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Abstract:

“Prebiotic soup” has often featured in origins of life research, both as a theoretical concept when
discussing the origins of life’s building blocks and, more recently, as a feedstock in prebiotic
chemistry experiments focused on discovering emergent, systems-level processes, to resolve
unanswered questions in the field such as the onset of polymerization, encapsulation, and evolution.
However, until now, little systematic analysis has gone into the design of well-justified prebiotic
mixtures, which are needed to facilitate experimental replicability and comparison among
researchers. This paper explores the principles that should be considered in conducting
unconstrained prebiotic chemistry experiments, reviews the natural environmental conditions that
could have created such mixtures, and then uses this analysis to suggest reasonable guidelines for
designing recipes along with examples. We discuss both “assembled” mixtures, which are made by
mixing reagent grade chemicals, and “synthesized” mixtures, which are generated directly from
diversity-generating primary prebiotic syntheses. We discuss different practical concerns including
how to navigate the tremendous uncertainty in the chemistry of the early Earth and how to balance
the desire for using prebiotically realistic mixtures with experimental tractability and replicability.
Examples of two assembled mixtures, one based on materials likely delivered by carbonaceous
meteorites and one based on spark discharge synthesis, are presented to illustrate these
considerations. We explore alternative procedures for making synthesized mixtures using recursive
chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical synthesis.
Other experimental conditions such as pH and ionic strength are also considered. We argue that
developing a handful of standardized prebiotic recipes may facilitate coordination among
researchers and enable the identification of the most promising mechanisms by which complex
prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such
as self-propagation, information processing, and adaptive evolution.

Keywords: prebiotic chemistry, prebiotic synthesis, prebiotic soup, prebiotic mixture, origin of life

1. Introduction

Since the pioneering research by Miller and Urey in the 1950s (S L Miller & Urey,
1959; Stanley L Miller, 1953), it has gradually become accepted that abiotic synthesis in
the atmosphere, hydrosphere and lithosphere, combined with exogenous inputs from
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space, likely provided prebiotic Earth with a diverse inventory of organic compounds
(Bernstein 2006; H. J. Cleaves 2012; Thomas M McCollom 2013). These considerations
imply that bodies of water on the prebiotic Earth were imbued with a chemically diverse
organic content, a so-called “prebiotic soup” (Haldane, 1929). The chemical composition
of this hypothetical prebiotic soup remains uncertain beyond the inference that it was
chemically diverse and likely included many of the important chemicals involved in
cellular metabolism and genetics, albeit at perhaps very low steady-state concentrations.

While it is well documented that many chemicals involved in biochemistry can be
synthesized abiotically (Kitadai & Maruyama, 2018), the biggest outstanding problem in
understanding the origins of life is how the components of prebiotic soup came to be
organized in systems capable of emergent processes such as growth, self-propagation,
information processing, and adaptive evolution (Kauffman, Jelenfi, & Vattay, 2020;
Morowitz, Deamer, & Smith, 1991; Orgel, 2004; Raggi, Bada, & Lazcano, 2016). Given that
prebiotic soups may have been composed of millions of distinct compounds, each at a low
concentration (Schmitt-Kopplin et al., 2010; Wollrab et al., 2016), another mystery is how
living processes winnowed this molecular diversity down to the few compounds it uses
today, which are a tiny subset of the many compounds that would have arisen from
abiotic processes. Consequently, it is important to understand how complex mixtures of
dilute organic molecules generated by environmental processes could have been “tamed”
to give rise to the less diverse but more organized chemistry of metabolism (Colon-Santos,
Cooper, and Cronin 2019; Preiner et al. 2020a).

Understanding the taming of chemical complexity and the emergence of key life
processes likely requires “bottom-up” experiments (Virgo, 2016), which entail studying
how model prebiotic mixtures converge towards life in terms of the spectrum of chemicals
formed, their relative abundances, or their overall dynamical behavior. The starting point
for such experiments should be mixtures of chemicals (“soups”) that could plausibly have
been present in a given environment on early Earth. Using such experimental inputs,
many questions can be addressed. For example, one could ask how prebiotic mixtures are
modified upon interacting with minerals or upon exposure to environmental fluctuations
such as wet-dry cycling. Experiments might be conducted in materially closed systems or
may simulate the flow of soup through a primordial microenvironment, for example by
periodically replenishing reagents (Coldn-Santos et al., 2019; Surman et al., 2019; Vincent
et al., 2019) or using a continuous flow reactor (Hudson et al., 2020; Sojo, Ohno, McGlynn,
Yamada, & Nakamura, 2019). Whether one is searching for the emergence of particular
chemicals (e.g., nucleotides, amphiphiles, polymers) (Miller 1953; Dworkin et al. 2001;
Menor-Salvan et al 2009; Callahan et al. 2011) or for autocatalysis or other life-like
dynamical properties (Baum & Vetsigian, 2017; Vincent et al., 2019), experimental results
are likely be sensitive to the chemicals used in the input solutions.

How can appropriate soups be designed in the face of the tremendous uncertainty
regarding the prevailing chemistry in any given locale on early Earth? How can the desire
for using prebiotically realistic soups best balance experimental tractability and
replicability? These important practical questions have not yet been adequately discussed.
The aim of this paper is to explore the principles and practicalities of designing prebiotic
soups for bottom-up origins of life research. Two complementary approaches for making
prebiotic soups are considered: assembling them and synthesizing them. “Assembled
soups” are made by combining laboratory-grade chemicals, while synthesized soups are
generated via recursive, diversity-generating chemical reactions starting from a small
number of low molecular mass input chemicals.

