up at either end of the

experiment.

Manual annotation of animal-wide activity
The two main forms of neural activity in Hydra – contraction bursts and rhythmic potentials – were manually annotated in 72 hour

aggregates and intact animals for analysis. We began analysis on the first contraction burst that followed a period of quiescence

and ended analysis on the last complete contraction burst followed by a period of quiescence within the 30minute period of analysis.

Given that a subset of contraction burst neurons sometimes fires before the remaining CB neurons are recruited to the burst, we

began our annotation of pulses of contraction burst activity with the first firing of the dominant, early subset of neurons in the burst.

We note that the analysis of rhythmic potentials was conducted on the Rhythmic Potential 1 circuitry, as the activity of Rhythmic Po-

tential 2 was very rare, if present at all, in the 30 minute imaging sessions.4

Spike extraction
To account for the effects of mild photobleaching on fluorescence intensity traces, aggregates were segmented in MATLAB and

changes in the overall fluorescence intensity across the entire segmented aggregate were subtracted from fluorescence intensity

traces using an X-frame sliding window (Figure S2), after smoothing raw fluorescence traces with a 2nd-degree polynomial Sa-

vitzky-Golay filter. From here, MATLAB’s ‘findpeaks’ algorithm was used to detect both the maximum of the filtered fluorescence

intensity as well as the maximum and minima of the local first derivative of fluorescence intensity of the peaks, using a threshold

of standard deviation and wider sliding averages exclude peaks in the signal generated by noise or broad sub-spike-threshold cal-

cium fluctuations. ‘Spikes’ were defined around themaximum andminimumof the first derivative of fluorescence intensity to account

for differences in spiking kinetics of different classes of neurons (Figures S1 and S2; Data S1H). From here, two additional thresholds

were applied to compensate for the effects of photobleaching on the intensity of tracks throughout the experiment, and to exclude

noisy autofluorescent spots from analysis. The final analysis was conducted on tracks that were active at least 1/3 of the 30 minute

experiment, firing at a frequency of at least 1/180/p(active)hz (10 spikes).

Data analysis
Spike rasters were used to generate adjacency matrices for analysis. To account for the differences in the duration of spiking events

of individual neurons at the imaging framerate, correlations between neurons were based on the normalized coactivity (a final value

between zero and one, if they never or always fired together, respectively). Studies of functional connectivity did not take the distance

between neurons into account. Studies of neuron distribution within communities and waves of neuronal activity that permeate the

system took into account the fact that Hydra’s neuron’s limited number of neurites don’t project long distances in most cases (Fig-

ure 1; Data S1G).4,52 To provide a rough proxy for structural connectivity in analysis of propagation of activity through the network, we

used conservative estimates: the average length of the longest neurite per neuron of 48 hour aggregates (62 mm; Figures S1 and S5),
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the average length of neurites multiplied by 2 to allow connections between distal neurites (115 mm; Figures 6 and S1), as well as a

more liberal estimate: the average length of the longest neurite per neuron, multiplied by 3, to account for any potential incomplete

labeling in neurons of aggregates or dim distal extremities of neurites (185 mm; Figures S1 and S6).

To determine ‘significant functional connections’ for edges in metrics calling for unweighted, undirected networks, for each pair of

nodes in the network we circularly shifted the spike trains at uniformly distributed random intervals 1000 times to reveal a probability

distribution for the observed coactivity between the neurons. To avoid error propagation within a fairly liberal null model thresholded

at a standard a standard a = 0.05, we used themost stringent threshold that would allow analysis of our chosen network properties to

limit the chance addition of spuriously significant edges to the network (e.g., significant network a = 0.005 versus a = 0.05, Figures 3

and S3A; Data S1C and S1I). We note that significant coactivity is presumably mediated by chains of physical connections/synapses

if this distance was longer than twice our observed neurite lengths.

As controls to understand effects of network size and connection density, we compared our network metrics to binary networks

randomized by circularly shifting adjacency matrices along both axes 20 times to generate p = 0.05 density-preserving null distribu-

tions for our metrics (Figures 4A, 4B, 4D, and 4E, dashed lines; Data S1D). As a control for the inevitable removal of nodes from the

developing network, we also analyzed ourmodels with random subsets of 20%of the nodes removed, approximately the number lost

at each successive time point (18.21+/�5.8%; Figure S3B, dashed lines; Data S1I).

