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ABSTRACT

The application of machine learning models and algorithms towards describing atomic interactions has been a
major area of interest in materials simulations in recent years, as machine learning interatomic potentials
(MLIPs) are seen as being more flexible and accurate than their classical potential counterparts. This increase in
accuracy of MLIPs over classical potentials has come at the cost of significantly increased complexity, leading to
higher computational costs and lower physical interpretability and spurring research into improving the speeds
and interpretability of MLIPs. As an alternative, in this work we leverage “machine learning” fitting databases
and advanced optimization algorithms to fit a class of spline-based classical potentials, showing that they can be
systematically improved in order to achieve accuracies comparable to those of low-complexity MLIPs. These
results demonstrate that high model complexities may not be strictly necessary in order to achieve near-DFT
accuracy in interatomic potentials and suggest an alternative route towards sampling the high accuracy, low
complexity region of model space by starting with forms that promote simpler and more interpretable inter-

atomic potentials.

1. Introduction

For nearly a century of designing interatomic potentials for use in
materials simulations, a strong emphasis was placed on constructing
classical potentials with physically-motivated forms derived from
quantum mechanical theories [1-9]. More recently, with the enormous
success of machine learning in various fields, machine learning inter-
atomic potentials (MLIPs) have come to dominate the attention of the
computational materials science community (an incomplete list:
[10-20]). MLIPs have been shown to be able to predict energies and
forces on diverse ranges of atomic configurations with unprecedented
accuracy, which in combination with active research into improving
their speed and interpretability [21-23] makes them good candidates
for being fast and accurate general-purpose models of atomic
interactions.

Much of the increased performance of MLIPs over classical potentials
comes from the flexibility in their functional forms that allows them to
be systematically extended in order to be able to model increasingly
diverse sets of atomic environments. However, pushing MLIPs to this
limit of high accuracy and generalizability often results in highly com-
plex models that are computationally expensive to use and conceptually
difficult to interpret. Classical potentials, on the other hand, are by
construction much simpler to interpret due to their basis in known
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physics and usually have much lower computational costs than even the
simplest MLIPs. These two forms thus are generally used in opposing
regions of “model space”: classical potentials in the low complexity, low
accuracy region; MLIPs in the high complexity, high accuracy region.
Sampling the space between these two regions (low complexity, high
accuracy) is a fundamental goal of computational materials science, and
in recent years has most often been approached by attempting to
decrease the complexity of MLIPs. In this work we show that a family of
spline-based classical potentials, when leveraging traditional “machine
learning” databases and fitting algorithms, can be systematically
improved in order to achieve accuracies on existing benchmark data-
bases that push them into the low complexity, high accuracy region of
model space alongside low-complexity MLIPs. Despite the lower inter-
pretability of spline-based potentials relative to classical potentials with
explicit analytical definitions, our results show that spline-based clas-
sical potentials offer a good balance between speed, interpretability, and
accuracy. These results suggest that spline-based classical potentials
may be good options alongside low-complexity MLIPs for designing
practical and computationally tractable general-purpose potentials.
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2. Background
2.1. Machine learning interatomic potentials

For this work, the most important distinctions between MLIPs and
classical potentials are in their functional forms and in how they
describe local atomic environments. The main advantage of MLIPs is
that their functional forms are more easily extended to account for
different environments by increasing their degrees of freedom, and that
they are able to leverage more advanced descriptors of local atomic
environments. The commonly-assumed implications of these differences
are that (1) their extensible functional forms let MLIPs be more flexible
and general than classical potentials, and (2) their use of better local
descriptors allow MLIPs to predict atomic energies and forces more
accurately.

While new MLIPs are constantly being developed, we use the results
from [24], which focused on five of the more popular forms: Gaussian
Approximation Potentials (GAP) [11], Moment Tensor Potentials (MTP)
[16], Neural Network Potentials (NNP) [10], Spectral Neighbor Analysis
Potentials (SNAP) [13], and a variant on SNAP that uses quadratic
components (denoted gSNAP) [19]. Conceptually, each of these MLIPs
operate by first encoding the local atomic environments of a structure
into atomic “fingerprints” (descriptors), then passing those fingerprints
through an embedding function. Each of the MLIPs differ in the types of
fingerprints that they use—atom-centered symmetry functions [25] for
NNP, “smooth overlap of atomic positions” kernels [26] and related
descriptors for GAP and SNAP/qSNAP, and rotationally covariant ten-
sors [16] for MTP—and in their embedding functions— neural networks
for NNP, Gaussian process models for GAP, linear/quadratic models for
SNAP/qSNAP, and summations of tensor contractions for MTP. The
performances of the MLIPs can then be tuned by adjusting the number of
fingerprints used or increasing the complexity of their embedding
functions. In the interest of keeping this paper concise, a proper expla-
nation of the details of the MLIPs [11,10,13,16,19] and their descriptors
[25,26] is reserved for existing work in the literature.

