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Abstract19

The transmission of a sheath region driven by an interplanetary coronal mass ejection into20

the Earth’s magnetosheath is studied by investigating in situ magnetic field measurements21

upstream and downstream of the bow shock during an ICME sheath passage on May 15,22

2005. We observe three distinct intervals in the immediate upstream region that included23

a southward magnetic field component and are traveling foreshocks. These traveling fore-24

shocks were observed in the quasi-parallel bow shock that hosted backstreaming ions and25

magnetic fluctuations at ultralow frequencies. The intervals constituting traveling fore-26

shocks in the upstream survive transmission to the Earth’s magnetosheath, where their27

magnetic field, and particularly the southward component, was significantly amplified. Our28

results further suggest that the magnetic field fluctuations embedded in an ICME sheath29

may survive the transmission if their frequency is below ∼ 0.01 Hz. Although one of the30

identified intervals was coherent, extending across the ICME sheath and being long-lived,31

predicting ICME sheath magnetic fields that may transmit to the Earth’s magnetosheath32

from the upstream at L1 observations has ambiguity. This can result from the strong spatial33

variability of the ICME sheath fields in the longitudinal direction, or alternatively from the34

ICME sheath fields developing substantially within the short time it takes the plasma to35

propagate from L1 to the bow shock. This study demonstrates the complex interplay ICME36

sheaths have with the Earth’s magnetosphere when passing by the planet.37

1 Introduction38

Interplanetary coronal mass ejections (ICMEs) are massive clouds of plasma and mag-39

netic field that originate from vast eruptions in the Sun’s corona. They transfer energy in40

interplanetary space and are the main drivers of space weather at the Earth (e.g., Gonzalez41

et al., 1999, 2011; Kilpua et al., 2017a, and references therein). An ICME consists of a42

magnetic ejecta which drives a shock and sheath region when traveling with supermagne-43

tosonic speeds relative to the solar wind in interplanetary space. Interplanetary shocks,44

including those not associated with ICMEs, have been extensively studied (e.g., Tsurutani45

et al., 2011; Blanco-Cano et al., 2016; Oliveira & Samsonov, 2018; Kajdič et al., 2019). And46

several recent works have focused on understanding the radial evolution of ICME ejecta47

(e.g., Manchester et al., 2017; Scolini et al., 2018; Good et al., 2019; Janvier et al., 2019;48

Lugaz et al., 2020; Luhmann et al., 2020) and the sheath regions driven by ICMEs (e.g.,49

Yermolaev et al., 2018; Moissard et al., 2019; Good et al., 2020; Salman et al., 2020). New50

missions, such as Solar Orbiter (Müller et al., 2013) and Parker Solar Probe (Fox et al.,51

2016), can improve the understanding of ICMEs by observing them closer to the Sun and52

earlier in their evolution (see e.g., Winslow et al., 2021).53

Each of these elements of the ICME have an independent capability to disturb the54

plasma environments that surround the Earth (e.g., Tsurutani et al., 1988; Zhou & Tsuru-55

tani, 2001; Huttunen et al., 2002; Pulkkinen et al., 2007; Yermolaev et al., 2012). ICME56

sheaths have a vital contribution to most severe geomagnetic storms (Huttunen & Koski-57

nen, 2004; Kilpua et al., 2017a; Meng et al., 2019) and they can drive intense substorms58

(Tsurutani et al., 2015). An ICME sheath passage through the Earth’s magnetosphere59

compresses the dayside magnetopause (e.g., Lugaz et al., 2016) and causes strong auroral60

currents in the high-latitude magnetosphere (Huttunen et al., 2002; Huttunen & Koskinen,61

2004) and large geomagnetically induced currents (Huttunen et al., 2008; Dimmock et al.,62

2019). In addition, intense low-energy particle precipitation to the upper atmosphere (Knipp63

et al., 2013) and depletion of relativistic electrons fluxes in the outer Van Allen radiation64

belts (e.g., Hietala et al., 2014; Turner et al., 2019) can occur due to the sheath passage.65

The importance of ICME sheaths to space weather results from their high dynamic pres-66

sure and southward magnetic fields (see e.g., Burton et al., 1975; Crooker, 2000; Boudouridis67

et al., 2005; Lindsay et al., 1995; Kilpua et al., 2019). The key mechanisms generating south-68

ward fields in the sheath are shock compression of pre-existing out-of-ecliptic fields in the69
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solar wind, turbulence downstream of an interplanetary shock, and field line draping of the70

interplanetary magnetic field (IMF) around the driving ejecta (Tsurutani et al., 1988; Lugaz71

et al., 2016). Improved space weather predictions require a comprehensive understanding of72

the interplay between the ICME and the Earth’s magnetosphere, and the ability to deter-73

mine these southward fields within the ICME sheaths (Tsurutani et al., 2020). Moreover,74

spatial variability of sheath fields in the longitudinal direction at 1 AU and its consequences75

for space weather has been addressed by Ala-Lahti et al. (2020). The ICME sheath fields76

have a large-scale structure being more coherently structured compared to the solar wind.77

They, however, also host local and spatially limited magnetic fluctuations, the space weather78

impact being thus dependent on the magnetic fine structure of the ICME sheath (see also79

Good et al., 2020). Discrete magnetic field discontinuities embedded in an ICME sheath80

can cause abrupt compression of the dayside magnetosphere and excite wave generation in81

the inner magnetosphere (Blum et al., 2021).82

Direct observations of the interaction between an ICME sheath and the Earth’s mag-83

netosphere, including the transmission of an ICME sheath into the Earth’s magnetosheath,84

are important for constructing a thorough picture of the interaction. A dominant process for85

geomagnetic disturbances is dayside magnetic reconnection requiring a southward field in86

the magnetosheath. This is typically from the southward IMF but can also be locally south-87

ward from magnetosheath transients such as high speed jets (Nykyri et al., 2019). Therefore,88

we need a complete understanding of how the various structures inside the ICME sheath89

interact with the dayside magnetosphere since they can possibly dictate the field direction90

at the dayside magnetopause.91

In this study, we examine the sheath region of the ICME on May 13, 2005. The ICME92

and its impact on the Earth’s magnetosheath have been previously studied (e.g., Dasso et93

al., 2009; Yurchyshyn et al., 2006; Bisi et al., 2010; Turc et al., 2014). The impact of the94

ICME ejecta on the Earth’s magnetosheath has also been investigated statistically (Turc95

et al., 2017). The ICME-driven sheath region was observed at 1 AU on May 15, 2005, first96

by the ACE and Wind spacecraft in the upstream solar wind, subsequently by the Cluster97

spacecraft, and finally by the Geotail spacecraft in the Earth’s magnetosheath. We investi-98

gate the occurrence of magnetic structures and fluctuations embedded in the ICME sheath99

that were transmitted, across the Earth’s bow shock and into the magnetosheath. With100

transmit we refer to magnetic field features and properties in the bow shock downstream101

region, which were observable already in the upstream. We also examine if the upstream102

magnetic field fluctuation frequency affects how well the structures maintain their charac-103

teristics across the shock. The location of Cluster, in the immediate upstream of the bow104

shock during the event, constitutes the frame of reference in this study. We focus on the105

southward component of the transmitted structures, while considering the overall dynamics106

of the bow shock during the ICME sheath – magnetosheath encounter.107

The study is constructed as follows. Section 2 introduces the range of spacecraft obser-108

vations during the ICME event at 1 AU on May 15, 2005. Section 3 focuses on the magnetic109

field within the ICME sheath that is transmitted to the Earth’s magnetosphere, and the110

spatial and temporal extent of the identified magnetic structures. Section 4 discusses the111

relation of the observations to bow shock dynamics. Section 5 concludes with discussion.112

