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In this article, we obtain an optimal best-approximation-type result for fully discrete approximations
of the transient Stokes problem. For the time discretization, we use the discontinuous Galerkin method
and for the spatial discretization we use standard finite elements for the Stokes problem satisfying the
discrete inf-sup condition. The analysis uses the technique of discrete maximal parabolic regularity. The
results require only natural assumptions on the data and do not assume any additional smoothness of the
solutions.
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1. Introduction

In this paper we consider the following transient Stokes problem with no-slip boundary conditions:

∂t�u − Δ�u + ∇p = �f in I × Ω , (1.1a)

∇ · �u = 0 in I × Ω , (1.1b)

�u = �0 on I × ∂Ω , (1.1c)

�u(0) = �u0 in Ω . (1.1d)

Throughout this work we assume that Ω ⊂ R
d, d ∈ {2, 3} is a bounded polygonal/polyhedral Lipschitz

domain, T > 0 and I = (0, T ]. We will require some (weak) assumptions on the data, which
essentially allow for a weak formulation including both velocity and pressure and for �u ∈ C(Ī; L2(Ω)d).
We consider fully discrete approximations of problem (1.1), where we use compatible finite elements
(i.e., satisfying a uniform inf-sup condition) for the space discretization and the discontinuous Galerkin
method for the temporal discretization. Our goal is to obtain best-approximation-type results that do not
involve any additional regularity assumptions on the solution beyond the regularity that follows directly
from the assumed data above. Such results are important in the analysis of PDE-constrained optimal
control problems that we have in mind. We refer, e.g., to Meidner et al. (2011), where such estimates
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2 N. BEHRINGER ET AL.

are required for numerical analysis of an optimal control problem constrained by the heat equation with
state constraints pointwise in time.

Our main result is of the following form:

‖�u − �uτh‖L∞(I;L2(Ω)) � C�τ

(
‖�u − �vτh‖L∞(I;L2(Ω)) + ‖�u − RS

h(�u, p)‖L∞(I;L2(Ω))

)
, (1.2)

where �uτh is the fully discrete finite element approximation of the velocity �u, �vτh is an arbitrary function
from the finite element approximation of the velocity spaces Xw

τ (�Vh), RS
h is the Ritz projection for the

stationary Stokes problem and �τ is a logarithmic term, explicitly given in the statements of the results;
see Corollary 6.4.

Result (1.2) links the approximation error for the fully discrete transient Stokes problem to the
best possible approximation of a continuous solution �u in the discrete space Xw

τ (�Vh), as well as the
approximation of the stationary Stokes problem in �Vh. Such results go hand in hand with only natural
assumptions on the problem data and thus are desirable in applications. For this result, we do not require
additional regularity of the domain allowing, e.g., for reentrant corners and edges. Moreover, we do not
require the mesh to be quasi-uniform or shape regular. Therefore, the result is also true for graded and
even anisotropic meshes (provided the discrete inf-sup condition holds uniformly on such meshes). The
application of (1.2) in such cases would require corresponding results for the stationary Stokes problem
to estimate �u − RS

h(�u, p); see Remark 7.1.
Under the additional assumption of convexity of Ω and some approximation properties of the

discrete spaces, we prove error estimates of the form

‖�u − �uτh‖L∞(I;L2(Ω)) � C�τ

(
τ + h2

) (
‖�f ‖L∞(I;L2(Ω)) + ‖�u0‖�V2

)
,

where �V2 is an appropriate space introduced in the next section. This estimate seems to be optimal
(probably up to logarithmic terms) with respect to both the assumed regularity of the data and the order
of convergence.

In the case of the heat equation, a similar estimate with respect to L∞(I; L2(Ω)) is derived in
Meidner et al. (2011) and for a nonautonomous parabolic problem in Leykekhman & Vexler (2018,
Theorem 4.5). For corresponding estimates in the maximum norm in the case of the heat equation we
refer to Schatz et al. (1980), Eriksson & Johnson (1995), Meidner et al. (2011) and Leykekhman &
Vexler (2016), and for the maximum norm of the gradient to Thomée et al. (1989), Leykekhman &
Wahlbin (2008) and Leykekhman & Vexler (2017b). Further, results are also available in the case of
discretization only in space. For an overview and respective references, we refer to Leykekhman &
Vexler (2016, 2017b).

We are not aware of any best approximation max-norm estimates in time and space for the
nonstationary Stokes problem (1.1) in the literature. A result for the fully discrete problem in the
form of L∞(I; L2(Ω)d) estimates based on discontinuous Galerkin methods is provided in Chrysafinos
& Walkington (2010), including an overview of related results for (semi)discrete problems based on
other discretization approaches. Recently, the numerical behavior of a stabilized discontinuous Galerkin
scheme for the Stokes problem has been analyzed in Ahmed et al. (2017). Furthermore, there are results
for the fully discrete Navier–Stokes problem under moderate regularity assumptions in Heywood &
Rannacher (1990). Here we focus on an approach via a discontinuous Galerkin time-stepping scheme
similar to the approach in Chrysafinos & Walkington (2010) and Leykekhman & Vexler (2017a).
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STOKES BEST APPROXIMATION ESTIMATES 3

However, all the results mentioned above differ from ours in an essential way. We give a more detailed
comparison of our result and the existing results from the literature in Section 7.

Our main technical tools are continuous and discrete maximal parabolic regularity results. On the
continuous level, we use the estimate

‖∂t�u‖Ls(I;L2(Ω)) + ‖A�u‖Ls(I;L2(Ω)) + ‖p‖Ls(I;L2(Ω)) �
Cs2

s − 1
‖�f ‖Ls(I;L2(Ω))

for �f ∈ Ls(I; L2(Ω)d), �u0 = 0, 1 < s < ∞ and A being the Stokes operator (2.1); see Proposition 2.6
and Theorem 2.10 for the details and also for the formulation in the case �u0 	= 0. This estimate holds on
a general Lipschitz domain Ω . Assuming in addition the convexity of Ω , we have

‖∂t�u‖Ls(I;L2(Ω)) + ‖�u‖Ls(I;H2(Ω)) + ‖∇p‖Ls(I;L2(Ω)) �
Cs2

s − 1
‖�f ‖Ls(I;L2(Ω));

see Remark 2.7 and Corollary 2.11. On the discrete level, we provide the corresponding estimates that
hold even in the limit cases s = 1 and s = ∞ at the expense of a logarithmic term. In a way, we extend
the discrete maximal parabolic regularity results from Leykekhman & Vexler (2017a) to the Stokes
problem. The resulting estimate is

‖∂t�uτh‖Ls(I;L2(Ω)) + ‖Ah�uτh‖Ls(I;L2(Ω)) � C ln
T

τ
‖�f ‖Ls(I;L2(Ω)),

where Ah is the discrete Stokes operator; see Theorem 5.2 for details and the precise formulation. Under
the convexity assumption for the domain Ω , similar to the continuous case we also obtain

‖Δh�uτh‖Ls(I;L2(Ω)) + ‖∇pτh‖Ls(I;L2(Ω)) � ln
T

τ
‖�f ‖Ls(I;L2(Ω)),

where Δh is the discrete Laplace operator; see Remark 5.4 and Theorem 8.2 for details.
In the next section we introduce a framework of function spaces for the treatment of the stationary

and transient Stokes problem, the Stokes operator and the resolvent problem. Moreover, we discuss
the weak formulation and regularity issues for (1.1). In Section 3 we discuss the spatial discretization,
introduce respective discrete spaces, operators and prove a discrete resolvent estimate. In Section 4
we present a full discretization of (1.1) and show discrete smoothing and discrete maximal regularity
results for the velocity in Section 5 based on the operator calculus discussed for the heat equation in
Leykekhman & Vexler (2017a). This allows us to prove best approximation results for the velocity
in Section 6. In Section 7 we apply the best-approximation-type results to prove error estimates and
compare these results to the existing results in the literature. Finally, in Section 8 we explore an
expansion of the discrete maximal parabolic estimates to the pressure.

2. Results on the continuous level

In this section we introduce the function spaces we require for the analysis of (1.1) and state some of the
main properties of these spaces. In the later sections we adopt a technique based on discrete maximal
parabolic regularity from Leykekhman & Vexler (2017a), where we used an operator calculus for −Δ
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4 N. BEHRINGER ET AL.

and its finite element analog −Δh. In order to modify the corresponding results, we will introduce the
continuous and the discrete Stokes operator. Furthermore, we will require analysis for the resolvent of
these operators. In our presentation we follow the notation and presentation of Guermond & Pasciak
(2008, Section 1 and Section 2).

2.1 Function spaces and Stokes operator

In the following we will use the usual notation to denote the Lebesgue spaces Lp and Sobolev spaces
Hk and Wk,p. The space L2

0(Ω) will denote a subspace of L2(Ω) with mean-zero functions. The inner
product on L2(Ω) as well as on L2(Ω)d is denoted by (·, ·). To improve readability, we omit the
superscript d when having for example L2(Ω)d appear as, subscript to norms. We also introduce the
following function spaces:

V = {�v ∈ C∞
0 (Ω)d | ∇ · �v = 0}, �V0 = VL2

, �V1 = VH1

,

where the notation in the last line denotes the completion of the space V with respect to the L2(Ω)d and
the H1(Ω)d topology, respectively. Notice that functions in �V1 have zero boundary conditions in the
trace sense. Alternatively, we have

�V0 = {�v ∈ L2(Ω)d | ∇ · �v = 0 and �u · �n = 0 on ∂Ω},

where n is the outer unit normal vector to ∂Ω , and

�V1 = {�v ∈ H1
0(Ω)d | ∇ · �v = 0}

by Galdi (2011, Theorems III.2.3 and III.4.1).
We define the vector-valued Laplace operator

−Δ : D(Δ) → L2(Ω)d,

where the domain D(Δ) is understood with respect to L2(Ω)d and is given as

D(Δ) = {�v ∈ H1
0(Ω)d | Δ�v ∈ L2(Ω)}.

