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Abstract. The Hall ratio of a graph G is the maximum value of v(H)/α(H) taken over all non-
null subgraphs H ⊆ G. For any graph, the Hall ratio is a lower-bound on its fractional chromatic
number. In this note, we present various constructions of graphs whose fractional chromatic number
grows much faster than their Hall ratio. This refutes a conjecture of Harris.
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1. Introduction. A graph G is k-colorable if its vertices can be colored with k
colors so that adjacent vertices receive different colors. The minimum integer k such
that G is k-colorable is called the chromatic number of G, and it is denoted by χ(G).

Various refinements and relaxations of the chromatic number have been consid-
ered in the literature. One of the classical and most studied ones is the fractional
chromatic number, which we denote by χf (G); see section 2.1 for its definition.

A basic averaging argument reveals that χf (G) ≥ v(G)/α(G), where v(G) and
α(G) are the number of vertices and the size of a largest independent set in G,
respectively. Moreover, since χf (G) ≥ χf (H) for a subgraph H ⊆ G, it holds that

χf (G) ≥ v(H)

α(H)
for every non-null H ⊆ G.

We define ρ(G)—the Hall ratio of a graph G—to be the best lower-bound obtained
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COUNTEREXAMPLES TO A CONJECTURE ON HALL RATIO 1679

in this way, i.e.,

ρ(G) := max
∅̸=H⊆G

v(H)

α(H)
.

How tight is ρ(G) as a lower-bound for χf (G)? In 2009, Johnson [11] suggested
that there are graphs G where the value of χf (G)/ρ(G) is unbounded. In earlier
versions of [7] (see [8, Conjecture 6.2]), Harris explicitly conjectured the opposite.

Conjecture 1. There exists C such that χf (G) ≤ C · ρ(G) for every graph G.

In 2016, Barnett [2] constructed graphs showing that if such a constant C exists,
then C ≥ 343/282 ∼ 1.216, improving an earlier bound 1.2 [3]. Our first result refutes
Conjecture 1.

Theorem 2. There exists P0 such that for every P ≥ P0, there is a graph G with
ρ(G) ≤ P and χf (G) > P 2/33.

The proof of Theorem 2 is very short and simple, modulo some standard results
about random graphs. The following two theorems strengthen Theorem 2 at the
expense of somewhat more technical proofs.

Theorem 3. There exists P0 such that for every P ≥ P0 there is a K5-free graph
G with ρ(G) ≤ P and χf (G) > P 2/82.

Theorem 4. There exists P0 such that for all P ≥ P0 there is a graph G with
ρ(G) ≤ P and χf (G) ≥ eln

2(P )/5.

This note is organized as follows. In section 2, we recall definitions and properties
of the fractional chromatic number, and Erdős–Rényi random graphs. Proofs of our
results are in section 3. We conclude the note in section 4 with related open problems.

2. Definitions and preliminaries. The join of two graphs G1 and G2, which
we denote by G1 ∧ G2, is obtained by taking vertex-disjoint copies of G1 and G2

and adding all the edges between V (G1) and V (G2). More generally, for graphs

G1, G2, . . . Gℓ, we write
∧ℓ

i=1 Gi to denote
(∧ℓ−1

i=1 Gi

)
∧Gℓ.

For a graph H on the vertex-set {1, . . . , ℓ} and a collection of ℓ vertex-disjoint
graphs G1, . . . , Gℓ, we define H{G1, . . . , Gℓ} to be the graph obtained by taking a
union G1, . . . , Gℓ, and, for every edge ij ∈ E(H), adding all the edges between V (Gi)
and V (Gj). Note that if G1

∼= . . . ∼= Gℓ, then H{G1, . . . , Gℓ} corresponds to the
composition (also known as the lexicographic product) of G and H. Also, observe
that

Kℓ{G1, . . . , Gℓ} =

ℓ∧
i=1

Gi.

2.1. Fractional chromatic number. We present a definition of the fractional
chromatic number based on a linear programming relaxation of an integer program
computing the ordinary chromatic number. For a graph G, let I(G) be the set of all
independent sets. Let fracc be the following linear program:

fracc



Minimize
∑

I∈I(G)

xI

subject to
∑

I∈I(G)
v∈I

xI ≥ 1 for v ∈ V (G);

xI ≥ 0 for I ∈ I(G).
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1680 BLUMENTHAL ET AL.