2 Observations113

Magnetic field data with a resolution of 10.9 Hz from Wind (Lepping et al., 1995), 1 Hz114

from ACE (Smith et al., 1998), 22.4 Hz from Cluster (Balogh et al., 1997) and 16 Hz from115

Geotail (Kokubun et al., 1994) are analyzed in this study. We also present and analyze116

data from the Wind Solar Wind Experiment (Ogilvie et al., 1995), from the ACE Solar117

Wind Electron Proton Alpha Monitor (SWEPAM; McComas et al., 1998), from the Cluster118

Ion Spectrometry (CIS) Experiment (Réme et al., 1997), and from the Geotail Low Energy119

Particle (LEP) Experiment (Mukai et al., 1994).120
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Figure 1a–c show the spacecraft locations and the global ICME observations at 1 AU on121

May 15, 2005 in Geocentric Solar Ecliptic (GSE) coordinates. The panels present a sketch122

of the magnetopause (black) and bow shock (red) boundaries during the sheath passage,123

with the trajectories of the Cluster 3 and Geotail spacecraft shown for 01:00-06:00 UT and124

Fig. 1c having a cut-out of the GSE x-axis. ACE and Wind, both in the proximity of L1,125

had a relatively large longitudinal separation during the event, ACE being close to the Sun-126

Earth line and Wind at about 90 RE duskward. The change in location of ACE and Wind127

during the observation time period was negligible. The GSE y-separation between ACE and128

Cluster 3 (Geotail) was between 15 and 20 RE (14 – 19RE). Between Wind and Cluster 3129

(Geotail), the separation varied from 98 to 103 RE (from 97 to 102RE). The insert in130

Fig. 1a also illustrates the magnetosheath boundaries during nominal solar wind conditions131

preceding the ICME (dashed curves). It can be seen that the ICME sheath compressed the132

magnetosheath resulting in the Cluster 3 spacecraft entering from the magnetosheath into133

the bow shock upstream region. Geotail was located in the magnetosheath flank during134

the entire ICME sheath passage apart from short visits in the bow shock upstream region135

between ∼05:13 – 05:15 UT and ∼05:36 – 05:41 UT, initially quite far downstream from the136

point where Cluster 3 exited the magnetosheath. In this study, ‘upstream’ refers to Cluster 3137

observing the ICME sheath prior to its interaction with the bow shock and magnetosheath,138

and ‘downstream’ refers to the Geotail observations in the magnetosheath during the ICME139

passage. Geotail traveled towards the bow shock during the event and the separation with140

Cluster decreased during the course of the event.141

Figure 1d–g and h–k show the magnetic field (B), plasma speed (V ) and proton density142

(n) measurements from ACE and Wind during the event. The ICME sheath is bounded143

by the red vertical lines. ACE and Wind observed the interplanetary shock at 02:11 and144

02:13 UT, and the ejecta leading edge at 05:30 and 05:31 UT, respectively. The measure-145

ments display strong fluctuations of both magnetic field magnitude and its components, and146

significant variations in plasma parameters, all characteristic features of an ICME sheath147

region (e.g., Kilpua et al., 2017b). The driving ICME ejecta is clearly noticeable from the148

smooth rotating magnetic field.149

Figure 2 focuses on magnetic field measurements during the ICME sheath crossing. We150

have resampled the magnetic field data to 1 Hz resolution, the highest resolution available151

for all four spacecraft. Panels (a–d) are sorted according to the GSE y-component of the152

spacecraft position at the beginning of the event, with Wind measurements at the top and153

Geotail (GT) measurements at the bottom. The measurements are time-shifted so that154

the arrival time of the ICME sheath, marked by the red dashed vertical line, coincides155

at all spacecraft. The arrival time at Cluster 3 (C3), 02:38:45 UT on May 15, 2005, is156

used as the reference time, the used time-shifts being 25 min 45 s, 27 min 35 s and -20 s,157

for Wind, ACE and GT, respectively. Upon inspecting the simultaneous ICME sheath158

and magnetosheath observations, there are common structures observed in both datasets159

with remarkable similarities. The goal of the study is to understand the physical nature160

of how these magnetosheath structures arise. Three intervals of interest labeled 1–3 are161

highlighted with pink dotted rectangles in Fig. 2c. Selected data from these intervals are162

shown at smaller scales in the right-hand panels in Fig. 2e–l, with corresponding labels 1–3163

and interval 1 augmented with plasma observations in Fig. 2g and h.164

At C3, interval 1 spans the arrival of the ICME and the exit of the spacecraft from the165

Earth’s magnetosheath. In Fig. 2c, it can be seen in interval 1 that there were fluctuations166

with relatively large amplitude and similar magnetic field magnitudes (|B|) before and after167

the sheath arrival time. C3 was in the magnetosheath before the ICME encountered the168

magnetosphere, as indicated by the |B| values of 25 – 30 nT and proton densities of ∼25 cm−3169

before the arrival of the sheath, which are much higher values than those observed in the170

solar wind before the sheath arrival at L1. The sheath arrival at C3 is manifested by the171

enhancement of the magnetic field magnitude and increases of n and V . The plasma speed172

gradually increased until C3 exited the magnetosheath at 02:39:22 UT, the exit being also173
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indicated by a drop in |B| and n. The C3 magnetosheath exit is marked by the black dashed174

vertical line in the interval 1 in Fig. 2e and g. Data from the equivalent interval at GT show175

that the beginning of the event is defined by an abrupt increase of |B|.176

Three intervals with notable southward field components can be distinguished with177

visual inspection of the C3 measurements in Fig. 2c. They are also distinct at GT and occur178

in the same chronological order at both spacecraft, suggesting that at least part of their179

properties were preserved as they transmitted from the upstream into the magnetosheath.180

These intervals are marked by the second and third rectangles (i.e., intervals 2 and 3) in181

Fig. 2c and are highlighted in the corresponding right-hand panels in Fig. 2i–l. The C3 and182

GT spacecraft made these observations with longitudinal separations of 0.3 RE and 4.8 RE,183

respectively. During these three intervals the magnetic field fluctuated substantially, and184

the out-of-ecliptic component, Bz, in the upstream at C3 had average values of −4.8, −9.1185

and −11.8 nT, in chronological order. The average was 5.3 nT elsewhere in the sheath.186

Corresponding Bz values in the magnetosheath at GT during the ICME sheath passage were187

−16.8, −38.0 and −34.8, and 14.0 nT, respectively. The values of |B| were also enhanced188

during these intervals (C3: 28.2, 29.9 and 26.0, and 17.7 nT; GT: 58.2, 58.0 and 63.2, and189