If the domain Ω is convex then the standard H2(Ω) regularity implies D(Δ) = H1
0(Ω)d ∩ H2(Ω)d. In

addition, we introduce the space �V2 as

�V2 = �V1 ∩ D(Δ).

We will also use the following Helmholtz decomposition (cf. Temam, 1977, Chapter I and Theorem 1.4
and Galdi, 2011, Theorem III.1.1):

L2(Ω)d = �V0 ⊕ ∇
(

H1(Ω) ∩ L2
0(Ω)

)
.
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STOKES BEST APPROXIMATION ESTIMATES 5

As usual, we define the Helmholtz projection P : L2(Ω)d → �V0 (often called the Leray projection) as
the L2-projection from L2(Ω)d onto �V0. Using P and −Δ, we define the Stokes operator A : �V2 → �V0

as

A = −PΔ|�V2 . (2.1)

The operator A is a self-adjoint, densely defined and positive definite operator on �V0. We note that
D(A) = �V2. There holds

(A�v, �v) = ‖∇�v‖2
L2(Ω)

� λ0‖�v‖2
L2(Ω)

, �v ∈ �V2,

where λ0 > 0 is the smallest eigenvalue of the Laplace operator −Δ given by

λ0 = inf
v∈H1

0(Ω)

‖∇v‖2
L2(Ω)

‖v‖2
L2(Ω)

. (2.2)

Similar to the Laplace operator, for convex polyhedral domains Ω we have the following H2 regularity
bound due to Kellogg & Osborn (1976) and Dauge (1989):

‖�v‖H2(Ω) � C‖A�v‖L2(Ω) ∀ �v ∈ �V2.

2.2 Stokes resolvent problem

The key to our analysis is the spectral representation of the semigroup generated by A. For that, we
consider the Stokes resolvent problem for �f ∈ L2(Ω)d,

z�u − Δ�u + ∇p = �f in Ω , (2.3a)

∇ · �u = 0 in Ω , (2.3b)

�u = �0 on ∂Ω . (2.3c)

Here, z ∈ Σθ ,ω̄, which is defined as

Σθ ,ω̄ = {c ∈ C|c 	= ω̄ and |arg(c − ω̄)| < θ}.

The solution (�u, p) to (2.3) is a complex-valued function in H1
0(Ω)d×L2

0(Ω) as complex-valued function
spaces with a hermitian inner product. In our situation, we are interested in the case of θ ∈ (π/2, π) and
ω̄ ∈ [−λ0, 0] with λ0 > 0 from (2.2).

Proposition 2.1 The operator A is sectorial. In particular, for every θ ∈ (π/2, π), there exists a
constant C = Cθ such that for all z ∈ Σθ ,ω̄ with ω̄ ∈ [−λ0, 0] and (�u, p) being the solution of (2.3) with
�f ∈ L2(Ω)d there holds the following resolvent estimate:

‖�u‖L2(Ω) �
C

|z − ω̄| ‖P �f ‖L2(Ω). (2.4)
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6 N. BEHRINGER ET AL.

Proof. It is straightforward to check that every self-adjoint positive operator, which is densely defined
on a Hilbert space is sectorial. This applies to the operator A − ω̄ Id for all ω̄ ∈ [−λ0, 0], which results
in the resolvent estimate (2.4). Below, we provide a direct proof for the discrete version of the operator
A; see Lemma 3.2, which is also applicable here. �

Using the Stokes operator A from (2.1) one can rewrite the resolvent estimate (2.4) as

‖(z + A)−1
P�f ‖L2(Ω) �

C

|z − ω̄| ‖P�f ‖L2(Ω).

Remark 2.2 The resolvent estimates in Lp norms for p 	= 2 are also known. For example, for d = 3
on Lipschitz domains, Shen (2012) has shown a resolvent estimate for some interval of p satisfying
|∗|1/p − 1/2 < 1/6 + ε for ε > 0. On smooth C3 domains, it is known to hold even for p = ∞ (cf.
Abe et al., 2015). However, the extension to nonsmooth convex domains is still an open problem and it
even appears in a collection of open problems (cf. Maz’ya, 2018, Problem 66).

2.3 Weak formulation and regularity

In this section we discuss the weak formulation and the regularity of the transient Stokes problem (1.1).
We will use the notation Ls(I; X) for the corresponding Bochner space with a Banach space X. Moreover,
we will use also the standard notation H1(I; X). The inner product in L2(I; L2(Ω)d) and in L2(I; L2(Ω)d)

is denoted by (·, ·)I×Ω . We will also use the notation (f , g)I×Ω for the corresponding integral for f ∈
Ls(I; L2(Ω)d) and g ∈ Ls′(I; L2(Ω)d) with 1 ≤ s ≤ ∞ and the dual exponent s′.

For the application of Galerkin finite element methods in space and time, we will require a space-
time weak formulation of the transient Stokes equations with respect to both variables, velocity �u and
pressure p. In a standard variational setting, e.g., with f ∈ L2(I; (�V1)′) or f ∈ L1(I; L2(Ω)d), this
is not possible, since only distributional pressure can be expected in general; see Remark 2.5 below.
Therefore, we will first introduce the (standard) weak formulation on the divergence-free space, and
then we discuss regularity issues and introduce a velocity–pressure weak formulation based on a slightly
stronger assumption on the data.

Proposition 2.3 Let �f ∈ L1(I; L2(Ω)d) and �u0 ∈ �V0. Then there exists a unique solution
�u ∈ L2(I; �V1) ∩ C(Ī, �V0) with ∂t�u ∈ L1(I; �V0) + L2(I; (�V1)′) fulfilling �u(0) = �u0 and

〈∂t�u, �v〉 + (∇�u, ∇�v)I×Ω = (�f , �v)I×Ω for all �v ∈ L2(I; �V1) ∩ L∞(I; �V0). (2.5)

Here, 〈∂t�u, �v〉 for ∂t�u = �w1 + �w2 ∈ L1(I; �V0)+ L2(I; (�V1)′) and �v ∈ L2(I; �V1)∩ L∞(I; �V0) is understood
as

〈∂t�u, �v〉 = (�w1, �v)I×Ω + 〈�w2, �v〉L2(I;(�V1)′)×L2(I;�V1).

There holds the estimate

‖∇�u‖L2(I;L2(Ω)) + ‖�u‖C(Ī;L2(Ω)) � C
(
‖�f ‖L1(I;L2(Ω)) + ‖�u0‖�V0

)
.

Proof. For the existence of the solution under the stated assumptions and with the corresponding
regularity we refer to Temam (1977, Chapter III, Theorem 1.1) and its extension to the case
�f ∈ L1(I; L2(Ω)d) on page 264. The notion of the solution in Temam (1977) is formulated in the
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STOKES BEST APPROXIMATION ESTIMATES 7

almost everywhere sense on I, from which formulation (2.5) follows directly by integration in time. The
uniqueness of �u solving (2.5) is also obtained in the standard manner choosing �v = �u for �f = 0 and
�u0 = 0. �

Remark 2.4 Another possibility to formulate the notion of the weak solution is to assume
�f ∈ L2(I; (�V1)′). Since we require in the sequel the additional assumption �f ∈ Ls(I; L2(Ω)d) for
some s > 1 we prefer to use the formulation from Proposition 2.3.

Remark 2.5 Under the assumptions from Proposition 2.3 the existence of the corresponding pressure
p can be shown only in the following distributional sense. There exists P ∈ C(Ī, L2(Ω)) such that the
Stokes system holds in the distributional sense for �u solving (2.5) and p = ∂tP. In particular, one cannot
expect in general p ∈ L1(I × Ω); cf. Temam (1977, Chapter III, p. 267).

In the following we will discuss some additional regularity for the solution. On the one hand, we
need slightly more regularity in order to be able to introduce the pressure p as a function; cf. Remark 2.5.
Moreover, additional regularity beyond �u ∈ C(Ī; L2(Ω)d) is required if we use the best approximation
result 1.2 for providing (optimal) error estimates; see Section 7. It is well known, cf. again Temam
(1977), that in the sense of Proposition 2.3, equation 2.5 can be understood as an abstract parabolic
problem

∂t�u + A�u = P�f for a.a. t ∈ I,

�u(0) = �u0,

with the Stokes operator A defined in (2.1).
Furthermore, note that by Proposition 2.1, the operator A is sectorial and thus a generator of an

analytic semigroup (Lunardi, 1995, Definition 2.0.1, 2.0.2). For the Hilbert space setting, it has then
been shown in de Simon (1964) that this is equivalent to having a maximal regularity estimate of the
form

‖∂t�u‖Ls(I;L2(Ω)) + ‖A�u‖Ls(I;L2(Ω)) � Cs‖�f ‖Ls(I;L2(Ω)) (2.6)

for problem (1.1) with �u0 = 0, 1 < s < ∞ and �f ∈ Ls(I; L2(Ω)d). For more details, we refer
to Sohr (2014, Chapter IV, Theorem 1.6.3). In Section 5 we derive a respective estimate for a fully
discrete version of (2.12), a so-called discrete maximal parabolic regularity result based on ideas from
Leykekhman & Vexler (2017a).

For proving (optimal) error estimates in Section 7 we will use the maximal parabolic estimate (2.6)
for s → ∞. To this end, we will need precise dependence of the constant Cs on s from Ashyralyev &
Sobolevskii (1994, Chapter 1, eq. (3.9), Theorem 3.2). Moreover, we require this regularity result also
for the case of nonhomogeneous initial conditions.

