- 1 Publisher version:
- 2 Chen X.-Y., Zheng X.-Y., Beard B. L., Urrutia M., Johnson C. M. and Barak P. (2022) Natural
- 3 potassium (K) isotope fractionation during corn growth and quantification of K fertilizer
- 4 recovery efficiency using stable K isotope labeling. ACS Earth and Space Chemistry 6, 1876-
- 5 *1889, DOI: 10.1021/acsearthspacechem.2c00105.*
- 6 Natural potassium (K) isotope fractionation during
- 7 corn growth and quantification of K fertilizer
- 8 recovery efficiency using stable K isotope labeling
- 9 Xin-Yang Chen, Xin-Yuan Zheng*, Brian L. Beard, Matilde Urrutia, Clark M. Johnson, Phillip
- 10 Barak
- 11 **ABSTRACT:** An improved understanding of the potassium (K) cycle in the soil–plant system is 12 scientifically and economically significant, but the conventional research based on K concentration 13 measurements has several known limitations. The recent advent of high-precision stable K isotope 14 analysis (reported as δ^{41} K values) can facilitate the use of both stable K isotope labeling and mass-15 dependent isotopic fractionation in studying the K nutrient cycle, including K fertilizer utilization, 16 and plant-soil interactions. As a proof-of-concept, we conducted a pot study to quantify uptake of K fertilizer by corn. Three groups of treatment (50, 100, 200 mg K kg⁻¹ soil) were conducted using 17 soils pre-mixed with different amounts of ⁴¹K-labeled fertilizer. A control group used the same 18 19 soil without fertilizer treatment. Aboveground shoots and soils were sampled and analyzed after 20 ~6 weeks. The control group showed preferential uptake of light K isotopes by corn with an 21 estimated mass-dependent fractionation of \sim -0.37% (\pm 0.23%) in 41 K/ 39 K between shoot and soil. In fertilized experiments using an enriched ${}^{41}K$ tracer, $\delta^{41}K$ data unambiguously quantifies 22

fertilizer-derived K in corn shoots, yielding apparent fertilizer recovery efficiency of 59% to 81%. In comparison, the K concentration-based method underestimated fertilizer utilization at low K treatment and overestimated fertilizer utilization at high K treatment, because it cannot distinguish different K sources whose relative contributions to the bioavailable K pool in soil can vary in response to plant–soil interactions. Our study demonstrates the potential of stable K isotopes in improving the understanding of the K cycle in soil–plant systems.

KEYWORDS: potassium cycle, potassium isotopes, fertilizer, isotope labeling, nutrient utilization, potassium isotope fractionation; corn

1. INTRODUCTION

Potassium (K) is a macronutrient essential for plant growth. It is one of the most abundant cations in plants and is highly mobile between different cell compartments and within plants. The uptake and transport of K is mainly facilitated by membrane protein transporters and K channels. ¹⁻⁴ Although the critical concentration of K (defined as the concentration at which 90% of maximum yield is achieved, ref 5) is typically less than 2% of dry matter for many plants, the actual concentrations found in plants vary over a wide range and can reach up to 10% of dry weight, ⁶ so-called luxury consumption. Because K has critical functions in many physiological processes during plant growth, such as protein synthesis, enzyme activation, photosynthesis, stomata movement, osmotic regulation, membrane electric potential regulation, and pH homeostasis, ^{2, 7-9} K deficiency can lead to retarded growth, and chlorotic and necrotic organs.

Although K contents in soil are typically large, the majority of K resides in minerals that are not readily available to plants.¹⁰ Potassium fertilizers are, therefore, commonly needed in

agriculture to ensure sufficient bioavailable K in soils that can sustain healthy plant growth and harvest. The rate of K fertilization is critical because inadequate nutrient supply will restrict crop yield and quality while excess application may cause plant damage, nutrient leaching, and other potential environmental consequences. Proper management of K fertilizers is desirable for economic profitability of agriculture and soil health. Such management for K is particularly crucial in the context of both population growth and ongoing climate change that is predicted to cause an increase in drought and heat events in many parts of the world in the near future, because K is a key nutrient influencing crop resistance to diseases and many environmental stresses, such as drought and salt. 9, 9, 11, 13, 15-18

Optimization of fertilization strategies requires accurate quantification of fertilizer uptake. Conventionally, uptake of fertilizer-derived K by crops is estimated as apparent recovery efficiency (RE) using the difference method, which is based on the difference in K contents between fertilized and unfertilized crops relative to the quantity of fertilizer applied, ¹⁹⁻²¹ instead of a direct assessment on how much of K in plants is derived from fertilizer. However, crops can respond differently under different fertilization conditions, ^{22, 23} and conventional soil tests based on chemically extractable-K concentrations are often inadequate in accounting for these different crop responses. In addition, because K is present in different pools in soils (i.e., soluble, exchangeable, non-exchangeable, and minerals), varying plant–soil interactions under different fertilization conditions may alter the dynamics of K transfers among these different K pools, which typically cannot be accounted for by the concentration-based difference method. For example, it has been demonstrated that plants can utilize more non-exchangeable K in soils that was previously considered to be hardly accessible by plants. ²⁴⁻²⁶ A couple of recent studies also reported that the quantity of exchangeable K determined by an isotope dilution method in certain soils is larger than

the quantify estimated by the conventional cation-exchange methods,^{27, 28} implying the presence of significant labile K in soil that had been neglected previously. Further complexities in quantification of K fertilizer utilization arise from incomplete knowledge on the kinetics of soil K fixation and release as a function of the fertilization rate.²⁹⁻³³ Therefore, development of an alternative method that can quantify K fertilizer utilization more accurately is of substantial scientific and practical significance.

The use of isotope-labeled fertilizer offers a direct means to study nutrient uptake by plants. The isotope labeling technique has been extensively employed to trace and quantify utilization of several nutrients, such as nitrogen (e.g., ¹³N and ¹⁵N, ref 34-37), phosphorus (e.g., ³²P and ³³P radioisotopes, ref 38, 39), and sulfur (e.g., ³⁴S or ³⁵S, ref 40, 41), providing critical information on detailed processes and kinetics associated with cycling of these nutrients in the soil–plant system. The use of stable isotopes over radioisotopes is generally preferred because of the absence of safety and regulatory controls attendant to their use in the laboratory, greenhouse, and field, and great strides have been made in studying several nutrient cycles, such as the N cycle using stable ¹⁵N.³⁴, ⁴²⁻⁴⁴

However, application of enriched K isotopes to study the K cycle in the soil–plant system is relatively rare, despite the availability of three naturally occurring K isotopes (39 K, 40 K, 41 K) and several radioactive isotopes that can be artificially produced (e.g., 38 K, 42 K, 43 K). Some early studies used the radioisotope 42 K to investigate exchangeable K in soil and K uptake related to plant physiology, 45,46 but the timescale of the experiments is limited because of the short half-life of 42 K (\sim 12.3 hours, ref 47). Radioactive 40 K is a naturally occurring isotope with a very long half-life (1.248×10 9 years, ref 48, 49), so, in principle, it can be used for longer-term agricultural research, such as quantification of fertilizer utilization. However, there were only a couple of

studies in the literature that used enriched ⁴⁰K to trace K in the soil–plant system,^{50, 51} likely because of the combined challenges associated with ⁴⁰K analysis and the use of radioactive material.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

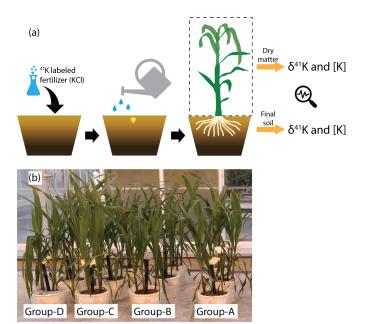
113

Stable ⁴¹K isotope is an attractive target for isotopic labeling because: (1) the use of an enriched stable isotope avoids any hazards and regulatory challenges associated with radioactive material, (2) the natural abundance of ⁴¹K is relatively low (~6.7%), and (3) highly enriched ⁴¹K isotope (>95%) is commercially available. Despite these advantages, this potential application has long been hampered by difficulties in precisely analyzing ⁴¹K/³⁹K ratios using mass spectrometry because of polyatomic interferences derived directly from the argon plasma (e.g., ⁴⁰ArH⁺ on ⁴¹K⁺) and/or the difficulty in correcting for instrumental mass bias.^{52, 53} These difficulties can be alleviated to some extent by using a ⁴¹K tracer of high enrichment, so that changes in the ⁴¹K tracer abundance in samples can be large enough to be resolved under an analytical precision of several parts per thousand (i.e., % or "per mil") achievable by thermal ionization mass spectrometry (TIMS) or conventional quadrupole inductively coupled plasma mass spectrometry (ICP-MS) with a collision cell. Several studies have used these approaches and an enriched ⁴¹K tracer to study K uptake and internal cycling in plants (particularly trees), 54-57 showing the potential of the stable K isotope labeling. These studies, however, generally used ⁴¹K tracers with percent-to sub-percentlevel enrichment, so the required amount of tracer (hence the cost) was relatively high.

Recent advance in multi-collector ICP-MS (MC-ICP-MS) has made it possible to achieve high-precision analysis of 41 K/ 39 K ratios to an external precision of \sim 0.1‰ or better (2 standard deviations), an improvement of more than an order of magnitude relative to TIMS- and quadrupole ICP-MS-based approaches. MC-ICP-MS analysis, therefore, allows for detection of subtle K isotope variations down to sub-per-mil level in natural samples for the first time. $^{58-64}$ This new

analytical capability may revolutionize the study of the K nutrient cycle in two ways. First, a few studies have recently shown significant natural variations in ⁴¹K/³⁹K in a variety of different plants and K isotope fractionation during plant (i.e., soybean, rice, and wheat) growth in hydroponic experiments. ^{61,65-67} These natural ⁴¹K/³⁹K variations, not resolvable previously, potentially provide a new research avenue that may improve our understanding of the K nutrient cycle in a way similar to how natural mass-dependent isotope variations for carbon and nitrogen have advanced the understanding of the carbon and nitrogen cycles. ⁶⁸⁻⁷⁰ Second, the improved analytical precision allows for the use of a ⁴¹K tracer with considerably lower enrichment, making stable K isotope labeling a more financially feasible approach through reducing the total amount of enriched ⁴¹K (hence the cost) needed for an experiment.

To the best of our knowledge, application of labeled stable K isotopes (⁴¹K) to directly quantify K fertilizer recovery efficiency from soil, and a comparison of results to the conventional difference method, have not been explored previously. Here, as a proof-of-concept, we conducted a pot study that grew corn (*Zea mays* L.) using a ⁴¹K-labeled fertilizer in a greenhouse. The primary goal of this study was to quantify K uptake specifically related to fertilizer using an enriched ⁴¹K tracer, and then compare the K fertilizer recovery efficiency obtained using the isotope labeling method with that derived from the conventional K concentration-based difference method. Overall, our results demonstrate clear advantages of using ⁴¹K tracers in determining K uptake as compared to the conventional concentration-based method. Furthermore, natural K isotope fractionation associated with corn growth has not been reported prior to this study, and our unfertilized control experiments determine the natural mass-dependent K isotope fractionation between plant and soil during corn growth.


2. MATERIALS AND METHODS

2.1. Pot experiments

A six-week pot study that grew corn (*Zea mays* L.) was conducted in a greenhouse at the University of Wisconsin–Madison to quantify K fertilizer utilization using labeled ⁴¹K (Figure 1). A Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudolls) from a field at the Agricultural Research Station in Arlington, Wisconsin was used for this study. The field where the soil was taken is not known to have been fertilized, manured, or cultivated for several decades. The soil was dried and sieved to <4 mm aggregates. The soil is mainly composed of feldspar, quartz, and mica with lesser amounts of chlorite, interstratified chlorite-vermiculite and vermiculite in the fine silt fraction, and interstratified smectite-illite, kaolinite, quartz and illite in the clay fraction.

