

Stormtime energetics: Energy transport across the magnetopause in a global MHD simulation

Austin Brenner^{1,3,*}, Tuija I. Pulkkinen^{1,2}, Qusai Al Shidi¹, and Gabor Toth¹

¹Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

²Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland

³Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

Correspondence*:

Austin Brenner, Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA
aubr@umich.edu

2 ABSTRACT

3 Coupling between the solar wind and magnetosphere can be expressed in terms of energy
4 transfer through the separating boundary known as the magnetopause. Geospace simulation
5 is performed using the Space Weather Modeling Framework (SWMF) of a multi-ICME impact
6 event on February 18-20, 2014 in order to study the energy transfer through the magnetopause
7 during storm conditions. The magnetopause boundary is identified using a modified plasma β
8 and fully closed field line criteria to a downstream distance of $-20R_e$. Observations from Geotail,
9 Themis, and Cluster are used as well as the Shue 1998 model to verify the simulation field
10 data results and magnetopause boundary location. Once the boundary is identified, energy
11 transfer is calculated in terms of total energy flux \mathbf{K} , Poynting flux \mathbf{S} , and hydrodynamic flux \mathbf{H} .
12 Surface motion effects are considered and the regional distribution of energy transfer on the
13 magnetopause surface is explored in terms of dayside ($X > 0$), flank ($X < 0$), and tail cross
14 section ($X = X_{min}$) regions. It is found that total integrated energy flux over the boundary is
15 nearly balanced between injection and escape, and flank contributions dominate the Poynting flux
16 injection. Poynting flux dominates net energy input, while hydrodynamic flux dominates energy
17 output. Surface fluctuations contribute significantly to net energy transfer and comparison with the
18 Shue model reveals varying levels of cylindrical asymmetry in the magnetopause flank throughout
19 the event. Finally existing energy coupling proxies such as the Akasofu ϵ parameter and Newell
20 coupling function are compared with the energy transfer results.

21 **Keywords:** Space plasma, Magnetosphere, Magnetopause, Substorm, Energy transfer, Poynting flux, MHD simulations

1 INTRODUCTION

22 The past decades have greatly advanced our understanding of the dynamics in the space environment.
23 The currently operative fleet termed by NASA as the Heliophysics System Observatory comprises several
24 spacecraft in the solar wind (WIND, ACE, DSCOVR) and in the magnetosphere (Geotail, Cluster, THEMIS,
25 MMS, AMPERE). Multipoint measurements can be made in electron (MMS), ion (Cluster), and mesoscales
26 (THEMIS). Meanwhile, advances in global solar wind – magnetosphere – ionosphere simulations such as

27 the SWMF (Space Weather Modeling Framework, Tóth et al., 2012), LFM (Lyon-Fedder-Mobarry model,
28 Lyon et al., 2004), GAMERA (Grid Agnostic MHD for Extended Research Applications, Zhang et al.,
29 2019), OpenGGCM (Open Geospace General Circulation Model, Raeder et al., 1996), and GUMICS (Grand
30 Unified Magnetosphere Ionosphere Coupling Simulation model, Janhunen et al., 2012) have increased the
31 level to which we can realistically reproduce dynamic processes in the different scales (Liemohn et al.,
32 2018).

33 One of the key questions in heliospheric physics is to resolve how the solar wind energy enters the
34 magnetosphere – ionosphere system to drive the dynamic space weather processes. In the solar wind, kinetic
35 energy density ($\frac{1}{2}\rho V^2 \sim 10^{-9}$ J/m³, where ρ is plasma density and V the solar wind speed) typically
36 exceeds the magnetic energy density ($B^2/2\mu_0 \sim 10^{-11}$ J/m³, where B is the interplanetary magnetic
37 field (IMF) intensity and μ_0 is the vacuum permeability) under typical conditions. The bow shock reduces
38 the kinetic energy density by a factor of about 4 and increases the magnetic energy density by about
39 a factor of 16, so they become comparable. However, it is the orientation of the IMF that controls the
40 magnetic reconnection process, which allows for energy and plasma transfer from one magnetic topology
41 to another (Akasofu, 1981). Global simulations have shown that the localized magnetic reconnection
42 controls the energy input into the magnetosphere, changing in intensity and location as function of the
43 solar wind density, speed, and IMF magnitude and orientation (Palmroth et al., 2003; Laitinen et al., 2006).
44 However, reconnection has also been found in association with flux transfer events (Chen et al., 2017) and
45 with boundary waves such as those driven by the Kelvin-Helmholtz instability typically observed during
46 northward IMF (Nykyri and Otto, 2001).

47 While there is general agreement that magnetic reconnection at the magnetopause is the main conduit
48 of energy entry into the magnetosphere – ionosphere system, the complexity of the processes and the
49 multiple scales in which they occur still pose many challenges for producing reliable predictions of the
50 space environment. Even without accounting for the complex inner magnetosphere processes that cannot
51 be represented by pure MHD simulations, Pulkkinen et al. (2006) and Palmroth et al. (2006) explored
52 magnetosphere reconnection under time varying solar wind drivers (solar wind speed and interplanetary
53 magnetic field controlling the magnetospheric activity) and argued that magnetopause reconnection is a
54 function of not only of the solar wind driver, but also depends on the prior level of geomagnetic activity.
55 Furthermore, the magnetosheath electric field downstream of the bow shock is slightly larger in the quasi-
56 parallel flank (Pulkkinen et al., 2016), suggesting that the foreshock waves may contribute to the way the
57 plasma and magnetic field propagate across the bow shock (Pokhotelov et al., 2013). Furthermore, Nykyri
58 et al. (2019) present an interesting case suggesting that a small-scale magnetosheath jet nudging the flank
59 magnetopause can trigger a tail reconnection event leading to a substorm onset. Such sequences demonstrate
60 the power of local disturbances to drive the magnetosphere through a large-scale reconfiguration process
61 (Baker et al., 1999).

62 In this paper we return to the question of energy transfer into and out of a closed volume of the
63 magnetosphere bounded by the magnetopause and a cross-section of the magnetotail at a given distance
64 (20 R_E). We use the University of Michigan Space Weather Modeling Framework (SWMF) simulation
65 of a storm event on Feb 18-20, 2014, to examine how the energy transfer rates correlate with empirical
66 proxies of energy entry, and how the energy input–output balance is maintained. Section 2 describes the
67 simulation setup, Section 3 presents the observations of the event, Section 4 discusses the simulation
68 analysis methodology, and Section 5 discusses the analysis results. Section 6 concludes with discussion.

2 THE SWMF GEOSPACE SIMULATION

69 We use the SWMF Geospace configuration (Tóth et al., 2012), which consists of the outer magnetosphere,
70 inner magnetosphere and ionosphere electrodynamics components. The Geospace model can run faster
71 than real time and is sufficiently accurate (Pulkkinen et al., 2013) to have been implemented by the NOAA
72 Space Weather Prediction Center for operational use.

73 The solar wind and the magnetosphere are modeled by the BATS-R-US ideal MHD model (Tóth et al.,
74 2012) with the adaptive grid resolution changing between $0.125 R_E$ near the Earth and $8R_E$ in the far tail.
75 The simulation box in the Geocentric Solar Magnetospheric (GSM) coordinates extend from $32 R_E$ to
76 $-224 R_E$ in the X direction and $\pm 128 R_E$ in the Y and Z directions. The inner boundary is a spherical
77 surface at radial distance $R = 2.5 R_E$.

78 The inner magnetosphere's non-Maxwellian plasmas are modeled by the Rice Convection Model (RCM)
79 (Toffoletto et al., 2003), which solves the bounce- and pitch-angle-averaged phase space densities for
80 protons, singly charged oxygen, and electrons in the inner magnetosphere. The MHD based model feeds
81 the outer boundary condition and magnetic field configuration to the RCM, and the RCM plasma density
82 and pressure values are used to modify the inner magnetosphere MHD solution (De Zeeuw et al., 2004).
83 The 2-way coupling of BATS-R-US with RCM is performed every 10s. Including RCM provides a much
84 improved representation of the ring current dynamics (Liemohn et al., 2018).

85 The ionospheric electrodynamics is described by the Ridley Ionosphere Model (RIM), which solves
86 the Poisson equation for the electrostatic potential distribution at a two-dimensional ionospheric surface
87 (Ridley et al., 2006). BATS-R-US feeds the RIM the field-aligned currents from the simulation inner
88 boundary, and the ionospheric conductances are derived using the incoming field-aligned current intensity
89 and location combined with background dayside and night-side conductances. The potential is set to zero
90 at the lower latitude boundary at 10° . The RIM solves the Vasyliunas (1970) equation for the electric
91 potential and feeds the electric field values back to the MHD simulation, giving a boundary condition for
92 the velocity at the inner boundary. At the same time, the electric field values are fed to the RCM via a
93 one-way coupling for determination of the drift speeds. The ionosphere and magnetosphere models are
94 coupled every 5 seconds.

3 EVENT OVERVIEW

95 We focus on a time interval that comprises two interplanetary coronal mass ejections (ICME), which are a
96 subset of a sequence of four that impacted the Earth during Feb 14-22, 2014. The geomagnetic activity
97 that followed caused a complex sequence of depletions and enhancements of the van Allen belt electron
98 populations (Kilpua et al., 2019). Here we focus on two consecutive ICMEs (second and third in the
99 sequence) that were associated with a large geomagnetic storm and strong auroral region activity.

100 The period of Feb 18-20, 2014 contained two ICMEs that occurred back to back with the sheath region
101 of the second ICME running into the ejecta of the first ICME. The first ICME impact was initiated by a
102 shock at 0706 UT on Feb 18, and the ejecta arrived at 1545 UT. The second ICME shock arrived at 0356
103 UT, and the ejecta was observed between 1245 UT on Feb 19 and 0309 on Feb 20. Figure 1 shows the
104 solar wind observations measured by the WIND spacecraft at the first Lagrangian point L1 point about
105 $220 R_E$ upstream of the Earth, and propagated to the bow shock as documented in the OMNI dataset
106 (<https://omniweb.gsfc.nasa.gov/>). The yellow and green shading indicate the ICME sheath and ejecta
107 respectively.

108 The IMF magnitude hovered between 5 and 10 nT until the second shock, when the field magnitude
 109 increased to almost 20 nT. IMF B_X was positive and small before the second ICME during which it turned
 110 strongly negative. IMF B_Y was close to zero before the second shock, which was associated with first
 111 strongly positive and then strongly negative B_Y . The B_Z decreased during the first sheath to negative, but
 112 was mostly positive during the second ejecta.

113 The proton density was generally small at about 2 cm^{-3} , but had a peak reaching above 10 cm^{-3} between
 114 about 1200-1700 UT on Feb 18. The density increased gradually after the second shock, with peaks close
 115 to and above 30 cm^{-3} around 1000 UT and 1300 UT on Feb 19, respectively. The shock at 0356 UT on
 116 Feb 19 was also associated with a jump in the solar wind speed, from the nominal value at about 400 km/s
 117 during the first ICME, to slightly higher reaching above 500 km/s during the second ICME.