Furthermore, let fracd be the following program, which is the dual of fracc:

fracd


Maximize

∑
v∈V (G)

y(v)

subject to
∑
v∈I

y(v) ≤ 1 for I ∈ I(G);

y(v) ≥ 0 for v ∈ V (G).

Since these two linear programs are dual of each other, the LP-duality theorem ensures
that they have the same value, which we denote by χf (G).

Let us now mention a different way to introduce the fractional chromatic number.
As we have already mentioned, α(G) ≥ v(G)/χf (G). Moreover, the lower-bound stays
valid even in the setting where the vertices have weights, and we measure the size of an
independent set by the proportion of the weight it occupies rather than its cardinality.

More precisely, let G = (V,E) be a graph and w : V → R+ a weight function. Let
α(G,w) be the maximum sum of the weights of the vertices that form an independent
set, i.e.,

α(G,w) := max
I∈I

∑
v∈I

w(v) .

If we rescale an optimal solution of fracc by a factor 1/χf (G) and interpret it as a
probability distribution on I, the linearity of expectation yields that

α(G,w) ≥ EI

[∑
v∈I

w(v)

]
=

∑
v∈V

w(v) ·
∑

I∈I(G)
v∈I

xI

χf (G)
≥

∑
v∈V w(v)

χf (G)
.

On the other hand, any optimal solution of fracd yields a weight function w0 for
which the bound is tight, i.e., α(G,w0) =

∑
v∈V w0(v)/χf (G). Therefore,

χf (G) = sup
w:V→[0,1]

∑
v∈V w(v)

α(G,w)
.

Note that the Hall ratio can be viewed as an integral version of the above, since

ρ(G) = max
w:V→{0,1}

∑
v∈V w(v)

α(G,w)
.

For other possible definitions of the fractional chromatic number, see [15].
We finish this section with a straightforward generalization of the fact that the

fractional chromatic number of the composition of two graphs is equal to the product
of their fractional chromatic numbers.

Proposition 5. Let H be a graph with the vertex-set {1, . . . , ℓ}, and let G1, . . . , Gℓ

be graphs. It holds that χf (H) ·mini∈[ℓ] χf (Gi) ≤ χf (H{G1, . . . , Gℓ}). In particular,

χf

(∧ℓ
i=1 Gi

)
≥ ℓ ·mini∈[ℓ] χf (Gi).

Proof. Without loss of generality, we may assume that V (Gi) = {1, . . . , v(Gi)}.
Let wH

1 , . . . , wH
ℓ be any optimal solution of the dual program fracd for H, and, for

every i ∈ [ℓ], let wi
1, . . . , w

i
v(Gi)

be any optimal solution of fracd for Gi.

Let G := H{G1, . . . , Gℓ}. For a vertex (i, j) ∈ V (G), where i ∈ [ℓ] and j ∈
[v(Gi)], we set yi,j := wH

i · wi
j . It holds that∑

(i,j)∈V (G)

yi,j =
∑
i∈[ℓ]

wH
i ·

∑
j∈V (Gi)

wi
j =

∑
i∈[ℓ]

wH
i · χf (Gi) ≥ χf (H) ·min

i∈[ℓ]
χf (Gi) .
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COUNTEREXAMPLES TO A CONJECTURE ON HALL RATIO 1681

We claim that (yi,j), where (i, j) ∈ V (G), is a feasible solution of fracd for G.
Indeed, fix any I ∈ I(G). For i ∈ [ℓ], let Ii := {j ∈ [v(Gi)] : (i, j) ∈ I}. Since

Ii ∈ I(Gi), it holds that ∑
j∈Ii

wH
i · wi

j = wH
i ·

∑
j∈Ii

wi
j ≤ wH

i .

On the other hand, the set IH := {i ∈ [ℓ] : ∃(i, j) ∈ I} is independent in H. Therefore,∑
(i,j)∈I

yi,j =
∑
i∈IH

∑
j∈Ii

yi,j =
∑
i∈IH

wH
i ·

∑
j∈Ii

wi
j ≤

∑
i∈IH

wH
i ≤ 1 .

We note that a similar composition of optimal solutions of fracc yields χf (H{G1,
. . . , Gℓ}) ≤ χf (H) ·maxi∈[ℓ] χf (Gi), but we will never need this bound. However, we
will use the following analogue of this bound for proper colorings.