Four different treatments were established: a control with no added K (Group-A), 50 mg K kg⁻¹ soil (Group-B), 100 mg K kg⁻¹ soil (Group-C), and 200 mg K kg⁻¹ soil (Group-D). These values here refer to K rather than KCl. Each treatment was repeated in triplicate pots lined with polyethylene bags to prevent drainage and leaching. Each pot contained the equivalent of 1.5 kg of oven-dried soil. Nitrogen and phosphorus were maintained at constant and adequate levels by addition of 200 mg kg⁻¹ as urea-N and 100 mg kg⁻¹ as monocalcium phosphate-P ("triple superphosphate") across all treatments. Urea-N is an ammonium-based fertilizer as it hydrolyzes with water to form NH₄⁺ ions in soils. Although NH₄⁺ and Ca²⁺ ions may compete with K⁺ ions for exchange sites in soils, the use of N and P fertilizers is not expected to affect our intended K study, because (1) the Plano silt loam soil used in our experiments has high cation-exchange capacity, comparable to that reported for a similar Wisconsin soil (i.e., ~11.0 centimoles per kilogram),⁷¹ which should provide exchange sites sufficient for K, NH₄, and Ca ions in our

experiments; and (2) N and P fertilizers were kept at the same rates across all the pots. For K-labeled treatments, the ⁴¹K labeled fertilizer was first weighed and then mixed thoroughly along with N and P fertilizers into a known quantity of dry soil, and the fertilized soil was then transferred into each pot. Six corn kernels were planted for each pot at a depth of ~1 cm, watered to field capacity, and covered for germination. After germination, the seedlings were thinned to leave the four strongest. Deionized water was added periodically by weight to keep the soils at field moisture capacity. Six weeks after planting, the aboveground plants were harvested and dried at 60°C for 48 hours. Plants from the same pot were then combined during further processing for chemical and isotopic analyses. Due to the well-known difficulty in separating and cleaning roots from soil, we did not sample roots in these experiments.

Figure 1. (a) A schematic of the pot experiment in this study; (b) A photo of corn grown out of the experiments taken before harvest.

2.2. Nomenclature and K isotope tracer

Fertilizer recovery efficiency (RE) can be defined in different ways.^{12, 21} In this study, we adopted the definition from Fixen et al.,¹² which defines fertilizer recovery efficiency to be the percentage of fertilizer nutrient found in the plant biomass relative to the total amount of fertilizer nutrient applied to the system.

Stable K isotopes are expressed by the conventional δ -notation that describes parts-perthousand deviation of the ${}^{41}\text{K}/{}^{39}\text{K}$ ratio in a sample relative to that in a standard:

$$\delta^{41}K = \left(\frac{{}^{41}K/{}^{39}K_{sample}}{{}^{41}K/{}^{39}K_{NIST\ SRM\ 3141a}} - 1\right) \times 1000$$

Currently, the high purity K solution, NIST SRM 3141a, is the recommended standard for reporting stable K isotope data.^{60,72} Natural mass-dependent K isotope fractionation between plant and soil can be quantified by the K isotope fractionation factor $\alpha_{plant/soil}$, following the standard definition:

$$\alpha_{plant/soil} = \frac{{}^{41}K/{}^{39}K_{plant}}{{}^{41}K/{}^{39}K_{soil}}$$

Because α is very close to unity, sometimes it is more convenient to use the enrichment factor ϵ , which is related to α through the following relation:

190
$$\varepsilon = 1000 \times (\alpha - 1)$$

Highly enriched 41 KCl (96.5% enrichment) was purchased from ISOFLEX USA (San Francisco, CA). The high precision of MC-ICP-MS analysis allowed us to decrease this enrichment to moderate cost, while still retaining the ability to sensitively trace K atom and mass transfer. The enriched 41 KCl was mixed with isotopically normal KCl with δ^{41} K close to 0‰ to produce a 41 K-labeled fertilizer with δ^{41} K = 5.56‰ prior to use. A total of \sim 0.7 mg original 41 KCl tracer (96.5% enrichment) was consumed during this study. To ensure that the enriched KCl

fertilizer was isotopically homogenous, the original ⁴¹KCl tracer and normal KCl were dissolved in water and then mixed. This isotopically homogenous solution was then evaporated to precipitate the labeled KCl.

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

197

198

199

2.3. Soil and plant K concentration and isotope analyses

Dry plants were weighed to determine the total aboveground yield, ground and then ashed at 500°C. The ashed plants were fully dissolved in 2 M HCl for K concentration measurements using an atomic absorption spectrometer (AAS) (PerkinElmer Analyst 200) at the Department of Soil Science, University of Wisconsin–Madison. Aliquots were taken from each sample and saved for K isotope analysis. Initial soil and soil after harvest were dried and ground for soil tests. Plantavailable K in soil was extracted by the Bray-1 solution, 73 which has been the standard soil K testing method used in laboratories certified by the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) since 1974.74 The Bray procedure extracts ~90% as much K as the 1 N ammonium acetate procedure that is used as a standard soil test method by some other states in the US. Briefly, the Bray-1 solution is composed of 0.03 N NH₄F and 0.025 N HCl, and plant-available K from soil is extracted using a soil:extractant ratio of 1:10 (g:ml). Typically, 1.5 g soil and 15 ml Bray-1 solution were used. Upon mixing, the suspension was agitated continuously by a shaker for 5 min, and then filtered using 8 µm cellulose filter paper (9 cm Whatman No. 2 filter paper or equivalent). Aliquots of Bray extracts were taken for K concentration analysis by AAS, and the remaining solutions were used for K isotope analysis.

For high-precision stable K isotope analysis, it is critical to purify K from other elements in samples to avoid matrix effects during analysis by mass spectrometry.^{58, 60} Separation of K from major matrix elements (e.g., Na, Mg, Ca, Si) was achieved through a single-stage manual chromatographic protocol using Bio-Rad Poly-Prep® columns packed with 2 ml of Bio-Rad

AG50W-X8 cation exchange resin (200–400 mesh, H^+ form) and 0.4 M HCl as an eluent.⁷⁵ Digested plant and Bray extract samples were evaporated to dryness and then dissolved in 0.4 M HCl, followed by cation-exchange separation. After loading samples in 0.4 mL 0.4 M HCl onto cation exchange columns, Na was eluted with 23 mL 0.4 M HCl. Potassium was subsequently collected in 28 mL 0.4 M HCl, and other cations in samples remained on resin. Potassium was quantitatively (>99%) recovered from the column purification. High purity reagents, including quartz-distilled HCl and 18.2 m Ω ·cm H₂O, were used throughout sample preparation, and the total procedural blank was typically ~20 ng K, which is negligible compared to >100 μ g K processed through the chromatography separation.

Stable K isotope ratios were measured on a Nu Plasma II multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at the Department of Geoscience, University of Wisconsin–Madison. High-precision stable K isotope ratio measurement is notoriously challenging because the main plasma gas Ar introduces significant interferences on K isotope masses (e.g., ⁴⁰Ar¹H⁺ on ⁴¹K⁺). However, Ar-based interferences may be overcome by a combined use of "cold plasma" techniques, ⁷⁶ and a high-mass-resolution source defining slit. In this study, "cold plasma" was achieved by increasing the distance between the torch and the plasma interface and reducing the radiofrequency (RF) forward power from its typical setting of 1300 W to 800 W. The use of a high mass resolution source defining slit increased mass resolution so that K isotope peaks can be resolved from the suppressed Ar-based interferences. Sample solutions were introduced to the MC-ICP-MS via an Aridus II desolvating unit with a ~50 μL min⁻¹ Teflon nebulizer. A sample-standard bracketing protocol was used to correct for instrumental mass bias, with a pure K solution from High-Purity Standards used as the bracketing standard. This solution is well-calibrated against the NIST SRM 3141a K standard in our lab. Based on recent

recommendations, 60,72 all measured $\delta^{41}K$ data were reported on the NIST SRM 3141a scale in this study (Table 1). The external reproducibility is \leq 0.15‰ (2SD), based on repeated measurements of two USGS rock standards (BCR-2 and BHVO-2), with a $\delta^{41}K$ value of -0.41 \pm 0.15‰ (2SD) for BCR-2, and -0.40 \pm 0.12‰ (2SD) for BHVO-2. As an additional data quality control, we also routinely analyzed a natural seawater sample that was collected from 500 m at the SEATS site in the South China Sea, 77 because previous studies have demonstrated that seawater has a homogeneous $\delta^{41}K$ value. 78,79 We obtained a $\delta^{41}K$ value of 0.10 \pm 0.12‰ (2SD) for seawater. Our $\delta^{41}K$ results for all three reference materials (i.e., BCR-2, BHVO-2, seawater) are in excellent agreement with results reported from other laboratories. 72,75

3. RESULTS

3.1. Potassium concentrations and crop yield

Potassium concentration and weight results for soil and plants are summarized in Table 1. Bray-extracted K concentration from the initial unlabeled soil was 71 mg K kg⁻¹ soil. This value is lower than the critical level of K for Wisconsin soils for corn (~130 mg K kg⁻¹) based on the Bray extraction procedure, placing our soil at the boundary between Very Low (VL) and Low (L) categories for corn in loamy soil.⁷⁴ For the fertilized experiments (Groups B–D), initial soils were all fertilized to K levels close to, or above, the critical soil K level. For the unfertilized control experiments (Group-A), the average K concentration of the soil after harvest was 67.1 mg K kg⁻¹ soil, slightly lower than that of the initial soil. For the fertilized experiments (Group B-D), average Bray-extracted K concentrations from soil after harvest ranged from 76.7 mg K kg⁻¹ soil to 101.2 mg K kg⁻¹ soil. The average K concentration in soil extracts after harvest in Group B was marginally higher than that in the control Group A, whereas the averages from Groups C and D

were all higher than the control Group A (p < 0.05, one-way ANOVA). Overall, average K concentrations in soil extracts after harvest increased with increasing K fertilization from Groups A to D (Figure 2a). Average K concentrations in the dry aboveground shoot ranged between 10.1 mg g⁻¹ and 40.4 mg g⁻¹, and they increased with increasing K fertilization from Groups A to D ($p \le 0.05$) (Figure 2b). The average yield, as defined by the dry weight of aboveground shoot, was slightly higher in the three fertilized groups (Groups B–D) than the average yield from the control Group-A, but the differences among all 4 groups were not statistically significant (Figure 2c). Because the critical K concentration in corn is ~1.3% of dry matter,⁶ which is close to, or lower than, those measured in experiments from Groups A–D, none of corn in our experiments had grown under K deficit conditions, even for Group A. The observed increase in K concentrations in plants with increasing K fertilization but similar plant dry weights from our experiments are consistent with luxury K consumption.

Our K concentration results for soils and plants revealed an imbalance of plant-available K mass before and after the growth in all experiments. The total plant-available K mass in each pot before corn growth can be estimated using the K concentration measured in Bray-extracts of initial untreated soil, combined with the known soil weight, plus K mass from the fertilizer if used. The total plant-available K mass in each pot after the harvest can be estimated by the sum of K mass in corn shoots and the Bray-extractable pool in soil after the growth. Even without considering K mass in roots, varying excesses in plant-available K were observed in all experiments after the corn growth (Table 1), indicating recharge of plant-available K during the experiments.

		K treatment	Total K mass in fertilizer ¹	Shoot dry weight	Shoot [K]	Total K mass In shoot	Soil [K]	Apparent excess plant-available K ²
		(mg K kg ⁻¹ soil)	(mg)	(g)	(mg g ⁻¹)	(mg)	(mg K kg ⁻¹ soil)	(mg)
Initial soil		-		-	-	-	71	
Group-A	GA-1	0	0	6.50	11.3	73.1	63.3	61.6
(control)	GA-2	0	0	8.50	9.1	77.7	60.9	62.6
	GA-3	0	0	7.00	9.9	69.2	77.7	79.3
Group-B	GB-1	50	75	8.43	11.9	100.6	75.9	32.9
	GB-2	50	75	8.15	13.7	111.8	69.9	35.2
	GB-3	50	75	8.87	11.8	104.6	84.3	49.6
Group-C	GC-1	100	150	9.07	16.6	150.4	90.9	30.2
-	GC-2	100	150	8.83	17.7	156.1	83.1	24.3
	GC-3	100	150	8.07	25.7	207.1	87.9	82.4
Group-D	GD-1	200	300	8.13	41.0	333.5	108.9	90.4
-	GD-2	200	300	9.25	39.0	361.1	96.0	98.6

41.0

46.3

¹ Each pot contained 1.5 kg soil

GD-3

7.43

293

294

295

291

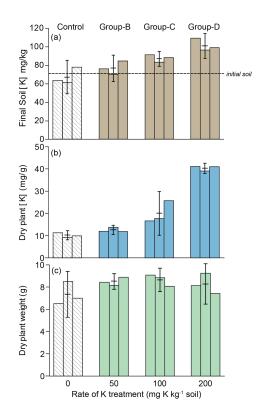


Figure 2. (a) K concentrations of Bray extracts from the final soil after harvest in comparison to that of the initial soil (horizontal dashed line); (b) K concentrations in the harvested plant dry

² Apparent excess plant-available K = (Bray-extractable K in soil after harvest + K in shoot) - (Bray-extractable K in initial soil + K from fertilizer)

matter; (c) dry weight of the harvested plants. The mean (±standard deviation) is also shown for each group.

