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Perception is central to the survival of an individual for many reasons, especially as it
affects the ability to gather resources. Consequently, costs associated with perception
are partially shaped by resource availability. Understanding the interplay of environmental
factors (such as the density and distribution of resources) with species-specific factors
(such as growth rate, mutation, and metabolic costs) allows the exploration of possible
trajectories by which perception may evolve. Here, we used an agent-based foraging
model with a context-dependent movement strategy in which each agent switches
between undirected and directed movement based on its perception of resources. This
switching behavior is central to our goal of exploring how environmental and species-
specific factors determine the evolution and maintenance of perception in an ecological
system. We observed a non-linear response in the evolved perceptual ranges as a
function of parameters in our model. Overall, we identified two groups of parameters,
one of which promotes evolution of perception and another group that restricts it. We
found that resource density, basal energy cost, perceptual cost and mutation rate
were the best predictors of the resultant perceptual range distribution, but detailed
exploration indicated that individual parameters affect different parts of the distribution
in different ways.

Keywords: perceptual evolution, agent-based model, resource-dependent movement, perceptual range,
perception

INTRODUCTION

Locating resources and gathering information about immediate surroundings are crucial for the
survival of an individual, and this makes perception an important nexus for behavior, ecology and
evolution. What an individual can detect and respond to is dictated by its perceptual or sensory
systems and how these systems are constructed and constrained over species-specific evolution
(Stevens, 2013). This evolution of the perceptual apparatus is regulated by interactions of the species
with its immediate environment and via inter and intra-specific interactions. Such evolution can
sometimes completely redefine the ecological dynamics of a system. This is particularly apparent
in the evolution of sensory systems, in tandem with major evolutionary transitions and species
radiations (Plotnick et al., 2010). For example, a marked increase in spatial heterogeneity of
resources and evolution of mobile organisms as well as new ecological lifestyles changed the
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information landscape of the Cambrian period. This ushered in
a major sensory transition, along with major changes in feeding
and predation modes (Dzik, 2005; Plotnick et al., 2010).

Possessing greater sensory input is always valuable as it gives
a better model of the surrounding world. However, the sensory
apparatus is not without its context and costs: changes in habitat
and surrounding environmental conditions can force organisms
to adapt their perceptual apparatus due to inherent biological
costs (Laughlin, 2001; Niven and Laughlin, 2008; Stevens, 2013).
Loss of eyes in animals dwelling in caves or other light-limited
habitats has been widely documented, especially various forms
of cavefish (Jeffery, 2009; Protas and Jeffery, 2012; Wilkens and
Strecker, 2017). A similar loss of visual acuity has been studied
in Drosophila across multiple generations in captivity (Tan et al.,
2005). Likewise, researchers have investigated the weakening
of electric organ discharges in electric fish in oxygen-stressed
habitats (Salazar and Stoddard, 2008; Stoddard and Salazar,
2011), which may represent an adaptation for saving energy
under adverse conditions. Clearly, interactions between species-
specific and environmental factors mold the sensory systems
of organisms and how they relate to movement and behavior.
A theoretical framework that facilitates systematic exploration
of these costs and benefits would help clarify the process of
perceptual evolution.

Extensive theoretical and empirical work has been undertaken
to explore the interplay of movement and perception at various
spatio-temporal scales, especially in the context of foraging
(Hastings, 1983; Johnson and Gaines, 1990; McPeek and Holt,
1992; Perry and Pianka, 1997; Farnsworth and Beecham, 1999;
Beecham, 2001; Cressman and Kifivan, 2006; Cantrell et al.,
2010; Averill et al., 2012; Bracis et al, 2015). Among the
theoretical approaches, there is a great amount of variation in
the assumptions regarding information gathering capabilities
of individuals based on the mathematical frameworks that the
researchers decide to use (Fagan et al., 2017; O'Dwyer, 2020;
Martinez-Garcia et al., 2020). Patch models generally assume
omniscience about the environment (Fretwell, 1969; Pyke,
1984; Pleasants, 1989; Houston and McNamara, 1999) whereas
other modeling frameworks allow for complete environmental
information to be learned through sampling (Cressman and
Kfivan, 2006). In contrast, many partial differential equation
(PDE) (Okubo, 1980; Cosner, 2005; Cantrell et al., 2006)
models typically make foragers follow a resource gradient, with
movement dependent on purely local information from their
immediate vicinity. Certain integrodifference/integrodifferential
equation (IDE) frameworks, although permitting for extensive
non-local movement (through longer-tailed dispersal kernels),
allow for the perception of strictly local information, while
some other IDE models use patch-level knowledge or full-
omniscience (Cosner et al., 2012). The same is true for many
agent-based models where agents get information on a strictly
local scale (either spatially, temporally or spatio-temporally; i.e.,
information only about where they currently exist in a model
scenario) and do not have access to any form of non-local
knowledge in the context of foraging and decision-making (Ranta
et al., 2000; Matsumura et al., 2010; Fraker and Luttbeg, 2012;
Nabe-Nielsen et al., 2013; Swain and Fagan, 2019). Between these

extremes, only a few formalisms exploit the concept of limited but
possibly non-local information (Berec, 2000; Hillen et al., 2007;
Barnett and Moorcroft, 2008; Martinez-Garcia et al., 2013; Fagan
etal,, 2017). Using these frameworks, past research has described
information gathering and resource tracking in static landscapes
(Viswanathan et al., 1999; Edwards et al., 2007; Vergassola et al.,
2007; Bartumeus and Levin, 2008; Hein and McKinley, 2012), but
equivalent questions in dynamic landscapes remain less explored
(but see Torney et al., 2011; Berdahl et al., 2013).