After outlining some general principles guiding the design of experimental prebiotic
soups, we discuss the challenges that arise from the uncertainty regarding early Earth
conditions and the considerable temporal and spatial variation of geochemical conditions
that likely existed. We suggest that since successful bottom-up origins of life research
program is only feasible if abiogenesis is a reasonably robust phenomenon and does not
require very specific and/or cosmically uncommon circumstances which are hard to
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simulate in the lab, the desire to generate a perfect simulacrum of prebiotic chemistry
should not prevent attempts to generate reasonable approximations that bracket some of
the uncertainty. To illustrate these principles, we provide a handful of prebiotic soups
recipes and then argue for community coordination, perhaps including generation of a
shared repository of soups and recipes, to add rigor to the study of complex prebiotic
chemistry.

2. General principles guiding the design of experimental prebiotic soups

Origins of life research programs can generally be characterized based on whether
they aim to address the historical question of the emergence of biochemistry on Earth or
the ahistorical question of how life as a general phenomenon arises (Pross, 2016). This is a
spectrum rather than a discrete distinction. It will never be clear if we have solved the
historical problem of how life actually arose on Earth, nevertheless there is room to more
deeply understand the general principles underlying the transition from geochemistry to
life. Conversely, a research program can only be said to solve the ahistorical problem if it
uses mixtures and conditions that might realistically occur in at least one natural
environment, somewhere in the Universe: engineering life in an artificial lab setting
would not explain how life could emerge spontaneously. Furthermore, whether research
is at the more historical or ahistorical end of the spectrum, there will be a trade-off between
inferred geological realism and expediency. In practice, all experiments sacrifice some
degree of realism. For example, the original Miller-Urey experiment (Stanley L Miller
1953) was guided by ideas regarding the reducing atmosphere of the early Earth (Oparin
1924; Haldane, 1929), but did not attempt to simulate the effects of all possible energy
sources (e.g., ultraviolet radiation) or the presence of minerals.

Even restricting our attention to prebiotic soups in aqueous solutions, experimental
considerations affect soup composition. Insofar as there is some desire to focus on
historical origins, soups that are made to be realistic facsimiles of Earth’s prebiotic oceans
might be different from those made to mimic lakes or other microenvironments, let alone
water bodies elsewhere in the Universe. Prebiotic soup design also depends on how much
control an experimental program requires, whether in terms of chemical diversity,
concentration, or replicability across experiments.

Two main strategies for generating prebiotic soups suggest themselves. The first is
an assembled soup, made by dissolving reagent-grade commercial chemicals and mixing
them in proportions mimicking targeted early Earth or primitive Solar System
environments of interest. The second is a synthesized soup, made by standardizing a
prebiotically-plausible mixture of small organic chemicals and then allowing them to react
under specified conditions. These two strategies have complementary strengths and
weaknesses, as summarized in Table 1.

Assembled soups have the advantage that they can be produced without complex
chemical reactors and should be similar between experimentalists (at least insofar as the
same chemical sources are used). The fact that an assembled soup’s composition is largely
known (although not entirely due to impurities and reactions among the soup’s
components) is potentially useful for replication and comparison among conditions.
Additionally, selective subtraction or isotopic labelling of some components might allow
elucidation of key chemical mechanisms. On the negative side, the total number of distinct
compounds in an assembled soup will likely be much lower, and the relative
concentrations of individual components higher, than strict realism might demand.

Synthesized soups have the advantage of starting with few ingredients at relatively
high concentrations yet yielding highly complex mixtures through recursive chemical
processes, including many compounds at extremely low concentrations. As a result,
synthesized soups might more accurately mimic prebiotic concentration profiles. On the
other hand, synthesized soups starting from gases may be more difficult to produce under
laboratory conditions in the absence of specialized equipment and safety protocols, a
problem that can be avoided using liquid synthesis methods.
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Table 1. Comparison of approached to making prebiotic mixtures

Assembled Synthesized
Mixture Mixture
Atmospheric Liquid
synthesis synthesis

Complexity of products Low High High
Procedure difficulty Low High Low
Control of chirality High Low Low
Control of composition High Low Low
Analytical tractability High Low Low

3. Prebiotic sources of organics and challenges for soup design
3.1. Terrestrial sources of organics.

Dissolved organics on primitive Earth could have derived from a combination of
exogenous sources (comets, meteorites and IDPs) and endogenous sources (C. Chyba &
Sagan, 1992), which includes both atmospheric and hydrothermal synthesis. One of the
challenges with understanding the chemical inputs from these sources is that each would
have been highly dependent on imperfectly known aspects of the Hadean environment.

Geothermal energy may have plausibly driven prebiotic synthesis in some contexts,
since mineral surfaces and high pressure and temperature provide conditions favorable
to the generation of organic compounds (Sousa, Preiner, & Martin, 2018). At high pressure
and temperature, high concentrations of CO2 and H: in the presence of metal catalysts
(e.g., iron-sulfur clusters; Huber, C., & Wachtershéduser, G. 1997; Bonfio et al. 2017) can
produce organic compounds, including membrane forming amphiphiles like fatty
alcohols and fatty acids (T M McCollom, Ritter, & Simoneit, 1999; Mifibach et al., 2018).
These types of reactions, collectively often referred to as Fischer-Tropsch-Type reactions,
may be possible in hydrothermal systems, although only small amounts of hydrocarbons
and fatty acids have been detected in modern environmental samples (Konn et al., 2009).
However, mid-ocean ridge vent fluid can be rich in reduced gases like hydrogen (Sleep,
Meibom, Fridriksson, Coleman, & Bird, 2004), which, in a prebiotic context, could have
reacted with prebiotic chemicals generated from other mechanisms to drive early
metabolism (Preiner et al., 2020; Varma, Muchowska, Chatelain, & Moran, 2018).