To state this result, we consider the space of initial data �V0
1− 1

s
for 1 < s < ∞ as in Ashyralyev &

Sobolevskii (1994, Chapter 1, Section 3.3). The Banach space �V0
1− 1

s
with the norm

‖�v0‖�V0
1− 1

s

=
(∫ 1

0
‖A exp(−tA)�v0‖s

�V0 dt

)1/s

+ ‖�v0‖�V0 (2.7)

contains all functions �v0 ∈ �V0 such that for a solution �u to the transient Stokes problem with right-hand
side �f = 0 and initial data �u0 = �v0 it holds that A�u ∈ Ls(I; �V0).
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8 N. BEHRINGER ET AL.

Proposition 2.6 Let 1 < s < ∞, �f ∈ Ls(I; L2(Ω)d) and �u0 ∈ �V0
1− 1

s
. Then the solution �u to the

problem

∂t�u + A�u = P�f for a.a. t ∈ I,

�u(�x, 0) = �u0,

fulfills ∂t�u, A�u ∈ Ls(I; L2(Ω)d). Moreover, there is a constant C independent on s, f and u0 such that

‖∂t�u‖Ls(I;L2(Ω)) + ‖A�u‖Ls(I;L2(Ω)) �
Cs2

s − 1

(
‖�f ‖Ls(I;L2(Ω)) + ‖�u0‖�V0

1− 1
s

)
.

Proof. This follows from Ashyralyev & Sobolevskii (1994, Chapter 1, Theorems 3.2, 3.7) since A is
the generator of an analytic semigroup. �

Remark 2.7 If the domain is polyhedral/polygonal and convex then Proposition 2.6 provides
�u ∈ Ls(I; H2(Ω)d) and the estimate

‖∂t�u‖Ls(I;L2(Ω)) + ‖�u‖Ls(I;H2(Ω)) �
Cs2

s − 1

(
‖�f‖Ls(I;L2(Ω)) + ‖�u0‖�V0

1− 1
s

)
.

Remark 2.8 There holds �V1 ↪→ �V0
1
2
. This follows from the fact that for the homogeneous problem

(�f = 0) with �u0 ∈ �V1 the following estimate holds:

‖A�u‖L2(I;L2(Ω)) � 2‖A
1
2 �u0‖L2(Ω) = 2‖�u0‖�V1 .

The above inequality is stated, e.g., in Sohr (2014, Chapter IV, Theorem 1.5.2). For the representation

of the norm on �V1 by A
1
2 , see, e.g., Sohr (2014, Chapter III, Lemma 2.2.1). Therefore, for the range

1 < s ≤ 2, it is sufficient to assume �u0 ∈ �V1 for the estimate in Proposition 2.6.

Remark 2.9 If u0 ∈ �V2, there holds for every 1 < s < ∞,

‖�u0‖�V0
1− 1

s

� ‖A�u0‖L2(Ω).

We can argue as follows. Since �u0 ∈ �V2, we have that A commutes with exp(−tA) (cf. Sohr, 2014,
Chapter II, eq. (3.2.19)) and due to the boundedness of exp(−tA) in the operator norm (cf. Sohr, 2014,
Chapter IV, eq. (1.5.8)), we can conclude using Definition 2.13,

‖�u0‖�V0
1− 1

s

=
(∫ 1

0
‖A exp(−tA)�u0‖s

�V0 dt

)1/s

+ ‖�u0‖�V0

�
(∫ 1

0
‖exp(−tA)‖s

�V0→�V0‖A�u0‖s
�V0 dt

)1/s

+ ‖�u0‖�V0 � C‖A�u0‖L2(Ω).
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STOKES BEST APPROXIMATION ESTIMATES 9

Therefore, we have the following version of the maximal parabolic regularity estimate:

‖∂t�u‖Ls(I;L2(Ω)) + ‖A�u‖Ls(I;L2(Ω)) �
Cs2

s − 1

(
‖�f ‖Ls(I;L2(Ω)) + ‖A�u0‖L2(Ω)

)
,

which we will use in particular for s → ∞.

The next theorem provides the space-time weak formulation in both variables, velocity and pressure.
Please note that no additional regularity of the domain is required and the assumption �f ∈ L1(I; L2(Ω)d)

from Proposition 2.3 is only slightly strengthened to �f ∈ Ls(I; L2(Ω)d) for some s > 1.

Theorem 2.10 Let �f ∈ Ls(I; L2(Ω)d) for some 1 < s < ∞ and �u0 ∈ �V0
1− 1

s
. Then there exists a unique

solution (�u, p) with

�u ∈ L2(I; �V1) ∩ C(Ī, �V0), ∂t�u, A�u ∈ Ls(I; L2(Ω)d) and p ∈ Ls(I; L2
0(Ω))

fulfilling �u(0) = �u0 and

(∂t�u, �v)I×Ω + (∇�u, ∇�v)I×Ω − (p, ∇ · �v)I×Ω + (∇ · �u, ξ)I×Ω = (�f , �v)I×Ω (2.8)

for all

�v ∈ L2(I; H1
0(Ω)d) ∩ L∞(I; L2(Ω)d) and ξ ∈ L2(I; L2

0(Ω)).

There holds the estimate

‖p‖Ls(I;L2(Ω)) �
Cs2

s − 1

(
‖�f ‖Ls(I;L2(Ω)) + ‖�u0‖�V0

1− 1
s

)
.

Proof. We take the unique solution �u with ∂t�u, A�u ∈ Ls(I; L2(Ω)d) from Proposition 2.6 and
�u ∈ L2(I; �V1) ∩ C(Ī, �V0) from Proposition 2.3. To prove the existence of the corresponding pressure
p we consider for almost every t ∈ I the element �g(t) ∈ H−1(Ω)d,

〈�g(t), w〉 = (�f (t), w) − (∂t�u(t), w) − (∇�u(t), ∇w), w ∈ H1
0(Ω)d,

i.e.,

�g(t) = �f (t) − ∂t�u(t) + Δ�u(t) ∈ H−1(Ω)d.

This element is well defined due to �f (t), ∂t�u(t) ∈ L2(Ω)d and �u(t) ∈ �V1 ↪→ H1
0(Ω) for almost every

t ∈ I. Moreover, there holds by (2.5),

〈�g(t), w〉 = 0 ∀ w ∈ �V1,

for almost all t ∈ I, since (2.5) holds also pointwise almost everywhere. Therefore, we can apply Temam
(1977, Chapter I, Proposition 1.1), which ensures the existence of a distribution p(t) with

∇p(t) = �g(t) (2.9)
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10 N. BEHRINGER ET AL.

in the distributional sense for almost every t ∈ I. By Temam (1977, Chapter I, Proposition 1.2 and
Remark 1.4), we have that the gradient operator is an isomorphism from L2(Ω)/R into H−1(Ω)d and
as a result we have unique p(t) ∈ L2

0(Ω) such that

‖p(t)‖L2(Ω) � C‖�g(t)‖H−1(Ω).

Using the definition of �g we obtain p ∈ Ls(I; L2
0(Ω)) and

‖p‖Ls(I;L2(Ω)) � C‖�g‖Ls(I;H−1(Ω)) � C
(
‖�f ‖Ls(I;L2(Ω)) + ‖∂t�u‖Ls(I;L2(Ω)) + ‖∇�u‖Ls(I;L2(Ω))

)

� Cs2

s − 1

(
‖�f‖Ls(I;L2(Ω)) + ‖�u0‖�V0

1− 1
s

)
,

where we have used ‖∇�v‖L2(Ω) ≤ C‖A�v‖L2(Ω) for every �v ∈ �V1 and Proposition 2.6. With this regularity
we obtain from (2.9) and the definition of �g,

(−p, ∇ · �v)I×Ω = (�f , �v)I×Ω − (∂t�u, �v)I×Ω − (∇�u, ∇�v)I×Ω

for all �v ∈ L2(I; H1
0(Ω)d) ∩ L∞(I; L2(Ω)d). Furthermore, it holds that

(∇ · �u, ξ)I×Ω = 0 ∀ ξ ∈ L2(I; L2
0(Ω))

by �u ∈ L2(I; �V1). This results in the stated weak formulation. �

Corollary 2.11 Let the assumptions of Theorem 2.10 be fulfilled. Let in addition the domain Ω be
convex. Then we have p ∈ Ls(I, H1(Ω)) and the corresponding estimate holds:

‖p‖Ls(I;H1(Ω)) �
Cs2

s − 1

(
‖�f ‖Ls(I;L2(Ω)) + ‖�u0‖�V0

1− 1
s

)
.

Proof. By convexity of Ω , we obtain �u ∈ Ls(I; H2(Ω)d) and the corresponding estimate; see Remark
2.7. Then we have

�g(t) = �f (t) − ∂t�u(t) + Δ�u(t) ∈ L2(Ω)d

for almost all t ∈ I in the notation of the proof of Theorem 2.10. This leads to the desired regularity and
to the estimate. �

Remark 2.12 For regularity beyond these estimates, we want to highlight Heywood & Rannacher
(1982, Corollary 2.1), where the authors show that bounds for, e.g., ∇3�u, ∂tt�u, go hand in hand with the
need for the data �u0, �f and initial pressure p0 (defined as limt→0 p(t)) to satisfy a nonlocal compatibility
condition for t → 0 at the boundary, which is potentially difficult to verify.