The limits of information gathering and perception lead to
alterations in behavior and movement strategies over different
spatio-temporal scales, as outlined by previous research (Zollner
and Lima, 1999; Zollner, 2000; Gehring and Swihart, 2003;
Calabrese and Fagan, 2004; Olden et al, 2004; Prevedello
et al, 2011; Fletcher et al, 2013; Fagan et al, 2019). This
limit—the maximum distance at which landscape elements can
be identified by an organism—is often called its perceptual
range (Fagan et al,, 2017). The spatial size of the perceptual
range varies widely, with magnitudes depending on species,
individual state, sensory mode, and spatial context (Zollner and
Lima, 1997; Zollner, 2000; Mech and Zollner, 2002; Fletcher
et al., 2013). Encoding and exploration of perceptual ranges in
ecological systems has been done more through agent-based
models (Ranta et al., 2000; Matsumura et al., 2010; Fraker
and Luttbeg, 2012) than through equation-based frameworks
(Skalski and Gilliam, 2003; Tyson et al., 2011; Martinez-Garcia
et al., 2020) due to the complexity of incorporating them
in the latter (Fagan et al, 2019). Both modeling frameworks
have provided important clues about the interplay among
resource detection, movement patterns, swarming dynamics
and other phenomena (Griinbaum and Okubo, 1994; Berec,
2000; Barnett and Moorcroft, 2008; Martinez-Garcia et al., 2013;
Fagan et al, 2017, 2019), but most of these previous models
have focused primarily on changes in perceptual range and
how it affects population-level performance. In this work, our
objective is instead to explore what environmental and species-
specific factors might result in the emergence, evolution, and
maintenance of perception in a species. In other words, we are
more interested in the evolutionary timescale, rather than the
near-term ecology of the system.

We use a simple agent-based model in a semi-dynamic
resource system to understand how the interplay of
environmental factors with species-specific factors can allow
for population trajectories by which perception may evolve.
Environmental factors such as the availability and heterogeneity
of resources help regulate the range of perception in organisms
as well as its usage and efficacy (Plotnick et al., 2010; Stevens,
2013). Metabolic costs to maintain sensory apparatus as well as
basal energy requirement and reproductive costs can affect the
perceptual range and its evolution in organisms (Laughlin, 2001;
Niven and Laughlin, 2008; Stevens, 2013; Tan et al., 2005). We
introduce a basic set of parameters in our model that represent
these environmental and species-specific factors, but we avoid
bringing in too many details to balance biological realism with
breadth of applicability to a variety of organisms with different
sensory modalities. More such details can be added above the
current model in further explorations of the work.
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We incorporate a context-dependent movement strategy for
each agent where it switches between undirected (random walk)
and directed (advective) movement based on its perception of
resources. Behavioral switching has been demonstrated in a wide
range of species at different spatial scales of foraging, such
as opossums (Prevedello et al., 2011), woodpeckers (Vergara
et al,, 2019), tuna (Newlands et al., 2004), and even mosquitoes
(Raji and DeGennaro, 2017). Such a switching pattern has
been shown to better describe empirical behavioral patterns
in bees and caribou than a more straightforward blending of
movement strategies (Tyson et al., 2011). We also opted to use a
movement model that involves switching between random walk
and advective motion because models with such switching have
already identified a clear role for non-zero perceptual ranges
to enhance foraging success (Fagan et al, 2019). Alternative
models of movement exist certainly, such as ballistic movement
for agents with no information and increased tortuosity when
near resources (see Gurarie and Ovaskainen, 2013; Bartumeus
et al., 2016), but these and other foraging models are frequently
couched in terms of what is optimal (i.e., what strategy or
combination of strategies will yield the greatest uptake of
resources), which provides a poor baseline for consideration of
issues hypothesized to occur early in evolutionary history. To
supply additional biological realism, we investigated evolution
in a reproductive context, imposing limits on the amount of
resource an individual can gather and store and exploring a wide
range of initial conditions and parametric scenarios.

Focusing on the evolved distribution of perceptual range, we
assigned the parameters in the model to two categories based
on their effects: activation and deactivation parameters (i.e.,
parameters which generally promote evolution of perception
and that restrict it, respectively, in a simulated population). We
observed a non-linear, non-monotonic response as a function
of resource density, which interacts with other parameters.
Resources play a major role in determining the stability of
equilibria of the system, controlling whether or not perceptual
ranges emerge at all. In addition, we found that the system’s
behavior mirrored some biological aspects, with the evolution of
perceptual abilities depending on their costs.