2.2. s-MEAM

We compare the MLIP results from [24] with results obtained by
fitting new spline-based modified embedded-atom method (s-MEAM)
potentials, a variant of the analytical MEAM [4] that introduces some
additional flexibility. The analytical MEAM is a popular potential form
that has been widely applied to various metals and alloys, and to some
covalently-bonded materials [4,27,28]. In the s-MEAM formalism, the
energy of a system is written as:
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In Eq. (1) the total energy E is composed of a pair term (¢) and an
embedding energy contribution (U) due to the electron density (n;)
around an atom. The electron density is further decomposed into 2-body
(p) and 3-body (products of f and g) contributions. The total energy is
computed by summing over the pair distances r; between each atom i
and its neighbors j and the angles 0 and pair distances r;; and ry defined
by a triplet of atoms i, j, and k with i at the center. The subscripts on the
functions indicate that different functions are used for evaluation
depending on the bond types between atoms i, j, and k.

The s-MEAM formalism is very similar to the analytical MEAM, but
differs in that s-MEAM removes the explicit analytical forms of the
functions in a MEAM potential and replaces them with cubic splines (¢
and Uin Eq. (1); p, f, and gin Eq. (2)). s-MEAM was originally developed
for elemental Si [29], but has since been applied to Nb, Mo, Ti, and Ti-O

Computational Materials Science 200 (2021) 110752

[30-34]. The use of splines theoretically gives s-MEAM better flexibility
in reproducing interactions for complex atomic environments as well as
better generalizability, but much like with MLIPs these added benefits
come at the cost of decreased interpretability of s-MEAM relative to
classical MEAM or other classical potentials. In particular, non-
linearities in the spline shapes of the density terms (p, f, and g) and
the embedding function (U) can theoretically lead to complex and un-
interpretable behaviors. Additionally, the density values n; lack any
physically meaningful units and are perfectly capable (likely even) of
sampling negative values.

In addition to the increased flexibility of s-MEAM (and despite its
reduced interpretability) relative to analytical MEAM, s-MEAM has a
couple of advantages that make it a particularly useful form to study in
practice. First, s-MEAM encompasses an entire family of commonly-used
classical potentials including the Lennard-Jones [1] (LJ), embedded-
atom method [3] (EAM), modified embedded-atom method [4]
(MEAM), Stillinger-Weber [6] (SW), and Tersoff [5] potentials, meaning
it can be used to systematically study the impact of including/removing
various terms in the functional form. And second, fitting software for
spline-based potentials can take advantage of specialized data structures
that make it extremely efficient to calculate energies and forces for large
collections of different parameter sets simultaneously during fitting (for
more details see Section 3.4).

An s-MEAM potential can be easily extended to multi-component
systems by adding additional splines for each new element and the
cross-terms between pairs of elements. For example, in a binary system
with A and B elements there would be a total of twelve splines: ¢4, P2z,
&> Pas P> Uas Us, fa, fa, 8aa, s, and ggs. Though single- and multi-
component s-MEAM potentials have the same physical assumptions as
each other, it is likely that multi-component systems will contain more
complex local atomic environments which may not be able to be as
accurately described using spline representations. Because of this, multi-
component s-MEAM potentials may be more difficult to fit and may not
be able to achieve as high accuracies as compared to their single-
component counterparts.