3. Spatial discretization and discrete resolvent estimates

In this section we consider the discrete version of the operators presented in the previous section.
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3.1 Spatial discretization

Let {Th} be a family of triangulations of Ω̄ , consisting of closed simplices, where we denote by h the
maximum mesh size. Let �Xh ⊂ H1

0(Ω)d and Mh ⊂ L2
0(Ω) be a pair of compatible finite element spaces,

i.e., they satisfy a uniform discrete inf-sup condition,

sup
�vh∈�Xh

(qh, ∇ · �vh)

‖∇�vh‖L2(Ω)

� β‖qh‖L2(Ω) ∀ qh ∈ Mh, (3.1)

with a constant β > 0 independent of h. We introduce the usual discrete Laplace operator −Δh : �Xh →
�Xh by

(−Δh�zh, �vh) = (∇�zh, ∇�vh) ∀�zh, �vh ∈ �Xh.

To define a discrete version of the Stokes operator A, we first define the space of discretely divergence-
free vectors �Vh as

�Vh = {�vh ∈ �Xh | (∇ · �vh, qh) = 0 ∀ qh ∈ Mh}.

Using this space we can define the discrete Leray projection Ph : L1(Ω)d → �Vh to be the L2-projection
onto �Vh, i.e.,

(Ph�u, �vh) = (�u, �vh) ∀ �vh ∈ �Vh. (3.2)

Using Ph, we define the discrete Stokes operator Ah : �Vh → �Vh as Ah = −PhΔh|�Vh
. By this definition,

we have that for �uh ∈ �Vh, Ah�uh ∈ �Vh fulfills

(Ah�uh, �vh) = (∇�uh, ∇�vh) ∀ �vh ∈ �Vh.

Notice, since �Vh ⊂ �Xh, for �vh ∈ �Vh, we obtain

(Ah�vh, �vh) = (∇�vh, ∇�vh) � λ0‖�vh‖2
L2(Ω)

, (3.3)

where λ0 is the smallest eigenvalue of −Δ; see (2.2). This implies that the eigenvalues of Ah are also
positive and bounded from below by λ0.

Moreover, we define the orthogonal space �V⊥
h ⊂ �Xh as

�V⊥
h = �wh ∈ Xh | (�wh, �vh) = 0 ∀ �vh ∈ �Vh.

The following classical result, cf., e.g., Girault & Raviart (1986, Chapter II, Theorem 1.1), will be used
to provide existence and uniqueness of the fully discrete pressure in the sequel.
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12 N. BEHRINGER ET AL.

Lemma 3.1 For every �wh ∈ �V⊥
h , there exists a unique ph ∈ Mh such that

(�wh, �vh) = (ph, ∇ · �vh) ∀ �vh ∈ �Xh.

There holds

‖ph‖L2(Ω) �
1

β
‖∇(−Δh)

−1 �wh‖L2(Ω).

Proof. Note that we can decompose �Xh = �Vh ⊕ �V⊥
h and there holds dim �V⊥

h = dim Mh. The equation
for ph can then be equivalently rewritten as

ph ∈ Mh : (ph, ∇ · �vh) = (�wh, �vh) ∀ �vh ∈ �V⊥
h .

The uniqueness of ph (as well as the estimate) follows then directly from the inf-sup condition (3.1).
The existence follows from uniqueness due to dim �V⊥

h = dim Mh. �

3.2 Discrete resolvent estimate

For a given �f ∈ L2(Ω)d the discrete version of the resolvent problem (2.3) takes the form

�uh ∈ �Vh : z(�uh, �vh) + (∇�uh, ∇�vh) = (�f , �vh) ∀ �vh ∈ �Vh, (3.4)

which we can also write compactly using the discrete operator as

(z + Ah)�uh = Ph
�f . (3.5)

Next we establish the discrete resolvent estimate in the L2(Ω)d norm, which is the discrete version of
Proposition 2.1.

Lemma 3.2 For any θ ∈ (π/2, π), there exists a constant C = Cθ such that for any ν ∈ [0, λ0] with
λ0 > 0 being the smallest eigenvalue of −Δ, see (2.2), it holds that

‖�uh‖L2(Ω) = ‖(z + Ah)
−1

Ph
�f ‖L2(Ω) �

Cθ

|z + ν| ‖�f ‖L2(Ω) ∀ z ∈ Σθ ,−ν ,

where �uh ∈ �Vh is the solution to (3.5) with right-hand side �f ∈ L2(Ω)d.

Proof. Testing (3.4) with �uh, we have

(z + ν)‖�uh‖2
L2(Ω)

+ ((−Δh − ν)�uh, �uh) = (�f , �uh) (3.6)

for any ν > 0. Since −Δh is positive definite with (3.3), we have that −Δh − ν is still a non-negative
operator for ν ∈ [0, λ0] and thus ((−Δh − ν)�uh, �uh) � 0. Since z is restricted to the sector Σθ ,−ν , we
can rewrite (3.6) as

|z + ν|eiφ‖�uh‖2
L2(Ω)

+ δ = (�f , �uh), (3.7)
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where δ � 0 and |φ| < θ . If we multiply (3.7) by e−iφ/2, take the real part and use that cos(θ/2) > 0,
this results in

|z + ν|‖�uh‖2
L2(Ω)

� cos (θ/2)−1 |(�f , �uh)| = Cθ |(�f , �uh)|,

which after an application of the Cauchy–Schwarz inequality completes the proof. �

4. Temporal discretization: the discontinuous Galerkin method

In this section we introduce the discontinuous Galerkin method for the time discretization of the transient
Stokes equations; a similar method was considered, e.g., in Chrysafinos & Walkington (2010). For that
we partition I = (0, T ] into subintervals Im = (tm−1, tm] of length τm = tm − tm−1, where 0 = t0 <

t1 < · · · < tM−1 < tM = T . The maximal and minimal time steps are denoted by τ = maxm τm and
τmin = minm τm, respectively. The time partition fulfills the following assumptions.

1. There are constants C, β > 0 independent of τ such that

τmin � Cτβ .

2. There is a constant κ > 0 independent of τ such that for all m = 1, 2, . . . , M − 1,

κ−1 � τm

τm+1
� κ .

3. It holds that τ � T
4 .

For a given Banach space B and the order w ∈ N, we define the semidiscrete space Xw
τ (B) of piecewise

polynomial functions in time as

Xw
τ (B) = {�vτ ∈ L2(I;B)|�vτ |Im

∈ Pw,Im
(B), m = 1, 2, . . . , M

}
,

where Pw,Im
(B) is the space of polynomial functions of degree less than or equal to w in time with values

in B, i.e.,

Pw,Im
(B) = {�vτ : Im → B

∣∣�vτ (t) = ∑w
j=0 �vjφj(t), �vj ∈ B, j = 0, . . . , w

}
.

Here, {φj(t)} is a polynomial basis in t of the space Pw(Im) of polynomials with degree less than or equal

to w over the interval Im. We use the following standard notation for a function �u ∈ Xw
τ (L2(Ω)d) :

�u+
m = lim

ε→0+ �u(tm + ε), �u−
m = lim

ε→0+ �u(tm − ε), [�u]m = �u+
m − �u−

m .

For later use, we introduce Pτ : L2(I; L2(Ω)d) → Xw
τ (L2(Ωd)) as the L2 projection in time by

(�v − Pτ �v, �wτ )I×Ω = 0 ∀ �wτ ∈ Xw
τ (L2(Ωd)). (4.1)
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We will use the following two standard properties:

‖Pτ �v‖Ls(I,L2(Ω)) � C‖�v‖Ls(I,L2(Ω)) ∀ �v ∈ Ls(I, L2(Ω)d), 1 � s � ∞ (4.2)

and

‖�v − Pτ �v‖L∞(I,L2(Ω)) � Cτ 1− 1
s ‖∂t�v‖Ls(I,L2(Ω)) ∀ �v ∈ W1,s(I, L2(Ω)d), 1 � s � ∞. (4.3)

We define the bilinear form B by

B(�u, �v) =
M∑

m=1

(∂t�u, �v)Im×Ω + (∇�u, ∇�v)I×Ω +
M∑

m=2

([�u]m−1, �v+
m−1)Ω + (�u+

0 , �v+
0 )Ω .

With this bilinear form, we define the fully discrete approximation for the transient Stokes problem on
the discrete divergence-free space Xw

τ (�Vh):

�uτh ∈ Xw
τ (�Vh) : B(�uτh, �vτh) = (�f , �vτh)I×Ω + (�u0, �v+

τh,0)Ω ∀ �vτh ∈ Xw
τ (�Vh). (4.4)

By a standard argument one can see that this formulation possesses a unique solution (existence follows
from uniqueness by the fact that (4.4) is equivalent to a quadratic system of linear equations).

Remark 4.1 Note that the data �f and �u0 in (4.4) can be replaced by Ph
�f and Ph�u0, respectively (with

Ph being the discrete Leray projection (3.2)) without changing the solution. Therefore, this formulation
makes sense for a general �f ∈ L1(I; L1(Ω)d) and �u0 ∈ L1(Ω)d. However, for the error analysis later on
we will require the assumptions from Theorem 2.10, ensuring the Galerkin orthogonality relation; see
also Proposition 4.3 below.

The above formulation is not a conforming discretization of the divergence free-formulation (2.5)
due to the fact that Xw

τ (�Vh) is not a subspace of L2(I; �V1). In order to introduce a velocity pressure
discrete formulation (as a discretization of (2.8)) we consider the following bilinear form:

B((�u, p), (�v, q)) =
M∑

m=1

(∂t�u, �v)Im×Ω + (∇�u, ∇�v)I×Ω − (p, ∇ · �v)I×Ω + (∇ · �u, q)I×Ω

+
M∑

m=2

([�u]m−1, �v+
m−1)Ω + (�u+

0 , �v+
0 )Ω .