118 Figure 1 also shows the Newell et al. (2007) coupling parameter, representing the rate of change of
 119 magnetic flux at the nose of the magnetopause, and is an often used measure of the energy input from the
 120 solar wind into the magnetosphere – ionosphere system. The Newell function can be written in the form

$$\frac{d\Phi_{MP}}{dt} = \alpha \left[\left(\frac{V}{1 \text{ km/s}} \right)^2 \frac{B_T}{1 \text{ nT}} \sin^4 \frac{\theta}{2} \right]^{2/3} \quad (1)$$

121 where $\theta = \tan^{-1}(B_Y/B_Z)$ is the IMF clock angle and $B_T = (B_Y^2 + B_Z^2)^{1/2}$ denotes the transverse
 122 component of the magnetic field perpendicular to the Sun-Earth line. As pointed out by Cai and Clauer
 123 (2013) and others, a normalizing factor must be included for the coupling function to have units of Wb/s.
 124 For this work $\alpha = 10^3 \text{ Wb/s}$ was chosen as a normalizing factor. The periods with largest Newell function
 125 values occurred during the ejecta of the first ICME and the sheath region of the second ICME. The ejecta
 126 of the second ICME occurred during northward IMF, and the Newell function during that period was small.

127 The following panels of Figure 1 show the magnetospheric response to the solar wind driving. A proxy
 128 for the subsolar magnetopause standoff distance R_{MP} is given by the empirical Shue et al. (1998) model

$$R_{MP} = \left[10.22R_E + 1.29R_E \cdot \tanh \left(0.184 \frac{B_Z}{1 \text{ nT}} + 1.498 \right) \right] \left(\frac{P}{1 \text{ nPa}} \right)^{-1/6.6} \quad (2)$$

129 where P is the solar wind dynamic pressure $P = \rho V^2$, ρ is the plasma mass density, and the factor
 130 $1.498 = 0.184 \cdot 8.14$ used in the original paper. While the first ICME did not cause major compression of
 131 the magnetopause, the sheath region of the second ICME pushed the magnetopause to near $8 R_E$, and the
 132 arrival of the ejecta compressed the magnetopause even closer to the Earth.

133 The sixth panel of Figure 1 shows an empirical proxy for the cross-polar cap potential (CPCP) given
 134 by Ridley and Kihl (2004) as a function of the polar cap index (PCI) measured in the northern polar cap
 135 (Thule station) and season. In this formulation, the CPCP is given in the form

$$CPCP = 29.28 \text{ kV} - 3.31 \text{ kV} \cdot \sin(T + 1.49) + 17.81 \text{ kV} \cdot PCI / (1 \text{ mV/m}), \quad (3)$$

136 where the time of year is scaled as $T = 2\pi(N_{MONTH}/12)$ and the numbering of months starts from zero
 137 (Jan = 0, Jul = 6). The polar cap potential was above 50 kV for the early part of the interval, but peaked at
 138 nearly 200 kV following the second shock, reducing to below 50 kV as the IMF turned northward.

139 The two bottom panels show the storm time index SYM-H and the auroral electrojet index AL, measuring
140 the intensity of the ring current and westward ionospheric current, respectively. The sheath region of the
141 first ICME had no marked effects on the inner magnetosphere or auroral currents, but both intensified
142 strongly during the ejecta passage during the latter part of Feb 18. The second ICME sheath region in the
143 interval was characterized by strongly southward IMF, and consequently drove very strong auroral currents
144 and led to strong enhancement of the SYM-H index. The second ICME ejecta was associated with recovery
145 of the ring current as well as quieting of the auroral currents.

146 The magenta lines in Figure 1 show the SWMF results in comparison with the observations. The SWMF
147 Geospace simulation reproduces the subsolar magnetopause position to high accuracy with the exception
148 of a diversion during the latter part of Feb 19th. The polar cap potential agrees quite well with the Ridley
149 and Kihn (2004) empirical proxy. While the SYM-H index is quite well reproduced by the simulation,
150 the simulation AL index does not reach the observed very high intensity during the second ICME sheath
151 region.

4 MAGNETOSPHERIC BOUNDARY MOTION

152 Several of the Heliophysics System Observatory spacecraft were monitoring the dynamics of the
153 magnetospheric boundaries at the time of the storm. The Cluster 4-spacecraft constellation as well as
154 Geotail were on the dayside, traversing through the bow shock and magnetopause. The three inner THEMIS
155 spacecraft A, D, and E had their apogee on the dayside skimming the dayside magnetopause. THEMIS B
156 and THEMIS C were in the dawn flank, moving outward toward the nominal bow shock location. Figure
157 2 shows the spacecraft trajectories in the GSM equatorial plane projection during the 2-day period. The
158 grey shadings indicate a range of magnetopause and bow shock positions that empirical models predict for
159 conditions that were observed during the interval.

160 In order to examine how well the SWMF Geospace simulation reproduces the magnetospheric boundary
161 locations during this interval, we use observations from all five THEMIS craft, from Geotail, and from
162 Cluster 4. Figures 3 – 5 show magnetic field magnitude observations and simulation results. The vertical
163 lines point out key times when there were changes in the solar wind and IMF (shown in black solid lines)
164 or in the ground-based magnetic indices (substorm onsets, shown with dotted lines).

165 Figure 3 shows the Geotail and Cluster-1 measurements of the magnetic field magnitude (the Cluster
166 craft were close together, and show essentially similar behavior). The top panel repeats the OMNI IMF
167 magnitude for reference. Geotail was in the solar wind, traveling inbound, monitoring the near-shock IMF
168 until entering into the magnetosheath at about 20 UT on Feb 19. Cluster crossed from the magnetopause
169 into the magnetosheath at around 07 UT and into the solar wind at around 12 UT on Feb 18. Cluster
170 showed a brief encounter with the magnetosheath around 18 UT, a longer encounter between 20 UT on Feb
171 18 and 04 UT on Feb 19, and exited to the solar wind with the arrival of the sheath region of the second
172 ICME which was associated with a strong compression of the magnetosphere. On its inbound path, Cluster
173 crossed back to the magnetosheath at about 17 UT and into the magnetosphere at about 20 UT on Feb 19.

174 Figure 4 shows the THEMIS B and THEMIS C measurements at the dawn flank, close to the bow shock
175 as demonstrated by the field values close to the IMF value combined with foreshock fluctuations. Both
176 craft recorded a strong enhancement of the magnetic field in response to the increased IMF magnitude
177 at about 04 UT on Feb 19 exceeding that of the IMF, indicating that the craft crossed the shock into the
178 magnetosheath. As the IMF magnitude decreased, the THEMIS spacecraft returned to the solar wind.

179 Figure 5 shows the three inner THEMIS spacecraft observations of the dayside magnetospheric magnetic
 180 field. The large changes in IMF magnitude are seen as compression and relaxation in the dayside magnetic
 181 field as observed by all three spacecraft. Following the strongest compression period, THEMIS D and E
 182 crossed into the magnetosheath and during brief periods even to the pristine solar wind.

183 In each of the figures, the SWMF simulation results for the spacecraft locations are shown with magenta
 184 lines. In general, the boundary crossings associated with the inward motion of the magnetopause as the
 185 field magnitude increases are well reproduced by the simulation, while there are some timing differences
 186 associated with the boundary crossings.

187 The Geotail and Cluster virtual spacecraft time series match closely with observations other than brief
 188 enhancements, for the Geotail spacecraft around 23 UT on Feb 18 and for Cluster 4 most significantly
 189 shortly after 4 UT. Both simulation time series also show an early enhancement of B near the end of the
 190 simulation as they approach the magnetopause, indicating that the model magnetopause was slightly further
 191 out than the real one.

192 For THEMIS B and C, the only major difference between the simulation and observations is during
 193 the second ICME ejecta, when the simulation shows that the THEMIS location is immersed in the
 194 magnetosheath, shown as a strong and rapid increase and decrease of the simulated magnetic field
 195 magnitude between about 01 and 05 UT on Feb 19. The fluctuating field magnitude especially observed
 196 by THEMIS C is indicative of the spacecraft location very close to the bow shock, indicating that the
 197 simulation is likely showing only a minor deviation from the real location of the bow shock. The virtual
 198 spacecraft results of for the dayside THEMIS probes A, D, and E show minor timing errors and an overall
 199 lack of high-frequency oscillations in the magnetic field magnitude.

200 In Figure 5, times when the spacecraft locator (Staples et al., 2020) predicted magnetopause crossings
 201 are marked with red vertical lines (see also Figure 2). The local B magnitude average near the identified
 202 magnetopause crossings gives an indication that the magnetopause location is well reproduced with the
 203 simulation.

5 BOUNDARY IDENTIFICATION IN THE SIMULATION

204 In order to quantify the energy transfer into the magnetosphere, we need to identify the magnetopause
 205 surface in the simulation. While the magnetopause can be topologically defined as the boundary between
 206 open and closed field lines in the dayside, it is often not a practical way to define the surface beyond the
 207 (quasi)dipolar region. In this work, the magnetopause identification was done via a field variable iso-surface
 208 of a modified plasma β parameter, which includes the MHD ram pressure ($P = \rho V^2$) as part of the plasma
 209 pressure,

$$\beta^* = \frac{P_{th} + P}{B^2/2\mu_0} \quad (4)$$

210 where P_{th} is the plasma thermal pressure. This isosurface was expanded to include the fully closed field
 211 line region found by field line tracing techniques during simulation run time. The iso-surface generation
 212 technique was that provided by the "all triangles" creation method available in Tecplot software (Tecplot
 213 360 EX 2020 R1, Version 2020.1.0.107285, Jul 13 2020). The magnetospheric volume is closed by a
 214 cross-section of the tail at a constant X -value. Note that high β^* plasma in the plasma sheet that is no
 215 longer on fully closed field lines can be found at distances within the constant X closure so the back surface
 216 was not always a perfect plane.

217 Figure 6 shows color contours of β^* in the $Y = 0$ plane, which shows that there is a sharp gradient in the
 218 contour around the selected boundary value of 0.7. The sharp gradient demonstrates the insensitivity of the
 219 exact β^* iso-surface level to the boundary location results. Indeed, multiple values of β^* were tried and 0.7
 220 was selected in order to push the boundary as far out as possible without pushing the dayside boundary
 221 sunward of the last closed fieldline, where β^* can drop significantly. If this effect was compensated for
 222 separately, any value between 0.1 and 1.5 should yield similar results.

223 The complete closed 3D surface was split into dayside, flank, and tail subsections such that the dayside
 224 corresponds to the region with $X > 0$, the tail cross-section is defined by $X = X_{min}$ mostly in the YZ_{GSM}
 225 plane, and the flank is the remaining magnetopause surface area between the terminator and $X = X_{min}$.
 226 The top panels of Figure 7 show the identified surface with dayside highlighted in light blue, magnetotail
 227 lobes in dark blue, and the tail cross section at $X_{min} = -20R_E$ in purple. These surfaces combined form a
 228 closed surface that we use to examine energy flow into and out of the (inner part) of the magnetosphere.