2.3. s-MEAM and low-complexity MLIPs

The nesting of potentially highly non-linear functions in the
embedding term of s-MEAM has the result of making the s-MEAM
functional form very similar in theory to some low-complexity MLIPs. In
particular, s-MEAM is comparable in its formalism to a single-layer NNP
or a low-order MTP since each of these forms involve only limited
numbers of radial and angular terms as their “fingerprints” and rela-
tively simple embedding functions. However, it is important to note that
the s-MEAM splines in practice often optimize to relatively interpretable
forms (e.g. LJ-like shapes for ¢, p, and f, and nearly linear embedding
functions U) as shown in Fig. 8, making it easier to attempt to under-
stand how/why fitted s-MEAM potentials behave the ways that they do
in practice. Furthermore, model developers can easily enforce different
conditions to encourage interpretability, for example by manually
setting boundary conditions or knot values to require repulsive forces for
short bond lengths.

3. Methods
3.1. Fitting databases

In order to ensure a fair comparison, we train all models on the da-
tabases produced in [24], which were specifically designed to encom-
pass a large variety of atomic environments. In total, we explored six
different elements (three crystal systems): Ni and Cu (FCC), Li and Mo
(BCC), and Si and Ge (diamond). Each database contains the ground
state structure for the given element, strained supercells, slab structures,
ab initio molecular dynamics (AIMD) sampling of supercells at different
temperatures (300 K and 0.5x , 0.9 x , 1.5 , and 2.0x the melting
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point), and AIMD sampling of supercells with single vacancies at 300 K
and 2.0x the melting point. We construct training/testing sets using a
90:10 split, sampled from each sub-group of the databases (strained,
slab, MD, and vacancy configurations). On average, each training
database includes approximately 250 structures. A detailed summary of
the contents of the databases can be found in [24]. The training and
testing databases were made publicly-available on Github [35] by the
authors of [24].

3.2. Model hyper-parameters

When fitting s-MEAM potentials, there are two hyper-parameters
that are typically considered: the number of spline knots in each
spline, and the x-positions of each of those knots. However, since s-
MEAM has a strictly defined functional form, these hyper-parameters
cannot be continuously adjusted to further increase the accuracy of
the potential, and they do not significantly impact the computational
cost of the potential. In [24] an extensive study of the hyper-parameters
of the MLIPs was performed because increasing the degrees of freedom
in the MLIPs can theoretically continuously increase their fitting capa-
bilities (at higher computational costs). In order to provide a more
appropriate comparison between the s-MEAM family of potentials and
the MLIPs discussed in [24], instead of showing the results of changing
the number of knots per spline we choose to demonstrate the impact of
including only subsets of the terms in s-MEAM (e.g. potentials that only
have a ¢ term, or don’t include the 3-body embedding terms f and g).
This shows the effects of systematically increasing the flexibility of the s-
MEAM family of potentials, similar to how increasing the number of free
parameters in an MLIP extends its functional form. The optimal s-MEAM
potentials (starred points in Fig. 7) were further optimized by con-
structing potentials with 5, 7, 11, and 15 knots per spline and choosing
the one that performed the best on the given tests of material property
predictions. The U splines were often restricted to having only three
knots since they are significantly easier to optimize and experiments
with higher numbers of knots typically optimized to nearly linear
functions anyways.

We choose the domains of the radial functions based on the mini-
mum pair distance sampled in each database and the cutoff distances
used by the MLIPs. The cutoff distances of the s-MEAM potentials for
each element are taken to be 3.9 A (Ni), 4.0 A (Cu), 5.1 A (Li), 5.2 A
(Mo), 5.0 A (Si), and 5.3 A (Ge), which are chosen to be similar to the
cutoffs used for the MLIPs in [24]. As discussed in [24], these cutoff
distances are consistent with previous studies using classical potentials
and MLIPs which find second nearest neighbor interactions to be suffi-
cient for FCC elements, while third nearest neighbor interactions are
necessary for BCC and diamond systems. The domains of the U and g
splines are [—1,1] (with the exception of the Ge s-MEAM potential,
which uses [ —0.5,0.5] for the U domain because it happened to result in
a better potential during optimization) since the n; values can be arbi-
trarily scaled during fitting to fall into the desired range [36] and g’s
inputs are cos(0) values.

3.3. Optimization algorithm: CMA-ES

We optimize the y-positions of the knots in the splines of the s-MEAM
potentials using the Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) [37,38]. CMA-ES is a derivative-free, population-based
global optimization algorithm that is designed to work with continuous-
domain, non-convex, non-linear functions, and is highly scalable and
parallelizable. This algorithm has been shown previously to work well
for optimization problems with dimensionalities similar to ours [39] (in
our case, 45 fitting parameters: five splines, each with seven knots and
two boundary conditions), has been successfully applied to fitting s-
MEAM potentials in the past [34], and is readily available in an existing
Python package [40].

