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Abstract
1.	 Increases in the frequency and intensity of acute and chronic disturbances are 

causing declines of coral reefs world-wide. Although quantifying the responses 
of corals to acute disturbances is well documented, detecting subtle responses 
of coral populations to chronic disturbances is less common, but can also result in 
altered population and community structures.

2.	 We investigated the population dynamics of two key reef-building Merulinid coral 
species, Dipsastraea favus and Platygyra lamellina, with similar life-history traits, in 
the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differ-
ences in their population trajectories.

3.	 Demographic processes, which included rates of survival, growth, reproduction 
and recruitment were used to parametrize integral projection models and esti-
mate population growth rates and the likely population trajectories of both coral 
species.

4.	 The survival and reproduction rates of both D. favus and P. lamellina were posi-
tively related to coral colony size, and elasticity analyses showed that large colo-
nies most influenced population dynamics. Although both species have similar 
life-history traits and growth morphologies and are generally regarded as ‘stress-
tolerant’, the populations showed contrasting trajectories—D. favus appears to be 
increasing whereas P. lamellina appears to be decreasing.

5.	 As many corals have long-life expectancies, the process of local and regional 
decline might be subtle and slow. Ecological assessments based on total living 
coral coverage, morphological groups or functional traits might overlook subtle, 
species-specific trends. However, demographic approaches capable of detecting 
subtle species-specific population changes can augment ecological studies and 
provide valuable early warning signs of decline before major coral loss becomes 
evident.
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1  | INTRODUC TION

Supporting over 800 reef-building coral species, and hundreds of 
thousands of associated organisms, coral reefs are the most diverse 
marine ecosystem (Cairns, 1999; Knowlton et al., 2010). Coral reefs 
also provide valuable goods and services to human communities 
(Hoegh-Guldberg et al., 2007; Hughes et al., 2017; Knowlton, 2001). 
However, coral reefs are undergoing dramatic declines (Hoegh-
Guldberg et al., 2007; Hughes et al., 2017; Pandolfi et al., 2003) be-
cause of acute and chronic disturbances. For example, the increasing 
frequency and intensity of thermal-stress events are acute distur-
bances leading to coral bleaching, disease and mortality (Ainsworth 
et al., 2016; Gilmour et al., 2013; Graham et al., 2015; Loya et al., 2001; 
Riegl et al., 2018; Stuart-Smith et al., 2018; Sully et al., 2019). In ad-
dition, land-use changes, pollution, reduced water quality and other 
local impacts are examples of chronic disturbances contributing to 
coral population declines (Abelson,  2020; Kennedy et  al.,  2013; 
MacNeil et al., 2019; Pandolfi et al., 2003). While changes on coral 
reefs can take many forms, most studies report coral responses to 
acute disturbances and provide useful information on both local and 
regional differences in coral decline (Frade et al., 2018; Hoogenboom 
et al., 2017; Mies et al., 2020; van Woesik, Houk, et al., 2012). Yet, 
subtle, chronic disturbances to coral-reef systems might frequently 
go unnoticed (Hartmann et  al.,  2018; Mumby,  2017; Shlesinger & 
Loya, 2019), although they too can lead to community homogeniza-
tion, declines in species diversity, impaired recovery, and changes in 
population abundance and structure (Bak & Meesters, 1999; Ortiz 
et al., 2018; Osborne et al., 2017; Riegl et al., 2012).

Subtle, slow changes in coral populations are often difficult to 
detect because they require detailed demographic studies on pop-
ulation- and individual-level vital rates, such as survival, growth, re-
production, and recruitment. Yet, if subtle changes to populations 
are detected early enough, they may trigger mitigating policies that 
could improve the conditions from which the at-risk corals may re-
cover. Here we examine the population demography of two massive 
Merulinid coral species, Dipsastraea favus and Platygyra lamellina, 
to estimate the sensitivities of the populations to a suite of demo-
graphic processes and to predict the likely trajectories of these key 
species on the reefs of the Gulf of Eilat and Aqaba, Red Sea.

