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SEMIDEFINITE PROGRAMMING AND RAMSEY NUMBERS\ast 

BERNARD LIDICK\'Y\dagger AND FLORIAN PFENDER\ddagger 

Abstract. Finding exact Ramsey numbers is a problem typically restricted to relatively small
graphs. The flag algebra method was developed to find asymptotic results for very large graphs, so
it seems that the method is not suitable for finding small Ramsey numbers. But this intuition is
wrong, and we will develop a technique to do just that in this paper. We find new upper bounds
for many small graph and hypergraph Ramsey numbers. As a result, we prove the exact values
R(K - 

4 ,K - 
4 ,K - 

4 ) = 28, R(K8, C5) = 29, R(K9, C6) = 41, R(Q3, Q3) = 13, R(K3,5,K1,6) = 17,

R(C3, C5, C5) = 17, and R(K - 
4 ,K - 

5 ; 3) = 12. We hope that this technique will be adapted to
address other questions for smaller graphs with the flag algebra method.
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1. Introduction. Let G1, G2, . . . , Gk be graphs. Ramsey's celebrated theo-
rem [38] implies that for every edge coloring of a large enough complete graph Kn

with colors from \{ 1, 2, . . . , k\} , there exists some i such that the Kn contains a copy
of Gi with all edges colored i. The Ramsey number R(G1, G2, . . . , Gk) is the smallest
n for which we are guaranteed to find such a monochromatic copy. A Ramsey graph
is an extremal example for this number, i.e., a k-edge-coloring of KR(G1,G2,...,Gk) - 1

which does not contain a copy of Gi in color i for any i.
The theory of flag algebras was developed by Razborov [39]. It has been used to

find new results on graphs [3, 12, 13, 40], hypergraphs [2, 19, 22, 25], graphons [21],
permutations [4], discrete geometry [20, 23], and even phylogenetic trees [1], to name
a few.

The easiest and most popular usage of the theory is the plain flag algebra method.
Formally, the method works with homomorphisms from linear combinations of combi-
natorial structures (graphs) to real numbers. The homomorphisms can be viewed as
subgraph densities of (small) graphs in a very large graph, or more precisely, a graph
limit.

The core of the plain method is to use the Cauchy--Schwarz inequality to generate
valid inequalities which hold for the subgraph densities of a large number of small
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graphs in the extremal graph (limit). Combinations of these inequalities are then
used to produce the desired bounds. The right combination of the inequalities is
usually found via semidefinite programming.

Finding exact Ramsey numbers is a problem typically restricted to relatively small
graphs. The flag algebra method is designed to find asymptotic results for very large
graphs, so it seems that the method is not suitable for finding small Ramsey numbers.
But this intuition is wrong, and we will develop a technique to do just that in this
paper. This technique may be adapted to address other questions for smaller graphs
with the flag algebra method. So far, we have used variants of these ideas in [30]
and [31].

We give a summary of new results in section 2. We provide a very brief introduc-
tion to the theory of flag algebras in section 3. We describe how to use the theory to
obtain bounds on Ramsey numbers in section 4. For better exposition, we describe the
technique on a toy example proving that R(K3,K3) \leq 6 in section 5, and expand on
this example to a more general situation in section 6. In Appendix A, we summarize
the results of all the computations we tried.

The proofs involve extensive computations, and it is impractical to provide the
actual solutions here. Even the certificates are impractically large and cannot be pro-
vided as ancillary files. Instead, we provide the computer programs we used to obtain
the results. This gives the interested reader the opportunity to recreate our results
and to try the methods on related questions. The programs and brief descriptions
can be found in electronic form at http://lidicky.name/pub/ramsey and on arXiv at
https://arxiv.org/abs/1704.03592 as ancillary files.

2. Results. Here, we only present the new upper bounds we achieved together
with the previously best known bounds referenced in a dynamical survey by Radzis-
zowski [37]. Results presented here are included in the 2021 version of [37]. This
work when claiming improvements of bounds, in most cases, refers to the bounds
given in the 2017 revision \#15 of [37]. We use standard notation for all graphs and
hypergraphs appearing here. In particular, K - 

n stands for a complete (hyper)graph
on n vertices, minus one edge.

2.1. Graphs. We establish the following graph Ramsey numbers.

Theorem 1. R(K8, C5) = 29.

A Ramsey graph is the balanced complete 7-partite graph on 28 vertices. Previ-
ously, the best upper bound was 33 from [28].

Theorem 2. R(K9, C6) = 41.

A Ramsey graph is the balanced complete 8-partite graph on 40 vertices. We are
not aware of a previous nontrivial upper bound.

Theorem 3. R(Q3, Q3) = 13.

Here, Q3 stands for the graph of a 3-dimensional cube. Our flag algebra compu-
tations give an upper bound of 14; the previous lower bound was 12 from [24]. In
this case, the problem is small enough for a complete enumeration, and we found the
exact number and all 8063 Ramsey graphs this way.

Theorem 4. R(K3,5,K1,6) = 17.

The flag algebra computation gives an upper bound for the order of a Ramsey
graph barely above 16. Assuming this to be the correct bound, we examine the
solution more closely. The flag algebra computation gives a list of graphs on 8 vertices
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2330 BERNARD LIDICK\'Y AND FLORIAN PFENDER

that are unlikely to appear in a Ramsey graph on 16 vertices, so we further assume
that this graph does not contain any such subgraphs. This provides a significant
restriction on the possible graphs on 9 or more vertices, and we can enumerate all
such graphs on up to 16 vertices. We find one Ramsey graph on 16 vertices this
way---the Clebsch graph.

Theorem 5. R(K - 
4 ,K

 - 
4 ,K

 - 
4 ) = 28.

Previously, the best upper bound was 30 by Piwakowski [36]. A Ramsey graph
(which was not known to be Ramsey at the time) was constructed by Exoo [17].

Theorem 6. R(C3, C5, C5) = 17.

Here, we improve the upper bound from 21 to 17. The lower bound is by Tse [46].
We are able to improve the following bounds. Bounds without citations come

from general theorems about Ramsey numbers. We denote the wheel on n vertices by
Wn and a book on n+2 vertices by Bn. That is, Wn = K1+Cn - 1 and Bn = K2+Kn.