43.4 nT). We will investigate these intervals in more detail below.190

In addition, all spacecraft observed prominent large-scale field variations at the back of191

the ICME sheath, the boundary between the ICME sheath and ejecta being marked by red192

dashed lines at ∼06:00 UT. The duration of the sheath passage is slightly longer at C3 and193

GT than at Wind and ACE.194

3 Correlation Analysis195

We compute the Pearson correlation coefficients for the magnetic field measurements196

in the intervals that, according to the previous visual investigation, were transmitted to the197

Earth’s magnetosphere during the ICME sheath passage on May 15, 2005. We also inves-198

tigate how the transmission of ICME sheath magnetic fields may depend on the frequency199

of the field fluctuations, and whether the transmitted field features were long-lasting occur-200

rences in the ICME sheath prior to encountering the magnetosphere. The first 37 s of the201

ICME sheath interval at C3, when the spacecraft was still within the magnetosheath, are202

excluded from the analysis by marking the ICME sheath beginning at C3 at 02:39:22 UT203

(see the black dashed vertical line in Fig. 2e).204

Similar to Ala-Lahti et al. (2020), we compute the total Pearson correlation by applying205

the averaging estimator of correlation coefficients (Olkin & Pratt, 1958) for the individual206

Pearson correlation coefficients of the magnetic field magnitude and components. Pearson207

correlation coefficient measures the linear dependence of two random variables and is used to208

compare spacecraft measurements (e.g., Good et al., 2018; Lugaz et al., 2018). The overall209

or total correlation is defined as210

σtot =

∑4
i=1(ni − 1)∑4
i=1(ni − 4)

[
σP,i +

σP,i(1− σ2
P,i)

2(ni − 3)

]
, (1)

where i refers to the magnetic field magnitude or component, σP,i is the corresponding211

Pearson correlation coefficient, and n is the size of the sample (Alexander, 1990; Ala-Lahti212

et al., 2020).213

We compute σtot for the C3 and GT data for the identified three intervals in order to214

quantify the visual similarity at the two spacecraft. We select the intervals in the upstream215

(C3) as follows: (1) 02:59:29 – 03:04:39 UT, (2) 03:10:03 – 03:13:49 UT, and (3) 05:28:09 –216

05:35:49; and hereafter refer to these intervals as ‘structures’ in the magnetic field. The217

boundaries are based on a number of features in the magnetic field observations in the218

upstream, such as abrupt changes in the magnitude or orientation of the magnetic field, or219
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the onset or ending of significant fluctuations. All the structures were convected by the bulk220

flow, checked by performing the timing analysis (Paschmann & Daly, 1998; Eastwood et al.,221

2005b) using data from all four Cluster spacecraft.222

In order to have well-defined correlation coefficients that account for distinguishable223

features of the structures, we have to consider longer intervals than the ones defined by224

the three structures. We note that the definitions of the structure boundaries include some225

degree of subjectivity. We control this subjectivity by varying the duration of the structure226

intervals when computing σtot. Furthermore, we examine the characteristics of the structures227

at L1 (ACE and Wind).228

Figure 3a–c show C3 data, with the structure boundaries marked by gray dashed vertical229

lines. Panels (d–l) show GT, ACE and Wind data. The magnetic field data shown in each230

plot are aligned relative to the beginning of the sheath arrival at C3 (02:39:22 UT shown in231

Fig. 2). The spacecraft data is resampled to 1 Hz.232

The intervals bounded by the blue solid vertical lines in Fig. 3a–c demarcate intervals233

±3 min of the structure boundaries. These extended C3 intervals are cross-correlated with234

the data at GT, ACE and Wind shown in Fig. 3d–l, with σtot calculated at each step of235

the cross-correlation. The resulting series of σtot values are given in Fig. 3m–o. The σtot236

time series show the correlation at each time step, with the investigated GT, ACE or Wind237

intervals being centered at the time step. The maxima of the σtot cross-correlations are238

indicated by stars for each series, with the maxima values listed at the bottom right corners239

of the panels. Pale solid vertical lines in Fig. 3d–l indicate the data intervals that give the240

maxima in σtot. The analysis is defective for structure (3) at Wind because of a data gap.241

In addition to the extended ±3 min intervals, we repeat the above analysis by consid-242

ering the structures with ±1.5–4.5 min extensions in steps of 30 s. We also consider the243

spacecraft data resampled to 0.5, 0.2 and 0.1 Hz. Figure 3p–r show the locations of maxi-244

mum correlation, similar to the stars in Fig. 3m–o. Different markers indicate the resampling245

resolution used but they do not distinguish different interval lengths used in our analysis.246

The correlation analysis presented in Fig. 3 suggests that the structures in the upstream,247

i.e., in the C3 data, were transmitted to the magnetosheath and observed by GT. The248

intervals identified by the correlation analysis, marked by the pairs of pale vertical lines in249

Fig. 3d–f, coincide with the previous visual inspection of the data. Furthermore, the analysis250

presented in Fig. 3p–r indicates that the identification is robust: the position of maximum251

correlation does not depend on the resampling resolution or on the precise length of the252

interval centered on the structure. This is indicated by the stable position of the green253

markers, and it applies for all three upstream structures. We note that as the duration of254

the structure remains much greater than the resampling resolutions, the σtot values increase255

as resampling resolution decreases due to the lower resampling resolution smoothing out the256

high frequency fluctuations observed within the structures.257

The comparison of structures (1) and (2) at C3 with the observations at ACE and Wind258

gives lower σtot maxima than with GT (Fig. 3g–f, j–k and m–n), which may result from the259

spacecraft at L1 having a different cross-section through the structures. The times giving260

maximum σtot also vary depending on the resampling resolution and interval length used261

(Fig. 3p and q). Moreover, the same interval at Wind is identified as the most probable262

candidate for both structures (1) and (2) in the correlation analysis. The same appears263

also for ACE to some extent, when considering Fig. 3m–n and p–q. Visual inspection on264

the other hand suggests that the intervals centered at ∼02:55 UT at ACE and at Wind265

correspond to each other in Fig. 3g and j. The intervals marked by the vertical lines in266

Fig. 3h and k also exhibit visual similarity.267

The occurrence of structures (1) and (2) at L1 is further investigated by studying them268

together. Similar to the analysis above, an interval bounded by the beginning of structure (1)269

(the first gray dashed line in Fig. 3a) and the ending of structure (2) (the second gray dashed270
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line Fig. 3b) is compared to the ACE and Wind data. The intervals giving the maximum271

correlations are marked by the gray solid lines in Fig. 3h and k, and the corresponding σtot272

values given by the upward and downward pointing triangles for ACE and Wind in Fig. 3n,273

respectively. The purple triangles in Fig. 3q, which do not differentiate different resampling274

resolutions, indicate a robust identification at ACE. The teal triangles for the comparison275

with the Wind data are more scattered and indicate relatively small correlation.276

This is consistent with the findings reported by Ala-Lahti et al. (2020), namely that277

magnetic fluctuations in ICME sheaths exhibit spatial structuring with heliospheric longi-278

tude at 1 AU. This can explain the ambiguity in identifying structures (1) and (2) at L1,279

especially at Wind, which had a relatively large longitudinal spacecraft separation with C3280

during the observation time period (Section 2 and Fig. 1a–c). However, the combined iden-281

tification of structures (1) and (2) at ACE implies the structures had a larger than 15 RE282

longitudinal width, a conclusion not possible from the comparison of the data from C3 and283