6 ENERGY TRANSFER THROUGH A SIMULATION SURFACE

229 The total energy density U within a plasma volume is given in the MHD limit as

$$U = \frac{1}{2}\rho V^2 + \frac{1}{\gamma - 1}P_{th} + \frac{B^2}{2\mu_0} \quad (5)$$

230 where $\gamma = 5/3$ is the ratio of specific heats. The corresponding total energy flux vector \mathbf{K} is then given by

$$\mathbf{K} = \left(\frac{1}{2}\rho V^2 + \frac{\gamma}{\gamma - 1}P_{th} + \frac{B^2}{\mu_0} \right) \mathbf{V} - \frac{\mathbf{B} \cdot \mathbf{V}}{\mu_0} \mathbf{B} \quad (6)$$

231 In order to examine the relative contributions of the plasma and electromagnetic processes, we re-arrange
 232 the equation to a sum of hydrodynamic energy flux \mathbf{H} and Poynting flux $\mathbf{S} = (\mathbf{E} \times \mathbf{B})/\mu_0$ to read

$$\mathbf{K} = \left(\frac{1}{2}\rho V^2 + \frac{\gamma}{\gamma - 1}P_{th} \right) \mathbf{V} + \left(\frac{B^2}{\mu_0} \mathbf{V} - \frac{\mathbf{B} \cdot \mathbf{V}}{\mu_0} \mathbf{B} \right) = \mathbf{H} + \mathbf{S} \quad (7)$$

233 The energy transfer through the boundary specified in the previous section is given by the component of the
 234 energy fluxes normal to the boundary ($\mathbf{K} \cdot \mathbf{n}$), using the convention that the surface normal \mathbf{n} points outward.
 235 The total energy flux rate is then obtained by integration over the entire surface area: $K_{tot} = \int_A \mathbf{K} \cdot d\mathbf{A}$.
 236 Using this notation, negative values of the flux through the surface ($\mathbf{K} \cdot \mathbf{n} < 0$) indicate total energy
 237 injection through the magnetopause into the magnetosphere. The time rate of change of the total energy
 238 enclosed within the boundary is then given as the net transport across the surface.

239 At times when the solar wind is rapidly changing and the magnetopause undergoes rapid compression or
 240 expansion, it is necessary to include the boundary motion into the equation. This can be done using the
 241 Reynolds transport theorem that describe the time rate of change of the total energy – the energy that is
 242 added to and lost from the volume enclosed by a surface in motion. Using the Reynolds transport theorem,
 243 the time rate of change of the total energy density (U) within the volume enclosed by the magnetopause
 244 (including the tail cross section closing the surface) can be written in the form

$$\frac{d}{dt} \int_V U dV = - \int_{A(t)} (\mathbf{K} - U \mathbf{q}) \cdot d\mathbf{A} \quad (8)$$

245 where \mathbf{q} is the surface velocity. Note that only the normal component of the surface velocity $\mathbf{q} \cdot \mathbf{n}$ matters.
 246 We also note that this equation does not account for the coupling to the inner magnetosphere module, which
 247 will also alter the energy density from the ideal MHD value. However, the right hand side captures all
 248 energy transfer effects at the magnetopause boundary, which is the focus of this study.

249 The surface is determined at discrete times, which means that the surface velocity has to be determined
 250 from a discrete approximation. We approximate the energy change associated with the moving boundary as
 251 a volumetric integral between the two surfaces:

$$\int_{A(t)} U \mathbf{q} \cdot d\mathbf{A} \approx \frac{1}{\delta t} \int_{\delta V} U dV, \quad (9)$$

252 where $\delta t = t_{n+1} - t_n$ is the time difference between times t_n and t_{n+1} , and δV is the signed volume
 253 between the magnetospheric surfaces at the two times. Figure 8 illustrates the sign convention for this
 254 contribution to the energy transfer. This method allows us to compute energy addition and loss due to the
 255 boundary motion separately for the dayside, flank, and tail regions.

256 The streamlines in Figure 6 show the total energy transfer vector \mathbf{K} , and demonstrate that the energy
 257 transfer vectors penetrate well into the identified surface before turning, giving further evidence that the
 258 determination of energy at the boundary is insensitive to the exact value of β^* . The bottom panels of
 259 Figure 7 show, at one given time instant, the energy flux into the magnetosphere (left) and out of the
 260 magnetosphere and through the magnetotail (right).

7 STORMTIME ENERGY TRANSFER

261 Figure 9 shows integrated energy transfer through the entire magnetopause surface broken down by type and
 262 sign. The top panel shows the total energy transfer rates, demonstrating that the net injection (brown) and
 263 escape (magenta) closely trace each other (with opposite signs). This indicates that there is much more
 264 energy flowing through the system than building up or escaping from inside the system. The net energy
 265 transfer (grey) shows short (of the order of a few hours) excursions of imbalance, but the average values
 266 are smaller than the totals by at least a factor of two.

267 The next two panels of Figure 9 show the Poynting flux and hydrodynamic energy components of energy
 268 transfer. The energy injection is clearly dominated by the Poynting flux, while the Poynting flux has only a
 269 minor effect on the energy escape. On the other hand, hydrodynamic energy dominates the energy escape.
 270 Both types of energy as well as the total energy transfer rates clearly increase during the high ram pressure,
 271 high IMF magnitude portion of the event.

272 Figure 10 shows the contribution to the total energy transfer solely from the moving surface, using the
 273 right hand side of Equation 9. The net energy transfer from the combined static and motional effects is
 274 shown in grey shading for comparison. The motional contributions of energy injection and escape are
 275 often unbalanced, which results in the surface motion making a major contribution to the net totals. The top
 276 panel showing the solar wind ram pressure demonstrates a clear correlation with (changes in) the pressure
 277 and the boundary motion contribution to the energy transfer. As expected, during ram pressure spikes the
 278 surface volume decreases and energy escapes from the magnetosphere, especially during the oscillating
 279 behaviour of the volume beginning around 05 UT on the 19th (based on the relation between standoff
 280 distance and ram pressure the ram pressure and volume raised to -2.2 should scale about linearly; the
 281 Pearson correlation coefficient between the two is about 0.65). The first small enhancement in energy
 282 transfer due to the moving surface occurs during the first ICME ejecta and is due to enhanced energy in the

283 flowfield, which cause relatively small fluctuations in surface velocity to transfer significant energy. The
284 next enhancement results in net energy escape and is due to a dramatic shape change in the magnetosphere
285 volume along the closed field line 'wings' in the equatorial plane. Similar to the first energy enhancement
286 the latter part of the event contains enhanced IMF magnitude which results in large changes in energy
287 transfers due to the moving surface.

288 The bottom panel of Figure 10 shows the volume enclosed by the surface created by the magnetopause
289 and the tail cross section, using the Shue et al. (1998) model (black) and the surface identified from
290 the SWMF Geospace simulation (magenta). While the two volumes generally correlate well, there are
291 differences especially prior to when the strongest storm activity begins.

292 Figure 11 shows the contributions from the dayside, flank and tail stacked together to equal the total
293 injection (negative) and escape (positive) for each type of energy. The top panel, which shows the total
294 energy transfer indicates that the flank contribution can reach the level of the dayside energy transfer, while
295 the tail cross-section consistently has only a small contribution. The second panel of Figure 11 shows
296 that the dayside contribution to Poynting flux is quite steady throughout the event and is primarily energy
297 escape, while the flank region contributes more to energy injection throughout the event and contains
298 almost all of the high Poynting flux transfers both into and out of the magnetosphere. The bottom panel
299 shows the breakdown for the total energy transfer by region in terms of percent contribution to better
300 illustrate the tradeoff between the dayside and flank. The times when the flank contribution overtakes the
301 dayside contribution appears to coincide with periods when high energy transfer on the surface is advected
302 along the magnetopause surface from the dayside to the flank. These transient periods can also be seen in
303 the third panel, in the distance between sharp drops in the dayside contribution in light blue and the total
304 energy transfer indicated by the extremes of the curves.

8 DISCUSSION

305 In this paper, we have developed a method to identify the magnetopause boundary from a global MHD
306 simulation, and calculate the energy transfer through that boundary into and out of the magnetosphere
307 during a large geomagnetic storm. We examined the energy entry and exit separately, integrating the
308 totals over the closed surface. Moreover, we examined contributions from the dayside (Sunward of the
309 terminator), from the flanks (magnetopause between the terminator and $X = -20 R_E$) and the tail cross
310 section at the $X = -20 R_E$ plane, and computed the energy components related to the Poynting flux and
311 hydrodynamic energy flux separately.

312 The most striking conclusion from our study is that most of the time, there is significant energy injection
313 into the magnetosphere, but it is (almost) balanced by energy escaping the system. Our results show that
314 most of the energy enters as Poynting flux, while the escape is dominated by the hydrodynamic energy flux
315 (Figure 9). The energy transfer processes are most active in the dayside region (Sunward of the terminator),
316 while the flank processes can be dominant at times. More events need to be analyzed to distinguish the
317 conditions that dictate where the energy transfer processes take place. A lot of magnetospheric research
318 has focused on processes in the magnetotail and estimating the energy that is associated with plasmoids
319 leaving the system (e.g. Baker et al., 1996; Angelopoulos et al., 2013). However, our analysis shows that,
320 in the large scale, the magnetotail plays only a minor role in the overall energy transfer. More detailed
321 study focusing on substorm periods is needed to assess how important the tail contribution is during the
322 substorm expansion phases.

323 Earlier work by Palmroth et al. (2003) shows an analogous analysis of magnetopause energy transfer in a
324 global MHD simulation. Their results are based on a different method for magnetopause identification,

325 they did not consider the effects of the boundary motion, and their simulation did not include the inner
326 magnetosphere ring current contribution that in our case is represented via the coupling of the Rice
327 Convection Model to the global MHD model. However, in the large scale, the results are analogous,
328 showing the significant energy transfer along the tail flanks, and strongly and rapidly varying location and
329 intensity of the energy transfer processes. While their tail integration extended out to $30 R_E$, and they did
330 not include a magnetotail cross section, the overall magnitudes are comparable (Pulkkinen et al., 2008),
331 which speaks to the robustness of the procedure. A more recent study by Jing et al. (2014) used SWMF
332 with the magnetopause detection technique of Palmroth et al. (2006) and results support their findings,
333 giving further confidence to the tools used for this study.

334 Observationally, the spaceborne measurements are not sufficient to yield global energy transfer rate
335 estimates, but a significant body of work has assessed the role of the IMF components, the solar wind
336 density and speed, and the solar wind electric field in the efficiency of the energy transfer process. Several
337 coupling parameters relating the solar wind driver to the geomagnetic indices such as AL or Dst have
338 been devised: The most widely used are the solar wind electric field $E_Y = V_X B_Z$ (where V_X is negative)
339 (Burton et al., 1975), the rectified solar wind electric field $E_S = \max(E_Y, 0)$ (so $E_S = 0$ for $B_Z > 0$)
340 (McPherron et al., 2013), or the electric field parallel to the large-scale neutral line at the magnetopause
341 (Pulkkinen et al., 2010). More complicated functions include the epsilon-parameter ($\epsilon = 10^7 v B^2 \sin^4(\theta/2)$)
342 introduced by (Akasofu, 1981) and the (Newell et al., 2007) coupling parameter given by Equation 1.