Theorem 7. New upper bounds on graph Ramsey numbers.

Lower Old upper New upper

R(K - 
4 ,K - 

8 ) 29 38 [27] 32

R(K - 
4 ,K - 

9 ) 34 [18] 53 [26] 46

R(K4,K
 - 
6 ) 30 [7] 33 [8] 32

R(K4,K
 - 
7 ) 37 [18] 52 [27] 49

R(K - 
5 ,K - 

6 ) 31 [18] 39 38

R(K - 
5 ,K - 

7 ) 40 [11] 66 [11] 65

R(K5,K
 - 
6 ) 43 66 [8] 62

R(K5,K
 - 
7 ) 58 110 [8] 102

R(K - 
6 ,K - 

7 ) 59 [18] 135 [27] 124

R(K7,K
 - 
4 ) 28 30 [10] 29

R(K8,K
 - 
4 ) 29 42 [6] 39

R(K9, C5) 33 36
R(K9, C7) 49 58
R(K2,2,2,K2,2,2) 30 [24] 31
R(K3,4,K2,5) 21 [33] 20
R(K3,4,K3,3) 25 [32] 20
R(K3,4,K3,4) 30 [32] 25
R(K3,5,K2,4) 16 [44] 20
R(K3,5,K2,5) 21 [43] 23
R(K3,5,K3,3) 28 [32] 24
R(K3,5,K3,4) 33 [32] 29
R(K3,5,K3,5) 30 [24] 38 [32] 33
R(K4,4,K4,4) 30 [24] 62 [32] 49
R(W7,W4) 21 [35] 21
R(W7,W5) 13 [35] 16
R(W7,W6) 19 [35] 19
R(W7,W7) 19 [35] 19
R(W8,W4) 22 [35] 26
R(W8,W5) 17 [35] 17
R(W8,W6) 26
R(W8,W7) 19 [35] 21
R(W8,W8) 22 [35] 26
R(B4, B5) 17 [41] 20 [41] 19
R(B3, B6) 17 22 [41] 19
R(B5, B6) 22 [41] 26 [41] 24
R(W5,K6) 33 [43] 36
R(W5,K7) 43 [43] 50
R(W6,K6) 40
R(W6,K7) 55

Here we note that some of the upper bounds for wheels turned out to be tight,
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as was later shown in [35].

Theorem 8. New upper bounds on multicolor graph Ramsey numbers.

Lower Old upper New upper
R(C3, C6, C6) 15 18
R(C5, C6, C6) 15 17
R(C3, C3, C3, C4) 49 59
R(C4, C4,K4) 20 [14] 22 [48] 21
R(C4,K4,K4) 52 [48] 72 [48] 71
R(C4, C4, C4,K4) 34 [14] 50 [48] 48
R(C5, C5, C5, C5) 33 137 [29] 77

R(K3,K
 - 
4 ,K - 

4 ) 21 [45] 27 [45] 22

R(K4,K
 - 
4 ,K - 

4 ) 33 [45] 59 [9] 47

R(K4,K4,K
 - 
4 ) 55 113 [9] 94

R(K3,K4,K
 - 
4 ) 30 41 [9] 40

2.2. 3-uniform hypergraphs. In a couple cases, we are able to improve bounds
on Ramsey numbers for 3-uniform hypergraphs.

Theorem 9. 14 \leq R(K - 
4 ,K5; 3) \leq 16 and 13 \leq R(K - 

4 ,K
 - 
4 ,K

 - 
4 ; 3) \leq 14.

Both lower bounds are from [16], and we are not aware of a previous upper bound
for the first quantity. The second quantity was previously bounded by 16.

We establish one new hypergraph Ramsey number.

Theorem 10. R(K - 
4 ,K

 - 
5 ; 3) = 12, and the Ramsey hypergraph on 11 vertices is

unique.

To the best of our knowledge, this number has not been studied before. Using
the computations for the upper bound similarly to the proof of Theorem 4, we con-
struct the unique Ramsey 3-graph on 11 vertices. This Ramsey 3-graph R11 is highly
symmetric, and we describe it here.

The 3-graph R11 has 55 edges; it is vertex and vertex-pair transitive with degree
15 and codegree 3. In fact, every vertex link (the 2-graph spanned by the edges
incident to a vertex after deleting that vertex) is isomorphic to a 10-vertex M\"obius
ladder, i.e., C10 with the 5 antipodal chords added (see Figure 1). With vertex set
\{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A\} , the edge set is

\{ 123, 124, 125, 136, 137, 146, 14A, 150, 15A, 169, 178, 179, 180, 18A, 190, 239, 230, 248, 240, 256, 259,

267, 26A, 278, 279, 28A, 20A, 345, 349, 34A, 356, 357, 36A, 370, 389, 380, 38A, 458, 450, 467, 468,

479, 47A, 490, 560, 578, 57A, 589, 59A, 670, 689, 680, 69A, 70A, 90A\} .

Fig. 1. The vertex link in R11.

In this case, the flag algebra computations result in a sharp bound. From this, we can
use standard arguments to show that a large set of subgraphs (other than K - 

4 and
the complement of K - 

5 ) cannot occur in an 11-vertex Ramsey graph. The computer
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2332 BERNARD LIDICK\'Y AND FLORIAN PFENDER

is then used to enumerate all such 3-graphs up to 9 vertices, and it finds that there
is only one allowed 3-graph on 9 vertices. Thus, in any Ramsey graph on 11 vertices,
all 9-vertex subgraphs must be isomorphic to this 3-graph. With this information,
constructing R11 is easy, either by hand or by computer.

2.3. Tournaments, directed graphs, and further directions. Erd\H os and
Moser [15] noted that Ramsey's theorem implies that for every k, there exists a
minimum number R(TTk), such that every tournament on R(TTk) vertices contains
a transitive tournament on k vertices as a subtournament. The number R(TTk) is
known for 1 \leq k \leq 6. Our method is applicable to this problem as well. We were able
to improve the upper bound for R(TT7).

Theorem 11. 32 \leq R(TT7) \leq 53.

The previous best upper bound was 54 from [42]. As an immediate consequence,
we can improve the upper bound for all larger k, which was previously 54 \cdot 2k - 7.