3.2. Potassium isotope composition in plant and soil

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Potassium isotope compositions of fertilizer, corn shoot, and soil extracts were provided in Table 2. The δ^{41} K value of Bray extract from the initial soil was -0.11%, falling in the range reported for natural samples.⁷² Relative to the δ^{41} K value of the enriched K tracer (i.e., 5.56%), the isotopic contrast between soil and fertilizer provided a nearly ~6\% leverage for tracing K uptake. This is a factor of ~40 times greater than the analytical uncertainty (i.e., ~0.15‰, 2SD), offering a high level of sensitivity to tracing enriched ⁴¹K. For the control group (Group-A), shoot δ⁴¹K values from the triplicate pots displayed a narrow range between -0.34% and -0.22%. Soil extracts after harvest from Group-A showed δ^{41} K values between 0.25% and 0.47%, which were higher than the δ^{41} K value from the initial soil extract and the values measured in shoot (p < 0.001). In fertilized treatments (Groups B–D), δ⁴¹K values of both shoot and soil Bray extracts after harvest were found to fall within the δ^{41} K range between the unlabeled initial soil and δ^{41} K-labelled K fertilizer. The influence of 41 K-labelled fertilizer is easily discernible from high δ^{41} K values measured in plants and soil extracts (Figure 3), which increased with the increasing fertilization, as traced by the ⁴¹K-labelled fertilizer from Groups B to D. Except for one experiment in Group D where the measured δ^{41} K values from the plant and soil extract were similar, δ^{41} K values of shoot in the three fertilized groups were always higher than $\delta^{41}K$ values measured in corresponding afterharvest soil extracts. This is in marked contrast to the unfertilized control Group-A where δ^{41} K values of plant from all three pots were found to be lower than those measured in Bray extracts of initial and final soils. In addition, although K isotope compositions of Bray-extracts of initial fertilized soils in Groups B–D were not directly measured, they can be estimated by a simple massbalance calculation based on the K concentration and isotope composition of the Bray extract from the unfertilized soil and the K mass added from fertilizer and its δ^{41} K value, because the soluble KCl fertilizer can be surely extracted by the Bray solution. The calculation yielded 2.23‰ for Group B, 3.21‰ for Group C, and 4.07‰ for Group D. These estimated δ^{41} K values of plantavailable K in initial fertilized soils were higher than δ^{41} K values measured in plants and soil Brayextracts after the harvest from the same experiments, implying recharge of labile K carrying low δ^{41} K values during our experiments.

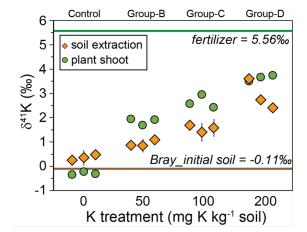


Figure 3. K isotope composition of shoot and Bray extracts of the final soil. The δ^{41} K values of Bray extract of the initial unlabeled soil and the initial 41 K-enriched fertilizer are also shown.

Table 2. Results of K isotope compositions for fertilizer, corn shoot, and soil extract

		K treatment		Corn shoot		Sc	oil Bray extrac	t
		(mg K kg ⁻¹ soil)	$\delta^{41} K (\%)$	2SE	n	$\delta^{41} K (\%)$	2SE	n
Group-A	GA-1	0	-0.34	0.04	7	0.25	0.09	5
	GA-2	0	-0.22	0.05	5	0.35	0.14	5
	GA-3	0	-0.32	0.07	4	0.47	0.08	6
Group-B	GB-1	50	1.94	0.03	6	0.86	0.09	5
	GB-2	50	1.69	0.04	6	0.85	0.14	4
	GB-3	50	1.91	0.04	6	1.09	0.04	5
Group-C	GC-1	100	2.57	0.04	5	1.69	0.07	4
	GC-2	100	2.94	0.06	5	1.40	0.20	4
	GC-3	100	2.42	0.07	4	1.58	0.19	4
Group-D	GD-1	200	3.50	0.07	4	3.61	0.09	5
	GD-2	200	3.67	0.07	4	2.74	0.07	5
	GD-3	200	3.74	0.10	4	2.40	0.05	4
Initial soil						-0.11	0.11	4
KCl fertilizer						5.56	0.10	5

4. DISCUSSION

Plant growth can induce resolvable isotope fractionation for not only conventional light elements including C, H, O, N, and S,^{69, 80} but also many metal nutrient elements, such as Mg, Ca, Fe, Cu, and Zn.⁸¹⁻⁸⁶ Isotope fractionation of these elements during plant growth has proven useful in study of nutrient cycles in the soil–plant system. Currently, study of K isotope fractionation during plant growth are scarce (none for corn). Our unfertilized control group (Group-A) provided an opportunity to investigate and quantify potential natural mass-dependent K isotope fractionation during corn growth. In contrast, the fertilized groups (Groups B–D) are ideal for quantification of K fertilizer utilization through use of the enriched ⁴¹K tracer; natural, mass-dependent K isotope fractionation in these groups will be only a second-order effect relative to the nearly ~6% contrast in the initial soil and ⁴¹K-labeled fertilizer. Below, we first focus on results from Group-A and discuss their implications for natural fractionation of stable K isotopes during corn growth. Then, we quantify apparent K fertilizer recovery efficiency (RE) in the ⁴¹K-labelled experiments and

compare results to those calculated using the conventional difference method based on K concentrations alone.

4.1. Quantification of natural K isotope fractionation during corn growth

Our unfertilized control Group-A provided evidence for natural, mass-dependent K isotope fractionation that favors light K isotopes (i.e., 39 K) in corn during its growth, as indicated by lower δ^{41} K values measured in corn shoots relative to the δ^{41} K value of Bray extract from the initial unfertilized soil (Figure 3). Consistent with this observation, Bray extract from the soil after harvest showed δ^{41} K values higher than those measured in shoot and in the initial soil extract (Figure 3). The apparent δ^{41} K differences between corn shoots and soil extracts after harvest $(\delta^{41}K_{shoot} - \delta^{41}K_{soil})$ ranged from -0.79‰ to -0.57‰ in the three pots in Group-A (Table 2).

The apparent isotopic differences between plant and soil are the accumulative results of progressive removal of isotopically light K from soil during K uptake by corn, so they are dependent on the extent of uptake. The underlying intrinsic K isotope fractionation factor is more fundamental and applicable to other studies in future. Because all pots were lined with polyethylene bags to prevent drainage and leaching, each pot was a closed system for K. It is, therefore, reasonable to consider K isotope fractionation during corn growth to mimic a Rayleigh distillation process. The intrinsic K isotope fractionation factor ($\alpha_{shoot/soil}$) between shoot and soil can be quantified by the following Rayleigh equation (Mariotti et al., 1981):

$$\delta^{41}K_{shoot} = \delta^{41}K'_{soil} - (\frac{f}{1-f}) \varepsilon \ln (f) \qquad (Equation 1)$$

where ϵ is the isotope enrichment factor between corn shoot and soil, $\delta^{41}K_{shoot}$ is the measured $\delta^{41}K$ of corn shoot, $\delta^{41}K$ 'soil is $\delta^{41}K$ of the plant-available K pool in soil, and f denotes the fraction of plant-available K not taken up by corn shoot (i.e., plant-available K remaining in soil and K in

root). Because the total plant-available K pool (K_{total}) in each pot can be estimated by the sum of K mass in shoot (K_{shoot}) and root (K_{root}), and K mass remaining in soil after harvest (K_{soil_t}), f can be calculated by the following K mass conservation equation:

$$f = 1 - K_{\text{shoot}} / (K_{\text{shoot}} + K_{\text{root}} + K_{\text{soil_t}})$$
 (Equation 2)

369

370

371

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

There are two major sources of uncertainty in calculating ε using the above equations. The first one is K mass in root (i.e., K_{root}). Although K_{root} was not measured directly, its possible range can be estimated based on our measured shoot dry weight and shoot K concentrations (Table 1), and reasonable assumptions for root to shoot (R/S) mass ratios and K concentration ratios reported in the literature. 15, 87-90 The second major uncertainty is the K isotope composition of the plantavailable K pool in soil (i.e., δ^{41} K'_{soil} in Equation 1). The complexity arises from our observation that, even without considering roots, the sum of K mass in shoot and soil extract after harvest already showed ~58%–74% "excess" relative to the quantity of plant-available K pool estimated based on Bray extract of initial unfertilized soil (Table 1). This implies recharge of plant-available K in soil during corn growth in all three pots in Group-A. Consequently, it may not be appropriate to assume that $\delta^{41}K'_{soil}$ was the same as $\delta^{41}K$ measured in the Bray extract of initial unfertilized soil. The possible δ^{41} K range of the recharged plant-available K can be estimated based on studies of δ^{41} K variations in natural weathering profiles and soils, and associated K isotope fractionation during relevant processes, $^{66, 91-93}$ and our measured $\delta^{41}K$ values in soil extract after harvest. A complete description on how these two parameters were estimated is provided in the Supporting Information.

To account for the uncertainties associated with K_{root} , $\delta^{41}K'_{soil}$, and all other parameters in Equations 1 and 2, we used a Monte Carlo method to estimate the shoot–soil K isotope fractionation enrichment factor ϵ . A detailed description on our Monte Carlo method, including

parameter selection and solution screening, is provided in the Supporting Information. A total of 100-million Monte Carlo simulations were conducted to test all possible parameter ranges, and these simulations yielded a best-estimate shoot–soil K isotope enrichment factor ϵ of -0.37% (±0.23%, 1SD), which is the first-ever estimate available for plant-induced K isotope fractionation for corn.

The observed increase in plant-available K in soil in our experiments can be explained by root–soil interactions. Although early studies considered K in some non-swelling 2:1 layer silicates in soil, such as illite and mica, to be inaccessible by plants, a large body of later studies have shown that root–soil interactions, sometimes involving microorganisms, can cause significant release of soluble K from non-exchangeable and/or mineral K pools upon plant growth on the order of only a few days. 17, 94-106 It has been shown that non-exchangeable and/or mineral K pools can sometimes contribute to ~80-100% of the total K available to plants. 97 In our case, the Plano silt loam is a relatively young soil, with topsoil formed from loess and containing feldspars and micas in the silt fraction and interlayered smectite-illite in the clay fraction, so there are abundant mineral and non-exchangeable K sources in the soil.

4.2. Possible mechanisms for K isotope fractionation during corn growth

The observed δ^{41} K difference between corn shoot and soil in unfertilized treatments in Group-A (Figure 3) and our estimated enrichment factor for K isotope fractionation demonstrate that light K isotopes are preferentially utilized during corn growth. By analogy with stable isotope fractionation of other elements in soil–plant systems, $^{83-86,\ 107}$ two processes may contribute to the observed K isotope fractionation: (1) transport of K in soil solution to the root surface, and (2) K uptake by plant tissues.

First, K is mainly transported to the plant root surface through diffusion in soil solution, driven by K concentration gradient between root surface and adjacent soil solution. 96, 108, 109 Diffusion is known to cause kinetic isotope fractionation for many metal elements, including K. 110 Previous experiments have shown that light K isotopes diffuse faster than the heavy isotopes in both water and methanol, resulting in large kinetic K isotope fractionation of up to several per mil in 41 K/39 K ratios. 111, 112 It can be envisioned that plant-available K in soil near corn root was first utilized and then replenished by diffusion of soluble K from soil further away from the root. This diffusion process in soil may cause preferential supply of light K isotope to root, leading to the observed K isotope fractionation in plants.

Transport of K into and/or within plant cells may also cause K isotope fractionation. Potassium is taken up by plants primarily through two routes: the high-affinity transport system (HATS) by proton-coupled K⁺ transporters under low external K concentrations, and the low-affinity transport system (LATS) by ion channels. ^{1, 4, 113-117} Potassium isotope fractionation has been previously suggested or observed in different plants and within a plant. ^{58, 61, 65-67} It is generally considered that K isotope fractionation can occur during K transport into and/or within plant cells, and this is particularly supported by hydroponic experiments that should be less influenced by diffusion processes in growth medium compared to measurements of plant samples from field. ⁶⁷ This K uptake process may contribute to our observed K isotope fractionation in corn. However, the influence of the two different K transport mechanisms on K isotope fractionation remains unknown. For example, Li (2017) hypothesized that energy-consuming HATS could produce larger K isotope fractionation than LATS, ⁶⁵ whereas Christensen et al. (2018) proposed the opposite. ⁶⁷ Further study is clearly required to better characterize the nature of K isotope fractionation associated with different K transport mechanisms.