We attempt to find a balance between exploration (exploring
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parameter space) and exploitation (moving toward good solutions) by
tuning various hyper-parameters of the CMA-ES. The CMA-ES works by
iteratively updating the mean and covariance matrix of a multi-variate
normal distribution; at each CMA-ES step we sampled 100-2000
parameter sets and used the best 50% for the update (influencing the
algorithm’s exploitation). We adjust the “width” of the distribution,
which influences the algorithm’s exploratory capabilities, using a
scaling parameter for the covariance matrix, with typical values in the
range of 1-10.

3.4. Software implementation details

As mentioned in Section 2.2, a major benefit of using spline-based
potentials when fitting a model is that the fitting software can take
advantage of special data structures, which we call “structure vectors”
here, in order to be able to compute energies and forces of atomic
configurations for large batches of parameter sets simultaneously and
efficiently. Unlike molecular dynamics, where a large number of atomic
configurations need to be considered in serial, optimization considers a
fixed set of atomic configurations. The processing of neighbor lists for
each structure can be done once, and then used to construct an efficient
algorithm for the evaluation of a large number of parameters. The use of
cubic splines, which are linear functions of the knot values, permits sums
over interatomic distances to be efficiently precalculated into “structure
vectors.”

The evaluation of a Hermitian cubic spline f(x) with n knots, which is
normally written as a piece-wise function with each piece being a linear
combination of four basis functions, can instead be re-written as f(x) =

?(x)~7. Here, the evaluation of f(x) is the dot product between two
length-(n + 2) vectors: a vector of coefficients, s (x), that depends only

. L —
on the input value x, and a vector of fitting parameters ¢ composed of
the two spline boundary conditions and the y-positions of the n knots in

the spline. This form is particularly useful since it is linear in ?, which
means that summations over multiple x can be efficiently computed as
f(x1) + f(x) = [S(x1) + 5(x2)]-@. Thus, arbitrarily many spline
evaluations can be performed with a single length-(n + 2) vector-vector
dot product by defining S = 3,5 (x;) (which is what we call a structure
vector) to be the summation over the vectors of spline coefficients cor-
responding to all of the x; values, then writing the summation as > _,f(x;)

— 'S4 A full derivation of the structure vector is found in Section SI in
the Supplementary Material.

For potential fitting, this means that the collection of 'S vectors for
each spline involving atomic positions—¢, p, f, and g in s-MEAM—can
be computed for each structure in the fitting database, saved, and re-
used at each optimization step rather than having to loop over full
neighbor lists every single time. Due to the form of s-MEAM, the
embedding energy U(n;) for each atom is evaluated using the standard
algorithm for cubic splines. We find that the most time-consuming
evaluation is the three-body product from f and g splines. Equally as

-
important is the fact that S can be used to evaluate multiple parameter

sets at the same time by converting 9 to instead be a matrix of
parameter sets, with each column corresponding to a different param-
eterization of a potential; this use case is extremely common among
global optimization algorithms, where objective function values need to
be computed for batches of parameterizations at every step. For refer-
ence, on a single XE compute node of the Blue Waters supercomputer
(two 8-core 2.3 GHz AMD 6276 Interlagos processors and 64 GB of
memory), we are able to evaluate the energies and forces of a 108-atom
cell for ten thousand different model parameterizations in approxi-
mately 3.4 seconds. In addition, the use of matrix-matrix products al-
lows for efficient use of GPU acceleration, providing for additional
hardware speedup. Readers interested in implementing structure vec-
tors for different potential forms should see Section SI in the



J.A. Vita and D.R. Trinkle

Supplementary Material for further details, or refer to the Github re-
pository associated with this paper [41].

4. Results and discussion
4.1. Fitting procedure

The following results were obtained by fitting s-MEAM potentials to
a set of six benchmark databases published by [24] for Ni, Cu, Li, Mo, Si,
and Ge. The databases were designed to cover a broad collection of
atomic environments for each element, including ground state struc-
tures, strained configurations, surfaces, liquids, vacancies, and molec-
ular dynamics snapshots. The potentials were fitted with software
developed by the authors of this paper using the Covariance Matrix
Adaptation Evolutionary Strategy [37,38], where the objective function
was the mean absolute error computed by comparing the energies and
forces predicted by the s-MEAM potentials to the values predicted by
density functional theory (DFT). Optimal potentials were selected based
on their ability to correctly reproduce the various material properties
discussed in this section. Further details regarding the fitting databases
and optimization procedures can be found in Section 3.