MATERIALS AND METHODS

Model Description
We model the dynamics of the system using an agent-based
approach (see Figure 1). The computational spatial domain
is a 100 unit by 100 unit continuous square with parallel
sides identified (toroidal boundary conditions). Each simulation
starts with all individuals having zero perceptual range.
Through selection (enforced by environmental and species-
specific parameters) and neutral processes (brought about by
mutation) (Table 1), we observe the shape of the perceptual range
distribution in the population over time. Before the simulation
begins, a constant amount of total resource is specified according
to two parameters: resource density and resource quality.
Resource density is defined as the amount of resource patches
per unit area in the domain; thus, the number of patches

where resources are present is equal to the resource density
times the area of the domain. The resource patches are then
distributed randomly on the domain with each patch containing
an amount of resource equal to the resource quality (or the
energy quantity per resource), ensuring a spatial heterogeneity
in resource availability to mimic natural scenarios. At every
time step, the code checks the resource distribution and adds
more resource patches with the same resource quality if the
total amount of resources is less than the initial amount. This
way, the total amount of resources is held constant over time
for simplicity.

Individual agents (foragers) default to undirected movement
(a random walk) until resources enter their perceptual range,
at which point they switch movement modes and move along
a straight line (advective movement) to the nearest resource
patch and gather resources from it (see Figure 1). All foragers
have the same constant movement speed of one spatial unit
per time step. This simulates the mode of movement observed
in organisms in natural settings during foraging (Tyson et al,
2011). Foragers having a non-zero perceptual range incur
an additional cost every timestep per unit perceptual range,
termed as the perceptual cost. We assume the relation between
perceptual range and its cost to be linear for simplicity: increased
perception translated directly into higher costs (Protas et al,
2007; Moran et al., 2015). This cost is above the basal metabolic
cost incurred per timestep for survival, irrespective of the
perceptual range. A forager can gather an amount of resources
equal to the gather amount parameter only if the resources
are within its gather distance (irrespective of its perceptual
range) and the forager is not exceeding its energy cap, which
defines the maximum amount of resource that an individual
can consume. A special case arises when the gather distance
is lesser than an agent’s perceptual range, and in such a
case, the gathering action can be understood as a rudimentary
detection, which we assume, can occur irrespective of complex
perceptual systems.

Once a forager has sufficient resources, it can randomly
reproduce asexually according to a threshold growth rate
parameter. Should an individual reproduce, it incurs a one-
time cost associated with reproduction (reproduction cost) and
transfers that energy/resources to the offspring (new individual).
The offspring also undergoes a mutation in its perceptual
range, changing its parent’s perceptual range by an amount
randomly drawn from a uniform distribution on the interval
[—m, m] where m is the maximum mutationsize parameter.
In implementation, we ensured that perceptual ranges were
always non-negative. Death only occurs when the foragers run
out of energy. From our numerical experiments, we found that
this causes the population size to be regulated by the resource
availability (similar to the idea of carrying capacity), although
the exact values can depend upon other parameters such as
metabolic costs.

Model Implementation and Analysis

We implemented the model in the Go programming language
using its standard libraries (see the code and data availability
section for details). A detailed account of all parameters appears
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Consumed resource unit
Resources within the gather
distance of an individual are

gathered/consumed by it

Resources are spread randomly
throughout the domain as per the
specification of the resource
density. Each resource unit has a
specified amount of energy content
specified by resource quality.

Gather distance

Individuals can only gather
or consume resources within
their gather distance, which
is defined globally.

Continuous domain

The simulation happens/
on a 100 x 100 square unit
grid with toroidal boundaries

Individuals can detect resources
I within their perceptual range
and move towards it in a
directed fashion (advection),
otherwise they undergo
undirected movement (diffusion)

Each individual has an associated
perceptual range, which they
inherit at birth. Individuals can

— reproduce when they have enough
energy to spend one time
reproduction cost beyond the per
unit time basal energy cost. The
offspring inherits the perceptual
range with alteration defined by
mutation size. The maximum
energy stored by an individual is
given by the energy cap.

I~ Perceptual range
Maximum distance at which an
organism can perceive resources
in the environment. Perceptual
cost is incurred per unit time and

FIGURE 1 | Conceptual figure of the model.

per unit perceptual range.

TABLE 1 | Summary of various parameters used in the model, their definitions and their effects on the perceptual range distribution.

Parameter Definition

Observed effect

Resource quality Amount of energy per resource patch

Resource density Total energy per unit area

Growth rate Probability to reproduce per timestep

Max. mutation size Maximum perceptual mutation per reproduction

Reproduction cost Energy cost to reproduce

Basal energy cost Energy cost to continue living

Perceptual cost Additional energy cost per unit perceptual radius

per timestep for having a perceptual range
Gather amount The amount of energy an agent can gather at once
(in a given time-step)
Gather distance The distance within which an agent can gather
resources, irrespective of the perceptual range
Energy cap Maximum amount of energy an agent/forager can

store at any given time

Activation parameter; Affects higher percentiles slightly more

Activation parameter; Major predictor of perceptual range distribution; Affects lower
percentiles more

Activation parameter; Affects lower percentiles more

Activation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; influences the variance of the perceptual range distribution.

Weak deactivation parameter; Affects all percentiles aimost uniformly

Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; Increases perceptual ranges until a cutoff

Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more
Weak deactivation parameter; Affects higher percentiles more

Activation parameter; Affects higher percentiles slightly more

Weak activation parameter; Affects lower percentiles more

The first two rows, resource quality and resource density, control the quality and quantity of resources. The next two, growth rate and maximum mutation size, control the
reproductive and mutation processes. The next three rows are the energy requirements imposed on foragers due to various conditions. The last three rows depict the

limitations on the collection of resources from the environment.

in Supplementary Table 1. To obtain a representative behavior
in the ensemble of simulations, we performed 10 million
runs, involving parameter combinations chosen using a Latin
hypercube sampling (LHS) procedure. Each simulation was
run for 150 time-steps and had a starting population of 100
zero-perceptual range individuals. From a set of preliminary
simulations over a wide variety of parameters, we found
that simulations stabilized to almost a constant distribution
(less than 5 percent difference) in under 150 timesteps and
remained stable afterward (see Supplementary Figure 1 and
Supplementary Video).