Corollary 12. R(TTk) \leq 53 \cdot 2k - 7 for k \geq 7.

It is also possible to use our method for Ramsey numbers of directed graphs in
tournaments, but we have not explored this direction. See Appendix A for all bounds
we have tried to improve, and for more information on the size of the computations.

After our result was posted on arXiv, Neiman, Mackey, and Heule [34] used SAT
solvers to obtain improved bounds 34 \leq R(TT7) \leq 47.

3. Flag algebra terminology. Let us now introduce the terminology related
to flag algebras needed in this paper. For more details about the method, see [39].
This section is included in order to make the paper self-contained. A reader familiar
with the theory may wish to skip to the next section.

For a list \scrH = \{ G1, G2, . . . , Gk\} , an edge colored graph is \scrH -free if it does not
contain a copy of Gi as a subgraph in color i for any 1 \leq i \leq k. Since we deal mostly
with blow-ups of edge colored \scrH -free complete graphs, we restrict our attention to
this particular case of Razborov's much more general theory. We say that a graph is a
blow-up of an edge colored complete graph if it can be obtained from an edge colored
complete graph by a blow-up of the vertices; i.e., vertices are replaced by independent
sets, and edges are replaced by complete bipartite graphs between the sets, and all
edges inherit the given color. For brevity, we will just write blow-up graph for these
objects. The central notions we are going to introduce are an algebra \scrA and algebras
\scrA \sigma , where \sigma is a fixed blow-up graph.

In order to precisely describe the algebras \scrA and \scrA \sigma , we first need to introduce
some additional notation. Let \scrF be the set of all finite blow-up graphs. Next, for
every \ell \in \BbbN , let \scrF \ell \subset \scrF be the set of blow-up graphs on exactly \ell vertices. For H \in \scrF \ell 

and H \prime \in \scrF \ell \prime , we denote by p(H,H \prime ) the probability that a randomly chosen subset
of \ell vertices in H \prime induces a subgraph isomorphic to H. Note that p(H,H \prime ) = 0 if
\ell \prime < \ell . Let \BbbR \scrF be the set of all formal linear combinations of elements of \scrF with real
coefficients. Furthermore, let \scrK be the linear subspace of \BbbR \scrF generated by all linear
combinations of the form

H  - 
\sum 

H\prime \in \scrF v(H)+1

p(H,H \prime ) \cdot H \prime .(1)

Finally, we define \scrA to be the space \BbbR \scrF factorized by \scrK .
The space \scrA has naturally defined linear operations of addition and scalar mul-

tiplication by real numbers. To introduce a multiplication inside \scrA , we first define it
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on the elements of \scrF in the following way. For H1, H2 \in \scrF , and H \in \scrF v(H1)+v(H2),
we define p(H1, H2;H) to be the probability that a randomly chosen subset of V (H)
of size v(H1) and its complement induce in H subgraphs isomorphic to H1 and H2,
respectively. We set

H1 \times H2 =
\sum 

H\in \scrF v(H1)+v(H2)

p(H1, H2;H) \cdot H.

The multiplication on \scrF has a unique linear extension to \BbbR \scrF , which yields a well-
defined multiplication also in the factor algebra \scrA . A formal proof of this can be
found in [39, Lemma 2.4].

Let us now move to the definition of an algebra \scrA \sigma , where \sigma \in \scrF is an arbitrary
blow-up graph with a fixed labeling of its vertex set. The labeled graph \sigma is usually
called a type within the flag algebra framework. Without loss of generality, we will
assume that the vertices of \sigma are labeled by 1, 2, . . . , v(\sigma ). Now we follow almost the
same lines as in the definition of \scrA . We define \scrF \sigma to be the set of all finite blow-up
graphs H with a fixed embedding of \sigma , i.e., an injective mapping \theta from V (\sigma ) to V (H)
such that im(\theta ) induces in H a subgraph isomorphic to \sigma . The elements of \scrF \sigma are
usually called \sigma -flags, and the subgraph induced by im(\theta ) is called the root of a \sigma -flag.

Again, for every \ell \in \BbbN , we define \scrF \sigma 
\ell \subset \scrF \sigma to be the set of the \sigma -flags from

\scrF \sigma that have size \ell (i.e., the \sigma -flags with the underlying blow-up graph having \ell 
vertices). Analogously to the case for \scrA , for two blow-up graphs H,H \prime \in \scrF \sigma with the
embeddings of \sigma given by \theta , \theta \prime , we set p(H,H \prime ) to be the probability that a randomly
chosen subset of v(H)  - v(\sigma ) vertices in V (H \prime ) \setminus \theta \prime (V (\sigma )) together with \theta \prime (V (\sigma ))
induces a subgraph that is isomorphic to H through an isomorphism f that preserves
the embedding of \sigma . In other words, the isomorphism f has to satisfy f(\theta \prime ) = \theta .
Let \BbbR \scrF \sigma be the set of all formal linear combinations of elements of \scrF \sigma with real
coefficients, and let \scrK \sigma be the linear subspace of \BbbR \scrF \sigma generated by all the linear
combinations of the form

H  - 
\sum 

H\prime \in \scrF \sigma 
v(H)+1

p(H,H \prime ) \cdot H \prime .

We define \scrA \sigma to be \BbbR \scrF \sigma factorized by \scrK \sigma .
We now describe the multiplication of two elements from \scrF \sigma . Let H1, H2 \in 

\scrF \sigma , H \in \scrF \sigma 
v(H1)+v(H2) - v(\sigma ), and \theta be the fixed embedding of \sigma in H. As in the

definition of multiplication for \scrA , we define p(H1, H2;H) to be the probability that a
randomly chosen subset of V (H) \setminus \theta (V (\sigma )) of order v(H1) - v(\sigma ) and its complement
in V (H)\setminus \theta (V (\sigma )) of order v(H2) - v(\sigma ) extend \theta (V (\sigma )) in H to subgraphs isomorphic
to H1 and H2, respectively. This definition naturally extends to \scrA \sigma .