4.2. Training/testing errors

As shown in Fig. 1, for all elements the fitted s-MEAM potentials
achieve train/test root-mean-square errors (RMSE) for both energies and
forces that are similar in magnitude to the MLIPs despite the relatively
large diversity of the training and testing sets. In most cases the s-MEAM
potentials produce errors that are most similar to those of NNP and
SNAP, typically making them only 2-3x the magnitudes of the errors for
GAP and MTP. In the case of Ge, which has abnormally high energy
errors relative to the GAP and MTP—but similar to other
MLIPs—approximately 40% of the training and testing error comes from
surface structures, indicating that s-MEAM is performing well for the
majority of the Ge database, but failing at reproducing surface energies
as accurately as other structures. This behavior is reflected in Fig. 2,
which shows that the Ge s-MEAM potential has the highest surface en-
ergy errors of all the models.

Not only are the s-MEAM errors computed in this work comparable
to the accuracies of the MLIPs, but they are also drastically lower than
what is usually thought of as the errors for classical potentials. Zuo et al.
[24] also reported the energy/force errors on these databases for other
classical potentials available in literature [29,31,42-46], which were
typically 10 to 100 times larger than the errors for the s-MEAM poten-
tials and MLIPs shown here. However, in our work it is clear that the
differences in errors between classical potentials and MLIPs trained on
the same data can be as low as just a few meV-atom ™!, which is already
nearing the accuracy of DFT [47]. The most likely reason that many of
the potentials from the literature had such high energy/force errors on
the databases from [24] was not because their functional forms are
inherently less accurate than the MLIPs, but rather simply because the
models weren’t trained on databases that had as many different types of
structures (in particular, liquids and surfaces may not have been
included). Furthermore, a contributing factor to the perceived low ac-
curacy of classical potentials is that many of the older literature po-
tentials (LJ, EAM, and analytical MEAM in particular) are often
constructed by fitting directly to material properties, rather than by
using the “force-matching” method of Ercolessi-Adams [48] which is
typically used for fitting MLIPs and the s-MEAM potentials in the
literature.

4.3. Material properties
In Fig. 3 it is shown that in addition to having good energy/force

errors, the s-MEAM potentials also perform comparably to the MLIPs in
predicting material properties. For Ni, Cu, and Mo in particular the s-
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Fig. 1. Root-mean-square errors in predicted energies and forces for the s-
MEAM potentials developed in this work and the MLIPs (GAP, MTP, NNP,
SNAP, qSNAP) developed in [24]. Colors were scaled with respect to the
maximum value in each column so that model performances can be more easily
compared relative to each other for each element. Training/testing errors are
shown in the upper/lower triangles respectively, where the testing databases
represent a 10% split of the total data sampled from each group in the databases
(MD samples of bulk solids and liquids, strained structures, vacancies, and
surfaces). For all elements the s-MEAM potentials are able to reproduce the
energies and forces in the databases with accuracies comparable to the
optimal MLIPs.

MEAM potentials show excellent agreement with the DFT-predicted
values. Note that the vacancy migration energy E, has the largest
variation between models of any of the properties, and is the only
property that was not explicitly included in the fitting databases. The
large variation in the Li property predictions are partially due to the
relatively small magnitudes of its cubic elastic constants, bulk modulus,
and vacancy migration energy. Existing s-MEAM potentials from the
literature for Si [29] and Mo [31] have been included for reference and
show similar performance.