Despite the value of coral cover as a key metric of assess-
ing a coral-reef state, changes in coral cover alone cannot accu-
rately predict species-specific population trajectories (Edmunds 
& Riegl,  2020; Hartmann et  al.,  2018; Ortiz et  al.,  2018; Pisapia 
et al., 2020; Shlesinger & Loya, 2019). For example, coral composi-
tion at any one location can change from one assemblage to another, 
or change from high to low diversity, or from a few large colonies 
to many small colonies—while not displaying obvious changes in 
coral cover (Done, 1999; Edmunds & Riegl, 2020; Fine et al., 2019; 
González-Barrios et al., 2020; Knowlton, 2001; Pisapia et al., 2020). 
Yet those alternate communities are fundamentally different from 
each other. Additionally, some coral species exhibit high survival 
rates, slow growth rates and long-life expectancies although their 
recovery from disturbances may take decades. By contrast, other 

coral species exhibit low survival rates, fast growth rates and 
short-life expectancies but may recover rapidly from disturbances. 
Therefore, information on key demographic processes is needed to 
accurately predict the fate of coral populations, especially in modern 
times when coral abundances are globally declining.

Traditional life tables and matrix projection models are widely 
used in population biology to quantify change (Caswell,  2001; 
Lefkovitch,  1965; Leslie,  1945). Such tables and models continue 
to provide valuable insights into the dynamics of coral populations 
(Doropoulos et  al.,  2015; Pisapia et  al.,  2020; Riegl et  al.,  2018). 
These models, however, use discrete life stage or size classes and 
have been recently improved by the development of integral pro-
jections models (IPMs) that allow more flexibility in model construc-
tion and use continuous sizes—thus avoiding sensitivities stemming 
from the choice of discrete life stages or size classes (Coulson, 2012; 
Easterling et al., 2000; Edmunds et al., 2014; Ellner & Rees, 2006; 
Merow et al., 2014; Rees et al., 2014). Given their strengths, IPMs are 
being increasingly implemented in studies of coral populations and 
have been instrumental in: (a) studying coral population responses 
to the impacts of disease (Bruno et al., 2011), (b) detecting recovery 
from disturbances (Kayal et al., 2018), (c) determining responses to 
restoration (Montero-Serra et  al.,  2018), (d) examining population 
responses to environmental changes (Cant et  al.,  2020; Edmunds 
et al., 2014; Elahi et al., 2016; Madin et al., 2012) and (e) assessing the 
viability and dynamics of populations (Precoda et  al.,  2018; Scavo 
Lord et al., 2020). The IPM framework allows for a simple and flex-
ible incorporation of demographic processes relative to the size of 
coral colonies. These demographic processes may include the proba-
bility of survival, the rate of colony growth, colony fecundity and the 
number of recruits, which are integrated across different monitoring 
intervals to approximate the likely rates of population growth. Such 
demographic processes can be further evaluated to determine their 
influence on rates of coral population growth.

Here, we use an IPM framework to examine the demographic pro-
cesses that influence two key reef-building coral species, Dipsastraea 
favus and Platygyra lamellina on the reefs of Eilat, Red Sea from 2015 
to 2018. Specifically, the objectives of this study were to: (a) use a 
suite of demographic processes to determine the expected rates of 
population growth (λ) of the corals, (b) determine the sensitivities of 
the population growth rates of the corals to different demographic 
processes, (c) compare population growth rates and their sensitiv-
ities between two massive, slow growing coral species that share 
similar life-history traits and growth morphology, and (d) predict the 
likely population trajectories of the corals.

2  | MATERIAL S AND METHODS

2.1 | Demographic monitoring and estimates of vital 
rates

We monitored colonies of two common Indo-Pacific coral spe-
cies, Dipsastraea favus (n  =  167) and Platygyra lamellina (n  =  83) 
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in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018. These 
two coral species are both massive, slow growing, hermaphroditic, 
broadcast-spawning species belonging to the family Merulinidae. 
In 2015, 10 × 3 m2 permanently marked reef plots were haphaz-
ardly positioned at 4–5  m depth. The plots were photographed 
and all corals within the plots were identified and mapped using 
Adobe Photoshop CS6. The coral colonies were followed through 
to 2018 to estimate survival, growth and recruitment. To estimate 
size-specific survival and growth, we measured the diameter (cm) 
of all colonies within the plots at the beginning of the study in 
2015 and at the end of the study in 2018. Since both coral species 
tend to grow as symmetrical, dome-shaped massive colonies, we 
measured the diameter of each colony as a proxy of coral colony 
size. We used a census interval of 3  years because of the slow 
growth rates of the two massive coral species. To estimate recruit-
ment, all new corals, which were present in the plots in 2018, but 
absent from the 2015 maps, were considered to be recruits. As 
some recruits were too small to be identifiable to species level in 
the field, the recruitment rates were most likely underestimates.