Atmospheric synthesis likely provided an additional source of endogenous organics.
Miller (1953) showed that when an electric discharge is passed through a reducing gas
mixture, similar to that envisioned by Oparin in the 1920s (Haldane, 1954; Oparin, 1924),
organics were readily generated. It has been estimated that ~ 4 Ga, between ~4 x 108 - 2 x
10" kg yr! of organics were produced from atmospheric reactions, depending on the
atmospheric oxidation state (C. Chyba & Sagan, 1992; Mehta, Perez, Thompson, & Pasek,
2018), which would correspond to a material influx to the oceans of between 0.8 to 390 mg
m?2yr. These high production rates may give a false sense of abundance: if these organics
were entirely composed of glycine, and this were all dissolved in oceans of the modern
volume (~1.35x 102! L), a year’s production would generate a glycine concentration in the
picomolar to low nanomolar range. Assuming no loss, even after a million years,
concentrations might still be too low for many types of reactions to occur without
additional concentrating mechanisms.

The types of products made via atmospheric synthesis is sensitive to the types and
abundances of gases present and the energy sources used (e.g., UV, spark-discharge,
shock waves) (S L Miller & Schlesinger, 1984; Schlesinger & Miller, 1983). There is no
consensus regarding the oxidation state of Earth’s early atmosphere during the period
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from ~4.3 Ga to 3.5 Ga which most scientists consider to be the window for the origin of
life. While it was likely neutral (composed mostly of N2 and COz), there may have been
sporadic reducing periods after volcanic activity or meteorite impacts (Tian, Toon, &
Pavlov, 2005; Zahnle et al., 2014), generating conditions thought to be more conducive to
atmospheric organic synthesis both in terms of compound diversity and abundance (H
James Cleaves, Chalmers, Lazcano, Miller, & Bada, 2008; Folsome, Brittain, Smith, &
Chang, 1981; Schlesinger & Miller, 1983). Furthermore, since mineral surfaces and
dissolved inorganic species can greatly alter prebiotic chemistry (J. Cleaves et al., 2012;
Hazen & Sverjensky, 2010), and since the types of inorganic species would have been
highly dependent on environmental context, there are reasons to expect considerable
variation across microenvironments such as deep sea hydrothermal vents, tidal pools, and
rain-fed lakes and ponds.

In addition to spatial heterogeneity and uncertainty as to the chemical conditions at
any one time and place, there was likely considerable temporal variation in chemical
conditions. As well as periodic extraterrestrial impacts, mentioned above, heat flow from
Earth’s interior has been decreasing over time (Zahnle et al., 2007) and photon flux from
the Sun has varied both in terms of flux and spectral intensity (Rapf & Vaida, 2016). There
is also the question of when Earth’s geodynamo became active, which would have affected
the rate of atmospheric hydrogen loss on early Earth and the efficacy of solar energy-
mediated atmospheric and surface synthesis (Sagan & Chyba, 1997; Sagan & Mullen,
1972).

Nonetheless, despite all this uncertainty, the Miller-Urey experiment and subsequent
studies revealed that a handful of small reactive organic compounds can form readily,
including formaldehyde and hydrogen cyanide (HCN). This is significant because the
autocatalytic formose reaction (Simonov, Pestunova, Matvienko, & Parmon, 2007),
commonly invoked as an abiotic source of sugars, can be initiated by the photochemical
formation of formaldehyde from water and carbon dioxide (H James Cleaves, 2008;
Omran, Menor-Salvan, Springsteen, & Pasek, 2020). Given the variability in the products
of endogenous prebiotic syntheses and its dependence on starting conditions, bottom-up
experiments aiming to mimic endogenous sources should perhaps prioritize the inclusion
of diverse organics and key reactive compounds (e.g., HCN) rather than attempt to
perfectly replicate the actual synthesis mechanisms.

3.2. Exogenous delivery of organics

The synthesis of organics in space and their delivery to Earth via interplanetary dust
particles (IDPs), meteorites, and comets is another potentially important source of
organics (C. F. Chyba, Thomas, Brookshaw, & Sagan, 1990; Mehta et al., 2018). Such
materials would have delivered organic molecules during and after the accretion of the
planet. Many scientists believe that the influx of extraterrestrial materials to Earth
decreased exponentially over time, although it may have been punctuated by periodic
heavy bombardment (C. F. Chyba, 1993; Zellner, 2017). It is estimated that 6 x 107 kg yr!
of organic material were delivered to Earth around 4 Ga, corresponding to a surface-
averaged flux of ~ 0.1 g m2yr', which is significantly less than that estimated from
endogenous atmospheric reactions (C. Chyba & Sagan, 1992). It should also be noted that
most organics are not indefinitely stable in aqueous environments, especially at high
temperatures and pH values, and thus steady state concentrations may have been
somewhat lower (Miyakawa, James Cleaves, & Miller, 2002).