Now consider an infinite sequence (Gn)n\in \BbbN of blow-up graphs of increasing orders.
We say that the sequence (Gn)n\in \BbbN is convergent if the probability p(H,Gn) has a limit
for every H \in \scrF . A standard compactness argument (e.g., using Tychonoff's theorem)
yields that every infinite sequence of blow-up graphs has a convergent subsequence.
All of the following results can be found in [39]. Fix a convergent increasing sequence
(Gn)n\in \BbbN of blow-up graphs. For every H \in \scrF , we set \phi (H) = limn\rightarrow \infty p(H,Gn) and
linearly extend \phi to \scrA . We usually refer to the mapping \phi as the limit of the sequence.
The obtained mapping \phi is a homomorphism from \scrA to \BbbR . Moreover, for every H \in \scrF ,
we obtain \phi (H) \geq 0. Let Hom+(\scrA ,\BbbR ) be the set of all such homomorphisms, i.e.,
the set of all homomorphisms \psi from the algebra \scrA to \BbbR such that \psi (H) \geq 0 for
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every H \in \scrF . It is an interesting result that this set is exactly the set of all limits of
convergent sequences of blow-up graphs [39, Theorem 3.3].

Let (Gn)n\in \BbbN be a convergent sequence of blow-up graphs and \phi \in Hom+(\scrA ,\BbbR )
be its limit. For \sigma \in \scrF and an embedding \theta of \sigma in Gn, we define G\theta 

n to be the
blow-up graph rooted on the copy of \sigma that corresponds to \theta . For every n \in \BbbN 
and H\sigma \in \scrF \sigma , we define p\theta n(H\sigma ) = p(H\sigma , G\sigma 

n). Picking \theta at random gives rise to
a probability distribution P\sigma 

\bfn on mappings from \scrA \sigma to \BbbR , for every n \in \BbbN . Since
p(H,Gn) converges (as n tends to infinity) for every H \in \scrF , the sequence of these
probability distributions on mappings from \scrA \sigma to \BbbR also converges [39, Theorems
3.12 and 3.13]. We denote the limit probability distribution by P\sigma . In fact, for
any \sigma such that \phi (\sigma ) > 0, the homomorphism \phi itself fully determines the random
distribution P\sigma [39, Theorem 3.5]. Furthermore, any mapping \phi \sigma from the support of
the distribution P\sigma is in fact a homomorphism from \scrA \sigma to \BbbR such that \phi \sigma (H\sigma ) \geq 0
for all H\sigma \in \scrF \sigma [39, Proof of Theorem 3.5].

The last notion we introduce is the averaging (or downward) operator J\cdot K\sigma :
\scrA \sigma \rightarrow \scrA = \scrA \emptyset . It is a linear operator defined on the elements of H\sigma \in \scrF \sigma by
JH\sigma K\sigma = p\sigma H \cdot H\emptyset , where H\emptyset is the (unlabeled) blow-up graph from \scrF corresponding
to H\sigma , and p\sigma H is the probability that a random injective mapping from V (\sigma ) to
V (H\emptyset ) is an embedding of \sigma in H\emptyset yielding a \sigma -flag isomorphic to H\sigma . The key
relation between \phi and \phi \sigma is the following:

\forall H\sigma \in \scrA \sigma , \phi (JH\sigma K\sigma ) = \phi (J\sigma K\sigma ) \cdot 
\int 
\phi \sigma (H\sigma ),

where the integration is over the probability space given by the random distribution
P\sigma on \phi \sigma . Therefore, if \phi \sigma (A\sigma ) \geq 0 almost surely for some A\sigma \in \scrA \sigma , then \phi (JA\sigma K\sigma ) \geq 
0. In particular,

(2) \forall A\sigma \in \scrA \sigma , \phi 
\Bigl( r

(A\sigma )
2
z

\sigma 

\Bigr) 
\geq 0.

The plain method is a tool from the flag algebra framework that, for a given
density problem of the form

min
\phi \in Hom+(\scrA ,\BbbR )

\phi (A),

where A \in \scrA , systematically searches for ``best possible"" inequalities of the form (2).
If we fix in advance an upper bound on the size of graphs in the terms of inequalities
we will be using, we can find the best inequalities of the form (2) using semidefinite
programming.

To reduce the size of \scrA and with it the size of all required computations, it is
often beneficial to use a partially color-blind setting. In this setting, the colors are
partitioned into classes, and two blow-up graphs are considered to be the same if they
differ only by a permutation of colors inside the classes. All of the theory described
in this chapter naturally works for this setting as well.

4. Using flag algebra to bound Ramsey numbers. For some n < R(G1, G2,
. . . , Gk), start with a \{ G1, G2, . . . , Gk\} -free k-edge-coloring H of a Kn. Now replace
every vertex by a large independent set of size N , say. If this blow-up graph contains a
copy of Gi in color i, then two of the vertices in this copy are in the same independent
set. Making N larger and larger, this graph sequence becomes an object that can be
analyzed by the plain flag algebra method.
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Formally, we consider the model of blow-ups of k-edge-colored complete graphs,
for which every copy of Gi in color i contains at least two vertices in the same inde-
pendent set. This model can easily be described in the theory of flag algebras. For
readers familiar with the language of graph limits, we look at the k-colored graphon
of H, i.e., a step function W : [0, 1]2 \rightarrow \{ 0, 1\} k, where every W (x, y) contains exactly
one 1 for off-diagonal steps, and all 0s for the diagonal steps.

In this model, we find a lower bound \delta 2 for the density of nonedges via the plain
flag algebra method. The minimum is achieved exactly by a balanced blow-up of any
Ramsey graph. Therefore, if \delta 2 is a lower bound for the density of nonedges, then

R(G1, G2, . . . , Gk) = n+ 1 \leq 1

\delta 2
+ 1.

More generally, we can look at lower bounds \delta \ell for the density of independent sets of
size \ell . Again, the minimum is achieved exactly by a balanced blow-up of any Ramsey
graph on n vertices, and it follows that

R(G1, G2, . . . , Gk) = n+ 1 \leq \delta 
 - 1

\ell  - 1

\ell + 1.

Notice that we can make use of the integrality of R(G1, G2, . . . , Gk). If we want to
show that R(G1, G2, . . . , Gk) \leq s for some s \in \BbbN , all we need to show is that \delta \ell >

1
s\ell  - 1

for some \ell . In most cases, we found the same bounds by using different \ell , but in some
cases, the bounds were different.