4.3. Quantification of K fertilizer recovery efficiency using stable ⁴¹K isotope labeling

The use of the 41 K-enriched fertilizer in experiments in Groups B to D allows for direct tracing and quantification of fertilizer-derived K in corn shoot. This is evident from high δ^{41} K values measured in shoots that progressively approach the δ^{41} K value of initial 41 K-labeled fertilizer (i.e., 5.56‰) with increasing fertilization rate (Figure 3). We can quantify the relative contribution of K sources in shoot using a two-component mixing calculation:

$$\delta^{41}K_{shoot} = F\left(\delta^{41}K_{fert} + \varepsilon\right) + (1 - F)\left(\delta^{41}K'_{soil} + \varepsilon\right)$$
 (Equation 3)

where F indicates the percentage of K in shoot that is derived from the fertilizer, $\delta^{41}K'_{soil}$, $\delta^{41}K_{fert}$, and $\delta^{41}K_{shoot}$ are $\delta^{41}K$ values of the total plant-available K pool in soil, initial $^{41}K_{loc}$ labelled fertilizer, and shoot, respectively. Although the shoot–soil K isotope enrichment factor ε is considered in the calculation, its influence on F is minor because its magnitude is relatively small compared to the K isotope contrast between the fertilizer and soil. In Equation 3, $\delta^{41}K_{fert}$ and $\delta^{41}K_{shoot}$ were measured directly, and ε was estimated in Section 4.1 (i.e., -0.37±0.23‰). $\delta^{41}K'_{soil}$ is the same as in Equation 1 and has the same uncertainties as described in Section 4.1. To better estimate F, we applied the same Monte Carlo method used in Section 4.1 (see details in the Supporting Information) to propagate all uncertainties to F.

Average F values obtained from 100-million Monte Carlo simulations are reported in Table 3. Overall, the percentage of fertilizer-derived K in shoot generally increases with increasing amount of fertilizer. On average, ~42% of K found in shoot came from the fertilizer for the treatments in Group-B (50 mg K kg⁻¹ soil), ~56% of shoot K came from the fertilizer for the treatments in Group-C (100 mg K kg⁻¹ soil), and ~73% of K in shoot originated from the fertilizer for the treatments in Group-D (200 mg K kg⁻¹ soil). The propagated uncertainty on F was found to

be relatively small (i.e., \sim 5%) because of the large $\delta^{41}K$ difference between the labeled K fertilizer and soil.

We can now define the apparent K fertilizer recovery efficiency (RE_i) using an isotopic tracer approach with the following equation:

$$RE_i (\%) = \frac{F \times K_{shoot}}{K_{fert}} (Equation 4)$$

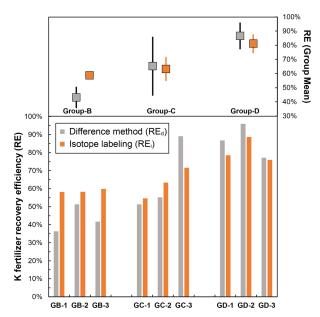
where K_{shoot} is total K mass in shoot, K_{fert} is total K mass in fertilizer applied to each pot, F is defined by Equation 3, and the subscript i refers to isotope method. RE_i provides a measure of fertilizer utilization by plants relative to total fertilizer applied. In practice, this value is useful in evaluating fertilizer efficiency and potential fertilizer loss for various nutrient management practices. Using this ^{41}K labeling approach, we quantified average fertilizer recovery efficiency (RE_i) to be \sim 59%, \sim 63%, and \sim 81% for Group-B, -C, and -D, respectively (Table 3).

Table 3. Fertilizer recovery efficiency (RE) estimated using the isotope labeling and difference methods

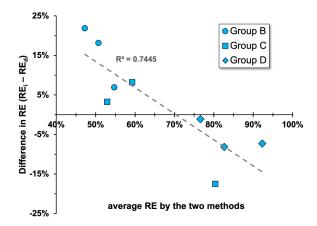
		K treatment -	K	isotope labeli	ng	Difference
		K treatment -	F	1 s.d.	REi	RE_d
		(mg K kg ⁻¹ soil)	(%)	(%)	(%)	(%)
Group-B	GB-1	50	43.4	4.7	58.2	36.3
	GB-2	50	39.0	4.8	58.2	51.3
	GB-3	50	42.9	4.8	59.8	41.7
Group-C	GC-1	100	54.4	4.6	54.6	51.3
	GC-2	100	60.9	4.5	63.4	55.2
	GC-3	100	51.9	4.8	71.6	89.1
Group-D	GD-1	200	70.7	4.4	78.6	86.7
_	GD-2	200	73.6	4.3	88.6	95.9
	GD-3	200	74.8	4.3	76.0	77.1

4.4. Comparison between isotope tracer and concentration methods and implications

Our study provides the first opportunity to directly compare isotope-tracer-based fertilizer recovery efficiency with that estimated based solely on K concentrations. In soil nutrient studies,


the apparent fertilizer recovery efficiency is often estimated based on a comparison between fertilized and unfertilized cropping systems, and this so-called difference method can be written by the following equation:^{12,21}

$$RE_d (\%) = (K_{shoot} - K'_{shoot}) / K_{fert}$$
 (Equation 5)


where RE_d indicates apparent fertilizer recovery efficiency calculated based on the difference method, K_{shoot} is total K mass in shoot from fertilized groups (i.e., Group-B to -D in this study), K'_{shoot} is K mass in shoot from the unfertilized control group (i.e., Group-A in this study), and K_{fert} is the total amount of K in fertilizer. The calculated results using the difference method are tabulated in Table 3. Group-B experiments yielded an average RE_d of ~43%, Group-C experiments yielded an average RE_d of ~65%, and Group-D yielded an average RE_d of ~87%. Considerable scattering of sometimes up to ~20% in RE_d results among three different pots in each group was observed.

A detailed comparison of RE values calculated based on the two different methods is provided in Figure 4. Overall, the average RE value calculated based on the difference method (RE_d) is lower than the average value calculated based on our K isotope tracer method (RE_i) for Group-B that received the lowest amount of K fertilizer (50 mg K kg⁻¹ soil), whereas average RE values calculated based on the two methods are comparable for Group-C and -D that received higher amounts of K fertilizer. However, it is obvious that the data scatter among the three pots in each group is considerably larger for RE_d as compared to RE_i, so a comparison of averages alone is likely inadequate in revealing significant differences in results from the two methods. It is more informative to make a pairwise comparison across all individual pots. For all three pots in Group-B, the difference method consistently yielded fertilizer recovery efficiency values (RE_d) lower than those estimated by the K isotope tracer method (RE_i) by ~7% to up to ~22%. For Group-C, two

pots show lower RE_d values than RE_i values, and one pot shows the opposite. In contrast to Group-B, the difference method consistently yielded higher fertilizer recovery efficiency values than those estimated by the K isotope tracer method for all three pots in Group-D – the group that received the highest amount of K fertilizer (200 mg K kg⁻¹ soil). This trend is obvious from a Bland–Altman plot (Figure 5). A Bland–Altman plot has been widely used to assess agreement between two measurement methods, and it examines the relation between mean and difference (i.e., bias) for paired measurements by the two methods subject to assessment.^{118, 119} A linear correlation ($r^2 = 0.74$) can be seen in our results (Fig. 5); the K isotope tracer method quantifies a higher RE value relative to the value quantified by the difference method at low fertilizer recovery efficiency conditions, whereas it quantifies a lower RE value relative to the difference method at high fertilizer recovery efficiency conditions.

Figure 4. A comparison of apparent K fertilizer recovery efficiency calculated using the difference method (RE_d) and the stable ^{4l}K isotope labeling technique (RE_i). Group averages are shown in the upper panel and results of individual experiments are shown in the lower panel.

Figure 5. A Bland–Altman plot that assesses agreement in RE results obtained by the K isotope method and the conventional difference method. It is apparent that the bias between the two method is correlated with fertilizer recovery efficiency that is broadly related to the fertilization rate in our experiments.

We consider fertilizer recovery efficiency estimated based on the isotope tracer method (RE_i) to be more accurate, because our K isotope labeling approach allows for unambiguous differentiation of K from soil and fertilizer based on their K isotope compositions. In contrast, estimation biases may occur using the difference method, causing the observed discrepancies between RE_i and RE_d (Figure 4). The fundamental assumption of the difference method is that a soil–plant system behaves the same under unfertilized and fertilized conditions. This assumption neglects the dynamics of K exchange among different K pools in soil and possible different physiological responses of plants to nutrient uptake under different nutrition conditions. The possible influence of such negligence can be understood via detailed analysis of the RE_d calculation as described in Equation 5; because the total amount of added fertilizer (K_{fert}) is known without ambiguity, the biased RE_d estimate can only arise from the term (K_{shoot} – K'_{shoot}). In a fertilized experiment, K in shoot (K_{shoot}) is derived from two sources: fertilizer (K_{shoot}) and

soil (K_{shoot}^{soil}) , whereas in the control experiment K in shoot only comes from unfertilized soil (K_{shoot}^{rsoil}) . Equation 5 then can be rewritten as:

$$RE_d (\%) = (K_{shoot}^{fert} + K_{shoot}^{soil} - K_{shoot}^{\prime soil}) / K_{fert}$$
 (Equation 6)

Estimation of fertilizer recover efficiency RE_d is accurate only when K_{shoot}^{soil} is the same as K_{shoot}^{rsoil} (i.e., $K_{shoot}^{soil} = K_{shoot}^{rsoil}$). Because K_{shoot} is measured and K concentration measurements cannot differentiate K_{shoot}^{fert} from K_{shoot}^{soil} , any actual difference between K_{shoot}^{soil} and K_{shoot}^{rsoil} (i.e., $K_{shoot}^{soil} - K_{shoot}^{rsoil}$) would be wrongly associated with fertilizer, leading to over- or under-estimate of fertilizer utilization.

In the difference method, fertilizer recovery efficiency is underestimated if soil-derived K in shoot from a fertilized experiment is less than that in the unfertilized control (i.e., $K_{shoot}^{soil} < K_{shoot}^{rsoil}$), whereas overestimation occurs under an opposite situation (i.e., $K_{shoot}^{soil} > K_{shoot}^{rsoil}$). Soil-derived K in shoot is related to plant-available K in soil. In our experiments, all pots had the same type of soil of the same mass at the beginning, so the initial size of plant-available K pool in unfertilized soil should be the same for all the treatments. However, as mentioned before, even without considering K in roots, excesses in plant-available K were observed in all treatments (Table 1), indicative of release of non-exchangeable K that recharged the plant-available K pool in soil during corn growth. Variations in the amount of this "recharged" plant-available K in soil in different treatments relative to the control are the key to explain biases on RE_d estimates using the difference method.

Release of non-exchangeable K is controlled by dynamic soil–plant–fertilizer interactions. Previous studies have shown that K release from the non-exchangeable pool in soil is dependent on K concentrations in soil solution, and the release rate typically increases with decreasing soil-solution K concentrations.^{25, 120-124} In turn, K concentrations in soil solution can be affected by the

plant K uptake rate, and a higher K uptake rate should cause lower K concentrations in soil solution near plant roots. Moreover, plant K uptake rate is affected by K nutrient levels, and it has been observed that the overall K uptake rate often increases with increasing amount of plant-available K.^{25, 125} This relation between K uptake rate and nutrient level is broadly consistent with our observation that shoot dry mass remained largely the same in Group-B to -D, but K concentrations in shoot increased with higher fertilization rate (Figure 2), implying higher K uptake at higher K nutrient levels in soil.

Based on these previous studies, the increased fertilization rate from Groups-B to -D in our experiments should increase K concentrations in soil solution, which should cause decreased K release from non-exchangeable pool in soil relative to the control Group-A. This can explain the observed underestimation of fertilizer recovery efficiency by the difference method (RE_i) in all pots in Group-B and two pots in Group-C (Figure 4). In the fertilized experiments, because the amount of recharged plant-available K in soil was smaller than that in the control group, more fertilizer K was in fact utilized by plants (i.e., the situation of $K_{shoot}^{soil} < K_{shoot}^{rsoil}$). The difference method that assumed $K_{shoot}^{soil} = K_{shoot}^{rsoil}$, therefore, led to an underestimate of fertilizer recovery efficiency.