The corresponding fully discrete formulation reads as follows: find (�uτh, pτh) ∈ Xw
τ (�Xh × Mh) such that

B((�uτh, pτh), (�vτh, qτh)) = (�f , �vτh)I×Ω + (�u0, �v+
τh,0)Ω ∀ (�vτh, qτh) ∈ Xw

τ (�Xh × Mh). (4.5)

We note that for the temporal discretization, we use polynomials of the same order for the velocity and
the pressure. The next proposition states the equivalence of the formulations (4.4) and (4.5).
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Proposition 4.2 For a solution (�uτh, pτh) of (4.5), the discrete velocity �uτh fulfills (4.4). Moreover, for
a solution �uτh of (4.4), there exists a unique pτh ∈ Xw

τ (Mh) such that the pair (�uτh, pτh) fulfills (4.5). In
particular, the solution of (4.5) is unique.

Proof. From (4.5) we have �uτh ∈ Xw
τ (�Vh) and so it trivially fulfills (4.4). Now let �uτh ∈ Xw

τ (�Vh) be the
solution of (4.4). We define �wτh ∈ Xw

τ (�Xh) by

(�wτh, �vτh)I×Ω = (�f , �vτh)I×Ω + (�u0, �v+
τh,0)Ω − B(�uτh, �vτh) ∀ �vτh ∈ Xw

τ (�Xh).

It follows immediately that

(�wτh, �vτh)I×Ω = 0 ∀ �vτh ∈ Xw
τ (�Vh)

and one obtains �wτh(t) ∈ �V⊥
h for every t ∈ Im, m = 1, 2, . . . , M. At the same time, we have globally

�wτh ∈ Xw
τ (�V⊥

h ). By Lemma 3.1 we get the existence and uniqueness of the pressure pτh(t) ∈ Mh with

(�wτh(t), �vh) = (pτh(t), ∇ · �vh) ∀ �vh ∈ �Xh,

for every t ∈ Im, m = 1, 2, . . . , M.
Therefore, pτh ∈ Xw

τ (Mh) and there holds

(�wτh, �vτh)I×Ω = (pτh, ∇ · �vτh)I×Ω ∀ �vτh ∈ Xw
τ (�Xh).

This completes the proof. �
The next proposition provides the Galerkin orthogonality relation for the velocity pressure dis-

cretization (4.5), which is essential for our analysis. Please note that for the velocity formulation (4.4)
the Galerkin orthogonality does not hold due to the fact that Xw

τ (�Vh) is not a subspace of L2(I, �V1).

Proposition 4.3 Let the assumptions of Theorem 2.10 be fulfilled, i.e., �f ∈ Ls(I; L2(Ω)d) for some
s > 1 and �u0 ∈ �V0

1− 1
s
. Then there holds, for the solution (�u, p) of (2.8),

B((�u, p), (�vτh, qτh)) = (�f , �vτh)I×Ω + (�u0, �v+
τh,0)Ω ∀ (�vτh, qτh) ∈ Xw

τ (�Xh × Mh),

and consequently,

B((�u − �uτh, p − pτh), (�vτh, qτh)) = 0 ∀ (�vτh, qτh) ∈ Xw
τ (�Xh × Mh).

Proof. In the setting of Theorem 2.10, we have �u ∈ L2(I, �V1) ∩ C(Ī, �V0), ∂t�u ∈ Ls(I, L2(Ω)d) and
p ∈ Ls(I, L2(Ω)). Therefore, all terms in the bilinear form are well defined. For the test space we have

Xw
τ (�Xh) ⊂ L2(I; H1

0(Ω)d) ∩ L∞(I; L2(Ω)d) and Xw
τ (Mh) ⊂ L2(I; L2

0(Ω)).

Therefore, we can choose (�vτh, qτh) ∈ Xw
τ (�Xh × Mh) as test functions in (2.8). Moreover, all jump terms

vanish due to �u ∈ C(Ī, �V0), and

(�u+
0 , �v+

τh,0) = (�u0, �v+
τh,0)

due to �u(0) = �u0. This completes the proof. �
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16 N. BEHRINGER ET AL.

In the following we also consider a dual problem, where we use a dual representation of the bilinear
form B,

B((�u, p), (�v, q)) = −
M∑

m=1

〈�u, ∂t�v〉Im×Ω + (∇�u, ∇�v)I×Ω − (p, ∇ · �v)I×Ω

+ (∇ · �u, q)I×Ω −
M−1∑
m=1

(�u−
m , [�v]m)Ω + (�u−

M , �v−
M)Ω ,

(4.6)

which is obtained by integration by parts and rearranging the terms in the sum.

5. Fully discrete smoothing and maximal regularity estimates

The goal of this section is to extend the results on the discrete maximal parabolic regularity for the
discretization of the heat equation from Leykekhman & Vexler (2017a) to the transient Stokes equations.
The results in Leykekhman & Vexler (2017a) rely solely on the resolvent estimates for −Δh and the
Dunford–Taylor operator calculus. Since Lemma 3.2 establishes the resolvent estimate for Ah, all the
results from Leykekhman & Vexler (2017a) continue to hold for Ah as well. We will state the results
below.

The first result is a smoothing estimate for the homogeneous problem (f = 0).

Theorem 5.1 Let �f = �0, and let �u0 ∈ L2(Ω)d. Let �uτh ∈ Xw
τ (�Vh) be the solution to (4.4). Then there

holds for m = 1, 2, . . . , M,

‖∂t�uτh‖L∞(Im;L2(Ω)) + ‖Ah�uτh‖L∞(Im;L2(Ω)) + ‖τ−1
m [�uτh]m−1‖L2(Ω) �

C

tm
‖Ph�u0‖L2(Ω).

Here we have [�uτh]0 = �u+
τh,0 − Ph�u0.

Proof. The key step in proving this smoothing estimate is the representation of the solution on Im in the
form of the Dunford–Taylor integral (cf. Eriksson et al., 1998, pp. 1321–1322),

Ah�u−
τ ,m = 1

2π i

∫
Γ

m∏
l=1

r(τlz)AhR(z, Ah) dzPh�u0 for m = 2, . . . , M,

which is an operator equality on �Vh since �u0 is replaced by Ph�u0 ∈ �Vh; cf. Remark 4.1. Here, r(z)
is a subdiagonal Padè approximation, which is a rational function with numerator of degree w and
denominator of degree w + 1. The contour Γ is a curve contained in the resolvent set of Ah such that
Lemma 3.2 can be applied for −z ∈ Γ and R(z, Ah) the resolvent operator, i.e., R(z, Ah) = (z − Ah)

−1.
Then the proof of

‖Ah�uτh‖L∞(Im;L2(Ω)) �
C

tm
‖Ph�u0‖L2(Ω)

is the same as for Eriksson et al. (1998, Theorem 5.1). The estimates for the time derivative and for the
jumps follow as in Leykekhman & Vexler (2017a, Theorem 4 and Theorem 5). �
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STOKES BEST APPROXIMATION ESTIMATES 17

For the inhomogeneous problem (and �u0 = 0) we obtain the discrete analog of Proposition 2.6. On
the continuous level, the corresponding estimate is true for 1 < s < ∞. The following discrete maximal
parabolic regularity result covers the limit cases s = 1 and s = ∞ at the expense of a logarithmic term.

Theorem 5.2 Let 1 � s � ∞, �f ∈ Ls(I, L2(Ω)d) and �u0 = 0. Let �uτh ∈ Xw
τ (�Vh) be the solution to

(4.4). Then for s < ∞, there holds

( M∑
m=1

‖∂t�uτh‖s
Ls(Im;L2(Ω))

)1/s

+ ‖Ah�uτh‖Ls(I;L2(Ω))

+
( M∑

m=1

τm‖τ−1
m [�uτh]m−1‖s

L2(Ω)

)1/s

� C ln
T

τ
‖Ph

�f‖Ls(I;L2(Ω)).

For s = ∞ the estimate takes the form

max
1�m�M

‖∂t�uτh‖L∞(Im;L2(Ω))

+ ‖Ah�uτh‖L∞(I;L2(Ω)) + max
1�m�M

‖τ−1
m [�uτh]m−1‖L2(Ω) � C ln

T

τ
‖Ph

�f ‖L∞(I;L2(Ω)).

Here we have [�uτh]0 = �u+
τh,0.

Proof. The result follows from the smoothing estimate in Theorem 5.1 as in the proof of Leykekhman
& Vexler (2017a, Theorems 6–8). �

Remark 5.3 Due to the stability of the discrete Leray projection Ph in L2, we can drop it in the above
estimates.

Remark 5.4 If we assume the domain Ω to be convex and the family of meshes {Th} to be shape
regular and quasi-uniform then there holds

‖Δh�vh‖L2(Ω) � c‖Ah�vh‖L2(Ω) ∀ �vh ∈ �Vh

by Guermond & Pasciak (2008, Lemma 4.1) or Heywood & Rannacher (1982, Corollary 4.4) and
therefore the corresponding estimates hold also for ‖Δh�uτh‖Ls(I;L2(Ω)).

6. Best-approximation-type estimates

The results in Section 5 allow us to show an L∞(I; L2(Ω)) best-approximation-type error estimate for
the velocity. In order to state the results, we need to introduce an analog of the Ritz projection for the
stationary Stokes problem (RS

h(�w, ϕ), RS,p
h (�w, ϕ)) ∈ �Xh × Mh of (�w, ϕ) ∈ H1

0(Ω)d × L2(Ω) given by the
relation

(∇(�w − RS
h(�w, ϕ)), ∇�vh) − (ϕ − RS,p

h (�w, ϕ), ∇ · �vh) = 0 ∀ �vh ∈ �Xh, (6.1a)

(∇ · (�w − RS
h(�w, ϕ)), qh) = 0 ∀ qh ∈ Mh. (6.1b)
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18 N. BEHRINGER ET AL.