GT. In addition, some structures evidently are large-scale and spatially coherent across the284

ICME sheath and sufficiently long-lasting, such as structure (3), which is robustly identified285

by the correlation analysis at ACE and by eye at both ACE and Wind (see Fig. 3), and the286

prominent large-scale field variations at the back of the ICME sheath.287

Alternatively, the magnetic fields of an ICME sheath may develop substantially while288

traveling from L1 to the Earth. Consequently, observations at L1 would not always be289

sufficient to forecast, for example, strong southward magnetic fields in the Earth’s magne-290

tosheath, such as those seen in structures (1) and (2).291

We extend the above analysis for the whole ICME sheath on May 15, 2005 to examine292

how the identified structures compare to other magnetic field features during the event.293

We compare 10 min C3 intervals resampled at 1 Hz to intervals at GT. A 10 min interval is294

comparable in duration to the intervals indicated by the blue vertical lines in Fig. 3. Again295

the spacecraft measurements are aligned using the sheath arrival time as reference, and we296

compare a C3 interval to a set of GT intervals similarly as in Fig. 3. The results for the297

cross-correlation of the C3 intervals with the time-shifted GT data are shown in Fig. 4a,298

where the time on the horizontal axis gives the center of the C3 interval in question, and299

where the lag on the vertical axis gives the difference in time between the centers of the300

C3 and GT intervals analyzed. The red dashed lines indicate the beginning and end of the301

ICME sheath event and the black dotted lines indicate the intervals given by the blue lines302

in Fig. 3. The corresponding analysis for time-shifted ACE and Wind is shown in Fig. 4b303

and c, respectively.304

Consistent with our previous results, Fig. 4a highlights structures (1) - (3) (bounded305

by the black dotted lines) and their surroundings with relatively higher values of σtot. In306

addition, the map suggests that the structures were not sole ‘survivors’ in the transmission of307

the ICME sheath to the Earth’s magnetosheath. The map distinguishes patches of relatively308

high correlation between ∼03:20 and 04:20 UT. These correspondences in the field features309

in the upstream (C3) and downstream (Geotail) are also evident from visual inspection310

of the timeseries (see Fig. 2c and d). During the period at ∼03:25 – 03:37 UT, Bz was311

positive and Bx and By negative, with the interval ending at a sharp polarity reversal of312

the magnetic field direction. During ∼04:05 – 04:15 UT, the field components experienced313

a polarity reversal, Bz (Bx and By) being at first negative (positive). The magnetic field314

in the upstream additionally experienced a gradual rotation at ∼03:46 – 03:52 UT, which is315

not observable by eye in Fig. 2 but which appears in Fig. 4a as a patch of high correlation.316

We note that, contrary to the structures (1) - (3), the intervals discussed here do not have317

noteworthy southward Bz (see Fig. 2c and d).318

In particular, structures (2) and (3) are discernible in terms of patches that indicate319

a considerable correlation in Fig. 4b for ACE. The same applies for structure (1) to some320

extent. Figure 4c for Wind shows only weak associations for structures (1) and (2), but321

there is a period of high correlation at the back of the sheath at both spacecraft. The322
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better correlations with ACE can depend on the GSE y location of the spacecraft (see323

Fig. 1). This implies spatial variability in ICME sheaths, with the spacecraft location being324

sensitive to detecting different features in the magnetic fields. The back of the ICME325

sheath after structure (3) exhibits a well-correlated period at all spacecraft, corresponding to326

visually discernible large-scale field variations. The panels do not display significant patches327

elsewhere in the ICME sheath. These observations are in agreement with our analysis in328

Fig. 2 and 3.329

We complete our correlation analysis by examining the dependence of the transmission330

of upstream ICME sheath magnetic fields into the Earth’s magnetosheath on the frequency331

of the field fluctuations. First, we define two thresholds for σtot. We construct a distribution332

of σtot values by taking the maximum value at each point in time during the ICME sheath333

passage in Fig. 4a, i.e., the maximum correlation across the lag range at each time. The334

median and upper quartiles of the resulting σtot distribution are 0.48 and 0.60. The lower335

quartile of the distribution is σtot ' 0.30 and set as the lower limit of the color bars in Fig. 4.336

Next, we band-pass filter the C3 and GT magnetic field data, compute σtot values similar337

to those in Fig. 3, construct the distribution of the maximum correlations and compute the338

percentage of the distribution above the thresholds defined above. We examine ten bands339

with frequency ranges defined by β · 10α Hz, where β is equal to 1.0 - 2.5, 2.5 - 5.0, 5.0 - 7.5340

and 7.5 - 10.0 Hz, and α varies from -3 to -1; the two highest β ranges are excluded when341

α = −1, giving ten bands in total. We also vary the length of the investigated intervals from342

the 10 min used earlier, computing in addition σtot for 5, 20 and 30 min C3 data intervals.343

The patches in Fig. 5a coincide with the intervals identified and discussed previously;344

within a given patch, the color denotes the highest frequency range for which there is good345

correlation (i.e., σtot ≥ UQ). In addition, the highest frequency band given in the figure346

shows multiple patches with different lags for a given time. This may result from wave-like347

features prevailing in the frequency band, with waves having a different phase between the348

locations in upstream and downstream where the observations were made. The analysis349

for all frequency bands, interval lengths and both correlation thresholds is summarised in350

Fig. 5b, which shows the percentage of the band-pass-filtered σtot distribution above a given351

threshold (0.48 or 0.60) as a function of frequency. The legend indicates whether only 10 min352

or all data interval lengths are considered. In the latter case, the average of percentages353

across the four different interval lengths is computed. Additionally, the legend indicates354

the threshold used (given in brackets). The horizontal error bars in the figure show the355

frequency bands for other than the highest frequencies where they would overlap.356

Figure 5b gives an indication of the frequency dependence of the transmission of mag-357

netic fluctuations from the ICME sheath into the Earth’s magnetosheath. We note our358

analysis is limited, for example due to changes in spacecraft position and a relative large359

spacecraft separation that restrict the subsequent observations of short-lived small-scale360

fluctuations. However, larger-scale fluctuations in ICME sheath exhibit less spatial vari-361

ability (Ala-Lahti et al., 2020) and the results presented in Fig. 5 are an indicative of a362

trend. The figure shows that the probability of feature transmission increases significantly363

for frequencies below ∼0.01 Hz. This finding is in agreement with Rakhmanova et al. (2015),364

who reported similar frequency ranges when examining solar wind origin magnetic fluctu-365

ations in the Earth’s magnetosheath. They concluded that bow shock and magnetosheath366

processes contribute considerably to the distribution of magnetic fluctuations at higher fre-367

quencies. Furthermore, they suggested that higher-frequency magnetic fluctuations might368

also enter the magnetosheath if embedded in dense solar wind with large |B|. ICME sheaths369

are solar wind transients which typically exhibit both of these conditions (e.g., Kilpua et370

al., 2017b). However, the increase in probability in Fig. 5 occurs only at frequencies below371