Though likely not the major exogenous source of organics to early Earth,
carbonaceous chondrite meteorites have been the focus of considerable study due to their
diverse organic contents. These meteorites make up only approximately 4% of all
meteorites in collections but contain significant amounts of organic materials that
sometimes give evidence for thermal, aqueous and radiation alteration over their long
tenure in space (Hammer, Yi, Yoda, Cleaves, & Callahan, 2019). In some cases this
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processing seems to have generated a large diversity of organic compounds (Mark A
Sephton, 2002), including enantiomeric excesses in certain compound classes (Sandra
Pizzarello, Schrader, Monroe, & Lauretta, 2012). The compounds formed and their
abundances may depend on the extent of processing experienced by the specific meteorite
(Callahan et al.,, 2011), which indicates that trying to replicate a specific meteoritic
composition exactly may be unimportant; it may be more important to aim for a diversity
of molecules with concentrations similar to those measured in a typical carbonaceous
meteorite. There is significant overlap of abundance patterns between the composition of
carbonaceous meteorites and laboratory spark-discharge experiments, which points to
there being some similarity in synthetic mechanisms (e.g., Wolman et al. 1972)

Undoubtedly, the best-characterized carbonaceous chondrite is the Murchison
meteorite, whose organic components have been extensively catalogued. Amino,
hydroxy, and carboxylic acids are among some of the important biologically relevant
components (M A Sephton & Gilmour, 2004), though it should be borne in mind that
untargeted analyses suggest there may be several million relatively low molecular weight
compounds present (Schmitt-Kopplin et al., 2010), and thus the compounds of biological
relevance are only a small fraction of the non-biological suite. Nevertheless, the
Murchison meteorite is used in the present paper to provide an example of a “meteoritic
soup” recipe for origin-of-life studies, for which chemical details and assembly
instructions are presented in the supplemental material (Tables S2 and S3).

4. How to make prebiotic soup

As summarized in Figure 1, we outline and discuss considerations for the design of
both assembled and synthetic soups, and then provide examples of recipes and
procedures to illustrate the overall approach. The technical details accompanying these
examples can be found in the SI.
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Section 4.1 Section 4.2

Select Select phase and
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l
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Section 4.1.2
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Figure 1. General workflow for assembling and synthesizing prebiotic mixtures.

4. 1. Assembled prebiotic soup

To assemble a soup, commercially available chemicals are mixed according to a pre-
defined recipe. One of the major advantages of assembled soups is that downstream
analysis is much easier with a smaller number of compounds than in a synthesized soup.
Also, it is relatively easy to control chirality by adding specific enantiomers to an
assembled soup, something that cannot be done with synthesized soups, or to track
chemical transformations by including isotopically-labelled compounds. However,
assembled soups also have important disadvantages. Extracts from the Murchison
meteorite have been found to contain tens of thousands of distinct CHONSP-containing
molecular formulas, with a likely even greater number of distinct molecular structures
(Schmitt-Kopplin et al., 2010), which suggests that mixing even a few hundred
compounds in solution would not mimic the true molecular diversity of prebiotic
organics. However, it is also possible that all of the main chemical reactions that occur
among the many chemicals present in a prebiotic mixture would occur in a less diverse
mixture. For example, even though many s-amino acids are generated by prebiotic
synthesis, the reactivity of the carboxylate group may be similar for the entire compound
class. This implies that it may be more important for assembled soups to sample major
organic functional groups and chemical reactivities than to include the full diversity of
possible chemical compounds.

Based on these considerations, assembled soups may be preferable if an experimental
program (1) requires having control over the composition of the soup, including the
addition of chiral compounds, (2) does not require a high diversity of products, (3) is
focused on particular types of chemistry or compound class rather than on the full
spectrum of chemical possibilities. In the following sub-sections, we discuss how to select
compounds, set their concentrations, decide on chirality, and approach other aspects of
soup composition.

4.1.1. Selection of compounds

There are several factors that should be weighed when deciding which compounds
to add to a prebiotic soup recipe, including the hypothesized source(s) of prebiotic
organics and the processes or features arising from prebiotic soup that are under study. A
concern with synthetic soups is that the chemicals that are detected and abundant as
products of abiotic processes will be those that are most stable and, thus, less reactive. In
cases where an influx of chemicals is expected in a new environment (for example, being
washed into a hot spring) mixtures of the more stable compounds are perhaps justified.
However, when modeling environments in which chemicals are produced in situ, short-
lived reactive species (e.g., radicals) may have had an important role (Adam, Fahrenbach,
Jacobson, Kacar, & Zubarev, 2019). Such considerations recently prompted researchers to
use a combination of assembly and synthesis, where specific laboratory grade chemicals
were combined with a synthetized prebiotic soup to characterize potential interactions
(Rodriguez, House, Smith, Roberts, & Callahan, 2019).

The compounds that are ultimately included in an assembled soup will also depend
on the recipe’s compatibility with selected environmental conditions. Examples of issues
that can arise include insolubility at a given pH or in the presence of inorganic species.
Attention should also be given to the process or phenomenon that is being studied in an
experimental program. For instance, prebiotic soups designed for studies of autocatalytic
behavior may prioritize chemical diversity, while research into specific chemical
pathways or reaction types might favor higher concentrations of a few focal compounds.
To illustrate some of the decisions and tradeoffs that need to be made in designing
assembled prebiotic soups, two examples are described: a meteorite soup and spark-
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discharge soup. We use these two examples for the sake of discussion throughout this
section.

A proposed meteorite recipe is based on data from the Murchison meteorite (Table
S1). Any chemical compound detected with a concentration greater than 10 nmol g
meteorite that was commercially available/affordable was included (G. Cooper et al., 2001;
G W Cooper & Cronin, 1995; George W. Cooper, Onwo, & Cronin, 1992; Cronin &
Pizzarello, 1983; Y. Huang et al., 2005; Kissin, 2003; Lerner & Cooper, 2005; S. Pizzarello,
Feng, Epstein, & Cronin, 1994; Sandra Pizzarello & Holmes, 2009; Sandra Pizzarello &
Huang, 2002; Mark A Sephton, 2002; Stoks & Schwartz, 1981; Yamashita & Naraoka, 2014).
We used a systematic approach based on a threshold concentration to make decisions
about which compounds to add. This narrowed the list down to a more manageable
number. Importantly, we checked that this subset of chemicals included compounds
representative of each major compound class (e.g., amino acids, alkanoic acids, etc.)
detected in the meteorite.