To estimate reproductive traits as a function of colony size for 
the two coral species we used data measured by Shlesinger (1985) 
and gathered by colony size classes (Table S1). These data included 
proportions of reproductive colonies, proportions of reproductive 
polyps within colonies and maximum fecundity per polyp. For the 
analysis, and based on the data collected, we used random draws 
from a Gaussian distribution based on the group's mean size and 
standard deviation. Similarly, we used random draws from a Bernoulli 
distribution to determine whether a colony was reproductive or not 
and used random draws from a Gaussian distribution to determine 
the proportion of reproductive polyps. Colony fecundity was esti-
mated as the product of colony surface area (cm2), number of polyps 
per cm2 and polyp fecundity. The number of polyps per cm2 was cal-
culated by counting the number of polyps in small quadrats (9 cm2 in 
size) on 10 colonies of each species. Colonies of both species were 
considered as symmetrical hemispheres and their surface areas (S) 
were calculated as

where r is the radius (cm) of the colony. By using reproductive data 
from a former study, we made an assumption that the fecundity of 
the studied coral species has not changed through time. This might 
be a reasonable assumption, and the approach was adopted in previ-
ous demographic studies (Cant et al., 2020; Elahi et al., 2016; Precoda 
et  al.,  2018). However, fecundity may have changed through time. 
Previous studies assessing sublethal effects of chronic disturbances 
on coral reproduction showed reductions in the percentage of repro-
ducing colonies, reductions in the proportion of gravid polyps within 
colonies and reductions in polyp fecundity, leading to two- to five-
fold reductions in reproductive output under stressful conditions 
(Hartmann et al., 2018; Loya et al., 2004; Tomascik & Sander, 1987). 
Therefore, to account for a potential decline in fecundity through time, 
we constructed additional IPMs with a twofold reduction in fecundity.

Survival was modelled using a logistic regression (i.e. generalized 
linear models with a binomial link function) as a function of colony size 
in 2015. Growth was modelled using a linear regression examining the 
relationship between colony size in 2015 and 2018. The probability of 
a colony being reproductive and the proportions of reproductive pol-
yps within colonies were modelled using logistic regressions against 
colony size. The estimated numbers of oocytes per colony were 
based on count data and were modelled using a Poisson regression. 
However, since our initial Poisson models were overdispersed, we 
used a negative binomial model for the number of oocytes per colony 
relative to colony size, which improved the models’ diagnostics. We 
used natural log-transformed size data for all models.

2.2 | Constructing integral population models

We constructed integral projection models (IPMs) incorporating de-
mographic functions that described size-dependent coral survival, 
growth, reproduction and recruitment, to estimate the population 
asymptotic growth rate (λ). The general mathematical form of the 
IPM is:

where z′ indicates the colony size at time t + 3 (i.e. in 2018) and z is the 
colony size at time t (i.e. in 2015). The size distribution n(z′, t + 3) is es-
timated as a function of the colony size distribution n(z, t) of individuals 
of all colony sizes z at time t integrated across the range of colony sizes 
from Lower to Upper bounded colony sizes. The IPM kernel K(z′, z) re-
lates the colony size distribution at time t to a colony size distribution at 
time t + 3 using different functions describing how individual colonies 
survive, grow, reproduce and recruit. The kernel (K) can be split into 
two sub-kernels (Equation 3). The first sub-kernel (i.e. for survival, s, 
and growth, g) describes the probability distribution that an individual 
colony size can become at t + 3, conditioned on whether it survived 
the census interval. The second sub-kernel (i.e. for reproduction and 
recruitment, r) describes the number of potential offspring produced 
during the census interval and their colony size distribution, as:

The reproduction and recruitment sub-kernel r(z′, z) describes 
the production of new recruits and their size distributions by repro-
ductive colonies, and was the product of:

where Pcolony(z) is the probability that a colony is reproductive as a 
function of colony size z, Ppolyps(z) is the proportion of reproductive 
polyps within a colony as a function of colony size z, foocytes(z) is the po-
tential maximum number of oocytes produced as a function of colony 
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size z, frecruits(z′) is the size distribution of recruits observed at t + 3 and 
Pestablishment_ratio is the ratio of recruits observed at t + 3 compared with 
the potential oocyte production at time t.