∼0.01 Hz, possibly due to the limitations noted above. We further discuss the transmission372

of higher-frequency fluctuations in the next section, because waves at higher frequencies in373

the upstream are thought to transmit to the downstream (e.g., Clausen et al., 2009; Villante374

et al., 2011; Francia et al., 2012; Takahashi et al., 2021).375
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We conclude that magnetic structures (1) - (3) embedded in the ICME sheath observed376

on May 15, 2005 were transmitted into the Earth’s magnetosheath. They are detectable377

in the spacecraft data by visual inspection and stand out in our correlation analysis. The378

structures differed from other discernible intervals in the correlation analysis due to their379

southward field components, which were notably amplified when transmitted into the Earth’s380

magnetosheath. There is, however, ambiguity as to whether these structures were present381

further upstream at L1. Not all fluctuations appearing in the upstream did survive the382

transmission into the downstream, only lower-frequency fluctuations transmitting into the383

magnetosheath.384

4 Bow Shock Dynamics – Traveling Foreshocks385

We here continue the examination of structures (1) - (3) by relating them to the bow386

shock dynamics. We have estimated the bow shock angle, defined as the angle between387

the shock normal and upstream magnetic field direction (θBn), by following the field lines388

given by the C3 measurements during the ICME sheath passage and by modeling the bow389

shock using the model by Merka et al. (2005). This estimation is compared to the particle390

energy flux of the sunward traveling ions measured by the C3 CIS instrument. The C3391

measurements and estimated bow shock angle during the event are presented in Fig. 6,392

where black dotted vertical lines mark the structure boundaries. In Fig. 6c, which shows393

the bow shock angle θBn, the solid gray curve gives the angle along the upstream field lines394

while the dashed one gives the estimation during periods when the field lines did not connect395

to the bow shock, the angle being then estimated along the straight radial path from the396

spacecraft to the Earth.397

Figure 6 indicates that, during the event, C3 frequently observed fluxes of sunward398

traveling ions, which correspond to ions reflected from the bow shock, and which are an399

observational characteristic of a foreshock upstream of the bow shock (e.g., Eastwood et al.,400

2005a). The observed sunward fluxes were coincident with the upstream magnetic field lines401

encountering the bow shock, as demonstrated by the solid gray curve. Sunward traveling402

(or backstreaming) ions have been previously observed for θBn ≤ 70◦ (e.g., Eastwood et403

al., 2005a). Moreover, the shock angle varied considerably and rapidly during the sheath404

passage. During the structures identified in this study, the bow shock was quasi-parallel405

(θBn < 45◦), the structure boundaries being associated with abrupt changes of θBn. Fluxes406

of backstreaming ions were additionally observed during all three structures, which suggests407

that the structures constituted transient foreshocks. With a transient foreshock we refer to408

a temporary change in the bow shock geometry during which similar magnetic and plasma409

phenomena occur in the upstream region that are observed for the global foreshock during410

nominal solar wind conditions (see e.g., Kajdič et al., 2017).411

To examine further whether the structures constituted transient foreshocks, we study412

the occurrence of ultralow-frequency (ULF) fluctuations and ion distributions within the413

structures. ULF fluctuations from 1 mHz to 1 Hz are regularly observed in the Earth’s ion414

foreshock (e.g., Burgess, 1997; Eastwood et al., 2005b; Hobara et al., 2007; Wilson, 2016),415

and can also be replicated in numerical simulations (e.g., Lin & Wang, 2005; Blanco-Cano416

et al., 2006; Turc et al., 2018). They are generated through plasma instabilities, such as417

the left-hand resonant ion beam instability (Gary, 1985), which excites fluctuations around418

a frequency of 0.1 Hz (a period of 10 s), or the ion-ion beam right-hand instability (Gary,419

1991) responsible for generating 30 s fluctuations. These plasma instabilities are triggered420

by the interactions between backstreaming ions and the incoming solar wind (e.g., Eastwood421

et al., 2003, 2005a; Wilson, 2016).422

The 30 s ULF fluctuations have been extensively examined (e.g., Greenstadt et al.,423

1968; Hsieh & Shue, 2013; Palmroth et al., 2015; Turc et al., 2018), their wave periods424

actually ranging from 10 to ∼55 s depending on the solar wind conditions (Eastwood et al.,425

2005b). Initially transverse fluctuations may develop a significant compressive component426
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(Kis et al., 2004; Blanco-Cano et al., 2006; Omidi et al., 2009; Rojas-Castillo et al., 2013;427

Kajdič et al., 2017). Moreover, ULF fluctuations in the Earth’s ion foreshock often coin-428

cide with intermediate, gyrating or gyrophase-bunched ion distributions (Paschmann et al.,429

1979; Fuselier, 1995; Eastwood et al., 2005b). Gyrophase bunching implies a distribution430

with nonzero mean velocity component perpendicular to the field direction (Fuselier, 1995;431

Mazelle et al., 2003). Recent studies have shown that when the IMF strength is large (as432

is the case during ICMEs and their sheath regions), the foreshock can exhibit anomalous433

features, with in particular the coexistence of 30 s waves at different frequencies, which may434

be due to coincident multiple ion beams (Turc et al., 2018, 2019). Wavelet power spectra435

can be used to characterize foreshock wave activity.436

Fig. 7 shows the magnetic field measurements at C3 for structures (1) - (3) in panels437

(a–c) and the Morlet wavelet power spectra for parallel (B||) and perpendicular (B⊥) fluc-438

tuations with respect to the mean magnetic field direction within the structures in panels439

(d–f) and (g-i), respectively. The B|| and B⊥ components are defined similarly to Moissard440

et al. (2019), the perpendicular unit vectors defined as b1,⊥ = (ej × B0)/|ej × B0| and441

b2,⊥ = (B0 × (ej ×B0)) / (|B0 × ej ×B0|) where ej is chosen from the GSE unit vectors442

so that the quantity ||ej × B0|| is maximised, B0 being the background magnetic field.443

The vertical axis indicates the fluctuation period in seconds. In addition, reduced two-444

dimensional velocity distribution functions (VDF) in the plasma rest frame in the (V||, V⊥)445

plane for the structures are shown in Fig. 8. The distribution functions are integrated over446

the second perpendicular direction, with the arrows indicating the bulk direction of the447

magnetic field and plasma velocity during the structures.448

Substantially enhanced power in both parallel and perpendicular fluctuations with pe-449

riods from 10 to 55 s was found within structures (1) and (2) relative to the surrounding450

field (Fig. 7d–e and g–h). High power also appeared at shorter periods. For structure (3),451

the same applies for perpendicular fluctuations (Fig. 7i), whereas compressive fluctuation452

power, while considerable, was not distinguishable from the surroundings (Fig. 7f). Higher453

power at shorter periods is in agreement with previous ULF wave observations: their fre-454

quency is roughly proportional to |B| (Hoppe & Russell, 1982; Turc et al., 2019), which455

is relatively large for the compressed plasma of ICME sheaths. In addition, Fig. 8, where456

the core plasma is indicated by the large values of the phase space density at the proxim-457

ity of the centers of the plots, reveals that the two-dimensional VDFs span an extensive458

region of phase space. The VDFs in particular occupy the bottom-left quadrants implying459

gyrophase-bunched distributions. The distributions in Fig. 8 resemble the disrupted cap460

distributions seen in numerical simulations where ULF waves are present, which result from461

backstreaming ions interacting with ULF waves (Kempf et al., 2015).462

The C3 observations within the structures do not unambiguously exhibit all standard463

signatures of a foreshock, such as |B|, V and n having smaller values in the foreshock than464

in the upstream solar wind (see e.g., Kajdič et al., 2017). Relative to the surroundings,465

proton density went up in structure (1) and down in (2), plasma speed decreased in both466

structure (1) and (2), while density and speed did not change in structure (3) (not shown).467