Each simulation begins by randomly placing 100 foragers on
the computational domain and initializing their energy levels
to 1.0. At each time step, a sequence of events occur: (1)
all individuals check their perceptual radii for resources; (2)
foragers move in a random manner (if they cannot perceive any
resources) or a directed manner to the closest resource (if they
can perceive one or more resources); (3) If possible, foragers
gather resources from the locations harboring resources; (5)
All foragers pay their cost penalties; (6) if they have sufficient
resources, foragers reproduce with a probability prescribed by the
growth rate parameter with their offspring placed at a random
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location adjacent to their parents (randomly within a distance of
5 units), and lastly, (7)resources are replenished according to the
parameters in the code.

Each parameter combination was replicated 10 times and
then the end time perceptual ranges were aggregated (for
each combination) to obtain an averaged, statistically robust
distribution of perceptual ranges (i.e., 10 replicates times 100
randomly placed individuals at the start of each simulation)
from which we could calculate percentiles of interest (2.5,
25, 50, 75, and 97.5). We focus on these percentiles rather
than a simple mean because we anticipate that different
factors may influence the structure of the perceptual range
distribution in different ways. For example, the degrees to
which the parameters affect the lowest perceptual range values
would be different from how they affect the highest perceptual
ranges in the system. After accumulating all the data, we
performed further analysis in Python and R. Preliminary
analyses justified our choice of 10 replicates per parameter
combination. To do this we ran 100 replicates for 100
randomly selected parameter combinations and then calculated
the Bhattacharyya distance among replicates for various subsets
from 1 to 100, discovering that 10 was an optimal number
with respect to computational time and statistical robustness
(see Supplementary Figure 2 for details). Bhattacharyya distance
is a standard statistical metric for quantifying the similarity
of two probability distributions; it reflects the amount of
overlap between two statistical samples or populations (see
Bhattacharyya, 1943), and is measured between 0 and 1, where
1 denotes complete similarity.

One might argue that assuming the probability of mutation
to be 1 on reproduction, irrespective of mutation size, is not
a biologically relevant scenario, and instead the probability of
mutation should vary depending upon environmental conditions
and species-specific factors. However, we found that a mutation
probability of 1 was appropriate for our purposes, by conducting
a series of numerical experiments in which we considered 1,000
parameter combinations at each of ten mutation probabilities.
These simulations show that the probability of mutations
(independent of the mutation size) only affects the timescale
of the simulations. It does not affect the final distribution of
perceptual ranges (see Supplementary Figure 3 for details).
Therefore, to be computationally efficient we assume mutation
probability to be 1 and focus our analyses of mutational dynamics
on maximum mutation size.

To obtain a simplified dependence structure of various
parameters on the evolution of the perceptual range distribution,
we determined the partial rank correlation coefficient (PRCC)
of various parameters with respect to the 2.5, 25, 50, 75, and
97.5 percentiles of the distribution, using the sensitivity package
(Tooss et al., 2020) in R. We also performed a Random Forest
(RF) regression, using the random Forest package (Liaw and
Wiener, 2002) in R, to identify which parameters are the strongest
predictors of the patterns in different percentiles of the perceptual
distribution. We optimized the number of parameters available
for splitting at each tree node in the RF using out-of-bag error
(OOB) (Liaw and Wiener, 2002). We use the IncNodePurity
statistic (another standard statistical metric defined as the total

decrease in node impurities from splitting on a given parameter,
averaged over all trees; Impurity is measured by residual sum
of squares and is calculated only at the node at which a
given parameter is used for a split; see Liaw and Wiener,
2002) for comparing variable importance scores in RF models.
Higher values of IncNodePurity denote higher importance of a
parameter in predicting a given variable.

To further analyze the details in the patterns of perceptual
evolution and identify how perceptual evolution depended on
resource availability, we fixed a standard set of parameters (see
Supplementary Table 1 for details) and plotted the distributions
by altering one parameter at a time in three different resource
regimes (low, medium, and high; see Supplementary Table 1).

RESULTS

Classifying Parameters and Their Impact
Figure 2A summarizes results from the PRCC analysis
investigating how model parameters affect the percentiles of the
distributions of perceptual ranges. To understand the impact
of various parameters, we categorized all parameters into two
groups: activating, which are the ones with PRCC greater than 0.0
(i.e., a positive effect on the distribution of perceptual ranges) and
deactivating, with PRCC less than 0.0 (i.e., a negative effect). This
categorization groups resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy cap as
activating parameters because these parameters positively affect
and/or aid the evolution of non-zero perceptual ranges. On the
other hand, basal energy cost, perceptual cost, reproduction cost
and gather amount fall into our deactivating category and affect
the evolution of non-zero perceptual ranges negatively.

Although this broad classification is helpful, the impact
of each parameter within the categories differs substantially,
and for some parameters (e.g., maximum mutation size) the
impact differs across the parts of the perceptual distribution
(Figure 2A). To further elucidate parameter impacts on
perceptual range, we can examine the variable impact scores
from RF regression models and quantify how individual
parameters affect perceptual ranges when all others are
held constant.