To uncover community structure in our network models, we use the Louvain method of modularity maximization. This greedy

method is fast and precise, and performs better than other methods when presented with network modules comprised of different

numbers of nodes.64 In addition to other graph theoretic analysis in the present work, Louvain consensus community clustering

makes use of the Brain Connectivity Toolbox.19 In brief, the method heuristically optimizes modularity, a measure of the density

of edges inside communities to edges outside communities, by first optimizing modularity locally on all nodes, then grouping these

small communities into a node and reiterating.30 The Louvainmethod is particularly appropriate for studies of hierarchical modularity,

as the iterative method inherently reflects any containment hierarchy in the network structure. To reconcile variability in detected

communities due to the random initiation of nodes at the start of each iteration of the algorithm, we use the final consensus commu-

nities after 1000 runs of the algorithm, clustering the final consensus matrix of agreement values reflecting similar partitioning be-

tween nodes with t = 0 to ensure as many nodes as possible were clustered (Figure S4A; Data S1J).31

With consensus communities in place, to ensure optimal partitioning with the method we then varied the resolution parameter g, a

modification to the modularity objective function which increasingly penalizes out-of-community connections to tune the density of

detected communities.32–34,65,66 In essence, higher gamma values favor detection of smaller, more densely intraconnected commu-

nities. Given the stochastic initiation of the algorithm, to ensure we were looking at a stable partition of the weighted network we used

the ‘plateau method’, sweeping the resolution parameter g of the modularity objective function Q from 0.6 to 3 (e.g., Figure S4B and

Data S1J), using communities from the plateau of identical partitions across at least 3 increasing g increments of 0.01 that gave the

largest value of Q.34,67 Sub-partitioning of themodules of this initial partition was performedwith g = 1. Analysis of trends in the values

g sweep in Figures S4B and S4C was performed with plateaus of length > = 0.02 g increments to provide more data points for

analysis.

Waves of activity, or ‘neuronal avalanches,’ depending on the field, were determined using the metrics of structural connectivity

defined above (Data S1G). Power-law plots where created using the MATLAB ‘plplot’ function.21 Waves of activity were superim-

posed on Louvain communities using custom MATLAB code (supplemental material).

Statistics
We tested the significance of synchronization observed in our experiments against the null hypothesis that the synchronous firing of

neurons is governed by a random process.68 Randomized networks were used to establish confidence intervals to determine signif-

icant connectivity in analyses. Due to the variable length of spiking of Hydra neurons, random networks were created by randomly

circularly shifting individual neuron tracks around the length of the experiment at uniformly distributed random locations, repeated

1000 times for each experiment.

For tests of the significance of network structure, the weights or binary values of the original adjacency matrix were randomized 20

times to generate p = 0.05 null distributions (Data S1D). The significance of data plotted in power law form was assessed using the

non-parametric Wilcoxon Rank-Sum test of significance. Data presented in bar graphs was assessed using the non-parametric

Mann-Whitney-Wilcoxon U-test. Bar graphs were generated using custom MATLAB code, and violin plots were generated using

a modification of the ‘violinplot’ function in MATLAB (Bastian Bechtold, 2016).
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Figure S1. Neurites elongate during the first 48 hours of Hydra reaggregation and neuron 

tracking and GCaMP6s signal processing, Related to Figures 1, 6, S5, S6, STAR Methods, 

and Data S1G 



 

A) Although previously characterized variability between neuron subtypes precludes statistically 

significant findings, trends exist toward an increase in the length of the longest visible neurite to 

48 hours, the overall length of visible neurites to 48 hours, and the total visible arbor length per 

neuron and neurite to 48 hours. A trend toward an increase in the number of visible neurites and 

the number of visible branches per neuron and neurite exists to 48 hours. B) Significantly more 

tracks were detected at 8 hours and 72 hours, in part due to individual motility and sporadic activity 

of neurons at 8 hours and collective movement of the aggregate at 72 hours. After manually linking 

shorter tracks belonging to the same neuron, we observe fewer tracks in all cases, with the same 

trend of more tracks at 8 hours and 72 hours. After thresholding our tracks of interest to fluorescent 

points that spiked at a rate of 1/60hz for at least 10 minutes during the experiment, we observe a 

declining trend in the number of neurons per aggregate, consistent with the previously 

characterized cell loss that occurs during the process. Detected track length is significantly shorter 

at 8 and 72 hours for the same reason. Track length increases in all cases with the same trend. 