However, although the increased fertilization rate increases K concentrations in soil solution from Groups-B to -D, they should also increase the plant K uptake rates. When the plant K uptake reaches a sufficiently high rate under a certain high K fertilization rate, removal of K from soil solution by plant uptake should outpace the amount of soluble K added from fertilizer. In addition, K fixation into soil minerals, such as aluminosilicate layers of vermiculites and interstratified smectite/illite, may also occur, and field experiments indicate that the fixation can increase with increasing K fertilization rates.^{29, 32, 105, 126, 127} As a result, as K fertilization rate

increases, the combined effect of plant K uptake and K fixation would eventually overcome the initial increase in soil-solution K concentrations brought about by fertilizer, and the extent of recharged plant-available K in soil should increase again. This may explain the observed overestimates of fertilizer recovery efficiency by the difference method (RE_i) in all three pots in Group-D and one pot in Group-B (Figure 4). In these fertilized experiments, because the amount of recharged plant-available K in soil was larger than that in the control group, less fertilizer K was in fact utilized by plants (i.e., the situation of $K_{shoot}^{soil} > K_{shoot}^{rsoil}$). The difference method, therefore, led to an overestimation of fertilizer recovery efficiency. Despite the uncertainty on K mass in roots, our above interpretations are consistent with apparent excesses in plant-available K (Table 1); apparent K excesses in Group-B are lower than those found in the control Group-A, whereas K excesses are the highest in Group-D.

The RE values obtained using our K isotope tracer method were more consistent for different pots in each group (Figure 4), relative to RE values obtained by the difference method. This may result from the fact that the difference method does not account for soil–plant–fertilizer interactions that may vary slightly across individual pots in each group. In contrast, our K isotope tracer method can "see through" soil–plant–fertilizer interactions to directly trace K from soil and fertilizer in each pot. Consequently, RE_i estimates obtained by the isotope tracer method tend to be more consistent within each group. The ⁴¹K-tracer experiment conducted here as proof-of-concept is an invitation to continue similar investigations in other settings, for example, in more weathered soils without such abundant supplies of non-exchangeable K, and, eventually, in field soils where plant roots are free to mine soil K more extensively and less intensively than in a pot experiment, and over longer time scales to maturity and harvest. In this initial phase, fertilizer efficiency derived by the ⁴¹K-tracer will have obligatory comparisons to efficiency by difference

to control pots and plots, and then at some later stage, fertilizer efficiency by the stable K isotope tracer can be of value for guiding K usage by itself.

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

602

603

5. CONCLUSIONS

Understanding the fate of K fertilizer during crop growth and quantifying K fertilizer utilization is not an easy task but of considerable agronomic and economical significance. The conventional difference method based on K concentrations alone does not adequately account for dynamic soil-plant interactions at different fertilization conditions, thereby potentially leading to biased results. Enabled by recent analytical advances, here we demonstrate the utility of a novel K isotope tracer technique based on stable K isotopes in improving quantification of K fertilizer utilization through pot experiments. In addition, based on the unfertilized experiments, we show that corn growth preferentially utilizes light K isotopes, with an estimated shoot-soil isotope fractionation factor of -0.37‰ ($\pm 0.23\%$) in ${}^{41}K/{}^{39}K$. Although the K isotope tracer method may not become a routine soil test because of the cost of enriched K tracers and analytical challenges associated with high-precision K isotope analysis as compared to the cheaper and simpler K concentration analysis, the K isotope tracer method can be utilized for pot, mesocosm, and smallscale field experiments. Moreover, the K isotope tracer method shows great potential for improving our fundamental understanding of the dynamics of K exchange among different soil pools and many complex soil-plant-fertilizer interactions that are conventionally difficult to investigate. In addition, as demonstrated by several other well-studied stable isotope systems, such as carbon and nitrogen isotopes, natural K isotope variations in soil-plant systems clearly deserve further investigations in laboratory- and field-based studies, and they are expected to provide valuable information on the K nutrient cycle that is not visible from K concentrations alone.

625	
626	ASSOCIATED CONTENT
627	Supporting Information
628	The Supporting Information is available free of charge at
629	A Monte Carlo method used to estimate shoot–soil K isotope enrichment factor (ϵ) and the
630	percentage of fertilizer-derived K in corn shoot (F).
631	
632	AUTHOR INFORMATION
633	Corresponding Author
634	Xin-Yuan Zheng – Department of Earth and Environmental Sciences, University of Minnesota-
635	Twin Cities, 116 Church Street SE, Minneapolis MN 55455, USA; orcid.org/0000-0002-7959-
636	8046; Email: <u>zhengxy@umn.edu</u>
637	Authors
638	Xin-Yang Chen – Department of Earth and Environmental Sciences, University of Minnesota—
639	Twin Cities, 116 Church Street SE, Minneapolis MN 55455, United States
640	Brian L. Beard – Department of Geoscience, University of Wisconsin–Madison, 1215 W Dayton
641	Street, Madison WI 53706, United States
642	Matilde Urrutia – Department of Soil Science, University of Wisconsin–Madison, 1525
643	Observatory Drive, Madison WI 53706, United States
543	Observatory Drive, Madison W1 53/06, United States

- 644 **Clark M. Johnson** Department of Geoscience, University of Wisconsin–Madison, 1215 W
- 645 Dayton Street, Madison WI 53706, United States
- 646 **Phillip Barak** Department of Soil Science, University of Wisconsin–Madison, 1525
- Observatory Drive, Madison WI 53706, United States
- 648 Notes
- The authors declare no competing financial interest.

650 ACKNOWLEDGMENTS

- This work was supported by the National Science Foundation under Grant No. 1741048 awarded
- 652 to BLB, CMJ, and XZ. The authors are grateful for the assistance of Zachary Tracy and Christy
- Davidson with the greenhouse experiments, and all the students who participated in working on
- the pot experiments reported here as part of their lab project to explore fertilizer usage during
- Soil Science 626 Mineral Nutrition of Plants class at UW-Madison.

656 **REFERENCES**

- 657 (1) Gierth, M.; Mäser, P.; Schroeder, J. I. The potassium transporter AtHAK5 functions in K⁺
- deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake
- kinetics in arabidopsis roots *Plant Physiology* **2005**, *137* (3), 1105-1114.
- 660 (2) Cassidy, N. G. The distribution of potassium in plants. *Plant Soil* **1970**, *32* (1), 263-267.
- 661 (3) Besford, R. T.; Maw, G. A. Uptake and distribution of potassium in tomato plants. *Plant Soil* **1974**, *41* (3), 601-618.
- (4) Walker, N. A.; Sanders; Maathuis, D. F. J. M.; Rubio, W. F.; Gassmann; Schroeder, J. I. Highaffinity potassium uptake in plants. *Science* **1996**, *273* (5277), 977-977.
- (5) Ulrich, A.; Hills, P. Principles and practices of plant analysis. *Soil Testing and Plant Analysis*.
 Plant Analysis, *Part* 1967, 11, 11-24.
- 667 (6) Leigh, R. A.; Wyn Jones, R. G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. *New Phytologist* **1984**, *97* (1),
- 669 1-13.
- 670 (7) Lauchli, A.; Pfluger, R. Potassium transport through plant cell membranes and metabolic role of potassium in plants. *IPI Research Topics* **1980**, *6*, 5-57.
- 672 (8) Amtmann, A.; Rubio, F. Potassium in plants. eLS,
- 673 https://doi.org/10.1002/9780470015902.a9780470023737.

- 674 (9) Ragel, P.; Raddatz, N.; Leidi, E. O.; Quintero, F. J.; Pardo, J. M. Regulation of K⁺ nutrition in plants. *Frontiers in Plant Science* **2019**, *10*, 281.
- 676 (10) Sparks, D. L. Potassium dynamics in soils. New York, NY, 1987; Springer New York: pp 1-63.
- 678 (11) Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I. S.; White,
- P. Chapter 6 functions of macronutrients. In *Marschner's Mineral Nutrition of Higher Plants* (*Third Edition*), Marschner, P. Ed.; Academic Press, 2012; pp 135-189.
- (12) Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: measurement, current situation and trends. *Managing water and fertilizer for sustainable agricultural intensification* **2015**, 270, 1-30.
- 684 (13) Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture status and perspectives.
 685 *Journal of Plant Physiology* **2014**, *171* (9), 656-669.
- 686 (14) Das, D.; Dwivedi, B. S.; Datta, S. P.; Datta, S. C.; Meena, M. C.; Agarwal, B. K.; Shahi, D.
- K.; Singh, M.; Chakraborty, D.; Jaggi, S. Potassium supplying capacity of a red soil from eastern India after forty two years of continuous cropping and fertilization. *Geoderma* **2019** *341*, 76.92
- India after forty-two years of continuous cropping and fertilization. *Geoderma* **2019**, *341*, 76-92.
- 689 (15) Zeng, Q.; Brown, P. H. Soil potassium mobility and uptake by corn under differential soil moisture regimes. *Plant Soil* **2000**, 221 (2), 121-134.
- 691 (16) Shabala, S.; Cuin, T. A. Potassium transport and plant salt tolerance. *Physiol Plantarum* 692 **2008**, *133* (4), 651-669.
- 693 (17) Römheld, V.; Kirkby, E. A. Research on potassium in agriculture: needs and prospects. *Plant Soil* **2010**, *335* (1), 155-180.
- (18) Isayenkov, S. V.; Maathuis, F. J. M. Plant salinity stress: many unanswered questions remain. *Frontiers in Plant Science* **2019**, *10*, 80.
- 697 (19) Gill, D. W.; Kamprath, E. J. Potassium uptake and recovery by an upland rice-soybean rotation on an oxisol. *Agronomy Journal* **1990**, 82 (2), 329-333.
- 699 (20) Zapata, F. *Isotope techniques in soil fertility and plant nutrition studies*; INIS-mf-12707; 700 International Atomic Energy Agency (IAEA), 1990. 701 http://inis.iaea.org/search/sea
- 702 (21) Dobermann, A. Nutrient use efficiency measurement and management. In *Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives Versus Regulations*, Krauss, A., Isherwood, K., Heffer, P. Ed.; International Fertilizer Industry Association, 2007; pp 1-28.
- 706 (22) Allison, M. F.; Fowler, J. H.; Allen, E. J. Responses of potato (Solanum tuberosum) to potassium fertilizers. *The Journal of Agricultural Science* **2001**, *136* (4), 407-426.
- 708 (23) Clover, M. W.; Mallarino, A. P. Corn and soybean tissue potassium content responses to 709 potassium fertilization and relationships with grain yield. *Soil Science Society of America Journal* 710 **2013**, 77 (2), 630-642.
- 711 (24) Meyer, D.; Jungk, A. A new approach to quantify the utilization of non-exchangeable soil potassium by plants. *Plant Soil* **1993**, *149* (2), 235-243.
- 713 (25) Wang, H.-Y.; Shen, Q.-H.; Zhou, J.-M.; Wang, J.; Du, C.-W.; Chen, X.-Q. Plants use 714 alternative strategies to utilize nonexchangeable potassium in minerals. *Plant Soil* **2011**, *343* (1), 715 209-220.
- 716 (26) Zhang, Q.-C.; Wang, G.-H.; Feng, Y.-K.; Qian, P.; Schoenau, J. J. Effect of potassium
- fertilization on soil potassium pools and rice response in an intensive cropping system in China.
- 718 Journal of Plant Nutrition and Soil Science 2011, 174 (1), 73-80.