343 The top panel of Figure 12 shows a comparison of the energy injection rate integrated over the entire
344 surface compared with the Akasofu epsilon-parameter. While the magnitudes differ (the ϵ -parameter has
345 empirical scaling that originally was matched with the Dst and AL contributions), the shape of the functions
346 agree very well, indicating that the gating function $\sin^4(\theta/2)$ in the ϵ -parameter is quite representative of
347 the energy entry process.

348 The second panel of Figure 12 shows a similar comparison with the Newell coupling function and the
349 polar cap potential in the simulation northern and southern ionosphere. Using the scaling for the Newell
350 coupling parameter introduced by Cai and Clauer (2013), the magnitudes as well as the functional forms
351 agree quite well, indicating that the Newell coupling function is a good proxy for energy that enters the
352 polar ionospheres.

353 While the focus of this work is on the energy coupling at the magnetopause boundary, the energy
354 density was also integrated over the entire volume to compare with the ground magnetic perturbation.
355 The bottom panel of Figure 12 shows a high degree of correlation between the total energy and ground
356 magnetic perturbation represented by the Dst index. This correlation is expected considering the theoretical
357 formulation of the Dessler-Parker-Sckopke relation Dessler and Parker (1959) and the more general
358 applications of the virial theorem as reviewed by Carovillano and Siscoe (1973). The clear connection
359 between the total energy and ground magnetic perturbation underlines the importance of studying
360 magnetosphere coupling in terms of energy transport.

361 The addition of the surface motion makes significant contributions to the energy transfer integrated totals
362 despite having a relatively low amplitude due to the unbalanced contributions to energy injection and escape.
363 Comparisons of the volume to the Shue model reveal a high degree of cylindrical asymmetry as the closed
364 field line regions expand and are then lost, first by an internal process and again corresponding to a solar
365 wind ram pressure spike. This effect can clearly be seen in the observations of ground magnetic perturbation
366 and total energy around 04 UT on the 19th when the second ICME shock impacts. During this time a portion
367 of the lateral closed field line region is lost, the volume undergoes rapid decrease, the simulated total energy

368 sharply decreases in magnitude, and the energy spike is matched by both the simulated and ground based
369 observation. Further studies are needed to understand what takes place in the magnetosphere during these
370 fluctuations, to determine how much of the motion is due to magnetopause boundary oscillations. The
371 results also show that the moving surface contribution is sensitive to the surrounding flowfield properties:
372 When more energy density is contained in the magnetosheath, a relatively small fluctuation in surface
373 position can result in large energy transfer.

9 CONCLUSIONS

374 In this work a 3D simulation was used to investigate the magnetosphere solar wind coupling during a very
375 active event. In situ observations were combined with ground measurements of magnetic perturbations and
376 empirical models were employed to better understand the expected behavior of the magnetosphere system
377 and to validate the simulation results.

378 The main conclusions can be summarized as:

- 379 1. We have developed a robust method to assess the energy entry through the magnetopause into the
380 magnetosphere. The energy entry is dominated by the Poynting flux, while the energy escapes from
381 the system mainly in the form of hydrodynamic energy flux.
- 382 2. While dayside reconnection is an important process for the energy transfer, the energy transfer occurs
383 throughout the magnetopause surface, with the flank contribution often being dominant.
- 384 3. Motion of the magnetopause causes an important contribution to the energy transfer rates, and thus
385 cannot be ignored in the energy transfer rate computations.
- 386 4. The energy injection rate scales well with the Akasofu epsilon-function, while the total energy
387 integrated within the closed volume defined by the magnetopause and a tail cross section (at $X =$
388 $-20R_E$) has a very similar functional shape to the Dst index, highlighting the ability of the Dst to
389 capture the energy content within the magnetosphere.
- 390 5. The simulation magnetosphere shows significant asymmetry (deviation from rotational symmetry
391 of the magnetopause surface). This leads to significant differences between volume estimates using
392 the true magnetopause surface and empirical models especially during rapid variations in the driver
393 parameters.

CONFLICT OF INTEREST STATEMENT

394 The authors declare that the research was conducted in the absence of any commercial or financial
395 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

FUNDING

396 This research was funded through NSF grant number 2033563 and as part of the NASA DRIVE Center
397 SOLSTICE (grant number 80NSSC20K0600).

ACKNOWLEDGMENTS

398 This work was carried out using the SWMF and BATS-R-US tools developed at the University of Michigan's
399 Center for Space Environment Modeling (CSEM). The modeling tools described in this publication are
400 available online through the University of Michigan for download and are available for use at the Community
401 Coordinated Modeling Center (CCMC) as well as through Github at <https://github.com/MSTEM-QUDA>.

SUPPLEMENTAL DATA**DATA AVAILABILITY STATEMENT**

402 The datasets used in this study can be found in the CDAWeb (<https://cdaweb.gsfc.nasa.gov/index.html>).
403 The simulation results are available on the University of Michigan archive XXX.

REFERENCES

404 Akasofu, S. (1981). Energy coupling between the solar wind and the magnetosphere. *Space Sci. Rev.* 28,
405 121–190

406 Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., et al. (2013).
407 Electromagnetic energy conversion at reconnection fronts. *Science* 341, 1478–1482. doi:10.1126/
408 science.1236992

409 Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and McPherron, R. L. (1996). The
410 neutral line model of substorms: Past results and present view. *Journal of Geophysical Research* 101,
411 12975

412 Baker, D. N., Pulkkinen, T. I., Büchner, J., and Klimas, A. J. (1999). Substorms: A global instability of the
413 magnetosphere-ionosphere system. *Journal of Geophysical Research: Space Physics* 104, 14601–14611.
414 doi:<https://doi.org/10.1029/1999JA900162>

415 Burton, R. K., McPherron, R. L., and Russell, C. T. (1975). An empirical relationship between interplanetary
416 conditions and Dst. *Journal of Geophysical Research* 80, 4204

417 Cai, X. and Clauer, C. R. (2013). Magnetospheric sawtooth events during the solar cycle 23. *Journal of
418 Geophysical Research: Space Physics* 118, 6378–6388. doi:<https://doi.org/10.1002/2013JA018819>

419 Carovillano, R. L. and Siscoe, G. L. (1973). Energy and momentum theorems in magnetospheric processes.
420 *Reviews of Geophysics* 11, 289–353. doi:<https://doi.org/10.1029/RG011i002p00289>

421 Chen, Y., Toth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., et al. (2017). Global three-dimensional
422 simulation of Earth's dayside reconnection using a two-way coupled magnetohydrodynamics with
423 embedded Particle-in-Cell model: Initial results 122, 10,318–10,335. doi:10.1002/2017JA024186

424 De Zeeuw, D., Sazykin, S., Wolf, R., Gombosi, T., Ridley, A., and Tóth, G. (2004). Coupling of a global
425 MHD code and an inner magnetosphere model: Initial results. *Journal of Geophysical Research* 109,
426 219. doi:10.1029/2003JA010366

427 Dessler, A. J. and Parker, E. N. (1959). Hydromagnetic theory of geomagnetic storms. *Journal of
428 Geophysical Research (1896-1977)* 64, 2239–2252. doi:<https://doi.org/10.1029/JZ064i012p02239>

429 Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facskó, G., et al. (2012). The
430 GUMICS-4 global MHD magnetosphere–ionosphere coupling simulation 80, 48–59. doi:10.1016/j.jastp.
431 2012.03.006

432 Jing, H., Lu, J., Kabin, K., Zhao, J., Liu, Z.-Q., Yang, Y., et al. (2014). Mhd simulation of energy transfer
433 across magnetopause during sudden changes of the imf orientation. *Planetary and Space Science* 97,
434 50–59. doi:<https://doi.org/10.1016/j.pss.2014.04.001>

435 Kilpua, E. K. J., Turner, D. L., Jaynes, A. N., Hietala, H., Koskinen, H. E. J., Osmane, A., et al. (2019).
436 Outer van allen radiation belt response to interacting interplanetary coronal mass ejections. *Journal of
437 Geophysical Research: Space Physics* 124, 1927–1947. doi:<https://doi.org/10.1029/2018JA026238>

438 Laitinen, T. V., Janhunen, P., Pulkkinen, T. I., M., Palmroth, and Koskinen, H. E. J. (2006). On the
439 characterization of magnetic reconnection in global mhd simulations. *Ann. Geophys.* 24, 3059–3069

440 Liemohn, M., Ganushkina, N. Y., De Zeeuw, D. L., Rastaetter, L., Kuznetsova, M., Welling, D. T., et al.
441 (2018). Real-time SWMF at CCMC: assessing the Dst output from continuous operational simulations
442 16, 1583–1603. doi:10.1029/2018SW001953

443 Lyon, J. G., Fedder, J. A., and Mobarry, C. M. (2004). The Lyon–Fedder–Mobarry (LFM) global MHD
444 magnetospheric simulation code 66, 1333–1350. doi:10.1016/j.jastp.2004.03.020

445 McPherron, R. L., Baker, D. N., Pulkkinen, T., Hsu, T.-S., Kissinger, J., and Chu, X. (2013). Changes
446 in solar wind–magnetosphere coupling with solar cycle, season, and time relative to stream interfaces.
447 *Journal of Atmospheric and Solar-Terrestrial Physics* 99, 1–13. doi:<https://doi.org/10.1016/j.jastp.2012.09.003>. Dynamics of the Complex Geospace System

448 Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J. (2007). A nearly universal solar
449 wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. *Journal of*
450 *Geophysical Research: Space Physics* 112. doi:<https://doi.org/10.1029/2006JA012015>

451 Nykyri, K., Bengtson, M., Angelopoulos, V., Nishimura, Y., and Wing, S. (2019). Can enhanced flux
452 loading by high-speed jets lead to a substorm? multipoint detection of the christmas day substorm
453 onset at 08:17 ut, 2015. *Journal of Geophysical Research: Space Physics* 124, 4314–4340. doi:<https://doi.org/10.1029/2018JA026357>

454 Nykyri, K. and Otto, A. (2001). Plasma transport at the magnetospheric boundary due to reconnection in
455 kelvin-helmholtz vortices. *Geophysical Research Letters* 28, 3565–3568. doi:<https://doi.org/10.1029/2001GL013239>

456 Palmroth, M., Janhunen, P., and Pulkkinen, T. I. (2006). Hysteresis in solar wind power input to the
457 magnetosphere 33, L03107. doi:10.1029/2005GL025188

458 Palmroth, M., Pulkkinen, T., Janhunen, P., and Wu, C.-C. (2003). Stormtime energy transfer in global
459 MHD simulation 108, 1048. doi:10.1029/2002JA009446

460 Pokhotelov, D., von Alfthan, S., Kempf, Y., Vainio, R., Koskinen, H. E. J., and Palmroth, M. (2013). Ion
461 distributions upstream and downstream of the earth’s bow shock: first results from vlasior. *Annales*
462 *Geophysicae* 31, 2207–2212. doi:10.5194/angeo-31-2207-2013

463 Pulkkinen, A., Rastatter, L., Kuznetova, M., Singer, H., Balch, C., Weimer, D., et al. (2013). Community-
464 wide validation of geospace model ground magnetic field perturbation predictions to support model
465 transition to operations. *Space Weather* 11, 369–385. doi:10.1002/swe.20056