In Fig. 4 we show the stacking fault energy (SFE) curves for four of
the elements (Mo, Si, Ni, and Cu) that have been explored previously in
the literature. MLIP curves were taken from [24], DFT curves were taken
directly from the literature [31,49,50], and s-MEAM curves were
computed in this work. Errors in unstable stacking fault energy pre-
dictions (peak heights) for the s-MEAM potentials are similar in
magnitude to the MLIPs, but the s-MEAM potentials commonly have a
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Fig. 2. Root-mean-square errors in predicted surface energies in the training
set. For most elements the s-MEAM potentials maintain errors that are similar in
magnitude to the errors of the MLIPs, but in the case of Ge the s-MEAM po-
tential has particularly high errors that may indicate a lack of generalizability of
the s-MEAM form. In general, the MTP and GAP have the lowest surface energy
errors while s-MEAM and NNP have the highest. SNAP and qSNAP show the
largest variation across different elements.

problem where the ground state structure is actually higher energy than
the faulted configuration. In the case of elements with FCC ground state
structures, the faulted configuration has a local structure that is similar
to HCP, so inclusion of the HCP structure into the training database
(which the databases in this work don’t have) can help to address this
issue.

Comparison of the minima-aligned energy versus volume equation of
state curves shows that the s-MEAM potentials agree with DFT at non-
equilibrium volumes to within the threshold that is used for
comparing equivalent DFT codes. As mentioned in Fig. 5, the Agos gauge
is the RMSE of the difference between two EOS curves within a range of
+6% of Vyprr, where values below 2 meV-atom ™! are considered to
define “indistinguishable EOS curves” [51]. In all cases, the s-MEAM
models agree with DFT to within the desired threshold. These results
aren’t surprising, since the Agps gauge depends largely on a model’s
ability to reproduce the bulk elastic modulus of the given systems, which
most models do to within about 5% error relative to the DFT-predicted
bulk moduli.

Energy differences between the ground state structure and the DFT-
predicted low-energy polymorph structures are used as a test of the
ability of the models to extrapolate to data that they weren’t explicitly
trained on (since only ground state crystals were included in the training
databases). As seen in Fig. 6, for Ni, Li, and Ge the s-MEAM potentials
agree with the DFT predictions to within ~ 20 meV-atom™'. The Cu s-
MEAM errors are about 10 meV-atom ! larger than the errors of the
worst MLIP, but the Si s-MEAM severely under-predicts the polymorph
energy. All of the Mo potentials have larger absolute errors due to the
larger magnitude of the DFT energy differences, but the error of the s-
MEAM potential is still within the error range of the MLIPs.

While classical potentials have already been shown to be able to
predict properties of these material systems with good accuracy
[29,31,42-46], the results here emphasize the fact that they can perform
well even when trained on the larger and more diverse databases that
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Fig. 3. Predictions of the lattice constant (a), cubic elastic constants (Ci1, C12,
Ca4), bulk modulus (B), and vacancy formation and migration energies (E,s and
E,,) for each model for each element. All properties have been normalized with
respect to the DFT values, so an ideal potential would produce a regular hep-
tagon whose vertices fall on the unit circle. The dashed black lines correspond
to the predictions for previously-published s-MEAM potentials for Si [29] and
Mo [31].

are usually reserved for MLIPs. However, one issue that became
apparent when constructing the optimal potentials was that lower total
RMSE values did not necessarily correspond to better property pre-
dictions. Potentials with training errors that were even just
1-2 meV-atom ' lower than the optimal potentials shown here often
began to see a trade-off where the percent errors in their property pre-
dictions began to be as large as 30%-40% for all properties except the
lattice constant. A possible cause of this behavior could be that some of
the databases contain certain types of structures with a frequency that is
disproportionate to the relative importance of their related material
properties. As an example, in this work all of the predictions were of bulk
or defected solid properties, but the training databases also included
large amounts of liquid and slab (surface) structures. When errors for
each structure are equally weighted, an “imbalanced” database such as
this could cause an insufficiently generalizable model to be fitted to
structures that don’t significantly contribute to the properties of interest.
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Fig. 4. Cross-sections of the relaxed y surfaces for each model for a selection of
elements that have been explored previously in literature. DFT curves were
taken from previous works [31,49,50], while MLIP curves were provided by the
authors of [24]. Displacements are in the (011) plane in the [111] direction for
Mo, and in the (111) plane along the [112] direction for Si, Ni, and Cu.

There were many cases, especially when fitting the Li potentials, where
the property predictions could be improved by allowing larger errors in
reproducing the energies of the surface structures. This issue begins to
highlight a limitation of the s-MEAM form, where although the average
errors are nearing MLIP accuracy, it is still seeing a trade-off in errors
that implies that it is not yet as generalizable as the MLIPs.