Parameters as Predictors of the

Perceptual Distribution
We plot the variable importance scores through the
IncNodePurity statistic from the RF regression models,
with all parameters as predictor variables and percentiles of
the perceptual range distribution as the outcome variable
(Figures 2B-F). See Supplementary Figure 4 for RF
optimization. These results echo the findings from the PRCC
plot (Figure 2A) and describe more than 70% of the variance in
each of the five perceptual percentile levels. Specifically, RF could
explain 74.84, 70.03, 70.25, 70.16, and 72.92% of the variance for
the 2.5, 25, 50, 75, and 97.5 percentiles, respectively).

Perceptual cost, basal energy cost, maximum mutation size,
and resource density, which have the highest PRCC values for
almost all the percentile perceptual values, are consistently the
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FIGURE 2 | Finding critical parameters. (A) Classifying parameters into activating and deactivating groups using partial rank correlation coefficient (PRCC);
parameters where the mean PRCC is above 0.0 are activating and those with mean PRCC below 0.0 are termed deactivating. (B-F) Represent a Random Forest
(RF) Regression of different parts of the resultant perceptual range distribution from the parameter values where (B—-F) represent the results for 2.5, 25, 50, 75, and
97.5 percentiles, respectively (and percentage of variance explained: 74.84, 70.03, 70.25, 70.16 and 72.92%, respectively). The labels in green are activating
parameters and those in red are deactivating. The x-axis in (B-F), IncNodePurity, refers to the total decrease in node impurities from splitting on a given parameter,
averaged over all trees. Higher IncNodePurity means higher variable importance.
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best predictors of evolved perceptual range. Only the relative
ranking of the importance of these four parameters changes in
the RF regression across the percentile levels. In the case of the 2.5
percentiles, growth rate approaches a similar range as the top four
parameters listed above, but in all other cases, growth rate’s PRCC
value remains low. Although gather distance positively affects the
perceptual evolution and affects its variation as evident in PRCC
values (Figure 1), it is not a good predictor of the percentile
perceptual values.

Detailed Discussion About Parameters

To gain more insights into the model’s evolutionary dynamics,
we plotted the mean perceptual radius of simulations where we
tuned one parameter and kept the others constant at standard
values (Supplementary Table 1). We did this for each of three
resource regimes in Figure 3 to uncover broad scale patterns
associated with changing resource density. For a more detailed
structure of the distribution, please refer to Supplementary
Figures 5, 6.

Activation Parameters

Activation parameters allow perceptual ranges to evolve and
persist in the population. Resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy
cap are activating parameters. Each of these parameters
has a threshold value such that when the parameter is
below the threshold, conditions are sufficiently harsh that
no perceptual range evolution is possible. Once above the
threshold, however, the parameter creates a setting that activates
perceptual range evolution (see Figure 3B and Supplementary
Figure 5).

Threshold values vary among the activation parameters, and
across the parameter space. Regimes where positive perceptual
ranges reliably exist are usually characterized by a resource density
of around 0.5 or more, showing an important dependence on
resource availability. In the low resource case (resource density
is 0.25), we see interesting patterns: populations with non-zero
perception exist only sporadically and by chance; but when they
do exist, they create higher mean perceptual ranges than higher
resource density cases for similar parameter values (Figure 3).
The maximum mutation size parameter is unique among the
activation parameters, as it allows populations to thrive more
reliably in low resource regimes than other parameters (Figure 3).
The perceptual range distribution exhibits high variation in
harsh or low resource environments for all parameters as
compared to those in medium and high resource environments
(Supplementary Figure 5).

Deactivation Parameters
Deactivation parameters, such as basal energy cost, perceptual
cost, reproduction cost, and gather amount, make it more difficult
for perceptual ranges to evolve and persist in a population.
Instead of having thresholds, these parameters have cutoffs after
which no non-zero perceptual ranges generally evolve (Figure 3
and Supplementary Figure 6).

The perceptual range distribution is very sensitive to changes
in perceptual cost (Figures 2, 3A2). We see a quick decrease

in perceptual ranges as perceptual costs go up, but greater
perceptual costs are tolerated in high resource scenarios
(Figure 3A2). For basal energy cost, which is another strong
predictor of perceptual range (Figure 2), we see an increase
in perceptual range until the cutoft is reached (Figure 3A3).
Although reproduction cost reduces the distribution of perceptual
ranges, its impacts are relatively small (Figures 2, 3A1). Gather
amount behaves like an activation parameter, in having a
threshold rather than a cutoff, and has a small negative impact
on perceptual evolution (Figure 3A4).

DISCUSSION

Understanding the evolution of perception in a given ecological
setting sheds light on the interplay between environmental
and species-specific factors in structuring the sensory spaces
of organisms. Using our simple agent-based model, with
assumptions pertaining to biological scenarios, we can predict
possible effects of various environmental and biological
factors on perceptual evolution. Moreover, our simulations
include both neutral and adaptive processes of change (ie.,
through mutation size and selective pressure to survive
and reproduce), which allows for exploration of how such
evolutionary changes may take place.