466 Pulkkinen, T., Palmroth, M., and Laitinen, T. (2008). Energy as a tracer of magnetospheric processes:
467 GUMICS-4 global MHD results and observations compared. *Journal of Atmospheric and Solar-
468 Terrestrial Physics* 70, 687–707

469 Pulkkinen, T. I., Dimmock, A. P., Lakka, A., Osmane, A., Kilpua, E., Myllys, M., et al. (2016).
470 Magnetosheath control of solar wind-magnetosphere coupling efficiency. *Journal of Geophysical*
471 *Research: Space Physics* 121, 8728–8739. doi:<https://doi.org/10.1002/2016JA023011>

472 Pulkkinen, T. I., Palmroth, M., Koskinen, H. E. J., Laitinen, T. V., Goodrich, C. C., Merkin, V. G., et al.
473 (2010). Magnetospheric modes and solar wind energy coupling efficiency. *Journal of Geophysical*
474 *Research* 115

475 Pulkkinen, T. I., Palmroth, M., Tanskanen, E. I., Janhunen, P., Koskinen, H. E. J., and Laitinen, T. V.
476 (2006). New interpretation of magnetospheric energy circulation. *Geophysical Research Letters* 33.
477 doi:<https://doi.org/10.1029/2005GL025457>

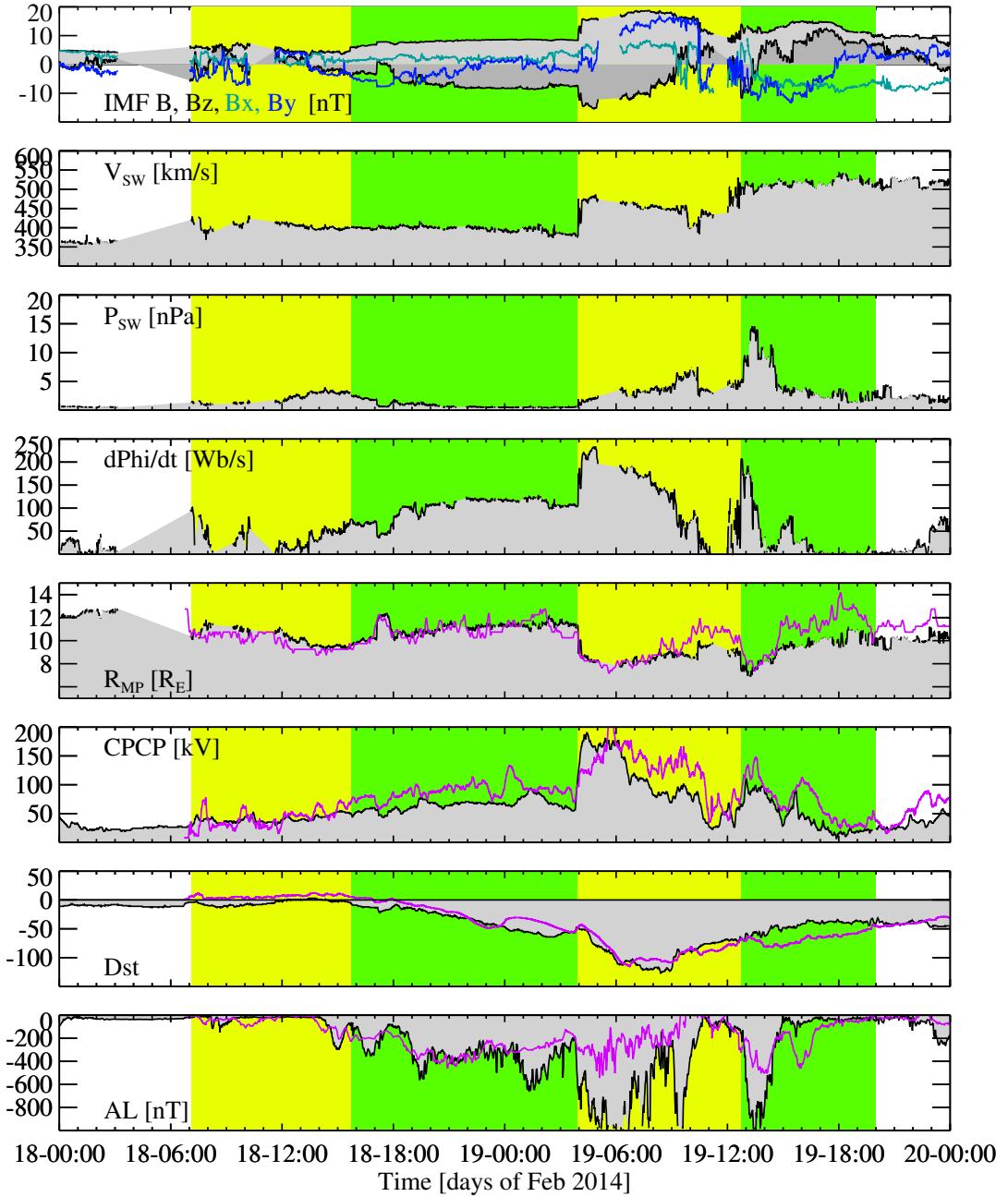
478 Raeder, J., Berchem, J., and Ashour-Abdalla, M. (1996). The importance of small scale processes in global
479 MHD simulations: Some numerical experiments. In *The Physics of Space Plasmas*, eds. T. Chang and
480 J. R. Jasperse (Cambridge, Mass.: MIT Cent. for Theoret. Geo/Cosmo Plasma Phys.), vol. 14, 403

481 Ridley, A. J., Deng, Y., and Tóth, G. (2006). The global ionosphere thermosphere model. *Journal of*
482 *Atmospheric and Solar-Terrestrial Physics* 68, 839–864. doi:10.1016/j.jastp.2006.01.008

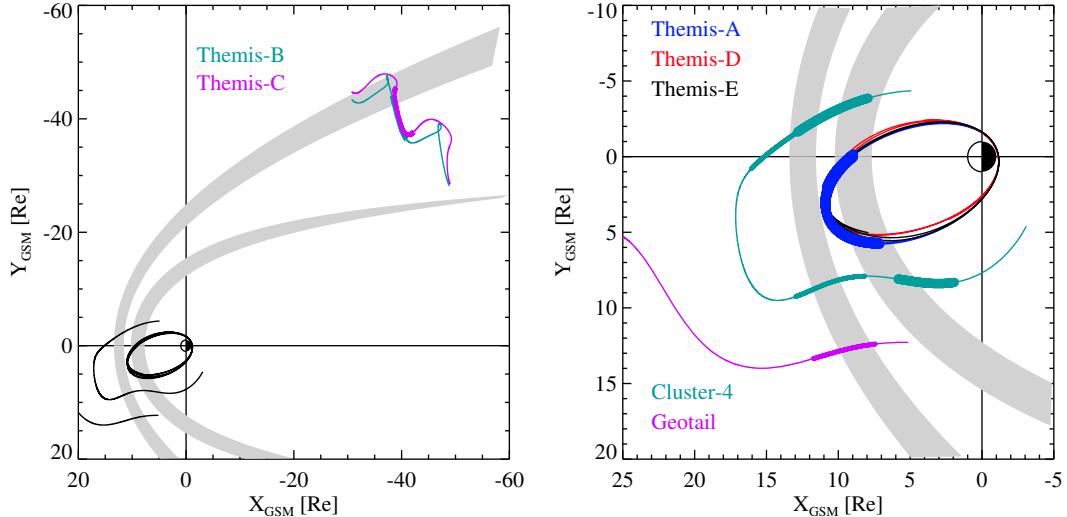
483 Ridley, A. J. and Kihn, E. A. (2004). Polar cap index comparisons with AMIE cross polar cap potential,
484 electric field, and polar cap area 31, 07801. doi:10.1029/2003GL019113

488 Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., et al. (1998). Magnetopause
489 location under extreme solar wind conditions 103, 17,691–17,700

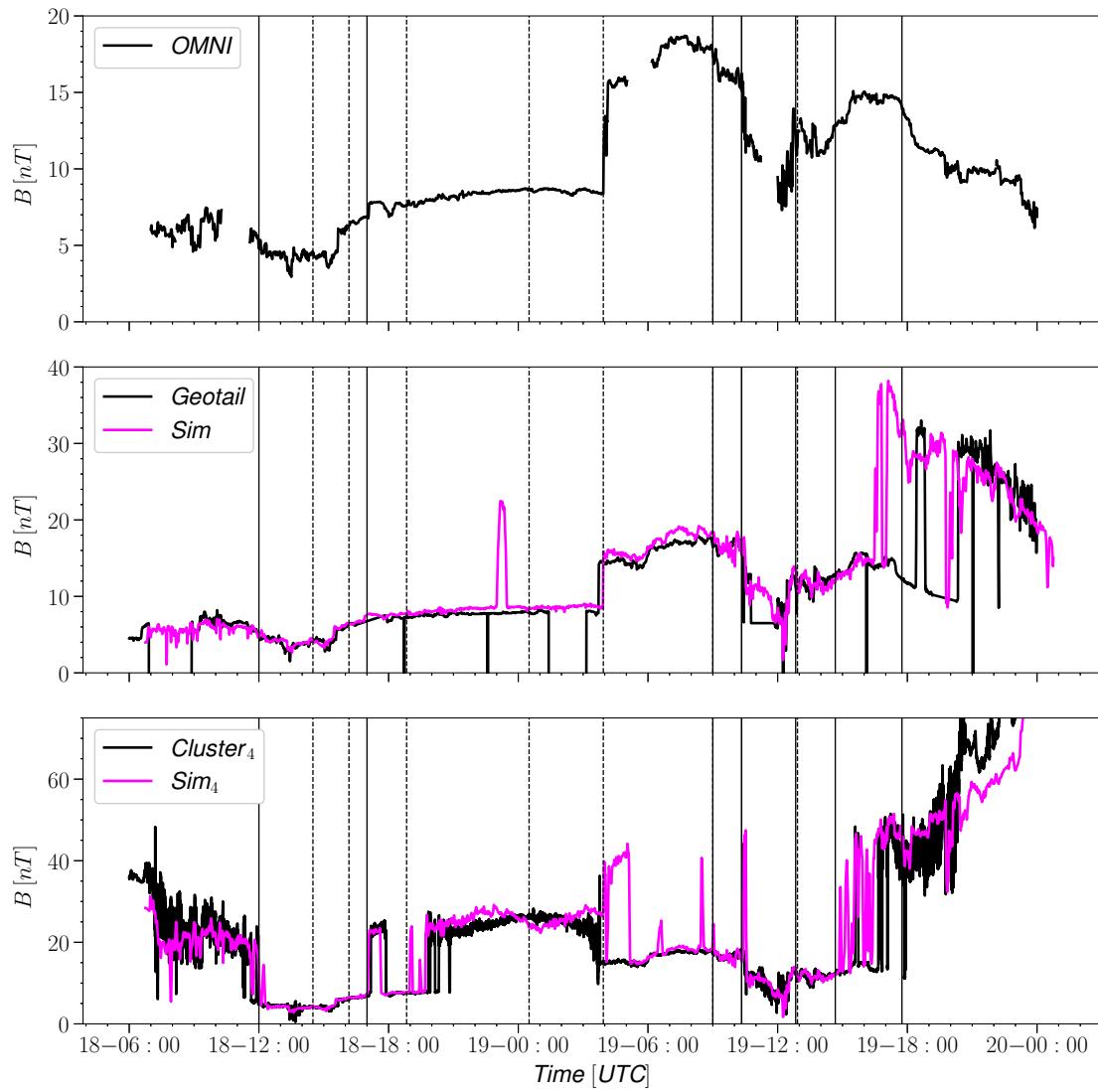
490 Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., et al. (2020).
491 Do statistical models capture the dynamics of the magnetopause during sudden magnetospheric
492 compressions? *Journal of Geophysical Research: Space Physics* 125, e2019JA027289. doi:<https://doi.org/10.1029/2019JA027289> E2019JA027289 10.1029/2019JA027289