Proposition 6. Let H be a graph with the vertex-set {1, . . . , ℓ}, and let G1, . . . , Gℓ

be graphs. It holds that χ(H) ·maxi∈[ℓ] χ(Gi) ≥ χ(H{G1, . . . , Gℓ}).
Proof. Let k := maxi∈[ℓ] χ(Gi), and let d be a proper χ(H)-coloring of H. Next,

for every i ∈ [ℓ], let ci : V (Gi) → [k] be a proper k-coloring of Gi. It is straightforward
to verify that assigning each vertex v ∈ Vi a color (d(i), ci(v)) yields a proper coloring
of χ (H{G1, . . . , Gℓ}) using χ(H) · k colors.

Finally, the following observation is going to be useful in the next section.

Observation 7. If every H ⊆ G has at most |V (H)| edges, then χ(G) ≤ 3.

Proof. Without loss of generality, we may assume G is connected. Since |E(G)| ≤
|V (G)|, the graph G contains at most one cycle, and hence it is 3-colorable.

2.2. Sparse Erdős–Rényi random graphs. Let Gn,p be a random graph on
{1, 2, . . . , n} where each pair of vertices forms an edge independently with probability
p. We now recall some well-known properties of Gn,Dn

we are going to use.

Proposition 8. There exists C0 such that for every C ≥ C0 the following is
true: There exists n0 = n0(C) ∈ N such that for every n ≥ n0 there is an n-vertex
triangle-free graph G = G1(n,C) with the following properties:
(A) 1.001 · C > χ(G) ≥ χf (G) ≥ n

α(G) > C, and

(B) for all k ≤
√
lnn, every k-vertex subgraph of G is 3-colorable.

Proof. Suppose that C and n are sufficiently large, and let D > 1 be such that
C = D

2·lnD . By [6] and [13], a random graph Gn,Dn
satisfies with high probability

α(Gn,Dn
) < n/C and χ(Gn,Dn

) < 1.001 · C, respectively.

Next, the expected number of subgraphs H in Gn,Dn
with v(H) ≤

√
lnn and more

than v(H) edges is at most
√
lnn∑

k=3

2k
2

· nk ·
(
D

n

)k+1

≤
√
lnn · D

√
lnn+1

n1−ln 2
= O

(
n−0.3

)
.

By Markov’s inequality, Gn,Dn
has no suchH with high probability; hence the property

(B) follows from Observation 7.
Finally, Schürger [16] showed that the number of triangles in Gn,Dn

converges to

the Poisson distribution with mean Θ
(
D3

)
. Therefore, Gn,Dn

is triangle-free with

probability e−Θ(D3) > 0. Note that a similar estimate can also be deduced using the
FKG inequality [9, Theorem 2.12].
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1682 BLUMENTHAL ET AL.

3. Counterexamples to Conjecture 1. We start with a simple construction
of a sequence of graphs for which χf (G) ≫ ρ(G). Each graph G is the join of the
graphs G1(ni, C) of very different orders.

Proof of Theorem 2. Let C0 be the constant from Proposition 8, and let P0 :=
8C0.

Given P ≥ P0, let ℓ := ⌊P/4⌋, C := P/8, and n1 := n0(C) from Proposition 8.

For all j ∈ [ℓ− 1], let nj+1 := ⌈e2·n
2
j ⌉, and, for all i ∈ [ℓ], let Gi := G1(ni, C). We set

G :=
∧ℓ

i=1 Gi.
By Proposition 5, χf (G) > ℓ·C > P 2/33. It only remains to prove that ρ(G) ≤ P ,

i.e., that α(G[X]) ≥ v(G[X])/P for every X ⊆ V (G).
Fix X ⊆ V (G), and let Xi := V (Gi)∩X for i ∈ [ℓ]. We split the indices into two

categories, small and big, based on |Xi| with respect to v(Gi) = ni. Specifically, let

S :=
{
i ∈ [ℓ] : |Xi| <

√
lnni

}
and B := [ℓ] \ S.

Next, let HS and HB be the subgraphs of G induced by
⋃

i∈S Xi and
⋃

i∈B Xi, re-
spectively, and let vs and vb be their respective orders. In both of these subgraphs,
we can find quite large independent sets.

Claim 9. HS has an independent set of size at least 4vs/3P .

Proof. Fix i ∈ S such that |Xi| is maximized. Note that |Xi| ≥ vs/|S|. The
property (B) of Gi established in Proposition 8 yields that G[Xi] is 3-colorable, and
hence its largest color class has size at least

vs
3|S|

≥ vs
3ℓ

≥ 4vs
3P

,

which finishes the proof.