The magnetic field magnitude was also higher than their surroundings within all structures.468

However, an antisunward convected solar wind region, which is bounded by rotational dis-469

continuities in the IMF that temporarily change a portion of the bow shock geometry to470

quasi-parallel and hosts ULF fluctuations and suprathermal ions, causes so-called traveling471

foreshock (Kajdič et al., 2017). There were indeed significant changes in field direction at472

the structure boundaries, with the bow shock becoming quasi-parallel. In addition, the473

structures occurred in conjunction with notable fluxes of sunward traveling (backstreaming)474

ions, enhanced power in fluctuations in the 10 – 55 s period range, and complicated VDFs475

manifesting gyrating beams. Thus, we conclude that these structures caused traveling fore-476

shocks, during which a transient foreshock occurs upstream of the Earth’s bow shock due477

to a temporary change in the IMF direction. Due to the close separation of the four Cluster478

spacecraft, we cannot compute the spatial scale of these traveling foreshocks and how local479
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they were (Pfau-Kempf et al., 2016) nor confirm the observation by Kajdič et al. (2017)480

that the temporal sequence of entry and exit of a traveling foreshock is similar in multiple481

spacecraft.482

To extend the analysis of Section 3 about the transmission of different fluctuations,483

the wavelet power in the upstream at C3 shown in Fig. 7 is compared to the power in the484

downstream at GT shown in Fig. 9. Compressive and perpendicular fluctuations in Fig. 9d–f485

and in Fig. 9g–i, respectively, are computed with respect to the mean field direction within486

the structures in the upstream. Structures (1) and (3) are discernible in Fig. 9d and g487

and in Fig. 9f and i, respectively, which show a significant power within the presumable488

correspondents of the structures at GT (Fig. 9a and c). Structure (2) on the other hand is489

not as distinguishable from the surrounding field in Fig. 9b and e. However, for all structures490

(1) - (3), a large power observed for longer fluctuation periods at C3 in Fig. 7 occurred also491

in the downstream, and in general the power increased from C3 to GT. The wavelet power492

was also enhanced for shorter fluctuation periods in the downstream.493

For completeness, we plot the wavelet power spectra for the entire ICME sheath passage494

on May 15, 2005 (Fig. 10), which shows the wavelet power of magnetic field magnitude and495

out-of-ecliptic component for all spacecraft used in this study. The black dashed (dotted)496

vertical lines delineate the sheath (structure) boundaries and the black solid curves show497

the proton cyclotron frequency. The power of |B| and Bz both increased from the upstream498

to the downstream across a wide range of periods through the entire ICME sheath interval.499

The structures are discernible in the C3 and GT Bz spectra. Similar observations are made500

for the Bx and By components as for Bz (not shown). It is notable that the highest power of501

Bz is observed just behind the preceding shock and just in front of the ICME leading edge,502

consistent with the statistical study by Kilpua et al. (2013). These parts of the sheath are503

key regions for substorms and geoefficiency (Kilpua et al., 2019; Kalliokoski et al., 2020).504

This high power of Bz was also detected by ACE and Wind further upstream at L1.505

5 Discussion506

In this study we have examined the transmission of structures in an ICME sheath to507

the Earth’s magnetosheath. We focused on the ICME sheath interacting with the mag-508

netosphere on May 15, 2005, that of the driving ejecta having been previously studied by509

Turc et al. (2014). We paid particular attention to three intervals in the ICME sheath that510

transmitted from the immediate upstream of the bow shock to the downstream during the511

ICME sheath passage maintaining their structure. These intervals, labeled structures (1) -512

(3), caused traveling foreshocks and were the focus of this study. The structures contained513

highly southward field component in the upstream region that was amplified significantly514

in the downstream propagation, increasing their geoeffectiveness. Large amplitude mag-515

netic field fluctuations were present in the structures in both upstream and downstream.516

Wavelet power in the ULF band and the occurrence of backstreaming ions were examined517

at the times coinciding with the traveling foreshock structures, and showed intensification518

especially at higher frequencies as they traveled downstream.519

The correlation analysis constructed in this study was in agreement with visual inves-520

tigation of the spacecraft data, and the identification of the structures in the immediate521

upstream and downstream was unambiguous. Further in the upstream, in the proximity of522

L1, the identification of structures (1) and (2) became ambiguous, the ambiguity diminishing523

at ACE in an additional analysis thus being larger at Wind, which was further away from524

the Sun-Earth line. On the other hand, a solid identification of structure (3) was made also525

at L1. Although a large-scale, relatively coherent background magnetic field is embedded526

in ICME sheaths at 1 AU, they also host local and spatially limited magnetic fluctuations527

(Ala-Lahti et al., 2020). Our findings are in agreement with this conclusion, especially if528

structures (1) and (2) were local but steady, long-lived structures already present further529

upstream. Consequently, the chosen solar wind monitor is important when studying the530
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interaction of an ICME sheath with the Earth’s magnetosheath. An alternative is that the531

magnetic field fluctuation properties of ICME sheaths can change relatively quickly with532

time (i.e. during the propagation time between the spacecraft), even in a manner that is533

expected to have implications for their space weather response.534

Moreover, although our analysis implies that the structures were limited in the lon-535

gitudinal direction, their extent might have been comparable to the width of the Earth’s536

magnetosheath in the GSE y and z directions. This is consistent with the identification of537

the structures at ACE data but not at Wind. In such a case, the bow shock angle would538

differ from the one given in Fig. 6 depending on the position in the upstream. Thus, the539

transmission of the structures into the Earth’s magnetosheath might vary along the bow540

shock due to varying shock configuration and dynamics, which could result in an even more541

localized occurrence of the structures in the downstream. Our analysis indeed demonstrated542

that the bow shock angle can experience abrupt changes and quickly adjust to the upstream543

magnetic field. We showed here that the reaction of the magnetosheath to the upstream544

field changes is almost immediate. During structures (1) - (3), the bow shock was in addition545

quasi-parallel and the structures constituted traveling foreshocks. Although some upstream546

magnetic fields correlated with the observations in the downstream when the bow shock547

was quasi-perpendicular, the studied ICME sheath passage had considerable intervals, such548

as at ∼04:30–05:00, when no significant correlations were observed between upstream and549

downstream measurements.550

As a consequence of the varying shock dynamics, space weather effects in the inner551

magnetosphere may be very complicated during an ICME sheath passage. This applies552

especially for interactions between the magnetopause and southward fields embedded in an553

ICME sheath, such as structures (1) - (3) investigated in this study. Magnetic structures in554

an ICME sheath can indeed excite localised wave generation in the inner magnetosphere555