A different approach was used to design a spark-discharge soup (Table S3), which
was guided by several prior experiments. The general strategy was to use data on the
chemical outputs from multiple sources to identify compounds present in multiple
experiments carried out under different conditions (Ferus et al., 2017; S L Miller & Urey,
1959; Stanley L Miller, 1955; Parker et al., 2011; Schlesinger & Miller, 1983; Folsome et al.,
1981; Miyakawa, Yamanashi, Kobayashi, Cleaves, & Miller, 2002; Schlesinger & Miller,
1983). To compare concentrations across separate studies, which sometimes characterized
different compound types (amino acids, organic acids, nitriles, nucleobases, etc.), we used
a benchmark species (glycine) that appeared consistently. We did not include all classes
of compounds that have been reported in spark-discharge experiments (Li, Zhu, Wang,
Xu, & Song, 2004; Yuen, Lawless, & Edelson, 1981), focusing instead on those with
potential roles in metabolism-like processes. Thus, for example, we omitted hydrocarbons
and fatty acids, although these could be added readily in the future. Likewise, we opted
not to include every possible chemical detected within a compound class. For instance,
we only included cysteine rather than other sulfur-containing amino acids and excluded
decomposition products and intermediates that were sometimes detected. Such
simplification is guided by the particular chemical questions being asked. For example, if
one were specifically interested in sulfur chemistry and its role in the emergence of life
processes, it would make sense to assemble a soup with a wider variety of sulfur-
containing compounds, while perhaps reducing the number of nitrogen-containing
compounds. Details on the approach can be found in the SI.

There are obvious pros and cons to each recipe. The meteoritic soup is based on
mixtures that were highly likely on early Earth, and not biased by modern biology, except
inasmuch as the types of compounds which have been detected to date may be biased by
the interests of analytical chemists. However, adding 80+ organics to a solution is difficult,
the resulting solution may include insoluble components and may not be easy to analyze.
The spark discharge soup has fewer components which are all water soluble, making it
easier to prepare, work with, and analyze, however the selected compounds are more
biased toward extant life and based on a less rigorous, more arbitrary, criterion for
inclusion.

4.1.2. Setting concentrations

Realistic concentrations of organics in primitive aqueous planetary environments are
difficult to estimate. Even if all the organics produced over half a billion years were to
accumulate in oceans of the modern volume (how the volume of the oceans has changed
over Earth history is also debated; Lathe 2004) the solution would still be very dilute.
Nonetheless, concentrations could be higher in local environments due to concentration
mechanisms such as evaporation (Deamer, 1997), eutectic freezing (Miyakawa, Cleaves,
& Miller, 2002; Monnard & Ziock, 2008), or the dehydration of aerosols (Dobson, Ellison,
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Tuck, & Vaida, 2000). Regardless of absolute concentrations, it seems wise to include
reactants in molar ratios similar to those detected in prebiotic simulations or natural
samples.

To illustrate different potential approaches for setting concentrations, we refer back
to our two working examples. For the meteorite soup, we generated a 1 L solution with
100 g of organic material. Each selected compound was taken as representative of a
particular compound class and the amount added was selected to maintain the relative
concentrations of compound classes seen in Murchison. This is a very concentrated soup,
but it can be diluted arbitrarily to make a working solution. Using the provided
spreadsheet, compounds can be added by changing the “include” value to “yes”, which
will shift all the gram amounts within that compound class without changing the
combined amount of that compound class. Additionally, the compound classes can be
modified to represent other meteorite compositions. This spreadsheet can also serve as a
starting point for assembling other kinds of soups.

For the spark-discharge soup, the absolute concentrations of individual compounds
were increased compared to those reported in spark-discharge synthesis experiments to
(1) help with downstream detection of new products (by raising their concentration above
the limit of detection of analytical instruments), and (2) facilitate the preparation of the
soup by avoiding weights and volumes that are too small to be handled and measured
reliably. To set concentrations, we first fixed the concentration of glycine and used
approximate molar ratio data from the references listed in Table S2 to adjust the relative
concentration values of the remaining compounds. To select concentrations, we assigned
ranges of concentrations reported in the original literature to specific concentration
values, in multiples of 0.08 mM (see SI for exact method and concentration conversion
multipliers), the lowest concentration value in our example recipe. This was an arbitrary
decision made to simplify the task of setting concentrations for each compound in the
assembled soup recipe.

4.1.3. Chirality

Most prebiotic reactions conducted to date have been found to produce roughly
racemic product suites, which contrasts with the enantiomeric excess (ee) seen in some
meteoritic organics (S Pizzarello, Huang, & Alexandre, 2008). It is unclear whether the ee
seen in meteorites arose from the enhancement of small initial fluctuations by
autocatalytic reactions (Soai, Shibata, Morioka, & Choji, 1995) or by differences in
stability/reactivity (Blackmond, 2010). For many purposes, for example to see if ee
enrichment emerges spontaneously, it may be preferable to assemble soups from racemic
components. Thus, the meteorite soup uses racemic ingredients. Although it should be
noted that supposedly racemic compounds from a commercial source almost always
show a significant ee (Armstrong, Lee, & Chang, 1998), it would be possible to measure
this ee before and after and experiment to evaluate chiral enrichment. In case of the spark
discharge soup, biological entantiomers were chosen, for example L-amino acids, for the
simple reason that they are more readily available and less expensive. As a result, this
soup, as designed, would not be suited for applications that focused on the origins of ee.