We used the midpoint rule as the integration method (Ellner & 
Rees, 2006) to evaluate the IPM kernels along a grid of 300 mesh 
points (changing the number of mesh points from 50 to 500 did 
not affect the shape of the IPMs and the estimation of λ, indicating 
that the number of mesh points was adequate). The IPMs were 
discretized into their lower and upper limits within the colony-size 
range by calculating 0.9 times the diameter (cm) of the smallest 
observed coral colony of each species as the lower limit, and then 
3.912 or 4.605 (on a natural log scale), which equates to a col-
ony diameter of 50  cm for D. favus and 100  cm for P. lamellina, 
respectively, as the upper limits. These colony-size ranges span 
over all coral colony sizes observed in this study, and across larger 
colony sizes than observed to avoid colonies being evicted from 
the model (Merow et  al.,  2014). As we did not observe mortal-
ity among the largest colonies in this study (only one colony with 
a diameter larger than 10  cm, which is 2.3 on natural log scale, 
went through whole-colony mortality), the logistic regressions of 
survival can reach the asymptote of 1, effectively predicting im-
mortality (Merow et al., 2014). Therefore, to limit this implausible 
biological condition, we introduced a size-independent mortality 
probability of 1% following Edmunds et  al.  (2014) and Precoda 
et al. (2018).

The intrinsic rates of population growth (λ) were estimated 
by calculating the dominant eigenvalues of the IPMs, where 
λ < 1 indicates population decline and λ > 1 indicates population 
growth. Elasticity and sensitivity analyses were conducted to de-
termine the contribution of the different demographic processes 
and colony-size transitions on the population growth rates (λ). To 
further examine how each demographic process influenced the 
population growth rates (λ) we conducted perturbation analyses 
(Coulson et  al.,  2010) by independently increasing and decreas-
ing each demographic process coefficient by 1% and constructing 
new IPMs to calculate the proportional change in the population 
growth rates (λ). All analyses were performed using r v4.0.2 (R 
Core Team, 2020), and all code and data can be accessed at: http://
github.com/TomSh​lesin​ger/Diffe​rent_coral_popul​ation_traje​ctories 
(Shlesinger, 2021).

2.3 | Projecting population trajectories

To predict the likely long-term population dynamics, we used sto-
chastic projections based on each coral population's growth rate 
value λ derived from the IPMs. We computed 500 projections for 
each coral species by randomly assigning λ values drawn from a 
Gaussian distribution using the IPM’s λ value as the mean and using 
an estimate of variance by simultaneously perturbing all demo-
graphic process coefficients by ±1%. To simulate the effect of re-
duced fecundity on population dynamics we constructed new IPMs, 
using a regression of colony fecundity as described above while re-
ducing the number of oocytes per colony to half of the original val-
ues. We then computed an additional set of 500 projections for each 
coral species based on the new λ values and compared the two sets 
of projections (i.e. projections based on the original fecundity values 
versus fecundity reduced to half).

3  | RESULTS

During the 3-year study period (from 2015 to 2018), more than 80% 
of the coral colonies that survived experienced net growth, whereas 
less than 20% of the coral colonies decreased in size or went through 
partial mortality (Figure 1). The average growth rates were similar 
for both species (i.e. 1.67 ± 1.08 and 1.82 ± 1.01 cm, for Dipsastraea 
favus and Platygyra lamellina respectively). Survivorship and repro-
ductive traits showed positive relationships with colony size for 
both species (Figure 2; Tables S2 and S3). Small colonies (equating 
to ≤10 cm in diameter) had a lower probability of survival than large 
colonies (equating to >10 cm), such that almost all the mortalities of 
both species were evident for colonies ≤10 cm in diameter (which 
is 2.3 on the natural log scale in Figure  2a). Colony fecundity in-
creased exponentially with colony size (Figure 2c). The probability 
of being reproductive and the proportion of reproductive polyps 
also increased with colony size (Figure 2d,e). There were consider-
ably fewer P. lamellina recruits in the monitored reef plots than there 
were D. favus recruits (Figure 2f).