- 719 (27) Bel, J.; Legout, A.; Saint-André, L.; Hall, S. J.; Löfgren, S.; Laclau, J.-P.; van der Heijden,
- G. Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils. *Scientific Reports* **2020**, *10* (1), 15703.
- 722 (28) van der Heijden, G.; Bel, J.; Craig, C.-A.; Midwood, A. J.; Mareschal, L.; Ranger, J.;
- Dambrine, E.; Legout, A. Measuring plant-available Mg, Ca, and K pools in the soil—an isotopic dilution assay. *ACS Earth and Space Chemistry* **2018**, 2 (4), 292-313.
- 725 (29) Simonsson, M.; Andersson, S.; Andrist-Rangel, Y.; Hillier, S.; Mattsson, L.; Öborn, I.
- Potassium release and fixation as a function of fertilizer application rate and soil parent material.
- 727 *Geoderma* **2007**, *140* (1), 188-198.
- 728 (30) Simonsson, M.; Hillier, S.; Öborn, I. Changes in clay minerals and potassium fixation
- capacity as a result of release and fixation of potassium in long-term field experiments. *Geoderma* **2009**, *151* (3), 109-120.
- 731 (31) Najafi-Ghiri, M.; Rezabigi, S.; Hosseini, S.; Boostani, H. R.; Owliaie, H. R. Potassium
- fixation of some calcareous soils after short term extraction with different solutions. *Archives of Agronomy and Soil Science* **2019**, *65* (7), 897-910.
- 734 (32) Portela, E.; Monteiro, F.; Fonseca, M.; Abreu, M. M. Effect of soil mineralogy on potassium fixation in soils developed on different parent material. *Geoderma* **2019**, *343*, 226-234.
- 736 (33) Song, X.-D.; Liu, F.; Wu, H.-Y.; Cao, Q.; Zhong, C.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.;
- 737 Zhang, G.-L. Effects of long-term K fertilization on soil available potassium in East China. *Catena* **2020**, *188*,
- 739 (34) Schindler, F. V.; Knighton, R. E. Fate of fertilizer nitrogen applied to corn as estimated by 740 the isotopic and difference methods. *Soil Science Society of America Journal* **1999**, *63* (6), 1734-741 1740.
- 742 (35) Bronson, K. F.; Hussain, F.; Pasuquin, E.; Ladha, J. K. Use of ¹⁵N-labeled soil in measuring 743 nitrogen fertilizer recovery efficiency in transplanted rice. *Soil Science Society of America Journal* 744 **2000**, *64* (1), 235-239.
- 745 (36) Ishii, S.; Suzui, N.; Ito, S.; Ishioka, N. S.; Kawachi, N.; Ohtake, N.; Ohyama, T.; Fujimaki, S. Real-time imaging of nitrogen fixation in an intact soybean plant with nodules using ¹³N-labeled nitrogen gas. *Soil Science and Plant Nutrition* **2009**, *55* (5), 660-666.
- 748 (37) Yoneyama, T.; Suzui, N.; Ishioka, N. S.; Fujimaki, S. A quick incorporation of ¹³N into the soluble high-molecular compound in rice (Oryza sativa L.) roots by application of ¹³N-labeled nitrate/nitrite. *Soil Science and Plant Nutrition* **2011**, *57* (2), 279-282.
- 751 (38) Bünemann, E. K.; Steinebrunner, F.; Smithson, P. C.; Frossard, E.; Oberson, A. Phosphorus 752 dynamics in a highly weathered soil as revealed by isotopic labeling techniques. *Soil Science* 753 *Society of America Journal* **2004**, *68* (5), 1645-1655.
- 754 (39) Dorahy, C. G.; Rochester, I. J.; Blair, G. J.; Till, A. R. Phosphorus use-efficiency by cotton 755 grown in an alkaline soil as determined using ³²Phosphorus and ³³Phosphorus radio-isotopes. *J* 756 *Plant Nutr* **2008**, *31* (11), 1877-1888.
- 757 (40) Shedley, C. D.; Till, A. R.; Blair, G. J. A radiotracer technique for studying the nutrient 758 release from different fertilizer materials and its uptake by plants. *Communications in Soil Science* 759 *and Plant Analysis* **1979**, *10* (4), 737-745.
- 760 (41) Zhao, F. J.; Verkampen, K. C. J.; Birdsey, M.; Blake-Kalff, M. M. A.; McGrath, S. P. Use 761 of the enriched stable isotope ³⁴S to study sulphur uptake and distribution in wheat. *J Plant Nutr* 762 **2001**, 24 (10), 1551-1560.
- 763 (42) Myrold, D. D.; Tiedje, J. M. Simultaneous estimation of several nitrogen cycle rates using rates and application. *Soil Biology and Biochemistry* **1986**, *18* (6), 559-568.

- 765 (43) Mulholland, P. J.; Tank, J. L.; Sanzone, D. M.; Wollheim, W. M.; Peterson, B. J.; Webster,
- J. R.; Meyer, J. L. Nitrogen cycling in a forest stream determined by a ¹⁵N tracer addition.
- 767 *Ecological Monographs* **2000**, *70* (3), 471-493.
- 768 (44) Jahangir, M. M. R.; Fenton, O.; Carolan, R.; Harrington, R.; Johnston, P.; Zaman, M.;
- Richards, K. G.; Müller, C. Application of ¹⁵N tracing for estimating nitrogen cycle processes in soils of a constructed wetland. *Water Research* **2020**, *183*, 116062.
- 771 (45) Graham, E. R.; Kampbell, D. H. Soil potassium availability and reserve as related to the isotopic pool and calcium exchange equilibria. *Soil Science* **1968**, *106* (2), 101-106.
- 773 (46) Sumner, M. E.; Bolt, G. H. Isotopic exchange of potassium in an illite under equilibrium conditions. *Soil Science Society of America Journal* **1962**, *26* (6), 541-544.
- 775 (47) Unterweger, M. P.; Lindstrom, R. M. Ionization chamber measurements of the half-lives of ratio of rati
- 777 (48) Grau Malonda, A.; Grau Carles, A. Half-life determination of ⁴⁰K by LSC. *Applied Radiation* 778 and *Isotopes* **2002**, *56* (1), 153-156.
- 779 (49) Kossert, K.; Günther, E. LSC measurements of the half-life of ⁴⁰K. *Applied Radiation and Isotopes* **2004**, *60* (2), 459-464.
- 781 (50) Slutskaya, L. D.; Medvedeva, O. P.; Shirshova, R. A. The use of ⁴⁰K as a tracer for studying the potassium nutrition of plants. *Agrokhimiya* **1980**, *7*, 30-38.
- 783 (51) Fardeau, J. C.; Guiraud, G.; Hetier, J. M.; Jappe, J.; Marol, C.; Darme, S.; Berlier, Y. Results 784 of direct measures of the utilization coefficient of fertilizers by isotopic labelling with ³²P, ¹⁵N and 785 ⁴⁰K; CEA-CONF-6852; France, 1983.
- http://inis.iaea.org/search/search.aspx?orig_q=RN:15005903.
- 787 (52) Humayun, M.; Clayton, R. N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion. *Geochimica Et Cosmochimica Acta* **1995**, *59* (10), 2131-2148.
- 789 (53) Humayun, M.; Clayton, R. N. Precise determination of the isotopic composition of potassium: application to terrestrial rocks and lunar soils. *Geochimica et Cosmochimica Acta* **1995**, 59 (10), 2115-2130.
- 792 (54) Midwood, A. J.; Proe, M. F.; Harthill, J. J. Use and analysis by thermal ionisation mass 793 spectrometry of Mg and K to assess mineral uptake in Scots pine (L.). *Analyst* **2000**, *125* (3), 487-794 492.
- 795 (55) Proe, M. F.; Midwood, A. J.; Craig, J. Use of stable isotopes to quantify nitrogen, potassium and magnesium dynamics in young Scots pine (Pinus sylvestris). *New Phytologist* **2000**, *146* (3), 461-469.
- 798 (56) Weatherall, A.; Proe, M. F.; Craig, J.; Cameron, A. D.; Midwood, A. J. Internal cycling of nitrogen, potassium and magnesium in young Sitka spruce. *Tree Physiology* **2006**, *26* (5), 673-680.
- (57) Becker, J. S.; Füllner, K.; Seeling, U. D.; Fornalczyk, G.; Kuhn, A. J. Measuring magnesium, calcium and potassium isotope ratios using ICP-QMS with an octopole collision cell in tracer studies of nutrient uptake and translocation in plants. *Anal Bioanal Chem* **2008**, *390* (2), 571-578.
- (58) Li, W.; Beard, B. L.; Li, S. Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. *Journal of Analytical Atomic Spectrometry* **2016**, *31* (4), 1023-1029.
- 807 (59) Wang, K.; Jacobsen, S. B. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. *Geochimica et Cosmochimica Acta* **2016**, *178*, 223-232.

- (60) Hu, Y.; Chen, X. Y.; Xu, Y. K.; Teng, F. Z. High-precision analysis of potassium isotopes by HR-MC-ICPMS. *Chemical Geology* **2018**, *493*, 100-108.
- 812 (61) Morgan, L. E.; Santiago Ramos, D. P.; Davidheiser-Kroll, B.; Faithfull, J.; Lloyd, N. S.;
- 813 Ellam, R. M.; Higgins, J. A. High-precision ${}^{41}\text{K}/{}^{39}\text{K}$ measurements by MC-ICP-MS indicate
- terrestrial variability of δ^{41} K. *Journal of Analytical Atomic Spectrometry* **2018**, *33* (2), 175-186.
- 815 (62) Chen, H.; Tian, Z.; Tuller-Ross, B.; Korotev, Randy L.; Wang, K. High-precision potassium
- isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight.
- 317 *Journal of Analytical Atomic Spectrometry* **2019**, *34* (1), 160-171.
- (63) Chen, H.; Saunders, N. J.; Jerram, M.; Halliday, A. N. High-precision potassium isotopic measurements by collision cell equipped MC-ICPMS. *Chemical Geology* **2021**, *578*, 120281.
- 820 (64) Moynier, F.; Hu, Y.; Wang, K.; Zhao, Y.; Gérard, Y.; Deng, Z.; Moureau, J.; Li, W.; Simon,
- J. I.; Teng, F.-Z. Potassium isotopic composition of various samples using a dual-path collision
- cell-capable multiple-collector inductively coupled plasma mass spectrometer, Nu instruments

 Sampling Chamical Geology 2021, 571, 120144
- 823 Sapphire. *Chemical Geology* **2021**, *571*, 120144.
- 65) Li, W. Vital effects of K isotope fractionation in organisms: observations and a hypothesis. Acta Geochimica **2017**, *36* (3), 374-378.
- 826 (66) Li, W.; Liu, X.-M.; Hu, Y.; Teng, F.-Z.; Hu, Y.-F.; Chadwick, O. A. Potassium isotopic
- fractionation in a humid and an arid soil–plant system in Hawai'i. *Geoderma* **2021**, *400*, 115219.
- 67) Christensen, J. N.; Qin, L.; Brown, S. T.; DePaolo, D. J. Potassium and calcium isotopic fractionation by plants (soybean [Glycine max], rice [Oryza sativa], and wheat [Triticum]
- 830 *aestivum*]). ACS Earth and Space Chemistry **2018**, 2 (7), 745-752.
- 831 (68) Marshall, J. D.; Brooks, J. R.; Lajtha, K. Sources of variation in the stable isotopic composition of plants. *Stable isotopes in ecology and environmental science* **2007**, 2, 22-60.
- 69) Dawson, T. E.; Mambelli, S.; Plamboeck, A. H.; Templer, P. H.; Tu, K. P. Stable isotopes in plant ecology. *Annual Review of Ecology and Systematics* **2002**, *33* (1), 507-559.
- 835 (70) Robinson, D. δ^{15} N as an integrator of the nitrogen cycle. *Trends in Ecology & Evolution* 836 **2001**, *16* (3), 153-162.
- (71) Barak, P.; Jobe, B. O.; Krueger, A. R.; Peterson, L. A.; Laird, D. A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. *Plant Soil* **1997**, *197* (1), 61-69.
- 839 (72) Wang, K.; Li, W.; Li, S.; Tian, Z.; Koefoed, P.; Zheng, X.-Y. Geochemistry and cosmochemistry of potassium stable isotopes. *Geochemistry* **2021**, 125786.
- 841 (73) Bray, R. H.; Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. *Soil Science* **1945**, *59* (1), 39-46.
- (74) Laboski, C. A.; Peters, J. B. Nutrient application guidelines for field, vegetable, and fruit
 crops in Wisconsin; Division of Cooperative Extension of the University of Wisconsin-Extension,
 2012.
- 846 (75) Zheng, X.-Y.; Chen, X.-Y.; Ding, W.; Zhang, Y.; Charin, S.; Gérard, Y. High precision
- analysis of stable potassium (K) isotopes by the collision cell MC-ICP-MS "Sapphire" and a
- correction method for concentration mismatch. *Journal of Analytical Atomic Spectrometry* **2022**, 37 (6), 1273-1287.
- 850 (76) Jiang, S. J.; Houk, R. S.; Stevens, M. A. Alleviation of overlap interferences for
- determination of potassium isotope ratios by inductively coupled plasma mass-spectrometry.
- 852 Analytical Chemistry **1988**, 60 (11), 1217-1221.
- 853 (77) Wong, G. T. F.; Ku, T.-L.; Mulholland, M.; Tseng, C.-M.; Wang, D.-P. The SouthEast Asian
- Time-series Study (SEATS) and the biogeochemistry of the South China Sea—An overview. *Deep*
- Sea Research Part II: Topical Studies in Oceanography 2007, 54 (14), 1434-1447.