Remark 6.1 If �w is discrete divergence-free, i.e., (∇ · �w, qh) = 0 for all qh ∈ Mh, then we have
RS

h(�w, ϕ) ∈ �Vh. We will use this projection operator only for such a �w. In this case, the same projection
operator is defined, e.g., in Girault et al. (2015).

In the following we will make the same assumptions on the data �f and �u0 as in Theorem 2.10 in
order to use the Galerkin orthogonality relation from Proposition 4.3.

Theorem 6.2 Let �f ∈ Ls(I; L2(Ω)d) for some s > 1 and �u0 ∈ �V0
1− 1

s
. Let (�u, p) be the solution of (2.8)

and (�uτh, pτh) solve the respective finite element problem (4.5). Then, there holds

‖�uτh‖L∞(I;L2(Ω)) � C ln
T

τ

(
‖�u‖L∞(I;L2(Ω)) + ‖�u − RS

h�u‖L∞(I;L2(Ω))

)
.

Proof. We proceed with a proof along the arguments of Leykekhman & Vexler (2016, Theorem 1). Let
t̃ ∈ (0, T ] and without loss of generality assume t̃ ∈ (tM−1, T ].

Consider the following dual problem:

−∂t�g(t, �x) − Δ�g(t, �x) + ∇λ(t, �x) = �uτh(t̃, �x)θ(t), (t, �x) ∈ I × Ω ,

∇ · �g(t, �x) = 0, (t, �x) ∈ I × Ω ,

�g(t, �x) = 0, (t, �x) ∈ I × ∂Ω ,

�g(T , x) = 0, �x ∈ Ω .

Here, θ ∈ C1(I) is a regularized delta function (cf. Schatz & Wahlbin, 1995, Appendix A.5) in time
with the following properties:

suppθ ⊂ (tM−1, T ), ‖θ‖L1(IM) � C and (θ , �vτ )IM
= �vτ (t̃) ∀ �vτ ∈ Pw(IM). (6.3)

Note that the authors in Schatz & Wahlbin (1995, Appendix A.5) assume t̃ to be an element of an open
interval but the argument there can be extended to the case t̃ = T . The corresponding finite element
approximation (�gτh, λτh) ∈ Xw

τ (�Xh × Mh) is given by

B((�vτh, qτh), (�gτh, λτh)) = (�uτh(t̃)θ , �vτh

)
I×Ω

∀ (�vτh, qτh) ∈ Xw
τ (�Xh × Mh).

By the Galerkin orthogonality from Proposition 4.3, we have

‖�uτh(t̃)‖2
L2(Ω)

= (�uτh, θ(t)�uτh(t̃)) = B((�uτh, pτh), (�gτh, λτh)) = B((�u, p), (�gτh, λτh))

= −
M∑

m=1

(�u, ∂t�gτh)Im×Ω + (∇�u, ∇�gτh)I×Ω − (p, ∇ · �gτh) −
M∑

m=1

(�u−
m , [�gτh]m)Ω

= J1 + J2 + J3 + J4,

where we have used the dual representation of the bilinear form B from (4.6). In the last sum we set
�gτh,M+1 = 0 so that [�gτh]M = −�gτh,M . Applying the Hölder inequality and using �u ∈ C(Ī; L2(Ω)d), we
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STOKES BEST APPROXIMATION ESTIMATES 19

obtain

J1 �
M∑

m=1

‖�u‖L∞(Im;L2(Ω))‖∂t�gτh‖L1(Im;L2(Ω)) � ‖�u‖L∞(I;L2(Ω))

M∑
m=1

‖∂t�gτh‖L1(Im;L2(Ω)),

J4 �
M∑

m=1

‖�u−
m‖L2(Ω)‖[�gτh]m−1‖L2(Ω) � ‖�u‖L∞(I;L2(Ω))

M∑
m=1

‖[�gτh]m‖L2(Ω).

For J2 + J3, we can argue by using the projection RS
h defined in (6.1). Then we have

J2 + J3 = (∇�u, ∇�gτh)I×Ω − (p, ∇ · �gτh)I×Ω

= (∇RS
h(�u, p), ∇�gτh)I×Ω − (RS,p

h (�u, p), ∇ · �gτh)I×Ω = (∇RS
h(�u, p), ∇�gτh)I×Ω ,

where the last term vanishes, since �gτh is discretely divergence-free. Here and in what follows, the

projection (RS
h, RS,p

h ) is applied to time-dependent functions (�u, p) pointwise in time. Since ∇ · �u(t) = 0
for almost all t ∈ I we have RS

h(�u(t), p(t)) ∈ �Vh; cf. Remark 6.1. With this we can use the definition of
the discrete Stokes operator Ah resulting in

(∇RS
h(�u, p), ∇�gτh)I×Ω = (RS

h(�u, p), Ah�gτh)I×Ω

�
(
‖�u‖L∞(I;L2(Ω)) + ‖�u − RS

h(�u, p)‖L∞(I;L2(Ω))

)
‖Ah�gτh‖L1(I;L2(Ω)).

(6.4)

Combining the estimates we conclude

‖�uτh(t̃)‖2
L2(Ω)

= −
M∑

m=1

(�u, ∂t�gτh)Im×Ω + (∇RS
h(�u, p), ∇�gτh)I×Ω −

M∑
m=1

(�u−
m , [�gτh]m)Ω

� C
(
‖�u‖L∞(I;L2(Ω)) + ‖�u − RS

h(�u, p)‖L∞(I;L2(Ω))

)

×
( M∑

m=1

‖∂t�gτh‖L1(Im;L2(Ω)) + ‖Ah�gτh‖L1(I;L2(Ω)) +
M∑

m=1

‖[�gτh]m‖L2(Ω)

)

and an application of Theorem 5.2 leads to

‖�uτh(t̃)‖2
L2(Ω)

� C ln
T

τ

(
‖�u‖L∞(I;L2(Ω)) + ‖�u − RS

h(�u, p)‖L∞(I;L2(Ω))

)
× ‖�uτh(t̃)‖L2(Ω)‖θ‖L1(IM).

Canceling and using that ‖θ‖L1(IM) � C, we complete the proof of the theorem. �
The following corollary provides a version of Theorem 6.2 involving the L2 projection in time Pτ

defined in (4.1).
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20 N. BEHRINGER ET AL.

Corollary 6.3 Under the conditions of Theorem 6.2, there holds

‖�uτh‖L∞(I;L2(Ω)) � C ln
T

τ

(
‖�u‖L∞(I;L2(Ω)) + ‖�u − Pτ RS

h�u‖L∞(I;L2(Ω))

)
.

Proof. We obtain this by arguing as in the proof of Theorem 6.2, only the term in (6.4) is estimated
differently,

(∇RS
h(�u, p), ∇�gτh)I×Ω = (RS

h(�u, p), Ah�gτh)I×Ω = (Pτ RS
h(�u, p), Ah�gτh)I×Ω

�
(
‖�u‖L∞(I;L2(Ω)) + ‖�u − Pτ RS

h(�u, p)‖L∞(I;L2(Ω))

)
‖Ah�gτh‖L1(I;L2(Ω)),

where we have used definition 4.6 of Pτ . �
As a corollary from Theorem 6.2, we obtain a best-approximation-type result.

Corollary 6.4 Under the conditions of Theorem 6.2, there holds

‖�u − �uτh‖L∞(I;L2(Ω)) � C ln
T

τ

(
inf

�vτh∈Xw
τ (�Vh)

‖�u − �vτh‖L∞(I;L2(Ω)) + ‖�u − RS
h(�u, p)‖L∞(I;L2(Ω))

)
. (6.5)

Proof. The desired result follows by considering (�u − �vτh, p − qτh) instead of (�u, p) with arbitrary
(�vτh, qτh) ∈ Xw

τ (�Vh × Mh) in the proof of Theorem 6.2. This allows us to replace (�uτh, pτh) by
(�uτh − �vτh, pτh − qτh).

Note that �u −�vτh is discrete divergence-free and so RS
h(�u −�vτh, p − qτh)(t) ∈ �Vh for almost all t ∈ I;

see Remark 6.1. Therefore, the argument in the proof of Theorem 6.2 involving the discrete Stokes
operator Ah is still valid. Moreover, by the definition of the projection RS

h, we have

RS
h(�u − �vτh, p − qτh) = RS

h(�u, p) − �vτh.

As in the proof of Theorem 6.2, then we obtain

‖�uτh − �vτh‖L∞(I;L2(Ω)) � C ln
T

τ

(
‖�u − �vτh‖L∞(I;L2(Ω)) + ‖�u − RS

h(�u, p)‖L∞(I;L2(Ω))

)
.

We complete the proof using

�u − �uτh = �u − �vτh + �vτh − �uτh

and the triangle inequality. �
The error estimate in the next section is based on the following variant of our result.

Corollary 6.5 Under the conditions of Theorem 6.2, there holds

‖�u − �uτh‖L∞(I;L2(Ω)) � C ln
T

τ
‖�u − Pτ RS

h(�u, p)‖L∞(I;L2(Ω)).
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Proof. Using Corollary 6.3 and arguing as in the proof of Corollary 6.4, we obtain

‖�u − �uτh‖L∞(I;L2(Ω)) � C ln
T

τ

(
inf

�vτh∈Xw
τ (�Vh)

‖�u − �vτh‖L∞(I;L2(Ω)) + ‖�u − Pτ RS
h(�u, p)‖L∞(I;L2(Ω))

)
.