(Blum et al., 2021). The above scenario can occur for steady, long-living magnetic structures556

and for magnetic structures/fluctuations generated while an ICME sheath propagates from557

L1 to the bow shock.558

We found that the probability of the upstream magnetic fields surviving the transmis-559

sion to the Earth’s magnetosheath during the ICME sheath passage was dependent on the560

frequency of the magnetic fluctuations. Our analysis showed that surviving the transmis-561

sion became more probable when fluctuations had frequencies below ∼0.01 Hz. This is in562

agreement with previous research (Rakhmanova et al., 2015). We note, however, that waves563

at higher frequencies are thought to transmit across the bow shock (e.g., Clausen et al.,564

2009; Takahashi et al., 2021) and more observations are needed for further conclusions.565

The traveling foreshocks included fluctuations with periods in the ULF range. These566

waves were possibly generated by the backstreaming ions in the traveling foreshocks. The567

lower levels of magnetic fluctuations further in the upstream at L1 is in agreement with this568

conclusion (assuming the occurrence of the structures already at L1).569

The transmission of the ULF fluctuations was not extensively investigated in this study.570

However, an enhanced wavelet power was observed within structures (1) - (3) at ULF wave571

periods in the upstream and downstream, with a larger power in the downstream that also572

extended to shorter fluctuation periods. Foreshock ULF waves are considered to be a sig-573

nificant source of magnetospheric fluctuations (Takahashi et al., 1984), which may reach574

the inner magnetosphere (Russell et al., 1983; Villante et al., 2011; Francia et al., 2012).575

From this perspective, the magnetic field configurations embedded in ICME sheath fields576

that form traveling foreshocks and excite the generation of ULF waves result in a complex577

interplay between an ICME sheath and the Earth’s magnetosheath: All fluctuations trans-578

mitted from the upstream to the magnetosheath during an ICME sheath passage are not579

necessarily fluctuations that originated from the solar wind. Instead, an ICME sheath pas-580

sage may result in bow shock dynamics that generate foreshock ULF waves, which are then581

transmitted into the magnetosheath. Together with pre-existing ICME sheath fluctuations,582

–12–



manuscript submitted to JGR: Space physics

the generated ULF waves may constitute foreshock turbulence, which can lead to magne-583

topause reconnection (Chen et al., 2021), thus compounding the space weather impact of584

the ICME sheath.585

The complex interplay together with spacecraft locations may actually explain the586

low correlation at higher frequencies in Fig. 5. As discussed above, longitudinally (and587

latitudinally) extended structures that are observed in the upstream, such as structures588

(1) - (3), modify the shock configuration. Because of this and of the shock curvature, their589

interaction with the shock, and a possible foreshock, will vary with space and time. In590

addition, fluctuations within them may evolve due to the dynamics of the ICME sheath591

itself, or that of the traveling foreshock, before the structures enter the downstream. For592

example, ULF fluctuations excited within a structure entering the magnetosheath flank593

have more time to develop a compressive component than if the structure crossed the bow594

shock closer to the Sun-Earth line. ULF waves within a lasting foreshock region can further595

deepen, forming shocklets and short-large-amplitude magnetic structures (e.g., Kajdič et596

al., 2017, and references therein). Foreshock waves have also a shorter longitudinal extent597

when present inside a driver, which has higher |B| than more typical solar wind (Archer598

et al., 2005; Turc et al., 2018, 2019). Consequently, fluctuations at higher frequencies599

can differ substantially from each other between the upstream observation location and600

their bow shock crossing location that precedes their subsequent downstream observation601

location, whereas extended larger-scale structures may be preserved from the upstream to602

the downstream being observed by spacecraft that are not radially aligned. This scenario603

is applicable for the entire ICME sheath passage, during which the spacecraft separation604

in the GSE yz-plane between C3 and GT varied between 6.5 and 7.5 RE. In addition, the605

magnetosheath dynamics during the ICME sheath passage could have modified fluctuations606

properties at higher frequencies during the traveling time from C3 to GT, which had a607

spacecraft separation in the GSE x-direction between 1.0 and 4.6 RE during the event.608

Finally, structures (1) - (2) might have originated from magnetic field fluctuations pre-609

existing in the solar wind that were swept by the ICME sheath (see e.g., Tsurutani et610

al., 1988). Such pre-existing fluctuations experience shock compression twice: first when611

entering the ICME sheath and second when the ICME sheath transmits to the Earth’s612

magnetosheath. Alternatively, the structures could have been generated by the in-situ613

dynamics of the turbulent plasma downstream of an interplanetary shock. The downstream614

turbulence is dependent on conditions in the preceding solar wind (see e.g., Pitňa et al., 2016,615

2021; Zank et al., 2021). These scenarios also emphasize the importance of understanding616

the dynamics of the solar wind. Successive observations of the same ICME sheath by617

multiple spacecraft with relatively small separations would improve our understanding of618

these origins. Solar Orbiter and Parker Solar Probe will provide opportunities to investigate619

if these structures are present closer to the Sun.620

Structure (3) and the coinciding large-scale field variations at the back of the ICME621

sheath observed by all spacecraft could have emanated from field line draping around the622

driving ejecta (e.g., Gosling & McComas, 1987; Tsurutani et al., 1988; McComas et al.,623

1989). As discussed by Jones et al. (2002), the orientations of the constituent magnetic624

fields accreting at the back of the ICME sheath should remain tangential to the local leading625

surface of the driving ejecta. This accretion can form periods of organized layers of magnetic626

fields known as planar magnetic structures (Nakagawa et al., 1989). The occurrence of627

planar magnetic structures in the ICME sheath observed at 1 AU on May 15, 2005 was628

investigated by Palmerio et al. (2016), and interestingly, the authors reported a planar629

magnetic structure only in the mid-sheath. We note that the identification was performed630

with Wind data, which had a significant data gap during structure (3), and that deviations631

from the general field line draping pattern can occur (Kaymaz & Siscoe, 2006). Large-scale632

field variations at the back of the ICME sheath can also result from the erosion of the ICME633

ejecta (Dasso et al., 2006; Ruffenach et al., 2012; Lavraud et al., 2014; Manchester et al.,634

2014).635
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ICME sheaths and their interplay with the Earth’s magnetosphere constitute an in-636

triguing coupled system. We highlight, together with the work by Ala-Lahti et al. (2020)637

and by Blum et al. (2021), the importance that the fine structure of sheath fields have in638

this interplay. Predicting ICME sheath structures and properties that are relevant for space639

weather and geoefficiency can be particularly challenging due to the complex dynamics of640

ICME sheaths, which can vary with propagation from the Sun. The magnetic fine structure641

observed at L1 might not always match reality at the Earth due to the spacecraft location642

or due to the evolution of the fluctuations. This is important for space weather predictions643

that are dependent on observations at L1.644
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Figure 1. (a–c) Sketch of near-Earth space in Geocentric Solar Ecliptic (GSE) coordinates at

01:00-06:00 UT on May 15, 2005 showing the trajectories of the Geotail (green) and Cluster 3 (blue)

spacecraft, and the mean positions of the ACE (purple) and Wind (teal) spacecraft. The change

in position for ACE and Wind was negligible in this time period, unlike for Geotail and Cluster 3.