- Wang, K.; Close, H. G.; Tuller-Ross, B.; Chen, H. Global Average Potassium Isotope Composition of Modern Seawater. *ACS Earth and Space Chemistry* **2020**, *4* (7), 1010-1017.
- (79) Hille, M.; Hu, Y.; Huang, T.-Y.; Teng, F.-Z. Homogeneous and heavy potassium isotopic composition of global oceans. *Science Bulletin* **2019**, *64* (23), 1740-1742.
- 860 (80) Trust, B. A.; Fry, B. Stable sulphur isotopes in plants: a review. *Plant, Cell & Environment* 861 **1992**, *15* (9), 1105-1110.
- 862 (81) Wiegand, B. A.; Chadwick, O. A.; Vitousek, P. M.; Wooden, J. L. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. *Geophys. Res. Lett.* **2005**, *32* (11), L11404.
- 864 (82) Guelke, M.; von Blanckenburg, F. Fractionation of stable iron isotopes in higher plants. 865 Environmental Science & Technology **2007**, 41 (6), 1896-1901.
- 866 (83) von Blanckenburg, F.; von Wirén, N.; Guelke, M.; Weiss, D. J.; Bullen, T. D. Fractionation of metal stable isotopes by higher plants. *Elements* **2009**, *5* (6), 375-380.
- 868 (84) Bolou-Bi, E. B.; Poszwa, A.; Leyval, C.; Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. *Geochimica et Cosmochimica Acta* **2010**, 74 (9), 2523-2537.
- 871 (85) Weinstein, C.; Moynier, F.; Wang, K.; Paniello, R.; Foriel, J.; Catalano, J.; Pichat, S. Isotopic 872 fractionation of Cu in plants. *Chemical Geology* **2011**, 286 (3), 266-271.
- 873 (86) Jouvin, D.; Weiss, D. J.; Mason, T. F. M.; Bravin, M. N.; Louvat, P.; Zhao, F.; Ferec, F.;
- Hinsinger, P.; Benedetti, M. F. Stable isotopes of Cu and Zn in higher plants: evidence for Cu
- reduction at the root surface and two conceptual models for isotopic fractionation processes.
- 876 Environmental Science & Technology **2012**, 46 (5), 2652-2660.
- 877 (87) Warncke, D. D.; Barber, S. A. Root development and nutrient uptake by corn grown in solution culture. *Agronomy Journal* **1974**, *66* (4), 514-516.
- (88) Claassen, N.; Barber, S. A. Potassium influx characteristics of corn roots and interaction with N, P, Ca, and Mg Influx. *Agronomy Journal* **1977**, *69* (5), 860-864.
- 881 (89) Amos, B.; Walters, D. T. Maize root biomass and net rhizodeposited carbon. *Soil Science Society of America Journal* **2006**, *70* (5), 1489-1503.
- (90) Turan, M. A.; Elkarim, A. H. A.; Taban, S. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. *African Journal of Agricultural Research* **2010**, 5 (7), 584-588.
- (91) Chen, H.; Liu, X.-M.; Wang, K. Potassium isotope fractionation during chemical weathering of basalts. *Earth and Planetary Science Letters* **2020**, *539*, 116192.
- 888 (92) Teng, F.-Z.; Hu, Y.; Ma, J.-L.; Wei, G.-J.; Rudnick, R. L. Potassium isotope fractionation 889 during continental weathering and implications for global K isotopic balance. *Geochimica et* 890 *Cosmochimica Acta* **2020**, 278, 261-271.
- 891 (93) Li, W.; Liu, X.-M.; Wang, K.; Koefoed, P. Lithium and potassium isotope fractionation during silicate rock dissolution: an experimental approach. *Chemical Geology* **2021**, *568*, 120142.
- 893 (94) Groudev, S. N. Use of heterotrophic microorganisms in mineral biotechnology. *Acta Biotechnologica* **1987**, *7* (4), 299-306.
- 895 (95) Friedrich, S.; Platonova, N. P.; Karavaiko, G. I.; Stichel, E.; Glombitza, F. Chemical and microbiological solubilization of silicates. *Acta Biotechnologica* **1991**, *11* (3), 187-196.
- (96) Hinsinger, P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. *Advances in agronomy* **1998**, *64*, 225-266.
- (97) Hinsinger, P. Potassium. In *Managing Global Resources and Universal Processes*, CRC
 Press, 2020; pp 315-321.

- 901 (98) Hinsinger, P.; Jaillard, B. Root-induced release of interlayer potassium and vermiculitization 902 of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. *Journal of Soil* 903 *Science* **1993**, *44* (3), 525-534.
- 904 (99) Hinsinger, P.; Jaillard, B.; Dufey, J. E. Rapid weathering of a trioctahedral mica by the roots of ryegrass. *Soil Science Society of America Journal* **1992**, *56* (3), 977-982.
- 906 (100) Ullman, W. J.; Kirchman, D. L.; Welch, S. A.; Vandevivere, P. Laboratory evidence for microbially mediated silicate mineral dissolution in nature. *Chemical Geology* **1996**, *132* (1), 11-908 17.
- 909 (101) Barré, P.; Velde, B.; Abbadie, L. Dynamic role of "illite-like" clay minerals in temperate soils: facts and hypotheses. *Biogeochemistry* **2007**, 82 (1), 77-88.
- 911 (102) Barré, P.; Velde, B.; Fontaine, C.; Catel, N.; Abbadie, L. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. *Geoderma* **2008**, *146* (1), 216-223.
- 914 (103) Lambers, H.; Mougel, C.; Jaillard, B.; Hinsinger, P. Plant-microbe-soil interactions in the 915 rhizosphere: an evolutionary perspective. *Plant Soil* **2009**, *321* (1), 83-115.
- 916 (104) Singh, G.; Biswas, D. R.; Marwaha, T. S. Mobilization of potassium from waste mica by 917 plant growth promoting rhizobacteria and its assimilation by maize (zea mays) and wheat (triticum 918 aestivum 1.): a hydroponics study under phytotron growth chamber. *J Plant Nutr* **2010**, *33* (8), 919 1236-1251.
- 920 (105) Paola, A.; Pierre, B.; Vincenza, C.; Vincenzo, D. M.; Bruce, V. Short term clay mineral release and re-capture of potassium in a Zea mays field experiment. *Geoderma* **2016**, 264, 54-60.
- 922 (106) Bennett, P. C.; Rogers, J. R.; Choi, W. J.; Hiebert, F. K. Silicates, silicate weathering, and microbial ecology. *Geomicrobiology Journal* **2001**, *18* (1), 3-19.
- (107) Cobert, F.; Schmitt, A.-D.; Bourgeade, P.; Labolle, F.; Badot, P.-M.; Chabaux, F.; Stille,
 P. Experimental identification of Ca isotopic fractionations in higher plants. *Geochimica et Cosmochimica Acta* 2011, 75 (19), 5467-5482.
- 927 (108) Mengel, K. Dynamics and availability of major nutrients in soils. In *Advances in soil* 928 science, Springer, 1985; pp 65-131.
- 929 (109) Baligar, V. C. Potassium uptake by plants, as characterized by root density, species and K/Rb ratio. *Plant Soil* **1985**, *85* (1), 43-53.
- 931 (110) Richter, F. M.; Mendybaev, R. A.; Christensen, J. N.; Hutcheon, I. D.; Williams, R. W.; 932 Sturchio, N. C.; Beloso, A. D. Kinetic isotopic fractionation during diffusion of ionic species in
- 933 water. *Geochimica et Cosmochimica Acta* **2006**, 70 (2), 277-289.
- 934 (111) Bourg, I. C.; Richter, F. M.; Christensen, J. N.; Sposito, G. Isotopic mass dependence of 935 metal cation diffusion coefficients in liquid water. *Geochimica et Cosmochimica Acta* **2010**, 74 936 (8), 2249-2256.
- 937 (112) Christensen, J. N.; Hofmann, A. E.; DePaolo, D. J. Isotopic fractionation of potassium by diffusion in methanol. *ACS Omega* **2019**, *4* (5), 9497-9501.
- 939 (113) Epstein, E.; Rains, D. W.; Elzam, O. E. Resolution of dual mechanisms of potassium 940 absorption by barley roots. *Proceedings of the National Academy of Sciences of the United States* 941 of America **1963**, 49 (5), 684-692.
- 942 (114) Schachtman, D. P.; Kumar, R.; Schroeder, J. I.; Marsh, E. L. Molecular and functional 943 characterization of a novel low-affinity cation transporter (LCT1) in higher plants. *Proceedings of* 944 the National Academy of Sciences **1997**, 94 (20), 11079-11084.
- 945 (115) Britto, D. T.; Kronzucker, H. J. Cellular mechanisms of potassium transport in plants. 946 *Physiol Plantarum* **2008**, *133* (4), 637-650.

- 947 (116) Szczerba, M. W.; Britto, D. T.; Kronzucker, H. J. K⁺ transport in plants: Physiology and molecular biology. *Journal of Plant Physiology* **2009**, *166* (5), 447-466.
- 949 (117) Wang, Y.; Wu, W.-H. Potassium transport and signaling in higher plants. *Annual Review* 950 of *Plant Biology* **2013**, *64* (1), 451-476.
- 951 (118) Bland, J. M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. *The Lancet* **1986**, *327* (8476), 307-310.
- 953 (119) Giavarina, D. Understanding Bland Altman analysis. *Biochem Med (Zagreb)* **2015**, *25* (2), 954 141-151.
- 955 (120) Scott, A. D.; Smith, S. J. Susceptibility of interlayer potassium in micas to exchange with sodium. In *Clays and Clay Minerals*, Bailey, S. W. Ed.; Pergamon, 1966; pp 69-81.
- 957 (121) Martin, H. W.; Sparks, D. L. On the behavior of nonexchangeable potassium in soils. 958 *Communications in Soil Science and Plant Analysis* **1985**, *16* (2), 133-162.
- 959 (122) Jalali, M. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. *Geoderma* **2006**, *135*, 63-71.
- 961 (123) Jalali, M.; Zarabi, M. Kinetics of nonexchangeable-potassium release and plant response in some calcareous soils. *Journal of Plant Nutrition and Soil Science* **2006**, *169* (2), 196-204.
- 963 (124) Vetterlein, D.; Kühn, T.; Kaiser, K.; Jahn, R. Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. *Plant Soil* **2013**, *371* (1), 267-279.
- 965 (125) Claassen, N.; Syring, K. M.; Jungk, A. Verification of a mathematical model by simulating potassium uptake from soil. *Plant Soil* **1986**, *95* (2), 209-220.
- 967 (126) Goulding, K. W. T. Potassium retention and release in rothamsted and saxmundham soils.

 Journal of the Science of Food and Agriculture 1981, 32 (7), 667-670.
- 969 (127) Sarkar, G. K.; Chattopadhyay, A. P.; Sanyal, S. K. Release pattern of non-exchangeable 970 potassium reserves in Alfisols, Inceptisols and Entisols of West Bengal, India. *Geoderma* **2013**, 971 207-208, 8-14.

1	Supporting Information for:
2	
3	Natural potassium (K) isotope fractionation during corn growth and quantification of K
4	fertilizer recovery efficiency using stable K isotope labeling
5	
6	Xin-Yang Chen ^a , Xin-Yuan Zheng ^{a*} , Brian L. Beard ^b , Matilde Urrutia ^c , Clark M. Johnson ^b ,
7	Phillip Barak ^c
8	
9	^a Department of Earth and Environmental Sciences, University of Minnesota–Twin Cities, 116
10	Church Street SE, Minneapolis MN 55455, USA
11	^b Department of Geoscience, University of Wisconsin–Madison, 1215 W Dayton Street, Madison
12	WI 53706, USA
13	^c Department of Soil Science, University of Wisconsin–Madison, 1525 Observatory Drive,
14	Madison WI 53706, USA
15	
16	*correspondence author (Email: <u>zhengxy@umn.edu</u>)
17	
18	
19	
20	
21	
22	
23	

Estimating the plant-soil K isotope fractionation factor using a Monte Carlo method

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

There are two major sources of uncertainty in calculating ε using Equations 1 and 2 in the main text: K mass in root (i.e., K_{root}) and the $\delta^{41}K$ value of the plant-available K pool in soil (i.e., δ^{41} K'). For K_{root}, although this parameter was not directly measured, it can be estimated based on shoot dry weight and shoot K concentrations, both of which were measured in this study (Table 1 in the main text), and reasonable assumptions for root to shoot (R/S) mass ratios and K concentration ratios based on literature. Amos and Walters (2006) compiled R/S dry mass ratios from 45 published field and experimental studies for corn as a function of days after emergence. Based on this extensive data compilation, the R/S mass ratio for our ~6-week experiments should fall within a range between ~ 0.1 and ~ 1 . This range should be representative for our experiments, because we previously conducted root separation and cleaning for similar corn growth experiments that used the same soil and pot, over a comparable duration, and R/S mass ratios of ~0.65 were obtained. In addition to a R/S dry mass ratio, a K concentration ratio between root and shoot is also needed to estimate total K mass in root, because K concentrations in root and shoot can be different. Previous studies showed that R/S K concentration ratios could vary between ~45% and ~80% for corn grown under a wide range of field and laboratory conditions (e.g., Warncke and Barber, 1974; Claassen and Barber, 1977; Zeng and Brown, 2000; Turan et al., 2010), and this large range should cover R/S K concentration ratios expected in our experiments. The second major uncertainty for ε estimation is the K isotope composition of the plantavailable K pool in soil (δ^{41} K'_{soil} in Equation 1 in the main text). A logical initial assumption for