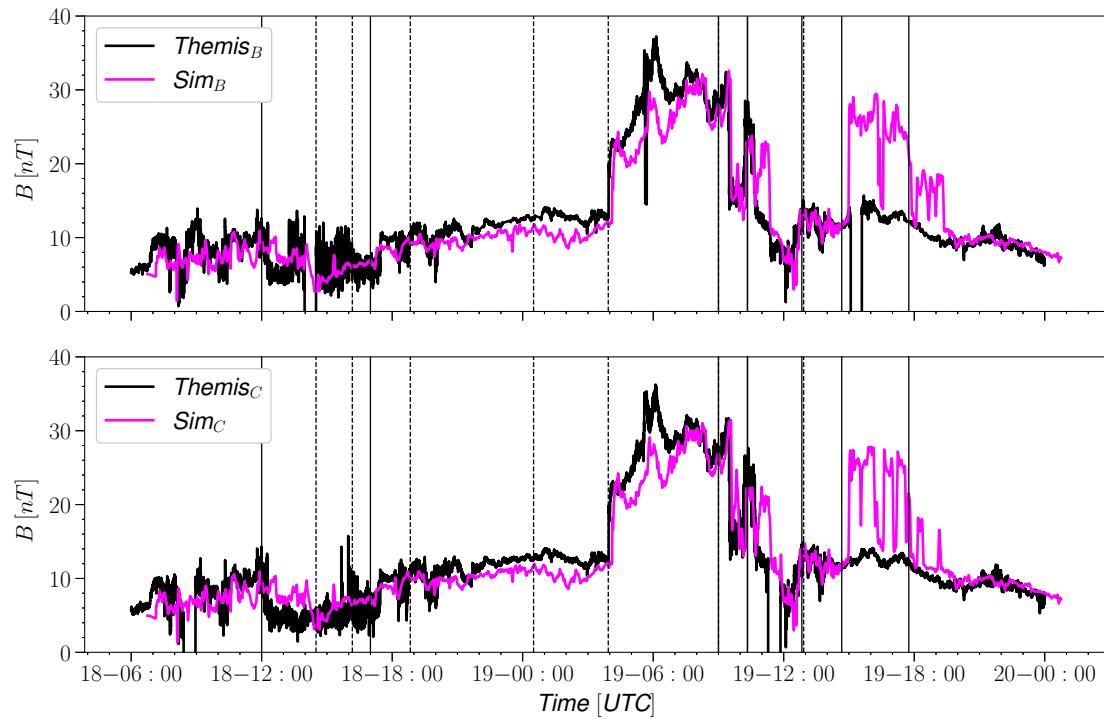

493 Toffoletto, F., Sazykin, S., Spiro, R., and Wolf, R. (2003). Inner magnetospheric modeling with the Rice
494 Convection Model. *Space Science Reviews* 107, 175–196. doi:[10.1023/A:1025532008047](https://doi.org/10.1023/A:1025532008047)

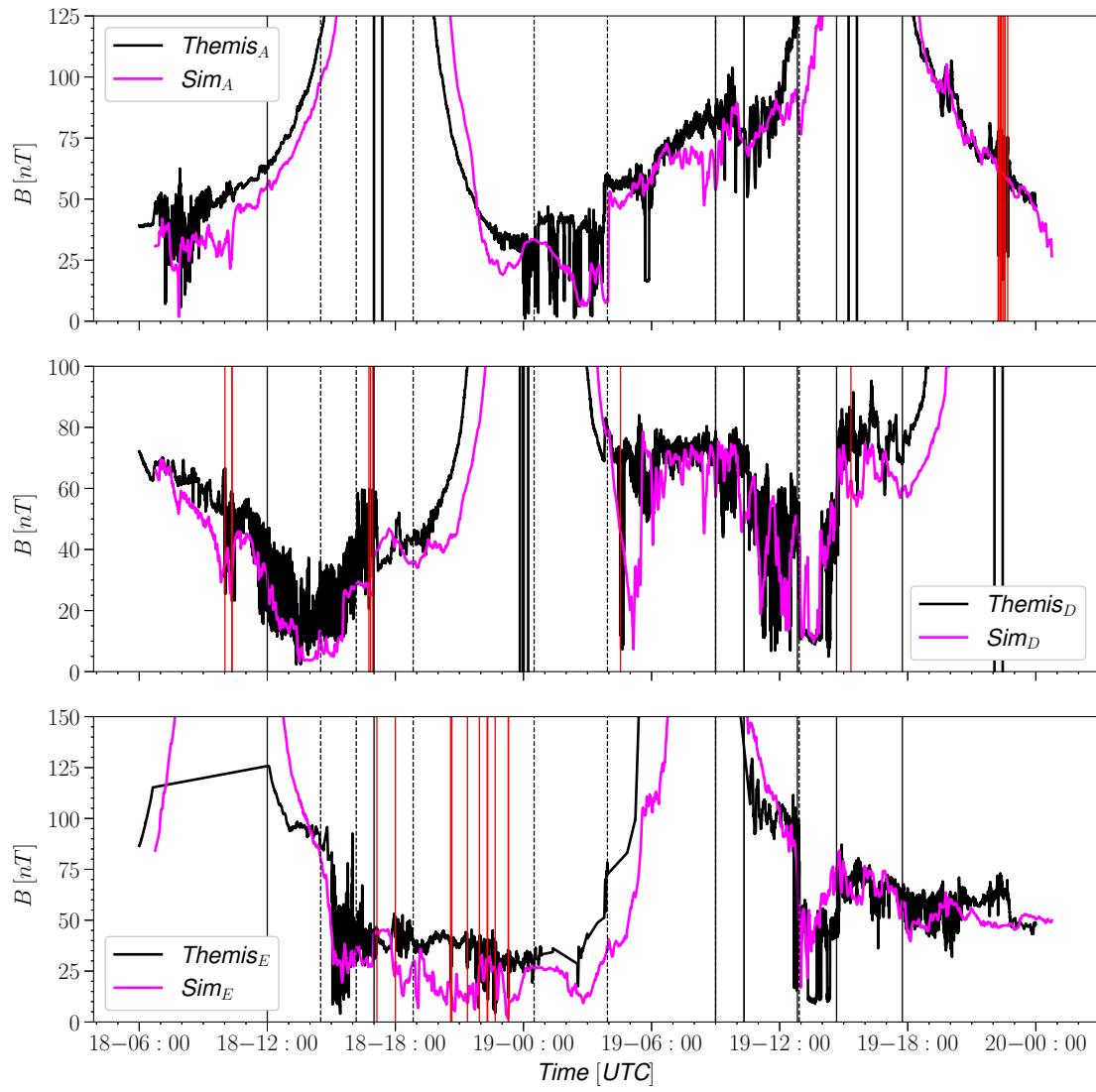
495 Tóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. (2012).
496 Adaptive numerical algorithms in space weather modeling. *Journal of Computational Physics* 231,
497 870–903. doi:[10.1016/j.jcp.2011.02.006](https://doi.org/10.1016/j.jcp.2011.02.006)

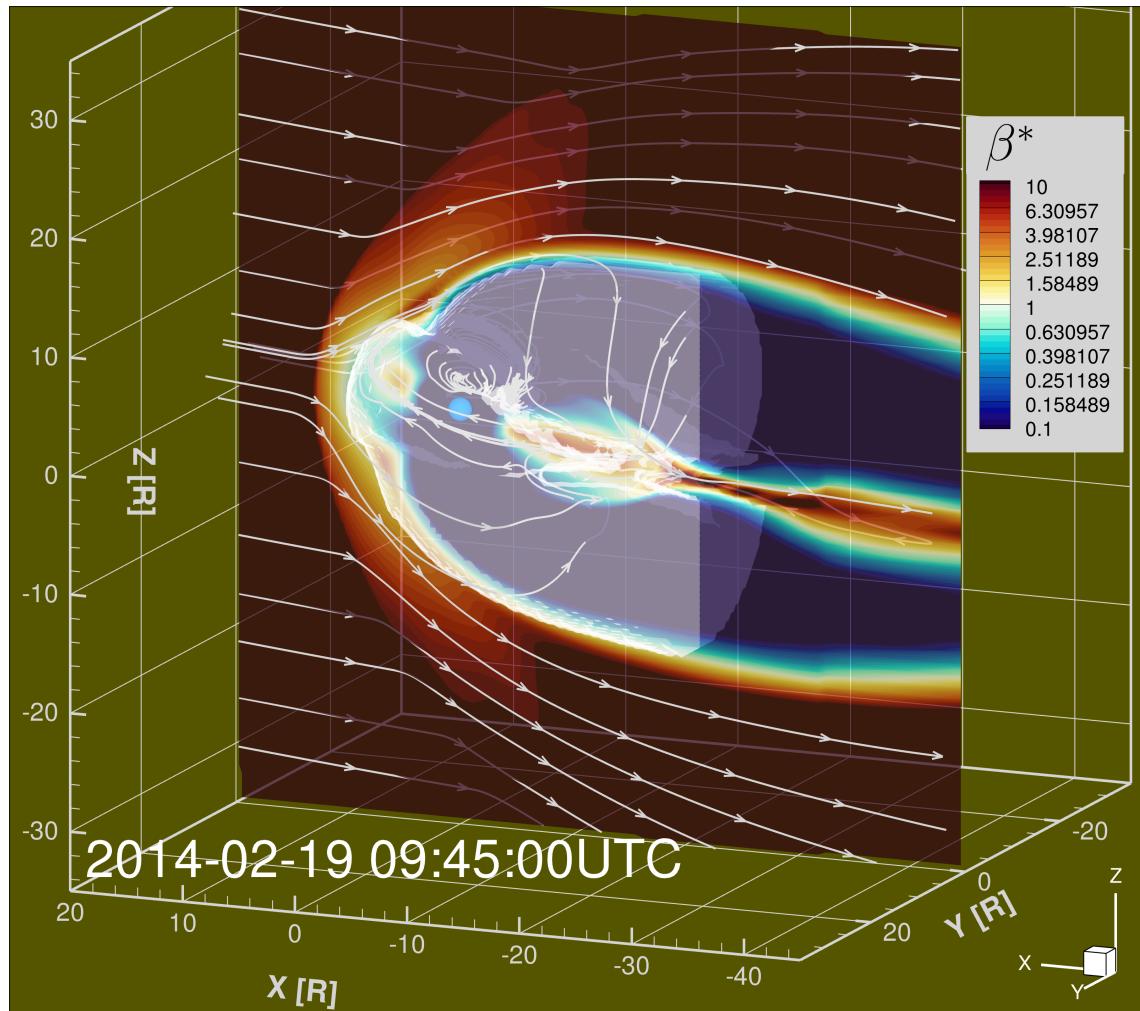

498 Vasyliunas, V. M. (1970). Mathematical models of magnetospheric convection and its coupling to the
499 ionosphere. In *Particles and fields in the magnetosphere*, ed. B. M. McCormack (Dordrecht, Holland: D.
500 Reidel Publishing). 60–71

501 Zhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., and Wiltberger, M. (2019).
502 GAMERA: A three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries.
503 *The Astrophysical Journal Supplement Series* 244, 20. doi:[10.3847/1538-4365/ab3a4c](https://doi.org/10.3847/1538-4365/ab3a4c)


FIGURE CAPTIONS


Figure 1. Observations of the solar wind driver and magnetospheric response (black line with shading) compared with SWMF Geospace results (magenta line). From top to bottom: IMF X (green), Y (blue) Z (black) components, total field magnitude (black); solar wind speed; solar wind pressure, Newell coupling function (see text); Magnetopause standoff distance (see text); cross-polar cap potential (see text); SMR (SuperMAG SYM-H index); SML (SuperMAG AL index). The yellow and green shading indicate the ICME sheath and ejecta respectively. The magenta lines in the bottom four panels show the SWMF Geospace simulation results.