The simulations draw a stage where the foragers try to
maximize their temporal energy gain while trying to minimize
the risk of running out of energy, under various starting
conditions and a spatially heterogeneous (but controlled)
environment. Although it would be interesting to understand
conditions and evolutionary strategies through which one can
view the emergence and maintenance of various perceptual
range distributions, the complex form of density dependence and
continuous space of possible pathways or strategies present in our
model mean that such investigation is not at all straightforward.
Therefore, we focus here on a higher-level correlative view of the
emergent patterns of perceptual range distributions.

Results from the simulations suggest a few major patterns.
From the RF analysis and PRCC estimation, we found the four
major predictors of perceptual range evolution to be resource
density, maximum mutation size, perceptual cost, and basal energy
cost, with resource density providing the uniformly strongest
effects (Figure 2A). From basic ecological principles, one expects
factors akin to resource density to affect the evolution of
perception, either directly or indirectly. A good example involves
the reduction of sensory apparatus in a variety of organisms in
resource-limited environments in both natural settings and in
well-controlled experimental systems (Stevens, 2013; Brandon
and Dudycha, 2014; Brandon et al., 2015). For example, caves
have resource-limited conditions, and the reduction in visual
organs of cavefish, as compared to their above-ground relatives
(Jeffery, 2009; Borowsky, 2008), may be driven by the relatively
high energetic costs of the visual system coupled with minimal
benefit of vision (Niven and Laughlin, 2008), in addition to other
developmental constraints. Likewise, in benthic decapods, eye
size increases with increasing depth, as expected from the fact
that larger eye size improves vision in dimmer environments
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(Hiller-Adams and Case, 1985). However, the opposite trend
was observed in pelagic crustaceans (Hiller-Adams and Case,
1984, 1988), indicating that large eyes are an energetic burden in
the resource-limited pelagic zone. These comparative examples
suggest the evolution (or loss) of visual apparatus depends not
only on the perceptual environment but may also (directly
or indirectly) depend on resource availability (although a
strong mechanistic link is still lacking). Evolutionary effects
and generational plasticity in perceptual apparatus investment
due to limited resources and allocation to other body parts
have also been observed in a number of organisms including
Daphnia (Brandon and Dudycha, 2014; Brandon et al., 2015),
beetles (Nijhout and Emlen, 1998), and butterflies (Merry et al.,
2011). Although resource availability has been implicated or
hypothesized in perceptual loss or gain in these systems, the
mechanistic link is still missing, and the observed effects might
be due to other secondary factors.

Naively, one might expect that the strongest selection on
perceptual ranges would happen under intermediate resource

densities, because at high densities, there might be little to
no benefit of increased ranges as resources are likely to be
encountered under random movement patterns and at low
resource densities, the benefits of findings resources may
not necessarily offset the costs of the systems necessary to
detect them. Interestingly, in our model lower resource density
environments sometimes produced noticeably larger perceptual
ranges than those of higher resource density environments, even
though the threshold for attaining non-zero perception in the
latter environments was lower (Figure 2 and Supplementary
Figures 5, 6). This effect was, however, sporadic and depended
on chance: low resource environments can also lead to smaller
perceptual ranges. This diversity of successful strategies seems
to be true for some low resource environments like the deep-
sea, where certain organisms have exceptionally well-developed
sensory capabilities whereas others feature extensive reductions
in sensory systems (Drazen and Sutton, 2017). Moreover,
although resource density had an overall positive impact on
the whole perceptual distribution, it had a higher impact
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in increasing the lower percentiles of the perceptual range
distribution (Figure 2A), and therefore might play a critical role
in early stages of perception evolution.

Maximum mutation size facilitated evolution of more diverse
perceptual ranges in all scenarios. The notion that large
mutations might aid in the formation of complex morphological
features, such as sensory systems, is well-developed both
experimentally (Weng, 2014) and theoretically (Lenski et al,
2003). For example, mutation rate affects the time required
for eye evolution (Nilsson and Pelger, 1994). In addition, we
observed that maximum mutation size allowed for a more stable
persistence of perception in low resource environments and led
to the evolution of larger perceptual ranges (Figure 3B1 and
Supplementary Figure 5). Such an observation may be related
to the fact that there is bistability in the system (here, bistability
corresponds to situations where the equilibrium distribution
of perceptual ranges included both zero and non-zero values;
Supplementary Figures 5A2-A4, 6A3-A4). Bistability would be
expected to emerge only when sufficient temporal and spatial
conditions are met, and near such points, we would expect
to see a transition to situations in which a portion of the
population has non-zero perceptual ranges. For example, under
standard conditions of our model and low resources, mutation
size was the major parameter that led to apparent bistable states.
In this case, sufficiently high mutation size helps create larger
perceptual ranges, which can aid survival under low resource
conditions while also meeting the perceptual costs. Otherwise,
zero-perceptual range is the stable state where random walk
foraging and low energetic costs can sustain the population. In
other scenarios, we might have such bistability as a complex
function of many parameters. As this work provides a path
for thinking about evolution of perceptual ranges and the
parameters that affect their stable distributions under various
conditions, future work, using non-agent-based approaches,
should investigate bistability more fully.

Maximum mutation size affected various parts of the
perceptual distribution differentially (Figure 2A). In particular,
the effect of this parameter increased with increasing percentiles
of the perceptual range distribution, meaning that higher
maximum mutation sizes allowed for higher upper bounds
on the possible perceptual ranges but did not affect the
lower bounds as much.