 δ^{41} K'_{soil} is the δ^{41} K value measured in the Bray extract of initial unfertilized soil. However, even

without considering K mass in root, the sum of K mass in corn shoots and Bray-extractable K in

soil after harvest is already ~58%–74% higher than the total amount of K mass based on measurement of Bray extract of initial unfertilized soil (Table 1 in the main text). This implies recharge of plant-available K in soil during corn growth in all three pots in Group-A. It may be not appropriate to assume that δ^{41} K'_{soil} was the same as δ^{41} K measured in the Bray extract of initial soil. Because of the excess of plant-available K, δ^{41} K'_{soil} depends on the amount of the newly available soluble K and its δ^{41} K value. The amount of recharged plant-available K can be calculated by the mass difference between initial plant-available K estimated by measurement of the Bray extract of initial soil and the sum of K mass in root, shoot, and Bray-extractable K in soil after harvest. Only K mass in root (K_{root}) is unknown, and the rest can be calculated based on measurements of dry mass and K concentrations of soil and shoot. The amount of recharged plant-available K is then dependent on estimates of K_{root} . The $\delta^{41}K$ value of the recharged plantavailable K in soil is more challenging to know without direct measurement, but an approximate range can be estimated. The average δ^{41} K value of the upper continental crust is \sim -0.45% (Huang et al., 2020; Wang et al., 2021), representing the starting value of primary silicates that are later transformed into various minerals in all soils during weathering. Weathering produces resolvable K isotope fractionation, and δ^{41} K values reported for natural weathering profiles ranged between \sim -0.45% and \sim -1% with the lower limit associated with highly weathered products (e.g., kaolinite or bauxite) (Chen et al., 2020; Teng et al., 2020). Assuming the bulk soil used in this study has an extreme δ^{41} K value of -1% similar to the highly weathered material observed in nature, and release of soluble K was caused by rapid dissolution of soil silicates, accompanied by no K isotope fractionation (Li et al., 2021a), the resultant soluble K should carry a similar δ^{41} K value of ~ -1%, which sets a lower limit for δ^{41} K expected in the recharged plantavailable K in our experiments. Alternatively, if the recharged soluble K has a similar δ^{41} K value

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

to those of Bray extracts of final soil, we consider the upper limit of $\delta^{41}K$ for the recharged soluble K to be 0.5% based on the highest $\delta^{41}K$ value measured in soil Bray extracts after harvest from Group-A experiments. A $\delta^{41}K$ range from -1% to 0.5% is large for natural variations in K isotopes, and this range is taken as a maximum for the $\delta^{41}K$ values of plantavailable K in natural soil. For example, a recent study reported $\delta^{41}K$ values of \sim -0.6% and \sim 0.5% for plant-available K in natural humid and arid soils from Hawai'i (Li et al., 2021b).

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

A Monte Carlo approach that considered all the uncertainties noted above was used to estimate the shoot–soil K isotope fractionation enrichment factor ε based on Equations 1 and 2 in the main text. Random input values were generated within the prescribed ranges for R/S mass ratio (0.1–1), R/S K concentration ratio (0.45–0.80), and δ^{41} K value of recharged plant-available K (-1% - 0.5%). For input parameters that were directly measured or can be calculated from direct measurements (i.e., dry mass, K concentrations, and δ^{41} K values of soil extracts and corn shoot), random numbers for each parameter were generated within the range bounded by the mean and standard deviation of this parameter. Because standard deviations of direct measurements for these parameters from the three pots are typically larger than corresponding analytical uncertainties, they may reflect subtle physiological differences in plant responses in these experiments. By using standard deviations of direct measurements from the triplicate pots, rather than analytical uncertainties, our Monte Carlo approach may have also accounted for true physiological differences in different pots. A compilation of all model input parameters and their prescribed ranges used in our Monte Carlo simulations is provided in **Table S1**, and a schematic diagram showing relations of different parameters in the soil–plant system considered here is provided in Figure S1.

A total of 100-million Monte Carlo simulations were conducted to calculate ε . Because each pot was a closed system with respect to K, each Monte Carlo simulation also allowed for calculation of root δ^{41} K (δ^{41} K_{root}) based on the chosen input values and K isotope mass balance. Although $\delta^{41}K_{root}$ is not measured, it must fall within a reasonable natural range, making it a useful internal constraint to screen simulation results. If no a priori assumption on the limit of $\delta^{41}K_{root}$ was made, our 100-million Monte Carlo simulations would yield $\delta^{41}K_{root}$ values that spread between 14.36% and -78.93%. This range greatly exceeds the δ^{41} K variability observed in any natural samples on the Earth. This indicates that not all 100-million Monte Carlo simulations could provide solutions that are realistic for the K isotope system, although all solutions numerically fulfil Equation 1 and 2 in the main text. The reported $\delta^{41}K$ values for roots of different plants (grasses, soybean, rice, and wheat) are typically ~0.4–0.8% lower than those of plant-available K in growth medium (Christensen et al., 2018; Li et al., 2021b). Although δ^{41} K values and potential K isotope fractionation specific to corn root have not been studied, there is no reason to believe corn root would behave fundamentally different from other plant types. As a result, we prescribed a range between -2% to 0% for $\delta^{41}K_{root}$ as a criterion used to screen Monte Carlo simulation results. Any simulation that yielded a δ^{41} K_{root} value outside this prescribed $\delta^{41}K_{root}$ range was considered to be unrealistic and then rejected. Without relying on detailed knowledge about root K isotope compositions, this prescribe range is very large for K isotope variations measured to date, making it likely that it covers the true $\delta^{41}K_{root}$ values expected in our experiments.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

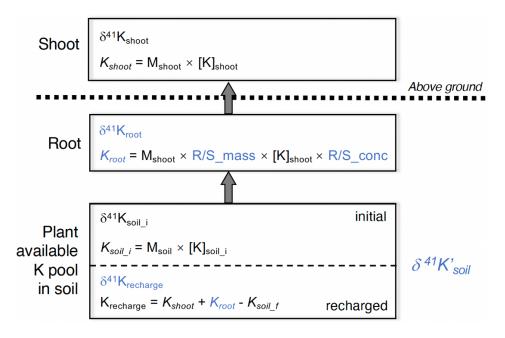
110

111

112

113

114


Our best-estimate of shoot–soil K isotope enrichment factor ε is -0.37‰ (±0.23‰, 1SD), based on 100-million Monte Carlo simulations that considered all possible combinations of input parameter values randomly selected from the prescribed ranges and an additional screening step

based on a realistic $\delta^{41}K_{root}$ range as described above. About 40% of the solutions passed the screening. A smaller number (e.g., 1 million) of Monte Carlo simulations yielded the same result, indicating that the ε estimate provided here is numerically stable.

The same Monte Carlo approach was also used to estimate F in Equation 3 of the main text, using prescribed ranges tabulated in **Table S1**. In this case, the estimated ε along with its uncertainty (i.e., -0.37% \pm 0.23%) was used in Monte Carlo simulations based on the Equation 3. The F results reported in the main text were based on a total of 100 million simulations.

Table S1. Parameters used in the Monte Carlo simulations

Parameter	Definition	Range tested in Monte Carlo simulations
Measured		
M_{soil}	Total soil mass	1.5 kg
M_{shoot}	Shoot dry mass	$7.33 \pm 1.04 \text{ g}$
[K] _{soil_i}	K concentration in Bray-extract from initial soil	71 mg K kg ⁻¹ soil
[K] _{soil_f}	K concentration in Bray-extract from final soil after harvest	$67.3 \pm 9.1 \text{ mg K kg}^{-1} \text{ soil}$
$[K]_{shoot}$	K concentration in corn shoot	$10.1 \pm 1.1 \text{ mg g}^{-1}$
$\delta^{41} K_{soil_i}$	K isotope composition in Bray-extract from initial soil	$-0.11 \pm 0.11\%$
$\delta^{41} K_{soil_f}$	K isotopic composition in Bray-extract from soil after harvest	$0.36 \pm 0.11\%$
$\delta^{41}K_{shoot}$	K isotope composition of shoot	$-0.29 \pm 0.06\%$
Prescribed		
R/S mass ratio	Root to shoot dry mass ratio	0.1 ~ 1
R/S K concentration ratio	Root to shoot K concentration ratio	$0.45 \sim 0.8$
$\delta^{41}K_{recharge}$	K isotope composition of recharged plant-available K	- 1 ∼ 0.5‰
$\delta^{41} K_{root}$	Root K isotope composition used for result screening	- 2 ∼ 0‰

Figure S1 A schematic of the box model and parameters considered in our Monte Carlo simulations intended to estimate natural K isotope fractionation during corn growth. Directly measured parameters are in black, and parameters with prescribed values are in blue. Derived parameters based on measured or prescribed values are in italics. Parameters shown here are defined in Table S1.

147 References

157

158

159

166

167

168

173

174

175

176

177

178

- 148 Amos B. and Walters D. T. (2006) Maize root biomass and net rhizodeposited carbon. Soil 149 Science Society of America Journal 70, 1489-1503,
- 150 https://doi.org/10.2136/sssaj2005.0216.
- 151 Chen H., Liu X.-M. and Wang K. (2020) Potassium isotope fractionation during chemical weathering of basalts. Earth and Planetary Science Letters 539, 116192, 152 153 https://doi.org/10.1016/j.epsl.2020.116192.
- Christensen J. N., Qin L., Brown S. T. and DePaolo D. J. (2018) Potassium and calcium isotopic 154 155 fractionation by plants (soybean [Glycine max], rice [Oryza sativa], and wheat [Triticum 156 aestivum]). ACS Earth and Space Chemistry 2, 745-752,
 - Claassen N. and Barber S. A. (1977) Potassium influx characteristics of corn roots and interaction with N, P, Ca, and Mg Influx. Agronomy Journal 69, 860-864, https://doi.org/10.2134/agronj1977.00021962006900050034x.
- 160 Huang T.-Y., Teng F.-Z., Rudnick R. L., Chen X.-Y., Hu Y., Liu Y.-S. and Wu F.-Y. (2020) 161 Heterogeneous potassium isotopic composition of the upper continental crust. 162 Geochimica et Cosmochimica Acta 278, 122-136, 10.1016/j.gca.2019.05.022.
- 163 Li W., Liu X.-M., Wang K. and Koefoed P. (2021a) Lithium and potassium isotope fractionation 164 during silicate rock dissolution: an experimental approach. Chemical Geology 568, 120142, https://doi.org/10.1016/j.chemgeo.2021.120142. 165
 - Li W., Liu X.-M., Hu Y., Teng F.-Z., Hu Y.-F. and Chadwick O. A. (2021b) Potassium isotopic fractionation in a humid and an arid soil-plant system in Hawai'i. Geoderma 400, 115219, https://doi.org/10.1016/j.geoderma.2021.115219.
- Teng F.-Z., Hu Y., Ma J.-L., Wei G.-J. and Rudnick R. L. (2020) Potassium isotope fractionation 169 170 during continental weathering and implications for global K isotopic balance. 171 Geochimica et Cosmochimica Acta 278, 261-271, 172 https://doi.org/10.1016/j.gca.2020.02.029.
 - Turan M. A., Elkarim A. H. A. and Taban S. (2010) Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research 5, 584-588,
 - Wang K., Li W., Li S., Tian Z., Koefoed P. and Zheng X.-Y. (2021) Geochemistry and cosmochemistry of potassium stable isotopes. Geochemistry 125786, https://doi.org/10.1016/j.chemer.2021.125786.
- 179 Warncke D. D. and Barber S. A. (1974) Root development and nutrient uptake by corn grown in 180 solution culture. Agronomy Journal 66, 514-516, https://doi.org/10.2134/agronj1974.00021962006600040011x. 181
- 182 Zeng Q. and Brown P. H. (2000) Soil potassium mobility and uptake by corn under differential 183 soil moisture regimes. *Plant Soil* **221**, 121-134, 10.1023/A:1004738414847.