Figure 2. Spacecraft trajectories in the GSM $X - Y$ plane during Feb 18-20, 2014. The grey shadings show a range of magnetopause and bow shock locations based on the range of solar wind conditions during the period. The thickest line segments show periods when the SCWeb locator places the trajectory within $2 R_E$ from the magnetopause, the medium thick segments show periods when the trajectory is within $2 R_E$ from the bow shock position.


Figure 3. Magnetic field magnitude trace observation (black) vs simulation (magenta) Geotail and Cluster 4.

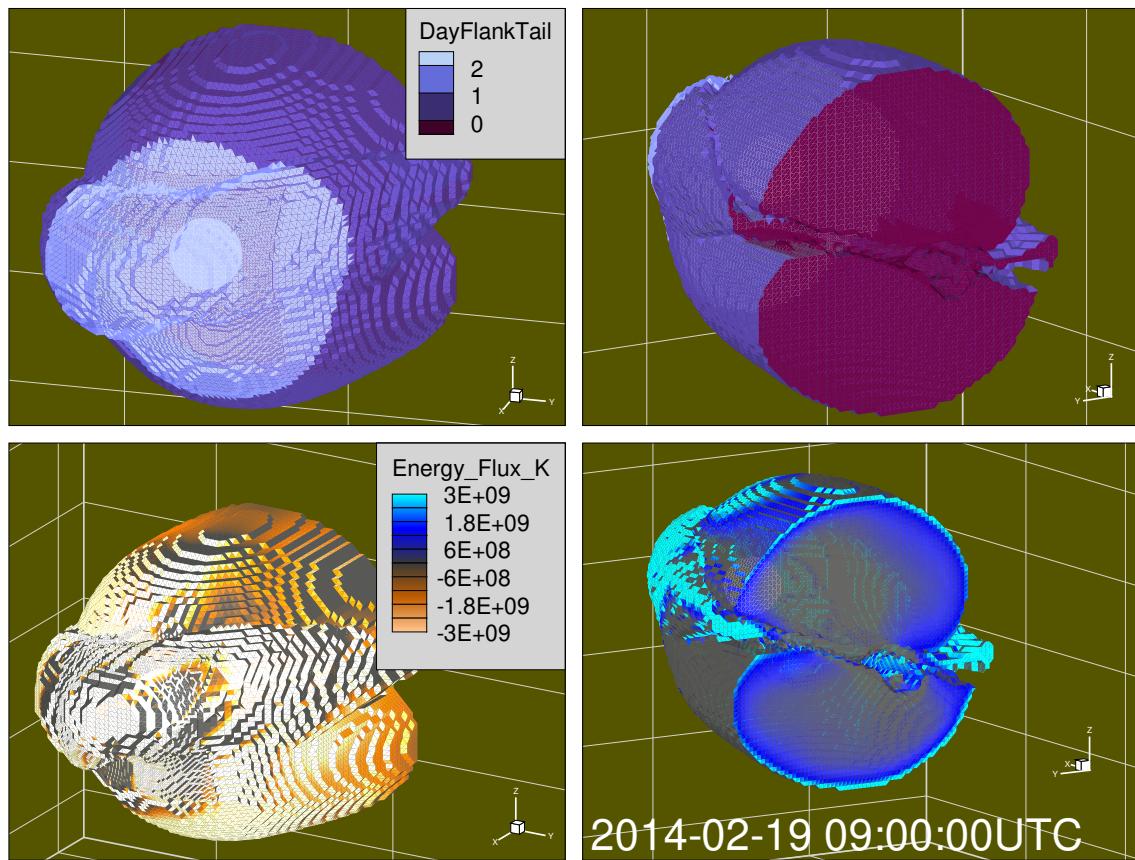
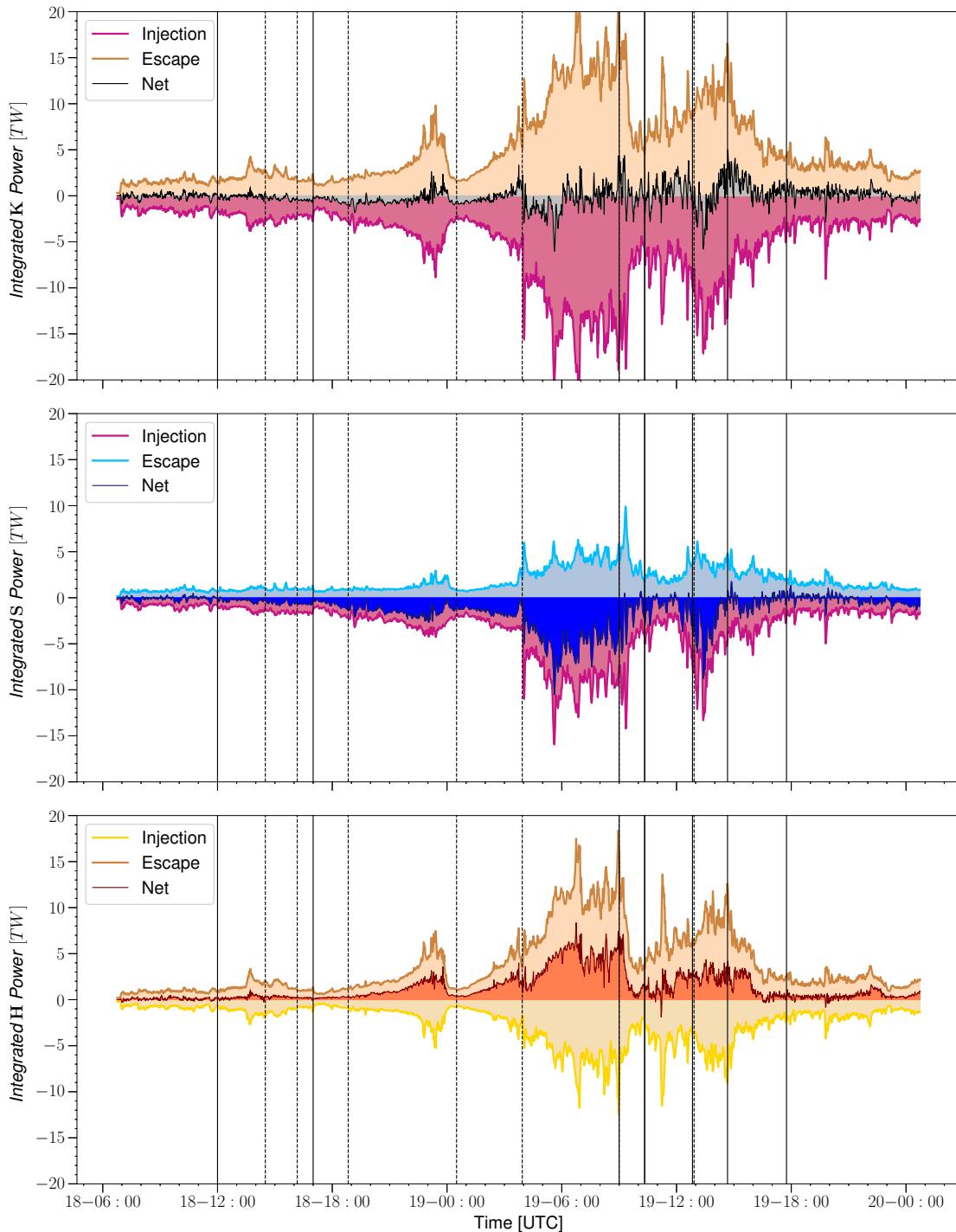
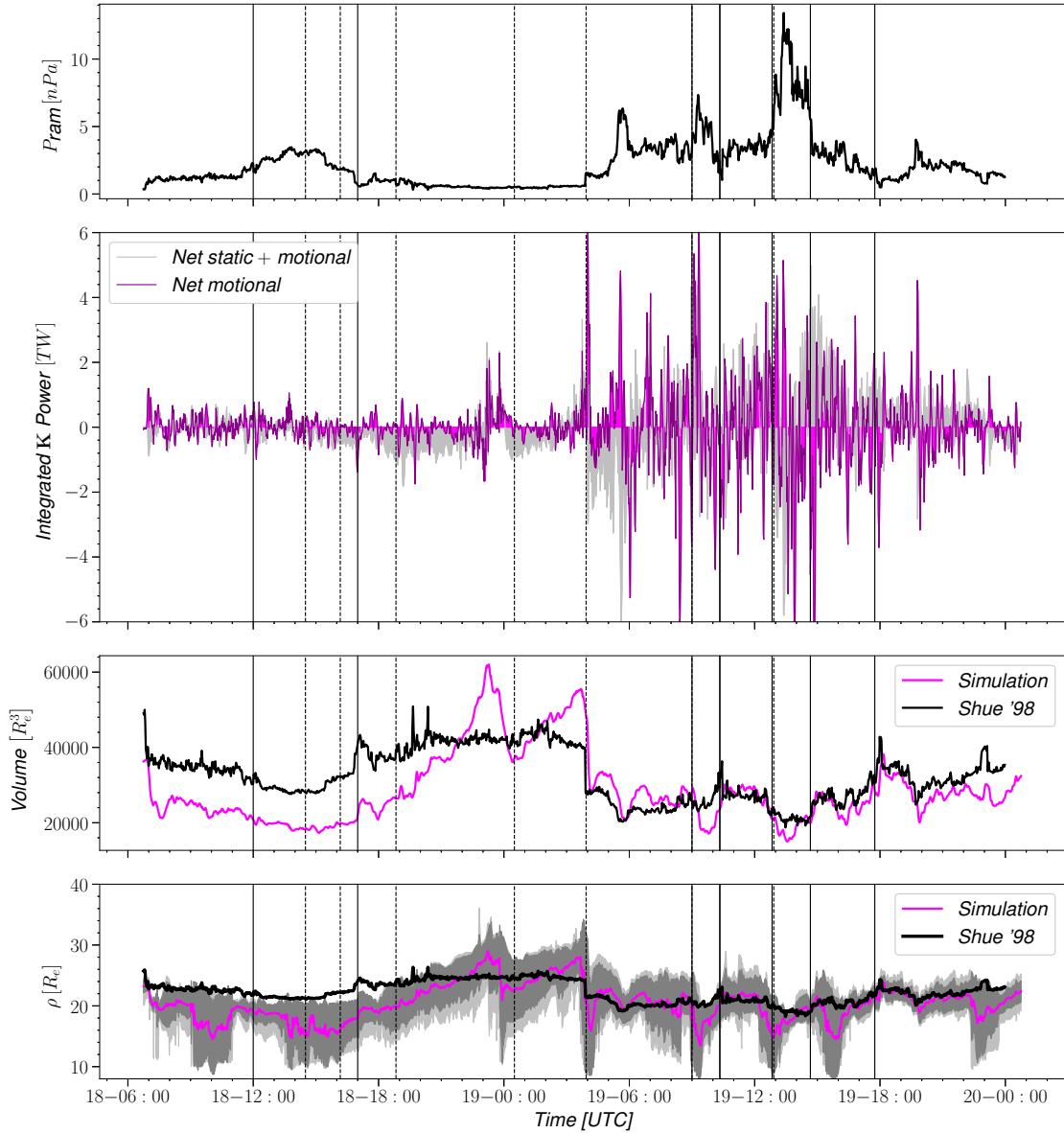
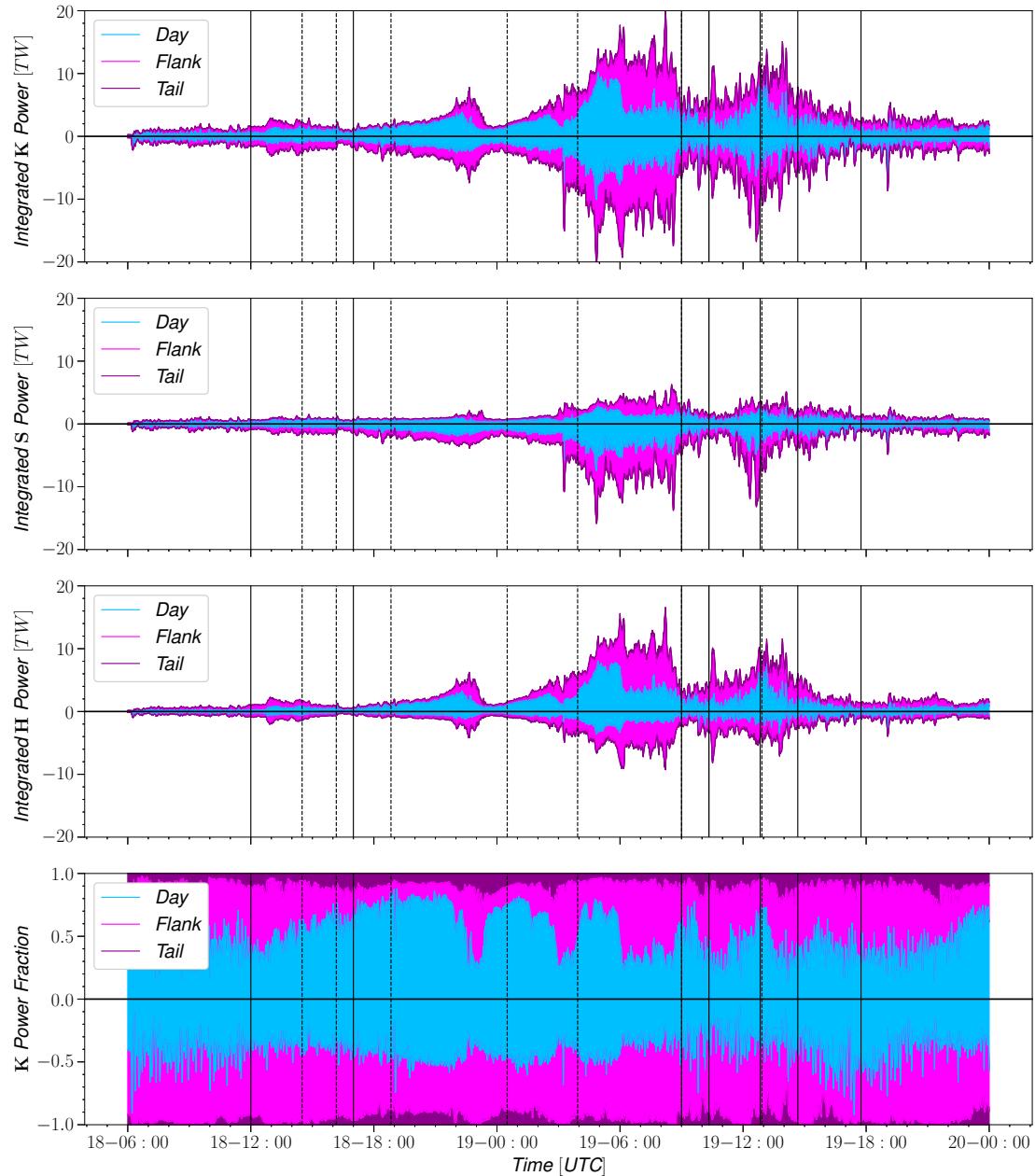