As expected, an increase in perceptual cost decreased
the prevalence of non-zero perceptual ranges (Figures 2A,
3A2) as the foragers became unable to afford the energy
loss incurred by increasing their perceptual range. Such a
phenomenon is known from a wide range of species in both
natural and captive settings and from physiological experiments
(Niven et al., 2007; Niven and Laughlin, 2008; Stevens, 2013).
For example, the production of electric organ discharges
(EODs) (in weakly electric fish) is metabolically expensive
(Salazar and Stoddard, 2008; Stoddard and Salazar, 2011). Fish
living in waters with sufficient oxygen show no correlation
between metabolic rate and EOD, but those in oxygen
depleted waters show reduced EOD (Reardon et al., 2011). In
sticklebacks, where divergence into two forms occurs during lake
habitat acclimatation—benthic (bottom dwelling, invertivorous)

individuals, which live in lower light conditions and have higher
perceptual costs, possess diminished eyes, whereas limnetic (open
water dwelling, zooplanktivorous) individuals have larger eyes
(Willacker et al., 2010). In ray-finned fish, eye size decreases
as a function of turbidity of waters they inhabit—pointing to
increased perceptual cost in more turbid waters (i.e., reduced
visibility) affecting eye size and acuity (Caves et al., 2017). We
also note that perceptual cost had the strongest effect on the higher
percentiles of the perceptual range distribution (Figure 2A).

Basal energy cost also had an overall intuitive trend. At low
levels, it is easier for foragers to evolve perceptual range, while
at higher levels the foragers are unable to meet the cost; this
cutoff increased with increasing resources (Figure 3A3). But
on a finer scale, we observed an increase in perceptual ranges
with increasing basal energy cost, until the cutoff value, where
it abruptly crashed (Supplementary Figure 5). Increases in
basal energy cost forced foragers to find a better way to gather
resources and thus, perceptual ranges increased (Supplementary
Figure 5). This process continued, in increasing strength, until
the point where foragers cannot sustain themselves due to
a high metabolic cost—which results in the cutoff. Predation
and competitive interactions both increase basal energy costs
(Hawlena and Schmitz, 2010; DeLong et al., 2014), and larger
sensory apparatus can occur in situations featuring greater
predation and competition (Beston and Walsh, 2019). But
beyond a certain threshold rate of predation, reduced visual
apparatus might happen due to higher costs as documented in
Eurasian perch (Svanbick and Johansson, 2019), similar to our
results (see Figure 3A3 and Supplementary Figure 5). Another
intriguing example of the phenomena involves cylindroleberidid
ostracods, in which species with eyes living in the photic zone
have larger carapaces (and therefore higher basal energy costs)
and may possess a larger number of ommatidia when living at
greater depths were resources are fewer (Juarez et al., 2019).
In the same group, neither body size nor absolute metabolic
rate changes as depth increases in the disphotic zone. However,
food availability does decrease with depth (and therefore, relative
metabolic rate increases) and eyes have more ommatidia (Juarez
et al, 2019). In other words, evolution of better perceptual
apparatus is possible over a range of conditions, even with
increasing relative metabolic costs.

Beyond these four major predictors, the remaining parameters
had smaller or more restricted effects. For example, growth rate
played an important role in determining the lower bound of
the perceptual distribution (Figures 2A,B), although it did not
impact other parts of the distribution as much (Figures 2C-F).
Previous works have reported enhanced growth rate being
correlated with larger eyes in Trinidadian killifish (Beston and
Walsh, 2019) and in amblyopsid fishes (Poulson, 1963).

Reproduction cost negatively affected all percentiles uniformly,
although the impact was weak (Figure 2A). Although we
only modeled asexual reproduction, we take this result as a
weak indicator of reproductive investment affecting perception.
An example of this can be seen in scarab beetles where
there is a strong trade-off between anatomical investments
that help in reproduction, such as horns, and eye size
(Nijhout and Emlen, 1998).
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The rest of the parameters that we introduced to make our
model more biologically realistic gave us important insights
about perceptual evolution but have limited experimental and
observational evidence for validation. For example, resource
quality was a weak activation parameter, which affected the
higher percentiles of perceptual range distribution slightly more
than the lower percentiles (Figure 2A). Energy cap is another
parameter of weak influence, but it impacted perceptual evolution
in a positive way, and had greater impacts on the lower percentiles
of the distribution (Figure 2A).

Gather amount is an intriguing parameter, it behaved like
an activation parameter (in the sense of having a threshold),
but it had a deactivating influence on the perceptual range
distribution (Figure 2A). When gather amount increased beyond
a certain value, larger perceptual ranges were possible as the
foragers were able to meet biological costs. At the same time,
however, foragers with lower perception ranges obtained an
advantage by not having to spend much energy on perception,
leading to a net weak decrease in perceptual ranges (Figure 2A).
This could be evidence that gather amount is leading to
increased greediness among the foragers, resulting in a more
equal spreading of resources and decreased efficacy of the
evolutionary process.

Gather distance improved the foraging ability of larger
perceptual ranges, and therefore affected the higher percentiles
of the perceptual range distribution in a more positive way
than the lower percentiles (Figure 2A). Foragers with small or
zero perceptual ranges also would be able to collect resources
easily with increasing gather distance, but they would do so in
a diffusive movement pattern. This means they would consume
more energy per timestep—making them less competitive than
foragers able to employ advective movement on the basis of
their perceptual ranges. Gather distance is especially useful at
lower resource densities (beyond a threshold which will allow for
survival; Figure 3B3 and Supplementary Figure 5).