Choosing �vτh = Pτ RS
h(�u, p) ∈ Xw

τ (�Vh) we obtain the result. �

7. Error estimates and comparison to the literature

In this section we apply our result from Corollary 6.5 to derive a priori error estimates. Due to the nature
of the result from Corollary 6.5, we obtain error estimates that are optimal (probably up to a logarithmic
term) with respect to both the orders of approximation and the assumed regularity. Moreover, we
compare these estimates with the results from the literature. For this section we assume the domain
Ω to be polygonal/polyhedral and convex.

Remark 7.1 Note that the results from Corollary 6.4 or 6.5 can be applied also to nonconvex domains
and to meshes, which are not necessarily quasi-uniform, including graded or even anisotropic refinement
toward reentrant corners or edges. In this case, one can use error estimates for the solution of the
stationary Stokes equations for such cases; see Apel & Kempf (2021), and the references therein, in
order to estimate �u − RS

h(�u, p) in (6.5).

For this section we assume the following standard approximation properties for the spaces
�Xh and Mh.

Assumption 7.2 There exists an interpolation operator ih : H2(Ω)d ∩ H1
0(Ω)d → �Xh and

rh : L2(Ω) → Mh such that

‖∇(�v − ihv)‖L2(Ω) � ch‖∇2v‖L2(Ω) ∀ �v ∈ H2(Ω)d ∩ H1
0(Ω)

and

‖q − rhq‖L2(Ω) � ch‖∇q‖L2(Ω) ∀ q ∈ H1(Ω).

This assumption is fulfilled for a variety of finite element pairs including, e.g., Taylor-Hood as well as
Mini finite elements on a family of shape-regular meshes. Under this assumption, the following standard
estimate holds for the Ritz projection for the Stokes problem (6.1).

Proposition 7.3 Let Ω be convex and Assumption 7.2 be fulfilled. There is a constant C > 0 such
that for all (�u, p) with �u ∈ H2(Ω)d ∩ �V1 and p ∈ H1(Ω) ∩ L2

0(Ω) the following estimate holds:

‖�u − RS
h(�u, p)‖L2(Ω) � Ch2

(
‖∇2�u‖L2(Ω) + ‖∇p‖L2(Ω)

)
.

Proof. We refer, e.g., to Girault & Raviart (1986, Theorem 1.9). �
In the following theorem, we provide an error estimate of order O(τ + h2) up to a logarithmic term

under minimal assumptions on the data. The estimate holds for every choice of degree w in the temporal
discretization but especially for w = 0, i.e., for the dG(0) discretization, which is known to be a variant
of the implicit Euler scheme.
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22 N. BEHRINGER ET AL.

Theorem 7.4 Let Ω be convex, �f ∈ L∞(I, L2(Ω)d) and �u0 ∈ �V2, and let Assumption 7.2 be fulfilled.
Let (�u, p) be the solution of (2.8) and (�uτh, pτh) solve the respective finite element problem (4.5). Then
there holds

‖�u − �uτh‖L∞(I;L2(Ω)) � C

(
ln

T

τ

)2 (
τ + h2

) (
‖�f‖L∞(I;L2(Ω)) + ‖�u0‖�V2

)
.

Proof. We start with the result from Corollary 6.5 and obtain

‖�u − �uτh‖L∞(I;L2(Ω)) � C ln
T

τ
‖�u − Pτ RS

h(�u, p)‖L∞(I;L2(Ω))

� C ln
T

τ

(
‖�u − Pτ �u‖L∞(I;L2(Ω)) + ‖Pτ (�u − RS

h(�u, p))‖L∞(I;L2(Ω))

)

� C ln
T

τ

(
‖�u − Pτ �u‖L∞(I;L2(Ω)) + τ− 1

s ‖Pτ (�u − RS
h(�u, p))‖Ls(I;L2(Ω))

)

� C ln
T

τ

(
‖�u − Pτ �u‖L∞(I;L2(Ω)) + τ− 1

s ‖�u − RS
h(�u, p)‖Ls(I;L2(Ω))

)
,

where we have used an inverse inequality for some 1 < s < ∞ and the stability of Pτ in Ls from (4.2).
The temporal projection error is estimated by (4.3) resulting in

‖�u − Pτ �u‖L∞(I;L2(Ω)) � Cτ 1− 1
s ‖∂t�u‖Ls(I;L2(Ω)).

The spatial error is estimated by Proposition 7.3 resulting in

‖�u − RS
h(�u, p)‖Ls(I;L2(Ω)) � Ch2

(
‖∇2�u‖Ls(I;L2(Ω)) + ‖∇p‖Ls(I;L2(Ω))

)
.

Using maximal parabolic regularity and the convexity of Ω (see Remarks 2.7 and 2.9 and Corollary 2.11)
we obtain

‖∂t�u‖Ls(I;L2(Ω)) + ‖∇2�u‖Ls(I;L2(Ω)) + ‖∇p‖Ls(I;L2(Ω)) �
Cs2

s − 1

(
‖�f ‖Ls(I;L2(Ω)) + ‖�u0‖�V2

)
.

For s ≥ 2, we have s2

s−1 � 2s. We choose s = 2 ln T
τ

≥ 2 and get

τ− 1
s = T − 1

s

(
T

τ

) 1
s

� C(T )e
1
2 .

Combining these terms, we obtain the desired estimate. �

Remark 7.5 Under the additional assumption �ut, Δ�u, ∇p ∈ L∞(I, L2(Ω)d), it is possible to remove
one of the logarithmic terms in the result of Theorem 7.4.

To compare our error estimate from Theorem 7.4 with the results from the literature we first remark
that our result especially holds for w = 0, i.e., the dG(0) discretization in time, which is known to
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STOKES BEST APPROXIMATION ESTIMATES 23

be a variant of the implicit Euler scheme. In Heywood & Rannacher (1986), the authors discuss the
discretization of the transient Navier–Stokes equation by the implicit Euler scheme in time and finite
elements in space. They prove an estimate of order O(τ + h2) (which corresponds to Theorem 7.4 up to
a logarithmic term) for the velocity error in the L∞(I, L2(Ω)d) norm; see Heywood & Rannacher (1986,
p. 765). However, they require stronger regularity assumptions, in particular ∂t

�f ∈ L∞(I; L2(Ω)d). Note
that our setting and the setting from Heywood & Rannacher (1986) are not fully comparable.

Chrysafinos & Walkington (2010) operate in a similar setting to here, discussing the discontinuous
Galerkin method for the temporal discretization of the Stokes problem. For the full discretization they
derive the following estimate (see Chrysafinos & Walkington, 2010, Theorem 4.9):

‖�u−�uτh‖L∞(I;L2(Ω)) � C
(

h
(
‖�u‖L2(I;H2(Ω))+h‖�u‖L∞(I;H2(Ω))

)
+τ

(
‖�u‖H1(I;H1(Ω))+‖�u‖W1,∞(I;L2(Ω))

)
+ h‖�u0‖H1(Ω) + ‖�u‖C(I;H2(Ω)) min

(
h3/2/τ ,

√
h/τ

)
h3/2 + h‖p‖L2(I;H1(Ω))

)

with corresponding regularity assumptions on the solution (�u, p). This estimate holds true even if the
finite element meshes change from time step to time step. In the setting of a fixed spatial mesh as
considered here, the result simplifies to

‖�u − �uτh‖L∞(I;L2(Ω)) � C
(

h
(
‖�u‖L2(I;H2(Ω)) + h‖�u‖L∞(I;H2(Ω))

)
+ τ

(
‖�u‖H1(I;H1(Ω)) + ‖�u‖W1,∞(I;L2(Ω))

)
+ h‖�u0‖H1(Ω) + h‖p‖L2(I;H1(Ω))

)
(7.1)

providing an O(τ+h) order of convergence. The only first order in h is due to the fact that in Chrysafinos
& Walkington (2010) the L∞(I; L2(Ω)) norm is estimated simultaneously with the L2(I; H1(Ω)) norm
of the error. Comparing our result in Theorem 7.4 with (7.1), we want to emphasize that we require
much less regularity and provide a better convergence order with respect to h.

8. Discrete regularity estimate for the pressure

The above results have so far been solely focused on the velocity estimates. To provide estimates in
tune with Corollary 2.11 also in the discrete setting, we extend the results from Section 5 to the gradient
of the pressure for certain finite element discretizations. These pressure estimates do not immediately
lead to best approximation results as in the velocity case above, but to our knowledge discrete regularity
estimates for the pressure have not yet been reported. In this section we assume the domain Ω to be
convex and will use the estimate discussed in Remark 5.4, i.e.,

max
1�m�M

‖∂t�uτh‖L∞(Im;L2(Ω)) + ‖Δh�uτh‖L∞(I;L2(Ω))

+ max
1�m�M

‖τ−1
m [�uτh]m−1‖L2(Ω) � C ln

T

τ
‖Ph

�f ‖L∞(I;L2(Ω)), (8.1)

in the setting of Theorem 5.2.
In the sequel, we require the following proposition, which is given in Guzman et al. (2013,

Theorems 3.6, 4.1).
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Proposition 8.1 Let �Xh ×Mh fulfill the inf-sup condition in (3.1) and the discrete pressure space fulfill
the assumption Mh ⊂ L2

0(Ω) ∩ H1(Ω). Then there holds

sup
�vh∈�Xh,�vh 	=�0

(∇lh, �vh)

‖�vh‖L2(Ω)

� C‖∇lh‖L2(Ω) ∀ lh ∈ Mh.

Note, that ∇lh is well defined for these finite element spaces. Finite element spaces that fulfill these
assumptions are, among others, Taylor-Hood or Mini finite element spaces

The next theorem provides a discrete regularity estimate for the pressure.