Active length increases after thresholding to remove autofluorescence. C) Traces of parameters 

used to threshold spikes from neurons, in this case a putative CB neuron at 48 hours (top, STAR 

Methods). Zooming in on the segment from 5 minutes to 10 minutes, the spike raster plot (bottom, 

detected spikes in black) corresponds well to the peaks of raw GCaMP6s fluorescence (light blue) 

obtained in experiments.  

  



 

 

Figure S2. Detected spike statistics, Related to STAR Methods and Data S1H 

Freshly dissociated cells were allowed to sediment in a 96-well glass bottom plate for thirty 

minutes, and were then imaged and analyzed similarly to aggregates. A) From left to right: We 

note significant increases in the firing rate of neurons to 48 hours, with a decline at 72 hours to 

frequencies similar to freshly dissociated cells. Spikes in neurons were generally longer at 72 hours 

and in freshly dissociated cells, consistent with residual calcium broadening spike peaks during 

animal-wide contraction bursts. Similar trends were observed for mean values by experiment, and 

the standard deviations of spike length by neuron and experiment, as would be expected with the 

stepwise increase in residual calcium during contraction bursts. B) From left to right: Conversely 

to neuron firing rate, spike inter-stimulus interval (ISI) was generally larger at 72 hours and in 



 

freshly dissociated cells. The same trend holds true looking at experiment means. The ISI standard 

deviation was slightly higher in neurons of 72 hour aggregates and freshly dissociated neurons, 

and the trend was preserved for experiment means of the ISI standard deviations. The ISI variance 

to mean ratio was slightly lower at 72 hours and in dissociated cells. C) Descending cumulative 

distributions of all ISI values illustrate the reemergence of rhythmic patterns of activity (left). 

Vertical lines for the CB pulse ISI (green, left), CB overall ISI (green right), and RP ISI represent 

values obtained from analysis of animal-wide fluorescence (Figure 2). Note the from 8 hours to 48 

hours as increasingly larger percentages of ISIs fall below the ‘CB pulse’ ISI vertical line, 

indicating the reestablishment of CB dynamics in absence of animal-wide synchronization. ISI 

variance-to-mean ratio by neuron indicates increasingly larger values to 72 hours until just after 

our values for whole animal CB ISI VMR (green vertical line), again consistent with the 

reestablishment of busting dynamics.  



 

 



 

Figure S3. Validation of network thresholding, network analysis with neuron loss, and 

scaling exponents for degree distribution power law fits, Related to Figures 3, 4, S4, and Data 

S1I 

A) Adjacency matrices of networks of a representative experiment binarized at increasingly 

stringent thresholding alpha values, as determined by circularly shifting firing patterns between 

pairs of neurons at uniformly distributed random intervals 1000 times. Between pairs of neurons 

(along x and y axes) significant connections are depicted in yellow. Note the diminishing effect of 

increasing stringency at later time points. Binarized networks were ultimately analyzed at the 

α=0.005 time point to avoid error propagation within the fairly liberal standard threshold of 

α=0.05. B) To validate our network analysis given the previously characterized gradual loss of 

neurons from the regenerating animal, we removed 20% of nodes and their respective edges from 

the α=0.005 significant networks at random 20 times and conducted the same analysis on these 

randomly attacked networks. No significant differences exist in the degree distributions, 

comparing experimental values to the randomly truncated values along the diagonal of the 

significance matrix (top left). The clustering coefficient was generally lower in our randomly 

truncated networks at 8 hours and 24 hours, as would be expected in sparsely connected networks 

in which the clustering coefficient is more likely based on a single triangles (top right). A similar 

finding was observed for node betweenness (bottom left). Conversely, as edges are removed at 

later time points from denser graphs, these shortest paths must be redistributed, leading to an 

increase in betweenness centrality of the edges involved in redistribution. Note that in this case the 

probability of a node routing shortest-edge traffic remains unchanged (bottom right). C) The slope 

of the fit to give our scaling coefficient to characterize scale-free networks declines to 48 hours. If 

we consider that this metric saturates with the size of the circuits of our network, as is seen in the 



 

shoulders of the distributions at 48 and 72 hours, fitting a distribution truncated to 1/3 the size of 

the network gives more accurate scaling coefficients across the first decade of the degree values. 