The application of the plain flag algebra method requires the enumeration of all
small graphs in the model. A computer is used to enumerate the small graphs of
the prescribed order, set up the inequalities, and then solve the resulting semidefinite
program. The process of setting up the semidefinite program and processing the solu-
tion of the program is by now standard in the community, and it is briefly described
in the next two sections. It has been automated for graphs, 3-graphs, and oriented
graphs by the software package Flagmatic [47]. While we cannot use Flagmatic in our
specific application to blow-up graphs, our computations follow the same lines.

The semidefinite program can be solved by state-of-the-art solvers CSDP [5]
and SDPA [49]. These solvers use floating point arithmetic, and in most applica-
tions of the plain flag algebra method the following rounding step requires some
thought, and sometimes ingenuity, to turn the results into a proof. In our application,
though, we are usually not interested in sharp bounds as we can use the integrality
of R(G1, G2, . . . , Gk), and the rounding is easy. Round the result to a desired level of
precision, while keeping the resulting matrix positive semidefinite. Due to continuity,
the resulting bounds are almost unchanged. We end up with a certificate consisting
of several (sometimes very large) rational positive semidefinite matrices.

5. Illustration of the method: \bfitR (\bfitK \bfthree ,\bfitK \bfthree ) = 6. In this section we illustrate
our method on the smallest nontrivial Ramsey number R(K3,K3) = 6. This may be
the most complicated proof of this fact ever published. In fact, at an early point in
the proof we determine all 2-colorings of K4 without monochromatic triangles, from
which it is easy to find the unique Ramsey graph on five vertices. For larger Ramsey
numbers a similar complete enumeration is not feasible, and our method, which only
uses relatively small graphs, can find new upper bounds.

Recall that there is a 2-edge-coloring of K5 without monochromatic triangles (see
Figure 2), so all we need to show is that R(K3,K3) \leq 6.

Proof of R(K3,K3) \leq 6. Let k \geq 5, and suppose that G is a 2-edge-colored Kk

with no monochromatic triangle. Let Gn be a blow-up of G on n vertices where
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2336 BERNARD LIDICK\'Y AND FLORIAN PFENDER

Fig. 2. A 2-edge coloring of K5 with no monochromatic triangle. At the same time, it can be
viewed as a blow-up graph where every circle in the picture represents an independent set.

every vertex of G is replaced by an independent set of size Ii for 1 \leq i \leq k. Clearly,\sum 
i Ii = n. The number of nonedges in G is

\sum k
i=1

\bigl( 
Ii
2

\bigr) 
. This is minimized if Ii \in 

\{ \lfloor n/k\rfloor , \lceil n/k\rceil \} for all 1 \leq i \leq k. Hence, the number of nonedges is at least n
2 (n

k  - 1),
which gives an asymptotic density of nonedges of at least 1/k.

Denote by \delta the minimum asymptotic density of nonedges over all 2-colored
blow-up graphs with no monochromatic triangles. Therefore, k \leq 1/\delta , and hence
R(K3,K3) \leq 1/\delta + 1. In order to prove that the largest graph with no monochro-
matic triangles has at most k vertices, it is enough to show that \delta > 1/6. If there were
a complete graph on 6 vertices with no monochromatic triangle, then there would be
a blow-up graph with \delta \leq 1/6.

We work in \scrB , the class of 2-colored blow-up graphs with no monochromatic
triangles. In figures, we will use solid and dotted lines to distinguish the two colors.

We use the color-blind setting; so, for example, is considered to be the same

graph as .

Forbidden subgraphs in \scrB are monochromatic triangles (and , but this

already follows from color-blindness). Since all graphs in \scrB are blow-up graphs, triples

inducing exactly one edge and triples inducing exactly two edges with different

colors are also forbidden subgraphs.

This leaves exactly seven graphs on 4 vertices in \scrB , taking color-blindness into
account:

, , , , , , .

With a slight abuse of notation, we use the drawing of a graph H also for the asymp-
totic density \phi (H), making our equalities and inequalities much more intuitive. As a
first equality, we have in \scrB 

+ + + + + + = 1.(3)

We use one type of size two, the edge \sigma . We use flags of size three. In the figures,
we use a gray square and a white square to distinguish the two labeled vertices. We
have three flags for \sigma in a vector

F =
\Bigl( 

, ,
\Bigr) T

.
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Using (1), we have

=
1

6

\Bigl( 
1 + 0 + 0 + 1 + 3 + 2 + 6

\Bigr) 
,(4)

and we want to show that > 1
6 .

Let M be the following matrix, which is the rounded solution of a suitable semi-
definite program which we will describe later:

M =

\left(  0.0744  - 0.0223  - 0.0520
 - 0.0223 0.0238  - 0.0014
 - 0.0520  - 0.0014 0.0536

\right)  .

The matrixM is positive semidefinite, the smallest eigenvalue is greater than 0.000133,
and thus

0 \leq JFTMF K\sigma .(5)

We explicitly compute the right side of (5). Here is an example for the required
computations:

r
\times 

z

\sigma 
=

s
1

2
+

1

2

{

\sigma 

=
4

12
+

2

12
.

Performing similar computations for all required multiplications, we get the fol-
lowing table, in which we omitted all zeros and multiplied all entries by 24 to avoid
fractions.

r
\times 

z

\sigma 
2

r
\times 

z

\sigma 
8 4

r
\times 

z

\sigma 
2

r
\times 

z

\sigma 
2

r
\times 

z

\sigma 
4

r
\times 

z

\sigma 
6

This gives

0 \leq 24 \cdot JFTMF K\sigma 

=(0.0744 \times 2  - 0.0520 \times 4 + 0.0238 \times 2)  - 0.0223 \times 16  - 0.0223 \times 8

 - 8 \times 0.0014 + 6 \times 0.0536

=  - 0.0116  - 0.3568  - 0.1784  - 0.0112 + 0.3216 .
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We subtract the result from (4) and obtain

\geq 0.1782 + 0.3568 + 0.1784 + 0.1778 + 0.1784 + 0.33 +

> 0.17

\biggl( 
+ + + + + +

\biggr) 
=(3) 0.17 >

1

6
.