Theorem 8.2 Let 1 � s � ∞, Ω be convex, �f ∈ Ls(I, L2(Ω)d) and �u0 = 0. Moreover, let the
assumptions of Proposition 8.1 and Remark 5.4 be fulfilled. Let (�uτh, pτh) ∈ Xw

τ (�Xh × Mh) be the
solution to (4.11). Then there holds

‖∇pτh‖Ls(I;L2(Ω)) � C ln
T

τ
‖�f ‖Ls(I;L2(Ω)).

Proof. We first consider the case s = ∞.
Let t̃ ∈ Im̃ for 1 � m̃ � M, and let θ(t) from the proof of Theorem 6.2 be the regularized Dirac

function supported in the interior of the time interval Im̃ (cf. (6.3)) such that for t̃ ∈ Im̃ it holds by
Proposition 8.1 and integration by parts that

‖∇pτh(t̃)‖L2(Ω) � C sup
�vh∈�Xh,�vh 	=�0

(∇pτh(t̃), �vh)Ω

‖�vh‖L2(Ω)

= C sup
�vh∈�Xh,�vh 	=�0

(∇pτh, θ�vh)I×Ω

‖�vh‖L2(Ω)

= C sup
�vh∈�Xh,�vh 	=�0

(−pτh, θ∇ · �vh)I×Ω

‖�vh‖L2(Ω)

.

Since pτh(�x) is in Xw
τ (L2(Ω)), using the orthogonal projection Pτ from (4.1) we have

(pτh, θ∇ · �vh)I×Ω = (pτh, Pτ (θ)∇ · �vh)I×Ω = (pτh, ∇ · (Pτ (θ)�vh))I×Ω .

Notice that since here Pτ (θ(t)) ∈ Xw
τ (L2(Ω)) and it is constant in space and �vh ∈ �Xh is constant in time,

we have Pτ (θ)�vh ∈ Xw
τ (�Xh). Thus, testing the weak formulation of the fully discrete Stokes problem in

(4.5) with (Pτ (θ)�vh, 0), we have

(pτh, ∇ · (Pτ (θ)�vh))I×Ω =
M∑

m=1

〈∂t�uτh, Pτ (θ)�vh〉Im×Ω − (Δh�uτh, Pτ (θ)�vh)I×Ω

+
M∑

m=2

([�uτh]m−1, (Pτ (θ))+m−1�vh)Ω − (�f , Pτ (θ)�vh)I×Ω ,
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using that �u0 = �0 and the definition of Δh for the second term. Using the Hölder inequality, we obtain
the following estimate:

|(pτh, ∇ · Pτ (θ)�vh)I×Ω | �
[

max
1�m�M

‖∂t�uτh‖L∞(Im;L2(Ω)) + ‖Δh�uτh‖L∞(I;L2(Ω)) + ‖�f ‖L∞(I;L2(Ω))

]

× ‖Pτ (θ)�vh‖L1(I;L2(Ω))

+ max
2�m�M

‖τ−1
m [�uτh]m−1‖L2(Ω)

M∑
m=1

τm‖(Pτ (θ))+m−1�vh‖L2(Ω).

Applying the stability of Pτ (4.2) and the bound of θ(t) in the L1 norm, we have

‖Pτ (θ)�vh‖L1(I;L2(Ω)) � C‖θ‖L1(I)‖�vh‖L2(Ω) � C‖�vh‖L2(Ω).

Since θ is supported in the interior of Im̃ and Pτ (θ)m = 0 for all m 	= m̃, we obtain by

|Pτ (θ)+m̃ | � C‖θ‖L∞(Im̃) � Cτ−1
m̃

(cf. Schatz & Wahlbin, 1995, (eq. A.2)) and the second assumption on the time mesh that

τm̃+1‖Pτ (θ)+m̃�vh‖L2(Ω) � C‖�vh‖L2(Ω).

By (8.1) we obtain

max
1�m�M

‖∂t�uτh‖L∞(Im;L2(Ω)) + ‖Δh�uτh‖L∞(I;L2(Ω))

+ max
2�m�M

‖τ−1
m [�uτh]m−1‖L2(Ω) � C ln

T

τ
‖�f‖L∞(I;L2(Ω)).

Collecting the estimates above, we establish that for any t̃ ∈ I,

‖∇pτh(t̃)‖L2(Ω) � C sup
�vh∈�Xh,�vh 	=�0

(−pτh, θ∇ · �vh)I×Ω

‖�vh‖L2(Ω)

� C ln
T

τ
‖�f ‖L∞(I;L2(Ω)).

Next we discuss the case s = 1. Here, direct application of Proposition 8.1 leads to a �vh that
is dependent on time and thus cannot be separated from the time integral, which leads to technical
difficulties. Thus, we will pursue a similar approach to above. We can expand the norm as follows:

‖∇pτh‖L1(I;L2(Ω)) =
M∑

m=1

∫
Im

‖∇pτh‖L2(Ω) dt �
M∑

m=1

τm‖∇pτh‖L∞(Im;L2(Ω)).
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Similarly to the case s = ∞, using regularized Dirac functions θm(t) from the proof of Theorem 6.2 for
t̃m ∈ Im, we have

M∑
m=1

τm‖∇pτh(t̃m)‖L2(Ω) � C
M∑

m=1

τm sup
�vm

h ∈�Xh,�vm
h 	=�0

(∇pτh(t̃m), �vm
h )Ω

‖�vm
h ‖L2(Ω)

= C
M∑

m=1

τm sup
�vm

h ∈�Xh,�vm
h 	=�0

(∇pτh, θm�vm
h )Im×Ω

‖�vm
h ‖L2(Ω)

,

where in the last step we used that θm is supported in Im. Since �vm
h and τm are constants on each Im, we

can pull the supremum out of the sum, to obtain

M∑
m=1

τm‖∇pτh(t̃m)‖L2(Ω) � C
M∑

m=1

sup
�vm

h ∈�Xh,�vm
h 	=�0

(
∇pτh,

θmτm�vm
h

‖�vm
h ‖L2(Ω)

)
Im×Ω

= C
M∑

m=1

sup
�vm

h ∈�Xh,�vm
h 	=�0

(
∇pτh,

Pτ (θ
m)τm�vm

h

‖�vm
h ‖L2(Ω)

)
Im×Ω

= C sup
�v1

h∈�Xh,...,�vM
h ∈�Xh

�v1
h 	=�0,...,�vM

h 	=�0

(
∇pτh,

M∑
m=1

Pτ (θ
m)τm�vm

h

‖�vm
h ‖L2(Ω)

)
I×Ω

= C sup
�v1

h∈�Xh,...,�vM
h ∈�Xh

�v1
h 	=�0,...,�vM

h 	=�0

(∇pτh, �̃vτh)I×Ω ,

where we defined �̃vτh ∈ Xw
τ (�Xh) by

�̃vτh :=
M∑

m=1

Pτ (θ
m)τm�vm

h

‖�vm
h ‖L2(Ω)

.

Using the weak formulation in (4.5) and the Hölder estimate as before, we see

|(∇pτh, �̃vτh)I×Ω | � C

[ M∑
m=1

‖∂t�uτh‖L1(Im;L2(Ω)) + ‖Δh�uτh‖L1(I;L2(Ω)) +
M∑

m=2

τm‖τ−1
m [�uτh]m−1‖L2(Ω)

+ ‖�f ‖L1(I;L2(Ω))

]
×

[
max

1�m�M
‖�̃v+

τh,m−1‖L2(Ω) + ‖�̃vτh‖L∞(I;L2(Ω))

]
.
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By Remark 5.4 and Theorem 5.2, for s = 1 we have, similar to (8.1),

M∑
m=1

‖∂t�uτh‖L1(Im;L2(Ω)) + ‖Δh�uτh‖L1(I;L2(Ω)) +
M∑

m=2

τm‖τ−1
m [�uτh]m−1‖L2(Ω) � C ln

T

τ
‖�f ‖L1(I;L2(Ω)).

Using the stability of Pτ in L∞(I) (4.2), we obtain

‖�̃vτh‖L∞(I;L2(Ω)) = max
1�m�M

‖�̃vτh,m‖L∞(Im;L2(Ω)) = max
1�m�M

‖Pτ (θ
m)τm�vm

h ‖L∞(Im;L2(Ω))

‖�vm
h ‖L2(Ω)

� max
1�m�M

C‖θm‖L∞(Im)τm‖�vm
h ‖L2(Ω)

‖�vm
h ‖L2(Ω)

� max
1�m�M

C,

where we used that ‖θm‖L∞(Im) � Cτm
−1. Similarly, max1�m�M‖�̃v+

τh,m−1‖L2(Ω) � C. Combining the
steps above, we arrive at the following estimate:

‖∇pτh‖L1(I;L2(Ω)) �
M∑

m=1

τm‖∇pτh‖L∞(Im;L2(Ω)) � C ln
T

τ
‖�f‖L1(I;L2(Ω)).

This shows the estimate in L1(I; L2(Ω)). By interpolation we obtain the result for 1 � s � ∞. �

Corollary 8.3 Let pτh be the pressure solution to (4.5) with �f = �0. Moreover, let the assumptions of
Proposition 8.1 and Remark 5.4 be fulfilled. Then, there holds for m = 1, 2, . . . , M,

‖∇pτh‖L∞(Im;L2(Ω)) �
C

tm
‖�u0‖L2(Ω).

Proof. The result follows by the same arguments that we used to show the theorem above. A notable
difference is that we only consider Im here, not the whole domain, and use Theorem 5.1 instead of
Theorem 5.2. �
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