Claim 10. HB has an independent set of size at least 4vb/P .

Proof. Let m be the largest element of B. Since Gm is (0.51ℓ)-colorable, G[Xm]
contains an independent set of size at least 1.9 · |Xm|/ℓ. If m = 1, then |Xm| = vb.
On the other hand, if m ≥ 2, then

1.9 · |Xm| ≥ |Xm|+ 0.9 ·
√
lnnm > |Xm|+ 1.2 · nm−1 > |Xm|+

m−1∑
i=1

ni ≥ vb.

We conclude that HB has an independent set of size at least vb/ℓ ≥ 4vb/P .

If vs ≥ 3|X|/4, then we find an independent set of size at least |X|/P in HS by
Claim 9. Otherwise, vb ≥ |X|/4, and Claim 10 guarantees an independent set in HB

of size at least |X|/P .

3.1. K5-free and iterated constructions. As we have already noted in sec-
tion 2, the graph G =

∧ℓ
i=1 Gi constructed in Theorem 2 can be equivalently viewed as

Kℓ{G1, G2, . . . , Gℓ}. An adaptation of the proof of Theorem 2 will show that replacing

Kℓ by a graph from Proposition 8 yields another graph G2 with χf

(
G2

)
∼

(
ρ
(
G2

))2
.

However, as all the graphs involved in the composition are now triangle-free, G2 will
be K5-free.

But we do not need to stop here. Since we have now much better control
of the chromatic numbers of small subgraphs in G2 than in the original graph G,
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replacing the graphs Gi = G1(ni, C) in the composition by ni-vertex variants of G2

yields a graph G3 with χf

(
G3

)
∼

(
ρ
(
G3

))3
. Repeating this procedure k times leads

to a construction of a graph Gk+1 with χf

(
Gk+1

)
∼

(
ρ
(
Gk+1

))k+1
.

In order to present our proofs of Theorems 3 and 4, we need to introduce some
additional notation. Let us start with recalling Knuth’s up-arrow notation

a ↑(k) b =


ab if k = 1,

1 if k ≥ 1 and b = 0,

a ↑(k−1) (a ↑(k) (b− 1)) otherwise,

where a, b, k ∈ N, and its inverse a ↓(k) n, which is the largest integer b such that
n ≥ a ↑(k) b. Using this, we define the following Ackermann-type function Fk(b) and
its inverse fk(b):

Fk(b) := 2 ↑(k) b and fk(b) := 2 ↓(k) b.

Note that F1(b) = 2b and f1(b) = ⌊log2(b)⌋, and for every k ∈ N it holds that
Fk(1) = 2 and Fk(2) = 4. The functions also satisfy the following properties.

Fact 11. For every k ∈ N, the following hold:
1. fk(fk(Fk+1(n+ 2))) = Fk+1(n) for every n ∈ N,
2. fk+1(4M) < fk(fk(M)) for every M ≥ Fk(Fk(7)), and
3.

∑n
b=0 Fk(b) < Fk(n+ 1) for every n ∈ N.

For a proof, see Appendix A. We are now ready to present the main lemma.

Lemma 12. Let C0 be the constant from Proposition 8. For every k ∈ N and
C ≥ C0 there is n0 := n0(k,C) such that for all n ≥ n0 there is an n-vertex K2k+1-
free graph G := Gk(n,C) with the following properties:

• χf (G) ≥ Ck,
• ρ(G) ≤ 1.001 · 3k · C, and
• G[W ] is 3k-colorable for every W ⊆ V (G) such that |W | ≤ fk(fk(n)).

Proof. For any fixed C ≥ C0, we proceed by induction on k. As the case k = 1
follows by letting G := G1(n,C) from Proposition 8, we may assume k ≥ 2.

Let M be the smallest positive integer such that fk(4M) ≤ fk−1 (fk−1(M)).
Note that M ≤ Fk−1(Fk−1(7)) by the second property of Fact 11. We set n0(k,C) :=
max {M,Fk (4 · n0(k − 1, C))}. Given n ≥ n0(k,C), we define m to be the largest
integer such that

m+

m∑
i=2

Fk(m+ 3i− 6) ≤ n.