4.4. Accuracy/cost trade-off

Fig. 7 shows that for all elements, the optimal s-MEAM potentials
consistently fall on or near the empirical accuracy/cost Pareto front. The
optimal s-MEAM potentials are usually 1-2 orders of magnitude faster
than the respective MLIPs while still having comparable testing errors.
We plot testing set error in Fig. 7 since it is commonly used for evalu-
ating “general-purpose” potentials (potentials that are designed for
general use with a given chemical system, rather than for a single
application of that system), and because it can detect possible overfitting
of a model. Although we use cost per molecular dynamics step for this
comparison, it is important to note that many other factors must be
taken into consideration such as the software implementation of the
model, the hardware on which it is being run, and the memory re-
quirements of the model.

For the MLIPs, the authors of [24] modified the model costs and
accuracy by increasing the degrees of freedom in each type of model. In
the case of s-MEAM, we choose to explore the extensibility of the po-
tential form by altering which of the terms (¢, p, U, f, and g) in Egs. (1)
and (2) to include in the potential. Note that although s-MEAM does
have other hyper-parameters that can be adjusted (number of knots per
spline, and x-positions of knots), they don’t significantly impact the
computational cost of the potential, therefore adding/removing terms
from the s-MEAM form is the most appropriate method for analyzing the
accuracy/complexity trade-off.

The consistent presence of the s-MEAM potentials and their variants
on or near the Pareto front alongside the low-complexity MLIPs suggests
that the s-MEAM family is an ideal candidate for beginning to sample the
low complexity, high accuracy region of model space. However, the fact
that the s-MEAM potentials occasionally appear to be out-performed by
some of it’s simpler variants (e.g. the Cu s-MEAM variant that doesn’t
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Fig. 5. Computed EOS curves (top) and Agos gauge values (bottom) calculated
using 3rd-order Birch-Murnaghan fits. The Agos gauge is computed by inte-
grating the root-mean-square difference between a model’s EOS curve and the
EOS curve predicted by DFT within a range of +6% of Vj prr (dashed red) after
aligning the two curves with respect to their minima. Agos<2 meV-atom ™! has
been used in the past as a threshold to define “indistinguishable EOS curves”
when comparing DFT codes [51].

include the 3-body f and g term) also helps to demonstrate a weakness of
s-MEAM. In all cases where the s-MEAM potential doesn’t fall on the
Pareto front (Ni, Cu, and Ge), it had higher testing set errors than one of
its variants, but was still chosen as the “optimal” potential because it had
better overall material property predictions on the tests shown in Sec-
tion 4.3. The ability of s-MEAM potentials and it’s variants to lower their
errors further than what is shown in Fig. 1 and Fig. 7 in exchange for
worse property predictions was experienced ubiquitously throughout
this work. The most likely explanation for this behavior is that achieving
lower average errors on the database is forcing s-MEAM to allow larger
errors on some of the structures that influence the material property
predictions more heavily. This explanation suggests that the s-MEAM
form is not yet as generalizable as some of the MLIPs (MTP and GAP in
particular), and would most likely require the introduction of additional
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Fig. 6. Structural energy comparisons between the ground state structures and
the DFT-predicted low-energy polymorph structures. Polymorph structures are
labelled for each element. Although MLIPs are often considered to be less
transferable (i.e. more prone to over-fitting) than classical potentials, they
perform slightly better for low energy structure predictions than s-MEAM for
most of the elements that were explored in this work.

terms in order to no longer see this trade-off. In many of the plots in
Fig. 7 the empirical estimation of the Pareto front (dashed lines) be-
comes concave at the intersection of the s-MEAM and the MTP curves
(see for example the Ge plot in Fig. 7), suggesting the possibility of a
theoretical potential form that would have accuracies similar to some of
the s-MEAM variants, but with lower complexity. A hypothetical po-
tential form that could fill in these “holes” in the estimated Pareto front
could be constructed by varying the number of 2- (¢, p) and 3-body (f
and g) terms and the embedding number of embedding terms (U) beyond
what is done in this work.