  



 

 

Figure S4. Consensus community clustering at maximum modularity and varied community 

detection gamma resolution, Related to Figures 5, 6, and Data S1J 



 

Iterating the randomly-initialized Louvain community detection algorithm on a network 1000 

times yields an agreement matrix with the number of times pairs of neurons were assigned the 

same community. We note gradual improvements in agreement, indicating increased stability of 

clustering until 48 hours – nodes are more likely to be grouped into the same community even with 

random initialization (left). Distributions of imperfect agreement, excluding values equal to zero 

or 1 (right). B) Modularity (top left), modularity of networks binarized at α=0.005 (bottom left), 

number of detected communities (top middle) and the proportion of nodes clustered into 

communities (bottom middle) as a function of varying the Louvain resolution parameter gamma 

from 0.6 to 3 in increments of 0.01. Given that the increases we observe in intra-/inter-community 

strength are largely driven by increasing intracommunity strength over time, the drastic increase 

in modularity and stability over our range of gamma values in networks binarized at the α=0.005 

significance level is not surprising. We also observe an increase in the number of stable plateaus 

of at least 2 identical network partitions with increasing gamma values from 8 hours to 24 hours 

(top right) and a significant increase in the length of these stable plateaus from 24 to 48 hours 

(bottom right, extreme outliers >3xIQR not depicted). C) Slope and R2 values of a first degree 

polynomial fit of the values in (B). 

  



 

 



 

Figure S5. Local interactions mediate the increases in modularity observed during 

reaggregation, Related to Figures 3, 5, and Data S1K 

A) Representative spatial distribution of potential connections between neurons, using the average 

length of the longest neurite per neuron at 48 hours (61.83μm). Neurons are color coded by 

community based on the initial partition (top row) and sub-partition (bottom row). The outer 

boundary of the aggregate is depicted as the shortest path around the most peripheral neuron 

centers of the aggregate. B) Neurons are increasingly likely to overlap with others over time, and 

no significant differences in density are observed. Normalized to density, then either to the number 

of intra- or intercommunity nodes (top row), or network size (bottom row), we observe increases 

in the proportion of intracommunity overlap with time in both the initial and sub-partitions, as well 

as a decrease in intercommunity overlap at 48 hours for the initial partition, while 72 hour 

aggregates had the largest degree of intercommunity overlap for the sub-partition. C) Examining 

the ratios of intra- to intercommunity overlap, we first note small percentage of nodes with no 

intercommunity overlap which were excluded from analysis to avoid infinite values in the ratio, 

then gradual increases in this ratio to 48 hours in both the initial and sub-partitions. Importantly, 

as we move from the sub-partition to the initial partition in a ‘ratio-of-ratios’ we observe the largest 

increase at 24 hours, a reflection of the local optimization of protocircuits before their fusion into 

the larger, more spatially compact modules of the initial partition at 48 hours. Extreme outliers 

>3xIQR not depicted.  

  



 

 

 

Figure S6. Avalanches recruit module sub-circuits during synchronization with a more 

liberal wave determination distance of 185μm, Related to Figure 6 and Data S1L 

A) During the course of reaggregation, distributions of the sizes of neuronal avalanches (left) and 

critical exponents (top right) indicate a phase transition in activity of the regenerating nervous 

system as the system becomes increasingly supercritical. Note the clear shift in sizes along the x-

axis is due to normalization to the number of nodes in the network, and that waves of activity were 

generated using a 185μm radius of coactivity (3 times the average neurite length of the longest 

neurite at 48 hours, Figure S1). B) Distributions of avalanche duration are not as distinct. C) Dots 



 

plot of avalanche duration as a function of size. Note the distinct cluster at 48 hours. D) Heat maps 

providing more resolution of densely clustered points near the origin of the duration(size) plots. 

E) Superimposition of neuronal avalanches on detected Louvain communities at maximum 

modularity. From left to right: Coactivity of neurons within the avalanche wave radius of 115μm 

is increasingly likely to be in the same community to 48 hours. Coactivity between communities 

declines to 48 hours. Fewer nodes from a non-dominant community are likely to be recruited to a 

wave to 48 hours. Waves are increasingly less likely to spread between communities to 48 hours. 

A trend toward more communities per wave normalized to the total number of communities with 

time is present. A trend toward an increasing number of waves traveling through all communities 

is present.  
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