Note that Fk(4m− 1) > n, as otherwise the third property of Fact 11 yields

(m+ 1) +

m+1∑
i=2

Fk(m+ 3i− 6) ≤ Fk(4m− 1) ≤ n,

contradicting the maximality of m. Therefore,

Fk(4m) > Fk(4m− 1) > n0(k,C) ≥ Fk(4n0(k − 1, C)),

and hence m > n0(k − 1, C). We set b1 := m, and bi := Fk(m + 3i − 6) for every
i = 2, 3, . . . ,m− 1. Finally, we set bm := n−

∑
i<m bi.
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Let H := G1(m,C), and let Gi := Gk−1(bi, C) for all i ∈ [m]. We define G :=
H{G1, G2, . . . , Gm}. Clearly, the graph G contains no K2k+1. In the following three
claims, we show that G has the desired three properties.

Claim 13. χf (G) ≥ Ck.

Proof. By the induction hypothesis, χf (H) ≥ C and χf (Gi) ≥ Ck−1 for all
i ∈ [m]. Therefore, Proposition 5 yields the desired lower-bound on χf (G).

Claim 14. ρ(G) ≤ 1.001 · 3k · C.

Proof. Fix anX ⊆ V (G). Our aim is to show that α (G[X]) ≥ |X|/
(
1.001 · 3k · C

)
.

For i ∈ [m], let Xi be X ∩ V (Gi). As in the proof of Theorem 2, let

S :=
{
i ∈ [m] : |Xi| ≤ fk−1(fk−1(bi))

}
and B := [m] \ S.

First, suppose the case
∣∣⋃

i∈S Xi

∣∣ ≥ |X|/3. By the definition of S and the proper-
ties of Gi, every subgraph G[Xi], where i ∈ S, has an independent set of size at least
|Xi|/3k−1. On the other hand, χ(H) < 1.001 · C, so the projection of at least one of
the color classes of the optimal coloring of H on

⋃
i∈S Xi contains an independent set

of size at least ∑
i∈S

|Xi|
3k−1

· 1

1.001 · C
≥ |X|

1.001 · 3k · C
.

Now suppose
∣∣⋃

i∈B Xi

∣∣ ≥ 2|X|/3, and let z be the maximum index in B. If z = 1,
then |X1| ≥ 2|X|/3. On the other hand, if z ≥ 2, then

fk−1(fk−1(bz)) ≥ fk−1(fk−1(Fk(m+ 3z − 6))) = Fk(m+ 3z − 8) ≥
∑
i<z

bi,

where the equality and the last inequality follow from the first and the third properties
of Fact 11, respectively. Therefore, |Xz| ≥ |X|/3 and Gz[Xz] contains an independent
set of the sought size by ρ(Gz) ≤ 1.001 · 3k−1 · C.

Claim 15. G[W ] is 3k-colorable for every W ⊆ V with |W | ≤ fk(fk(n)).

Fix a set W ⊆ V of size at most fk(fk(n)). First, let Z := {i : W ∩ V (Gi) ̸= ∅}.
Clearly, |Z| ≤ |W | ≤ fk(fk(n)). Since fk(n) ≤ 4m and fk(x) ≪ log2 log2(x/4), we
conclude that |Z| ≤ log2 log2(v(H)). Therefore, there exists a proper 3-coloring of
the induced subgraph H[Z].

By the second property of Fact 11, for every i ∈ [m] it holds that

|V (Gi) ∩W | ≤ |W | ≤ fk(4m) ≤ fk−1(fk−1(m)) ≤ fk−1(fk−1(bi)).

Therefore, the induction hypothesis yields that each V (Gi) ∩ W induces a 3k−1-
colorable subgraph of G, and hence χ(G[W ]) ≤ 3k by Proposition 6.

Theorem 3 is a direct consequence of Lemma 12 applied with k = 2. It remains
to establish Theorem 4.

Proof of Theorem 4. Let P0 := (2C0)
2
. Given P ≥ P0, let C :=

√
P/1.001 and

k := ⌊log3 C⌋. Applying Lemma 12 with k and C yields an n0(k,C)-vertex graph G

with ρ(G) ≤ P and χf (G) ≥ C⌊log3 C⌋ > e0.9·ln
2(C) > eln

2(P )/5.

4. Concluding remarks. We presented various constructions of graphs where
the fractional chromatic number grows much faster than the Hall ratio, which refuted
Conjecture 1. It is natural to ask whether the conclusion in Conjecture 1 can be
relaxed and the fractional chromatic number of a graph is always upper-bounded by
some function of its Hall ratio.
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Question 16. Is there a function g : R → R such that χf (G) ≤ g(ρ(G)) for every
graph G?