Earth’s magnetopause (solid black lines) and bow shock (solid red lines) are modeled during the

ICME sheath passage using Wind measurements (Shue et al., 1998; Merka et al., 2005). Dashed

lines in panel (a) indicate the magnetosheath boundaries for the solar wind conditions prior to the

ICME arrival. There is a cut-out of the GSE x-axis in panel (c). (d–g) Magnetic field magnitude

(|B|), magnetic field components (B), speed (V ), and proton density (n) measured by Wind and

(h–k) ACE on May 15, 2005. Vertical red dashed lines indicate the times of the interplanetary

shock preceding the ICME sheath (ACE 02:11 UT; Wind: 02:13 UT) and the leading edge of the

driving ICME (ACE: 05:30 UT; Wind: 05:31 UT).
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Figure 2. (a–d) Magnetic field measurements from Wind, ACE, Cluster 3 (C3) and Geotail (GT)

during the ICME-driven sheath region on May 15, 2005, at 1 Hz resolution. The measurements are

time-shifted and aligned relative to the beginning of the event at C3 (dashed red lines). The pink

boxes in panel (c) indicate three intervals of interest, as follows: (1) the beginning and arrival of

the ICME sheath indicated by a fast forward interplanetary shock, and (2 and 3) sub-structures

in the C3 data, which have a notable negative out-of-ecliptic component and that also appear in

the Geotail data. The dashed red lines at ∼06:00 UT indicate the trailing edge of the sheath i.e.,

the leading edge of the driving ICME ejecta. Selected data from the three intervals are shown in

panels (e–l). The magnetosheath exit of C3 is marked by the black dashed line. Proton density

and plasma speed are shown for the interval 1 in panels (g–h).
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Figure 3. Correlation coefficient analysis comparing the correspondence of Geotail, ACE and

Wind magnetic field data to a sub-interval of C3 data defined by boundaries marked with blue

vertical lines in panels (a–c). Columns 1–3 correspond to structures (1)–(3), respectively. (a–l) The

magnetic field data of the spacecraft. (m–o) The total cross-correlation (σtot) of the sub-interval

given in panels (a–c) with the data at the other spacecraft. Correlation values were calculated for

sub-intervals at the other spacecraft with durations equal to that of the corresponding C3 interval.

Correlation values at the mid-point of the sliding intervals are shown in panels (m–o). Peak values in

the cross-correlation are indicated by stars and corresponding numerical values given in the bottom

right corners of panels (m–o). Panels (p–r) show how the location of these highest correlations

vary when the boundaries marked by the blue vertical lines in panels (a–c) vary and when data

are resampled to lower resolutions (to 0.5, 0.2 and 0.1 Hz). The boundaries in panels (a–c) are the

identified structure boundaries with 3 min added before and after. These additions in panels (p–r)

vary from 1:30 min to 4:30 min in steps of 30 s, the addition of 3 min representing the middle value

of this vector. The gray dashed lines in panels (h) and (k) indicate the intervals corresponding the

peak values marked by an upward and downward pointing triangles in panel (n), when structures

(1) and (2) are considered together at ACE and Wind, respectively. The triangles in panel (q) show

how the location of these highest correlations vary when the data resolution and interval length are

varied.
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Figure 4. Total correlation between the magnetic field measurements at C3 and the other space-

craft. (a–c) σtot for C3 data correlated with time-shifted GT, ACE, and Wind data, respectively.

Red vertical dashed lines indicate the shock and ICME leading edge, and black dotted lines are

the boundaries given in Fig. 3a. Sub-intervals of C3 and GT data are compared to each other by

taking a 10 min sub-interval of C3 data and the 20 min surrounding of corresponding (time-shifted)

GT/ACE/Wind data. A sub-interval of C3 data, of which the observation time is given on the

horizontal axis, is compared to a corresponding sub-interval of GT/ACE/Wind data, the values of

σtot being computed by shifting the location of this sub-interval of GT/ACE/Wind data. The shift

is defined as the lag. The lower boundary of the color bar, σtot = 0.30, is the lower quartile of the

distribution of correlation maxima defined in the text.
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Figure 5. (a) Total correlation between the band-pass-filtered magnetic field data at C3 and GT

during the ICME passage. Patches in the map show when the threshold of σtot = 0.60 is exceeded,

and colors indicate the frequency bands investigated. The threshold is the upper quartile (UQ)

of the distribution of correlation maxima defined in the text. (b) The percentage of σtot maxima

as a function of bandwdith filtered spacecraft data. The percentages are computed for different

interval lengths and different thresholds. The percentages are shown when 10 min C3 intervals were

considered, and when the average of 5, 10, 20 and 30 min intervals were computed. The vertical

error bars give the standard error of the mean. The thresholds are the median (σtot = 0.48) and UQ

(σtot = 0.60) of the distribution of correlation maxima defined in the text. The black horizontal

bars indicate the frequency bands used. The trend of the bands is also applied for the highest

frequency bands but not shown due to all curves overlapping. ‘s/c’ refers to spacecraft.

–20–



manuscript submitted to JGR: Space physics

Figure 6. (a) C3 magnetic field measurements and (b) corresponding energy flux of sunward-

traveling ions. (c) The estimated shock angle (θbn) of the Earth’s bow shock when the magnetic

field at C3 (solid gray) is extrapolated to the bow shock configuration according to Merka et al.

(2005). The dashed gray curve indicates θbn when the path along the magnetic field direction given

by C3 observations does not cross the bow shock due to the orientation of the magnetic field, and

the radial path from the location of C3 to the center of the Earth is used instead. Black dotted

vertical lines indicate the structure boundaries given in Fig. 3a.
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Figure 7. (a–c) C3 magnetic field measurements of structures (1) - (3), the structure boundaries

given by black dotted vertical lines. (d–f) Wavelet power spectrum of magnetic field fluctuations

parallel (B||) and (g–i) perpendicular (B⊥) to the mean field direction within the structures, for the

time periods shown in panels (a–c) . The power of B⊥ is the mean power of the two perpendicular

components.
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Figure 8. (a–c) Reduced ion velocity distribution functions observed during structures (1) - (3).

The distributions are integrated over the second perpendicular velocity direction and color-coded

according to the phase space density. Contours show log10 values of -8 and -6. The horizontal and

vertical axes are parallel and perpendicular to the magnetic field direction, which is shown by the

blue arrows. The bulk plasma velocity is shown by the black arrow.
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Figure 9. (a–c) GT magnetic field measurements of structures (1) - (3). (d–f) Wavelet power

spectrum of magnetic field fluctuations parallel (B||) and (g–i) perpendicular (B⊥) to the mean

field direction within the structures at C3, for the time periods shown in Fig. 7a–c. The power of

B⊥ is the mean power of the two perpendicular components.
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Figure 10. (a–h) Wavelet power spectrum of the magnetic field magnitude and GSE z com-

ponent (Bz) during the ICME sheath passage at all spacecraft. The structure boundaries at C3

are marked by the black dotted vertical lines in panels (e–f) and extend to panels (g–h). The

black dashed vertical lines give the ICME sheath boundaries. The solid black curves show the ion

cyclotron period.
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B. (2010, Aug). From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection.688

Solar Physics , 265 (1-2), 49-127. doi: 10.1007/s11207-010-9602-8689
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