4.2. Synthesizing prebiotic soup

There are many potential ways to make a synthesized prebiotic soup, but a key
concern is defining reagents and conditions that will be minimally sensitive to
experimental variation. The first decision is whether to start synthesis from atmospheric
gases or to conduct experiments in the liquid phase, starting with the water-soluble,
reactive products of gas-phase synthesis. While the former may yield a more authentic
soup, gas-phase synthesis methods are significantly more challenging and may not be
practical for many research groups. We review each of these approaches below, focusing
on gas-phase synthesis with spark discharges and “polymerization” reactions using small,
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reactive organic inputs (formaldehyde, formamide, and HCN). Generic recipes for each
of these can be found in the SI.

4.2.1. Gas Phase Synthesis

The most famous gas-phase prebiotic synthesis strategy uses spark discharges (Miller
1953), which is known to generate an array of small organics, including both
proteinogenic and non-proteinogenic amino acids (see Tables S2 and S3). Although a
video protocol for conducting spark discharge experiments has been published (Parker et
al., 2014), the procedure is somewhat complex, hazardous if not conducted with some
precision, and difficult to conduct in a high-throughput fashion. Some lack of
reproducibility has also been reported, which may be due to nuances in experimental
design (Cooper et al. 2017). Nonetheless, if one strives for the most realistic primordial
soup, direct, gas-phase synthesis might be the most appropriate strategy.

When using spark discharges, the material of the electrodes can have an effect, with
tungsten oxide being the historically preferred option (mainly due to the coefficient of
thermal expansion of tungsten oxide which allows it to be easily fused with laboratory
glass). Likewise, the temperature to which the water is heated is not necessarily constant
across experiments. Furthermore, reaction time likely has an effect. The relative volumes
of gas phase to aqueous phase reservoirs likely also matter (Cooper et al., 2017; Parker et
al.,, 2014; Wollrab et al., 2016), a small amount of gas reacted over a large volume of water
likely gives a different result than a large volume of gas reacted over a small volume of
water. We therefore recommend that if spark discharges are used to generate soup, these
variables be rigorously standardized to maximize repeatability.

The product composition of gas-phase synthesis is known to depend sensitively on
the gas mixture (Stribling & Miller, 1987). Due to the current debate on predominant
atmospheric conditions on early Earth, the gas composition applied in spark-discharge
experiments can range from reducing (i.e. CHs, NHs and NHs) to neutral (i.e. CO2 and N2)
(Ferus et al., 2017, Wollrab et al., 2016). Atmospheric synthesis is subject to its own
complexities which depend on input species, energy fluxes and reaction and rainout rates,
thus it seems unlikely a simple standardized set of compositions can be defined with
regard to these variables.

4.2.2. Liquid phase synthesis

Given the practical challenges of gas-phase processes, the alternative is to use liquid-
phase syntheses, which start with small, reactive organic species that are known to be
produced in abundance in many gas-phase contexts. Perhaps the simplest mechanism for
generating a large molecular library is through HCN polymerization (Voet & Schwartz,
1982), which is of particular interest due to the importance of HCN in the formation of
nucleobases (Andersen et al., 2013) and amino acids via the Strecker synthesis (Lerner &
Cooper, 2005). However, HCN polymerization should only be attempted by experienced
chemists since there is a risk of releasing the poisonous cyanide gas into the laboratory.

Given the hazards of HCN, there has been an increasing interest in the chemistry of
formamide (see SI for a generic recipe), which can act as a solvent as well as a reactant for
the synthesis of a variety of biochemical compounds and is much easier to handle (Bada,
Chalmers, & Cleaves, 2016). Formamide is the first hydrolysis product of HCN and is a
ubiquitous molecule in the Universe (Pietrucci & Saitta, 2015). Studies have demonstrated
that heating formamide in the presence of different catalysts of terrestrial and meteoritic
origin yields complex combinations of nucleobases, amino acids, sugars, amino sugars
and condensing agents (Ferus et al., 2015, 2017). Formamide reactions also results in
selective synthesis of certain nucleobases and nucleosides when mineral surfaces are
added to the reaction (Saladino et al., 2012; Saladino et al., 2015).

Time of reaction is also a factor since many radicals and unstable intermediates may
be present while the reaction is actively occurring but may be absent as the starting
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chemicals become depleted and the soup converges on an equilibrium composition. As a
result, factors that alter reaction rates, such as pH, temperature, and the concentration of
the starting materials need to be controlled. For example, when the formose reaction is
carried out at high temperature, the solution quickly turns into a complex intractable
mixture, due to competing mechanisms such as the Maillard reaction, degradation, and
uncontrolled polymerization of the carbohydrates, but this can be avoided by performing
the reaction for short periods of time and in moderate temperatures (Schwartz & de Graaf,
1993)

The outcomes of liquid-phase synthesis using HCN or formamide depend on
concentration, pH and temperature (Bizzarri, Saladino, Delfino, Garcia-Ruiz, & Di Mauro,
2021; Miyakawa, James Cleaves, et al., 2002; Saladino, Crestini, Ciciriello, Costanzo, & Di
Mauro, 2006). In the case of formamide condensation, typical conditions involve heating
pure formamide at 160 °C (the boiling point of formamide is 210 °C) in the presence of
inorganic catalysts or UV irradiation. However, the synthesis of nucleobases from
formamide has been demonstrated at lower temperatures (i.e., 50 °C) using longer
reaction times and recursive addition of formamide (Colén-Santos et al., 2019). An
alternative protocol, developed by Ricardo et al. (2004), uses relatively dilute inputs,
borate minerals, alkaline pH (8-11), and a 2-month incubation to promote ribose formation
and inhibit the generation of tar.