Exploring the effects of parameters in our model facilitates
understanding of the evolution of perception by identifying
how environmental and species-specific attributes (and their
interactions) influence the development and maintenance of
perceptual range. Such investigations are also beneficial because
they suggest patterns of perceptual evolution that might have
occurred under various circumstances in the past. In particular,
this work suggests the existence of certain “minimal conditions”
that are necessary for the evolution and persistence of perception.
These conditions, in the form of cut-offs in the case of
deactivation parameters and thresholds in activation ones, give us
a basic framework to hypothesize about evolutionary trajectories
of perception and perceptual ranges. Moreover, given the general
nature of this simple model, it is relevant to the evolution of
perception for organisms of any size and sensory perception
of any modality. Even though we focus on only one type
of perception in our model, it can be easily expanded in a
future work to involve multiple sensory inputs and their relative
trade-offs to better understand the evolutionary trajectories of
multiple sensory modalities (Howarth and Moldovan, 2018;
Keesey et al., 2019).

In addition, we have not explored the ways in which “dispersal
distance” or “mobility” during the reproductive process might
affect the system dynamics in the current set of simulations. This
topic is a complex one and exceeds the scope of the current
paper, but we are able to draw a few conclusions based on pilot
results and extrapolations. Small “dispersal distance” leads to
agents with similar phenotypes being spatially localized. This
does not, however, have a direct impact on the phenotypic
distribution because reproduction is purely asexual in the current
model. In contrast, dispersal distance could have an impact via
resource consumption. Specifically, because agents with higher
perceptual range are more effective at removing resources from
the environment, spatial clustering resulting from “dispersal
distance” can indirectly result in subregions in the simulation
space that are less resource-dense because they are inhabited by
clusters of highly perceptive agents.

In its current form, our work has provided one way of
exploring the evolution of perception in a spatially explicit
agent-based model, something that has not been done in the
past. Instead, past work on the evolution of perception has
used different approaches and considered different themes.
For example, researchers have investigated the evolution of
perception from a Bayesian perspective to explore the formal
link between the statistics of the environment and species-
specific characteristics through the lens of genetics (see Geisler
and Diehl, 2002, 2003). Those authors used the concept
of a maximum fitness ideal observer (a standard Bayesian
ideal observer with a utility function) appropriate for natural
selection (with a utility function for fitness) and a formal
version of natural selection based upon Bayesian statistical
decision theory, to explore perceptual systems (Geisler and Diehl,
2003). Others have approached the evolution of perception
from a sensory ecology perspective — through the interplay of
signals, signaling behaviors and sensory drives (Endler, 1992),
where the focus in on how the environment influences the
production, propagation, and detection of signals. Our work
is complementary to both of these frameworks, as we created
a system incorporating important paradigms from movement
ecology (foraging, perceptual ranges, and switching between
random search and directional movements) to answer the
same questions, but with biologically inspired and tunable
parameters. Our model is very simple in terms of its treatment
of perception and its properties and provides only a crude
representation of forager-resource interactions. Nevertheless, it
is a first step in the direction of building more sophisticated
models of the evolution of perception. Limitations of the
current study include (1) our binary treatment of perceptual
acuity (we model acuity simply as 1 inside the perceptual
range and 0 otherwise, such that a forager isomniscient about
resources inside its perceptual range); (2) our lack of attention
to sexual reproduction (we assume only asexual reproduction for
simplicity because consideration of sexual reproduction would
require attention to a great deal behavioral complexity and many
further assumptions); (3) our lack of a role for memory; and
(4) rudimentary treatment of perception that does differentiates
among different modalities.
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In the future, we plan to investigate speciation as a
function of changing perceptual range. Such inquiry is not
possible here because aggregated data obscures our ability
to distinguish fine patterns that might indicate “perceptual
speciation” and bistability in our scenarios. Understanding
such phenomena might be important in exploring patterns
of sympatric speciation seen in many subterranean habitats
(Segherloo et al., 2018), and perhaps in Drosophila (Keesey
et al, 2019) and hypogean spiders (Mammola and Isaia,
2017). Moreover, due to our focus on foraging in this model,
we did not consider mating signals and interactions, which
also play a major role in perceptual evolution (Endler,
1992). Perception of sexual signaling would be a new
direction in which our model could be remodeled and
explored in the future.

To make this line of modeling more biologically realistic
and explore prey-predator interactions (see Hein and Martin,
2020), future studies will include moving resource (or prey)
items, different foraging strategies and scale of movement
(see Farnsworth and Beecham, 1999; Beecham, 2001). Such
a model can also account for co-evolution of perception
in multiple interacting species such as the coevolution of
hearing in bat-moth systems (Fullard, 1998), and evolution of
alternative “cognitive” strategies for movement and foraging
(Farnsworth and Beecham, 1999; Beecham, 2001). We also
would like to explore more than one type of sensory perception
(and its associated range) and incentivize the development
of perceptual modalities with different resources. Future work
could also explore other properties of perception, such as
acuity and memory to increase the model’s biological realism.
Taken together, such a system of models can help us
understand the evolution of perception and the interplay
between sensory modalities (Howarth and Moldovan, 2018;
Keesey et al, 2019), allowing investigation of the biological
and environmental factors that facilitate or hinder such
evolutionary changes.
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