Theorem 4 shows that if such a function g exists, then g(x) ≥ eln
2(x)/5. While

preparing our manuscript, we learned that Dvořák, Ossona de Mendez, and Wu [4]
constructed graphs with Hall ratio at most 18 and arbitrary large fractional chromatic
number. Therefore, the answer to Question 16 is no.

Conjecture 1 was partially motivated by another conjecture of Harris concerned
with fractional colorings of triangle-free graphs, which was inspired by a famous result
of Johansson [10] (for a recent short proof, see [14]) stating that χ(G) = O(∆/ ln∆)
for every triangle-free graph G with maximum degree ∆.

Conjecture 17 ([7, Conjecture 6.2]). There is C such that χf (G) ≤ C · d/ ln d
for every triangle-free d-degenerate graph G.

A classical result of Ajtai, Komlós, and Szemerédi [1] and an averaging argument
together yield that ρ(G) = O(d/ ln d) for G and d as above. Therefore, if Conjecture 1
could be recovered in the triangle-free setting, it would immediately yield the sought
bound on χf in Conjecture 17.

Question 18. Is there C such that χf (G) ≤ C · ρ(G) for every triangle-free
graph G?

In [11], it was been mentioned that the sequence of Mycelski graphs might provide
a negative answer to Question 18, but we still do not know. For K5-free graphs, The-
orem 3 shows that the answer is definitely negative. As a possibly simpler question,
does the answer stay negative in the case of K4-free graphs?

Question 19. Is there C such that χf (G) ≤ C ·ρ(G) for every K4-free graph G?

Let us conclude with an additional motivation for studying Conjecture 17. Es-
peret, Kang, and Thomassé [5] conjectured that dense triangle-free graphs must con-
tain dense induced bipartite subgraphs.

Conjecture 20 ([5, Conjecture 1.5]). There exists C > 0 such that any triangle-
free graph with minimum degree at least d contains an induced bipartite subgraph of
minimum degree at least C · ln d.

Erdős–Rényi random graphs of the appropriate density show that the bound
would be, up to the constant C, best possible. A relation between the fractional
chromatic number and induced bipartite subgraphs proven in [5, Theorem 3.1] shows
that if Conjecture 17 holds, then Conjecture 20 holds as well. Very recently, Kwan,
Letzter, Sudakov, and Tran [12] proved a slightly weaker version of Conjecture 20
where the bound C · lnn is replaced by C · lnn/ ln lnn.

Appendix A. Proof of Fact 11. The definitions of fk and Fk+1 readily
yield that fk (Fk+1(n+ 1)) = Fk+1(n). Therefore, fk (fk (Fk+1(n+ 2))) = Fk+1(n),
proving the first property.

For every k, n ∈ N, a straightforward induction yields that Fk(n) ≥ n+1. This in
turn implies that Fk+1(n) = Fk(Fk+1(n− 1)) ≥ Fk(n) ≥ 2n. Similarly, for all k ∈ N,
the functions Fk(·) and fk(·) are monotone nondecreasing. Therefore, for all k ∈ N
and n ≥ 7, it holds that

Fk+1(n) = Fk(Fk(Fk(Fk(Fk+1(n− 4))))) ≥ 2Fk(Fk(2n−4)+1) ≥ 4 · Fk(Fk (n+ 1) + 1).

Since Fk(fk(M) + 1) > M ≥ Fk(fk(M)), we assert that fk+1(4M) < fk(fk(M)) for
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all M ≥ Fk(Fk(7)). Indeed, otherwise

4M ≥ Fk+1(fk+1(4M)) ≥ Fk+1(fk(fk(M))) ≥ 4 · Fk(Fk (fk(fk(M)) + 1) + 1) > 4M,

a contradiction. This concludes the proof of the second property.
The last property is proven by induction on k. Indeed, the case k = 1 is the sum

of a geometric progression. If k ≥ 2, then by the induction hypothesis

n∑
b=0

Fk+1(b) =

n∑
b=0

Fk(Fk+1(b− 1)) ≤
Fk+1(n−1)∑

i=0

Fk(i) < Fk(Fk+1(n− 1) + 1).

However, the right-hand side is at most Fk(Fk(Fk+1(n− 1))) = Fk+1(n+ 1).
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