4.5. Fitted models

As can be seen in Fig. 8, the fitted splines for each element often
optimize to recognizable and simple forms (e.g. LJ-like radial functions
¢, p, and f, and nearly linear embedding functions U) that lend them-
selves to much easier interpretation than most MLIPs in practice. While
these splines are more difficult to interpret than most analytical MEAM
potentials (e.g. due to the roughness of some of the splines, or unex-
pected trends in some of the radial functions), they provide model de-
velopers with a way of identifying key trends in model behavior that
would be difficult to recognize in an MLIP. In particular, because of the
nearly linear shape typical of the U splines, it is possible to identify how
different features in the splines will raise/lower the predicted energy at
different distances or angles. Additionally, the fact that the U splines
consistently optimized to nearly linear functions for all elements
regardless of the number of knot points shows that high accuracies can
be achieved while still maintaining simple forms for the embedding
functions (which is not usually the case with MLIPs).

5. Conclusion
We demonstrate that a family of spline-based classical potentials

offer a viable route towards sampling the low complexity, high accuracy
region of model space while promoting physical interpretability, making
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Fig. 7. Accuracy/cost trade-off for all elements and models. Stars are “optimal”
potentials for each model that were used to compute all errors and material
properties, while circles are different hyper-parameter choices of the MLIPs (e.
g., the number of nodes in a NNP or the number of kernels in a GAP). For s-
MEAM the stars are s-MEAM potentials (with all 5 terms included), but the
circles moving from left to right are variants of s-MEAM that have (1) only the ¢
term, (2) only ¢, U, and p, and (3) only ¢, U, f, and g. In the case of Cu, the third
variant which doesn’t include p is obscured by the starred point. For all ele-
ments, the optimal s-MEAM potential falls on or near the empirical estimation
of the Pareto front (dashed lines) while maintaining errors comparable to the
MLIPs, indicating that it has an optimal balance between speed and accuracy.

them good candidates to be general-purpose potentials alongside exist-
ing low complexity MLIPs. In related recent work [52], an example of an
MLIP modeled after the embedded-atom method also achieved high
accuracy on the databases used in this paper, highlighting some of the
efforts of approaching the problem by increasing MLIP interpretability.
Given the already small error magnitudes for the s-MEAM potentials
developed here and the MLIPs developed in [24], additional research
that more exhaustively tests the generalizability of each of the model
forms by constructing databases for more chemical systems and appli-
cations would be extremely useful. However, given that s-MEAM shows
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Fig. 8. Plots of fitted splines for each term in the s-MEAM equation for each element. In order to facilitate interpretation of the functions, some of the density terms
have been scaled by —1 (by scaling U, p, and g by —1) so that all of the U splines have similar slopes, and some of the f splines have also been multiplied by —1. These
changes are purely aesthetic, and don’t impact the performance of the potentials, as discussed in [36]. The g splines for Cu, Mo, and Ni have been plotted with broken
y axes to account for the large magnitudes of some of the knots at the ends of the splines, which is caused by poor sampling of cosd = 1 in the databases leading to
poorly-constrained knot values. The U domain for the Ge potential was chosen to be [—0.5,0.5] since it yielded a better potential duri.ng optimization.

signs of trade-offs in accuracies for the systems studied in this work, it’s
clear that further research is necessary to explore how its functional
form might be modified or extended in order to make it more general-
izable. While for some cases this might be possible by simply adding
additional 2- or 3-body terms (or higher order, similar to what is done in
[53,56]) or different embedding functions, there are other situations—i.
e., organic systems, 2D materials, chemical reactions—where it would
be helpful to design entirely new spline functions (similar to the COMB
[9] approach of adding more terms). In those situations, other classical
potentials already exist which would provide useful guidelines for how
to introduce new terms into a fully general spline-based potential.
Ideally, a more exhaustive study that covers a variety of classical and
machine learning potentials on even more data sets than the six shown
here would be performed to perform a more complete comparison of any
inherent limitations between different potential forms.

During this process, it will be important for researchers to consider
what level of model and descriptor complexity is tolerable for increasing
the accuracies of interatomic potentials, especially if the differences
between models are only on the order of a few meV-atom ™! as seen here.
Related work exploring the necessary complexity of atomic descriptors
[54,55] will be useful as researchers continue to evaluate model
complexity. Finally, with the already excellent performances of both
classical potentials and MLIPs, this suggests expanding efforts towards
building, documenting, and curating suitable fitting databases, which
would enable exhaustive model performance comparisons and signifi-
cantly lower the barrier for developing interatomic potentials for new
computational studies.
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