Now we give an explanation of how to formulate a semidefinite program to find
M . First we expand (5).

0 \leq JFTMF K\sigma 

=

u

v
\Bigl( 

, ,
\Bigr) \left(  m1,1 m1,2 m1,3

m1,2 m2,2 m2,3

m1,3 m2,3 m3,3

\right)  \Bigl( 
, ,

\Bigr) T

}

~

\sigma 

= (2m1,1 + 4m1,3 + 2m2,2) + 16m1,2 + 8m1,2 + 8m2,3 + 6m3,3 .

We combine this with (4) and use (3) to obtain the following:

=
1

6

\biggl( 
1 + 0 + 0 + 1 + 3 + 2 + 6

\biggr) 
\geq 1

6

\biggl( 
1 + 0 + 0 + 1 + 3 + 2 + 6

\biggr) 
 - JFTMF K\sigma 

\geq 
\biggl( 
1

6
 - 2m1,1  - 4m1,3  - 2m2,2

\biggr) 
 - 16m1,2  - 8m1,2 +

\biggl( 
1

6
 - 8m2,3

\biggr) 
+

\biggl( 
1

2
 - 6m3,3

\biggr) 
+

1

3
+ 1

\geq min

\biggl\{ 
1

6
 - 2m1,1  - 4m1,3  - 2m2,2, - 16m1,2, - 8m1,2,

1

6
 - 8m2,3,

1

2
 - 6m3,3,

1

3
, 1

\biggr\} 
\times 

\biggl( 
+ + + + + +

\biggr) 
=(3) min

\biggl\{ 
1

6
 - 2m1,1  - 4m1,3  - 2m2,2, - 16m1,2, - 8m1,2,

1

6
 - 8m2,3,

1

2
 - 6m3,3,

1

3
, 1

\biggr\} 
.

To find the best lower bound t \leq , we formulate this as a semidefinite program:

(SDP )

\left\{                                       

maximize t

subject to t \leq 1
6  - 2m1,1  - 4m1,3  - 2m2,2,

t \leq  - 16m1,2,

t \leq  - 8m1,2,

t \leq 1
6  - 8m2,3,

t \leq 1
2  - 6m3,3,

t \leq 1
3 ,

t \leq 1,

t \geq 0,

M \succeq 0.
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This program can be solved with CSDP, which provides a numerical approximate
solution:

t = 0.1785714265191698513,

M =

\left(  0.07440501568237621599  - 0.02232142855433099857  - 0.05208345893974360152
. . . 0.02380952179200184274  - 0.001488095220993325895
. . . . . . 0.05357142843461645126

\right)  .

Now we need to round M to a rational matrix we can use in the proof. The numerical
eigenvalues of M are

0.11993672546307207, 1.595205028461271 \times 10 - 10, 0.03184924028640187.

If we round M entrywise, this can easily result in a matrix that is no longer positive
semidefinite since M has an eigenvalue that is very close to zero. In the proof above,
we rounded the entries by hand and verified that we get positive eigenvalues. In other
instances, in particular for larger M , we use an automated approach. We numerically
diagonalize M and round the eigenvectors and eigenvalues to compute the rounded
matrix M . Numerically, we get M = DTCD, where C is a diagonal matrix with the
eigenvalues of M and

D =

\left(   - 0.7769357190468223 0.17103038335455406 0.605903867324505
0.577349770025332 0.5773499070177007 0.5773511305248727
0.2510739562776143  - 0.7983831741940997 0.5473081176475096

\right)  .

If we round both C and D to two decimal places, we obtain

M \approx 

\left(  0.074883  - 0.021912  - 0.052035
 - 0.021912 0.022668  - 0.00096
 - 0.052035  - 0.00096 0.052275

\right)  \succeq 0,

which is positive definite by its construction, and the calculation can be performed
with rational numbers without introducing any numerical errors. From this, we recom-
pute the value of t. With this approximation, we get t = 3143/18750 = 0.174346 > 1

6 .
We can get closer to the numerical solution t = 0.17857142 if we round to more deci-
mal places. But since the last set of inequalities in the proof of R(K3,K3) = 6 is far
from sharp, this is not necessary.

6. More details on using the method. In this section, we will run through a
more general example to show how to adapt the illustration from the previous section.
Our goal is to show that R(G1, G2) \leq B for two graphs G1, G2 and a bound B.

Again, G is a 2-colored Kk, and G contains neither a red G1 nor a blue G2. If
we replace the vertices of G by large independent sets, then the density of nonedges
in the resulting blow-up graph is at least 1

k . We are computing in the model of
red/blue-colored graphs with the following forbidden subgraphs:

1. any complete graph with a red G1,
2. any complete graph with a blue G2,

3. , , .

Here, 1 and 2 are from the particular Ramsey problem, and 3 ensures that we are
considering blow-up graphs only. The manual input for the next step are the adja-
cency matrices of these graphs. As is standard in the plain flag algebra method, the
computer then generates all graphs in this model up to a given order n, where n is part
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of the input. Typically, we want to pick n as large as possible while keeping the total
number of generated graphs under 200,000. Larger numbers of graphs greatly slow
down the subsequent computations and increase the memory demands. A personal
computer can handle about 10,000 graphs. The main bottleneck in computation and
memory is later in the process, when solving the semidefinite program, so we are not
very worried about implementation here. Notice that the number of constraints in the
semidefinite program is about the number of graphs. Any reasonable implementation
of generating graphs of order n from graphs of order n - 1 while testing for duplicates
is sufficient. We could likely achieve a small speed-up here by using nauty or a similar
software. Next, the computer generates all possible types of flags so that products
of any two flags of the same type have order n. By the definition of the product, we
restrict ourselves to types whose order has the same parity as n. This allows us to
gather these flags in vectors F of flag densities such that JFTMF K\sigma \geq 0 for every
positive semidefinite matrix M .

We then formulate a semidefinite program which optimizes the matrices used to
give us the best possible lower bound of the density of nonedges, which then in turn
gives an upper bound for k. The formulation of the semidefinite program is performed
by the computer, along the lines in the illustration in the previous section, mainly
computing the coefficients from JFTMF K\sigma . The computer code used for this was
developed by us.