Figure 4. Magnetic field magnitude trace observation (black) vs simulation (magenta) Themis B and C.


Figure 5. Magnetic field magnitude trace observation vs simulation Themis A, D, and E. Vertical red lines indicate crossings as determined by Staples et al. (2020)


Figure 6. 3D snapshot of total energy transfer vector \mathbf{K} flowfield with meridional cut showing color contours of β^* . Translucent structure represents identified magnetopause surface out to $-20R_e$ in the x direction.


Figure 7. Top two panels show spatial breakdown of Dayside, Flank, and Tail subsections. Bottom two panels show energy flux into and out of the magnetosphere volume normal to the surface.


Figure 8. At each time step the energy density is integrated over δV representing the volume that will be acquired and/or lost in the next time step. Acquisitions and forfeitures are included in integrated flux of energy injected or escaped respectively. The local surface velocity is indicated by the vector \mathbf{q} . The normal distance between the surfaces is $(\mathbf{q} \cdot \mathbf{n})\delta t$ (see equation 9).

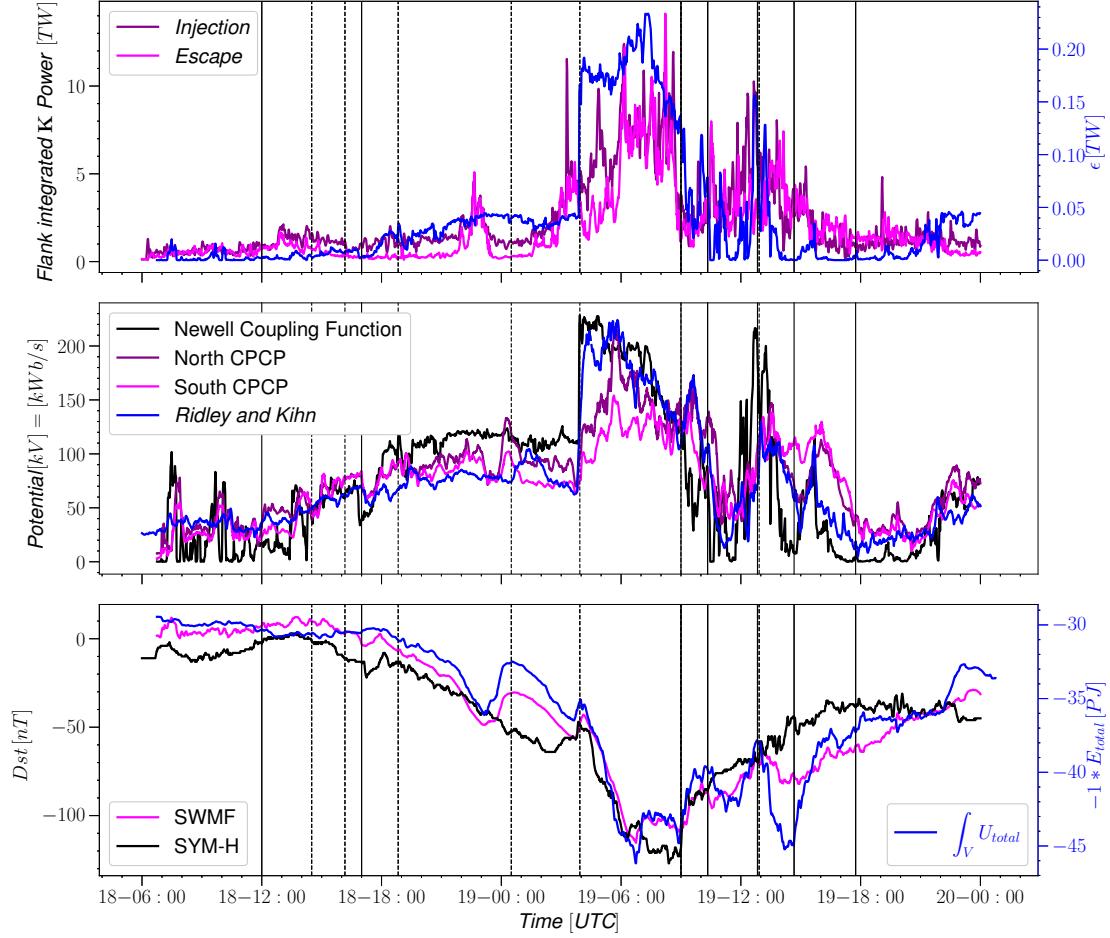

Figure 9. Full surface energy flux integration breakdown by type, top:K middle:S bottom: H (see equation 7).

Figure 10. From top to bottom: Solar wind ram pressure; Integrated net power transfer due to surface motion effects only (magenta) compared with static and motion effects (grey); Magnetosphere volume integrated from simulation (magenta) compared with Shue 1998 model (black); Radial distance $\rho = \sqrt{Y^2 + Z^2}$ evaluated at $X = -10R_e$ for the magnetopause from simulation (magenta) with dark and light bars indicating ± 1.5 standard deviations and max/min respectively, compared with Shue 1998.

Figure 11. Energy injection and escape stacked by contribution. The first stack represents contribution from the dayside starting from 0. Next is the contribution from the flank starting from the dayside contribution and lastly is the contribution from the tail cap totalling to the injection and escape values found in figure 9. As before the top panel represents total energy transfer, the middle panel is Poynting flux and the third panel is the hydrodynamic energy flux. The bottom panel shows the relative contributions.

Figure 12. Top: Total energy transfer compared with Akasofu coupling parameter. Middle: Cross polar cap potential simulation, and empirical compared with solar wind coupling of Newell. Bottom: Ground magnetic perturbation from simulation (magenta) and observation (black), plotted with energy density integrated over the defined magnetosphere volume.