4.3. Inorganic components

Even after one has decided on a standard way to assemble or synthesize the organic
components of soup, inorganic components need to be considered. In large part, choice of
experimental variables will be governed by the particular microenvironment researchers
aim to mimic, which might range from shallow surface environments such as subaerial
hot springs (Damer, 2016; Maurer, 2017) to deep ocean environments such as
hydrothermal chimneys (Wang, Barge, & Steinbock, 2019). Major factors which
distinguish these various environments include dissolved inorganic and ionic
components, as well as minerals that can affect pH.

Inorganic species, whether dissolved or in the solid phase, can influence synthesized
soups (e.g., Surman et al., 2019). Thus, it will generally be more realistic to conduct
syntheses in solutions that already contain relevant inorganic components. All surface
waters on Earth contain significant amounts of dissolved inorganic salts. Indeed, many
prebiotic chemistry exploration experiments have considered the effects of dissolved salts
(Anizelli et al., 2014; Villafafie-Barajas et al., 2018). Seawater-like ionic solutions however
do introduce experimental difficulties, especially for mass spectrometry and NMR
investigations. Instead of synthesizing soups in the presence of inorganic species, it is also
possible to add salts and other inorganic solutes after soup synthesis. In such cases a
complete “synthesized” soup could be viewed as a partially assembled soup. If mimicking
an ocean environment, an inexpensive and simple starting point for the aqueous phase
could simply be to add modern sea salt, which is available as a commercial product
(although modern seawater contains significant amounts of sulfate, which may not have
been the case in the primitive oceans). However, the composition of seawater has likely
changed markedly over time, and the early oceans may have had up to twice the salinity
of the modern oceans (35-70 g L) (Kasting, 1993). If a prebiotic simulation attempts to
mimic prebiotic pond or river water, ionic concentrations might be considerably lower
(less than 1 mM for Na*, Cl,, Ca*,Mg*, K*) (Huang et al. 2009).

The inorganic components of the soup that may have had the greatest role in nascent
biochemistry include polyatomic ions containing nitrogen, phosphorus, sulfur (Goldford,
Hartman, Smith, & Segre, 2017; Pasek, 2008). Early sea water may also have contained
more carbonate, due to higher atmospheric CO:2 levels (Halevy & Bachan, 2017; Kasting,
1993), more sulfur in the -2 oxidation state (compared to the +6 state) (Olson & Straub,
2015) and significant amounts of Fe?* (Barge, 2018). These additions may be very
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challenging to use when working with a prebiotic soup in the lab as they are sensitive to
oxygen in our modern atmosphere. One possibility is to use a glove box or anaerobic
chamber to reproduce the anoxic atmosphere to avoid an undue influence of oxygen on
experiments (Barge, Flores, Baum, VanderVelde, & Russell, 2019).

pH may be one of the most important variables in directing prebiotic synthesis. The
pH of natural water varies widely, with extreme values ranging from pH 0 to pH 13
(Kelley et al., 2001; Martin, Baross, Kelley, & Russell, 2008), although modern rivers
average a pH of 7.4 (Brezonik & Arnold, 2011), and modern ocean water is near pH 8.1
(Brezonik & Arnold, 2011). Ocean pH has likely varied over time, but was likely lower in
the Hadean than today due to higher atmospheric pCO: (Halevy & Bachan, 2017). When
adjusting the pH in an assembled soup, pH can either be left unmanipulated, adjusted to
a target using simple acids or bases (e.g., HCl, NaOH), or adjusted and kept within a target
range by including buffering components in the soup (e.g., acetate/acetic acid), although
buffering raises its own set of experimental issues (e.g., concentration of buffer relative to
reactants, common ion effects, etc.).

4.3. Storage and transport

As a practical matter, it may not always be possible for a soup can be consistently
assembled or synthesized immediately before each experiment, meaning. Thus, thought
needs to be given to soup storage. A freshly made soup, whether assembled or
synthesized, is likely to be most out of thermodynamic equilibrium when first prepared
and be expected to react and dissipate this disequilibrium. These changes will, thus, not
only result in chemical changes over time but will result in soups that become
progressively less able to sustain chemical reactivity.

In the case of synthesized soups, the ideal approach would be to conduct syntheses
simultaneously with their use in experiments, as might be possible using continuous flow
reactors. Failing that, the soup needs to be stored in the most inert form possible, which
probably requires rapid freezing at -80 °C or below or, perhaps, freeze-drying, although
the chemical consequences of drying and re-hydration need to be considered. The same is
true for assembled soups, except that it is also advisable to break the soup into two or
more “subsoups” that can be stored separately and mixed together just prior to each
experiment. This way, one can keep more reactive subsets of chemicals separate until the
time of experimentation, which might allow more out-of-equilibrium chemical reactions
to occur. We also recommend dividing up the total soup volume into smaller aliquots to
avoid the negative effects of serial freeze-thawing cycles on the integrity of the chemical
constituents. It may also be preferable to add unstable or and/or temperature sensitive
components after sterilization or immediately prior to use, in a manner analogous to
microbiological media preparation that add sensitive components such as antibiotics at
the last minute.

Regardless of the care taken to store soups, it is important to design experiments
such that degradation in storage or during freezing and thawing does not yield
misleading results. Minimally, some kind of negative control is needed to be able to detect
chemical differences that are only due to differences among batches of soup or the same
batch of soup thawed at different times. For example, Vincent et al. (2019) conducted a
chemical ecosystem selection experiment with an assembled soup in which experimental
vials with an accumulated history of transfer were always compared to a control set of
vials that were set up with the same soup and at the same time but lacked a history of
transfer. Indeed, given the high probability that no two batches of primordial soup will
be chemically identical, the careful design of experimental controls is absolutely critical
for all prebiotic chemistry experimentation.