For solving the semidefinite program, we use CSDP [5], a numerical solver using
floating point arithmetic. As mentioned above, this is the main bottleneck in com-
putation and memory. We then use yet another self-developed computer program to
change the numerical solution to an exact one. We take the numerical positive semi-
definite matrix, find numerical eigenvectors and eigenvalues, round them to rational
numbers, and then reconstruct a rational positive semidefinite matrix. This process
puts out a positive semidefinite matrix which can be used as a certificate for the
correctness of the bound. The rounding may slightly worsen the resulting bound on
1/k. But in the end, due to the discrete nature of the problem, this small difference
typically does not change the result.

More colors or hypergraphs can easily be encoded in a similar model, at the cost
of many more graphs on the same number of vertices. As mentioned above, and
exhibited in the previous section, if Gi = Gj for some i \not = j, we can reduce the
number of graphs through a color-blind process, in which the two colors i and j may
be permuted.

Appendix A. All attempted bounds. The following table provides a sum-
mary of computations we performed, where shaded rows correspond to improved
upper bounds. The purpose of the table is to illustrate the size of the computations,
and to also show our attempts where the method provided an upper bound that did
not improve on the best known one. The basic parameter of computations is the
order n of graphs in \scrA . A bigger value of n typically gives a better result. On the
other hand, the number of graphs of order n grows quickly and soon becomes un-
manageable. For every computation, we list both n and the number of graphs in \scrA .
We still have some calculations in progress. We plan to update the arXiv preprint at
https://arxiv.org/abs/1704.03592 when they finish.

One of the main issues is the memory needed by CSDP when solving the semi-
definite program. The memory demands grow quickly with the number of graphs in
\scrA . If the number of graphs is around 10,000, the instance is solvable on a desktop.
Numbers under 100,000 will fit in 128G of memory, which requires a supercomputer.
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Numbers above 100,000 require high memory supercomputers. All instances we have
tried fit in about 300G of memory. Even instances larger than those we tried could
be solvable as very high memory nodes may have even terabytes of memory, but one
would have to be very patient.

The running time also depends heavily on the number of graphs. The CSDP
solver runs in iterations, and it took 30 to 60 iterations to solve most of the problems
in this class. The larger instances compute a few iterations per day to a few days per
iteration on the supercomputers we use. Let us mention that we obtained a significant
speed-up (10\times ) of the CSDP solver by compiling it with Intel Math Kernel Library.

Previous bounds Order n Graphs Our upper bound
R(K3,K6) = 18 8 1418 \lfloor 18.54\rfloor 
R(K3,K7) = 23 10 37133 \lfloor 23.96\rfloor 
R(K3,K8) = 28 10 38322 \lfloor 29.99955\rfloor 
R(K3,K9) = 36 10 38440 \lfloor 38.224\rfloor 
40 \leq R(K3,K10) \leq 42 10 38450 \lfloor 54.85\rfloor 
R(K4,K5) = 25 9 134037 \lfloor 28.31\rfloor 
36 \leq R(K4,K6) \leq 41 8 11667 \lfloor 44.12\rfloor 
49 \leq R(K4,K7) \leq 61 8 11765 \lfloor 67.54\rfloor 
59 \leq R(K4,K8) \leq 84 8 11773 \lfloor 150.33\rfloor 
43 \leq R(K5,K5) \leq 48 8 8722 \lfloor 53.45\rfloor 
58 \leq R(K5,K6) \leq 87 8 18503 \lfloor 96.38\rfloor 
80 \leq R(K5,K7) \leq 143 8 18601 \lfloor 183.72\rfloor 
102 \leq R(K6,K6) \leq 165 8 9795 \lfloor 205.0016\rfloor 
29 \leq R(K - 