5. A shared infrastructure for complex prebiotic chemistry
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If our goal is to explore the space of possible soups, physical conditions, and
experimental designs to find those that yield life-like chemical phenomena (e.g. Cleaves,
2013), then a community-wide effort is needed. To efficiently scan the parameter space
and identify conditions conducive to the emergence of life processes, there is a need to
systematically track which parts of the space have already been investigated, how they
have been investigated, and whether those conditions yielded positive (or at least
interesting) results. Community coordination could facilitate such work by offering
standardized procedures for assembling or synthesizing soups, and by sharing a few
commonly used experimental paradigms. In particular, it would be useful to establish an
online database for depositing and accessing information about specific recipes, synthesis
procedures, experimental conditions, and any associated literature.

In addition to facilitating inter-lab coordination and a more productive exploration
of different experimental parameters, a valuable consequence of sharing information in a
“prebiotic soup database” would be the availability of data related to recipes or
experimental procedures that do not necessarily produce positive results (or at least
results that are consistent with the hypotheses of a particular experimental program).
What may constitute a negative result in one research program could provide meaningful
information to another, but such opportunities are hindered by the traditional publication
scheme of primarily reporting positive results.

As an added advantage, a community resource for sharing information on prebiotic
soups could also house other information of broad interest, in particular methods for
analyses of complex chemical mixtures. Untargeted analysis of complex chemical
mixtures is notoriously challenging (Seyler et al., 2020; Wollrab et al., 2016) so prebiotic
researchers often fall back on methods optimized for the targeted analysis of biologically
relevant compounds (e.g. proteinogenic amino acids, components of the citric cycle or
DNA/RNA components). However, to understand the emergence of many life-like
phenomena, it will be necessary to track compounds that are not important in biology for
which analytical methods are less readily available.

It is becoming easier to identify chemical formulae using extremely high-resolution
mass spectrometry, and structures can also sometimes be inferred from mass-
fragmentation spectra using searches in compound databases. However, the informatic
pipelines are mainly designed for biological experimental data (e.g., metabolomics),
which biases hits towards ‘biologically-relevant’ compounds (e.g., Seyler et al. 2020).
Libraries developed for environmental analysis of complex mixtures (i.e., NIST
(https://chemdata.nist.gov/) for pesticides, petroleum and others) do include other small-
molecules but are not as widely distributed. To fill this gap, we propose the community
should try and develop an Origins-of-Life equivalent to GenBank, where experimentalists
from across the globe contribute raw data and analysis scripts to a publicly accessible
database. Such a resource could make it much easier to assess the presence/absence and
relative concentration of many more organic species than is currently feasible. The recent
development of computational methods for predicting the composition of prebiotic soups
(Wolos et al. 2020), may also be very useful in greatly expanding our ability to identify
unknowns in our chemical mixtures.

A community resource with information on soups and data from prebiotic chemistry
experiments could additionally support the development of a set of metrics and statistical
tools for extracting useful insights from mixtures even when many of its component
compounds cannot be identified. After all, as well illustrated by Van Krevelen diagrams
(Kim, Kramer, & Hatcher, 2003), summary statistics can provide valuable insights into the
overall characteristics of a chemical ensemble. Similarly, even when few if any mass
spectral features can be tied to specific chemicals in a complex mixture, multivariate
analyses (e.g.,, MDS, PCA) can be used to make comparisons across experimental
treatments (e.g., Coldn-Santos et al. 2019; Surman et al. 2019) and to prioritize features for
in-depth targeted analysis. A repository of relevant statistical methods and their
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corresponding scripts would therefore make a valuable third component of a community
resource for prebiotic chemistry.

6. Conclusions: The future of messy prebiotic chemistry and its interplay with
reductionist approaches

Although we have primarily focused our discussion on messy chemistry approaches
to the study of the origin of life, we recognize that these approaches will always coexist
with, and be complementary to, more reductionist research strategies for studying
prebiotic chemistry (Rodriguez et al., 2019). Reductionist approaches allow chemists to
home in on specific components of modern metabolism and explain how they might have
originated in plausible prebiotic environments. For example, thanks to the work of
organic chemists exploring the origins of genetic biopolymers, we know of several
alternative polymer systems that could have preceded the appearance of RNA and would
have been more easily synthesized and/or more stable under prebiotic conditions
(Bhowmik and Krishnamurthy 2019.) Similarly, research focused on components of the
citric acid cycle has strengthened the idea that this or similar cycles could have been
involved in prebiotic anabolic and catabolic processes (Keller, Kampjut, Harrison, &
Ralser, 2017; Meringer & Cleaves, 2017; Muchowska et al., 2017; Muchowska, Varma, &
Moran, 2019; Stubbs, Yadav, Krishnamurthy, & Springsteen, 2020; Varma et al., 2018).
However, reductionism cannot, by itself, tell us about the dynamic aspects of prebiotic
chemistry or the appearance of emergent processes such as autocatalysis and adaptive
evolution. As a result, systems chemistry approaches are needed to help us understand
life as a general phenomenon without being biased by historically contingent features of
life as we know it. Only through bottom-up, untargeted methods can we determine what
aspects of cellular biochemistry were inevitable for any living system given the specific
chemistry of Earth, or were, instead, “frozen accidents” (Crick, 1968). Likewise, because
complex chemical systems approaches can use soups and conditions that resemble other
worlds it offers the potential to discover what other life-like phenomena might have
emerged and what features they would be likely to manifest. Thus, more bottom-up
chemical experimentation is needed, and this will depend on developing reasonably
realistic and replicable prebiotic soups as input. In light of this, we hope that the
community of scientists studying the origins of life, regardless of their preferred
experimental strategy, consider our recommendations for assembling and synthesizing
prebiotic soups and for creating a shared infrastructure for information sharing in
prebiotic chemistry.
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