4 ,K - 
8 ) \leq 38 9 23398 \lfloor 32.997\rfloor 

34 \leq R(K - 
4 ,K - 

9 ) \leq 53 9 23427 \lfloor 46.29\rfloor 
30 \leq R(K4,K

 - 
6 ) \leq 33 9 150078 \lfloor 32.33\rfloor 

37 \leq R(K4,K
 - 
7 ) \leq 52 8 11747 \lfloor 49.77\rfloor 

31 \leq R(K - 
5 ,K - 

6 ) \leq 39 8 14889 \lfloor 38.7\rfloor 
40 \leq R(K - 

5 ,K - 
7 ) \leq 66 8 15286 \lfloor 65.007\rfloor 

R(K - 
5 ,K - 

8 ) \leq 100 8 15311 \lfloor 113.21\rfloor 
30 \leq R(K5,K

 - 
5 ) \leq 33 8 14169 \lfloor 35.22\rfloor 

43 \leq R(K5,K
 - 
6 ) \leq 66 8 18186 \lfloor 62.96\rfloor 

58 \leq R(K5,K
 - 
7 ) \leq 110 8 18583 \lfloor 102.81\rfloor 

45 \leq R(K - 
6 ,K - 

6 ) \leq 70 8 9478 \lfloor 71.09\rfloor 
59 \leq R(K - 

6 ,K - 
7 ) \leq 135 8 19339 \lfloor 124.48\rfloor 

37 \leq R(K6,K
 - 
5 ) \leq 53 8 15206 \lfloor 55.92\rfloor 

58 \leq R(K6,K
 - 
6 ) \leq 110 8 19259 \lfloor 111.09\rfloor 

R(K6,K
 - 
7 ) \leq 205 8 19656 \lfloor 245.64\rfloor 

28 \leq R(K7,K
 - 
4 ) \leq 30 9 23315 \lfloor 29.92\rfloor 

51 \leq R(K7,K
 - 
5 ) \leq 83 8 15304 \lfloor 86.52\rfloor 

80 \leq R(K7,K
 - 
6 ) \leq 192 8 19357 \lfloor 210.36\rfloor 

29 \leq R(K8,K
 - 
4 ) \leq 42 9 23419 \lfloor 39.18\rfloor 

R(K9,K
 - 
4 ) 9 23428 \lfloor 58.08\rfloor 

R(K3,4,K2,5) \leq 21 8 16649 \lfloor 20.988\rfloor 
R(K3,4,K3,3) \leq 25 8 14529 \lfloor 20.97\rfloor 
R(K3,4,K3,4) \leq 30 8 8836 \lfloor 25.14\rfloor 
15 \leq R(K3,5,K1,6) 8 14113 \lfloor 17.01\rfloor (tight)
16 \leq R(K3,5,K2,4) 8 12327 \lfloor 20.86\rfloor 
21 \leq R(K3,5,K2,5) 8 17591 \lfloor 23.87\rfloor 
R(K3,5,K3,3) \leq 28 8 15471 \lfloor 24.35\rfloor 
R(K3,5,K3,4) \leq 33 8 18600 \lfloor 29.04\rfloor 
30 \leq R(K3,5,K3,5) \leq 38 8 9778 \lfloor 33.77\rfloor 
30 \leq R(K4,4,K4,4) \leq 62 8 9837 \lfloor 49.49\rfloor 
29 \leq R(K8, C5) \leq 33 9 15067 \lfloor 29.75\rfloor (tight)
33 \leq R(K9, C5) 9 15076 \lfloor 36.23\rfloor 
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41 \leq R(K9, C6) 9 25482 \lfloor 41.70\rfloor (tight)
49 \leq R(K9, C7) 9 49758 \lfloor 58.69\rfloor 
21 \leq R(W7,W4) 8 10114 \lfloor 21.22\rfloor (tight)
13 \leq R(W7,W5) 8 10361 \lfloor 16.31\rfloor 
19 \leq R(W7,W6) 8 13780 \lfloor 19.56\rfloor (tight)
19 \leq R(W7,W7) 8 8048 \lfloor 19.81\rfloor (tight)
R(W8,W3) = 15 8 1398 \lfloor 15.358\rfloor 
22 \leq R(W8,W4) 8 11391 \lfloor 26.79\rfloor 
17 \leq R(W8,W5) 8 11748 \lfloor 17.78\rfloor 
R(W8,W6) 8 15217 \lfloor 26.76\rfloor 
19 \leq R(W8,W7) 8 17547 \lfloor 21.05\rfloor 
22 \leq R(W8,W8) 8 9519 \lfloor 25.80\rfloor 
17 \leq R(B4, B5) \leq 20 8 14456 \lfloor 19.75\rfloor 
17 \leq R(B3, B6) \leq 22 8 9568 \lfloor 19.25\rfloor 
22 \leq R(B5, B6) \leq 26 8 18543 \lfloor 24.01\rfloor 
33 \leq R(W5,K6) 8 12024 \lfloor 36.86\rfloor 
43 \leq R(W5,K7) 8 12122 \lfloor 50.30\rfloor 
R(W6,K6) 8 15439 \lfloor 40.75\rfloor 
R(W6,K7) 8 15591 \lfloor 55.81\rfloor 
12 \leq R(Q3, Q3) 9 116054 \lfloor 14.041\rfloor (tight)1

30 \leq R(K2,2,2,K2,2,2) 9 147411 \lfloor 31.9106\rfloor 
R(K3,K3,K4) = 30 7 120737 \lfloor 32.50\rfloor 
45 \leq R(K3,K3,K5) \leq 57 7 141516 \lfloor 57.32\rfloor 
55 \leq R(K3,K4,K4) \leq 77 6 15625 \lfloor 85.35\rfloor 
89 \leq R(K3,K4,K5) \leq 158 6 16272 \lfloor 406.80\rfloor 
51 \leq R(K3,K3,K3,K3) \leq 62 6 18571 \lfloor 65.17\rfloor 
17 \leq R(C3, C5, C5) \leq 21 7 102305 \lfloor 17.14\rfloor (tight)
15 \leq R(C3, C6, C6) 7 7283 \lfloor 18.72\rfloor 
15 \leq R(C5, C6, C6) 6 11193 \lfloor 17.92\rfloor 
24 \leq R(C3, C4, C4, C4) \leq 27 6 120853 \lfloor 29.23\rfloor 
30 \leq R(C3, C3, C4, C4) \leq 36 6 155664 \lfloor 37.77\rfloor 
49 \leq R(C3, C3, C3, C4) 6 88612 \lfloor 59.22\rfloor 
20 \leq R(C4, C4,K4) \leq 22 7 192287 \lfloor 21.78\rfloor 
27 \leq R(K3, C4,K4) \leq 32 6 9928 \lfloor 32.93\rfloor 
52 \leq R(C4,K4,K4) \leq 72 6 9386 \lfloor 71.56\rfloor 
34 \leq R(C4, C4, C4,K4) \leq 50 6 170041 \lfloor 48.22\rfloor 
43 \leq R(C3, C4, C4,K4) \leq 76 5 4418 \lfloor 157.25\rfloor 
33 \leq R(C5, C5, C5, C5) \leq 137 6 56381 \lfloor 77.87\rfloor 
28 \leq R(K - 

4 ,K - 
4 ,K - 

4 ) \leq 30 6 2589 \lfloor 28.51\rfloor (tight)

21 \leq R(K3,K
 - 
4 ,K - 

4 ) \leq 27 7 145774 \lfloor 22.70\rfloor 
33 \leq R(K4,K

 - 
4 ,K - 

4 ) \leq 59 6 9476 \lfloor 47.39\rfloor 
55 \leq R(K4,K4,K

 - 
4 ) \leq 113 6 11410 \lfloor 94.25\rfloor 

28 \leq R(C4,K4,K
 - 
4 ) \leq 36 6 15170 \lfloor 36.85\rfloor 

30 \leq R(K3,K4,K
 - 
4 ) \leq 41 6 12554 \lfloor 40.36\rfloor 

R(K4,K4; 3) = 13 7 16169 \lfloor 15.35\rfloor 
14 \leq R(K - 

4 ,K5; 3) 7 5802 \lfloor 16.41\rfloor 
13 \leq R(K - 

4 ,K - 
4 ,K - 

4 ; 3) \leq 16 6 1345 \lfloor 14.65\rfloor 
R(K - 

4 ,K - 
5 ; 3) 8 1432 \lfloor 12.00\rfloor (tight)

32 \leq R(TT7) \leq 54 9 126456 \lfloor 53.73\rfloor 
R(TT8) \leq 108 9 132045 \lfloor 107.48\rfloor 
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1We provide the tight bound 13 in this paper, but it was not obtained by direct FA computation.
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