The highest probabilities of survival and growth were evident for 
large colonies, which also contributed the most to recruitment (via 
reproduction) (Figure 3a,d). The IPM of D. favus yielded a positive 

F I G U R E  1   Change in coral diameters 
from 2015 to 2018, indicating growth 
(depicted in blue) and shrinkage 
(depicted in red) of two massive corals 
(a) Dipsastraea favus and (b) Platygyra 
lamellina on the reefs of the Gulf of Eilat 
and Aqaba, Red SeaChange in coral diameter (cm)
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population growth rate, with λ = 1.071, which suggests that the pop-
ulation grew by 7.1% within the study's 3-year study period. By con-
trast, the IPM of P. lamellina had a negative population growth rate, 
with λ = 0.957, which suggests that the population declined by 4.3% 
during the same time period.

Elasticity analyses showed that large colonies contributed the 
most to the population growth rates, mostly through survival and 
growth (Figure  3b,e). Estimating the IPM sub-kernels elasticities 
separately (Figure S1) revealed that reproduction/recruitment con-
tributed ~5% to the population growth rate of D. favus, whereas 
reproduction/recruitment contributed only ~2% to the population 
growth rate of P. lamellina. Sensitivity analysis again suggested that 
population growth rate was most sensitive to changes in the largest 
colonies of both species, and to a lesser extent the smallest colonies 
of both species (Figure 3c,f). The perturbation analyses revealed that 
colony growth had the largest impact on population growth rates, 
followed by fecundity, although fecundity had a larger impact on D. 
favus population growth rate than on P. lamellina (Figure 4).

The projections of the population dynamics of D. favus suggest 
that the population will most likely increase and might even dou-
ble within ~30 years (Figure 5a). By contrast, the projections of the 
population dynamics of P. lamellina suggest that the population will 

slowly decrease and might halve within ~40 years (Figure 5b). The 
projections of both species were sensitive to the simulation of re-
duced fecundity and differed from the projections using the origi-
nal fecundity values (generalized linear mixed models, p < 0.001 for 
both). However, the difference between the projections based on 
original fecundities versus fecundities reduced by 50% were much 
more subtle for P. lamellina than for D. favus (Figure 5).

4  | DISCUSSION

This 3-year study in the Gulf of Eilat and Aqaba, Red Sea shows that 
the populations of two coral species, which possess similar traits 
and growth morphologies, have contrasting population trajectories 
despite an overall increase in total coral cover at the same location 
(Shaked & Genin,  2020; Shlesinger & Loya,  2016). The population 
of Dipsastraea favus exhibited positive population growth (i.e. λ > 1) 
and is predicted to gradually increase, whereas the population of 
Platygyra lamellina exhibited negative population growth (i.e. λ < 1) 
and is predicted to gradually decrease. It appears that P. lamellina is 
going through a population decline because of the lower rates of sur-
vival and recruitment than D. favus. The differences in recruitment 

F I G U R E  2   Demographic rates as a function of coral size for both Dipsastraea favus (depicted in blue) and Platygyra lamellina (depicted 
in green) on the reefs of the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018. Points represent individual colony data and the curves 
represent the fitted functions with 95% confidence intervals as the shaded areas. Size is given on log scale. (a) Probability of survival 
using a logistic regression. (b) Growth using a linear regression. (c) Fecundity (i.e. number of oocytes) per colony using a negative binomial 
regression. (d) Probability of a colony being reproductive using a logistic regression. (e) Proportion of gravid polyps within a colony using 
a logistic regression. (f) Size frequency distribution of the observed recruits and the normal distribution fitted to the data. Note that the 
histogram of P. lamellina recruits is presented with a small horizontal offset to aid visualization
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F I G U R E  3   Integral projection model 
output for the massive corals (a–c) 
Dipsastraea favus and (d–f) Platygyra 
lamellina on the reefs of the Gulf of Eilat 
and Aqaba, Red Sea from 2015 to 2018. 
(a) and (d) depict the whole integral 
projection model kernel with warmer 
colours indicating greater probability of 
size transitions from one year to the next. 
The dashed lines represent the 1:1 slope 
(i.e. no change in size between years). 
(b) and (e) depict the integral projection 
models’ elasticities, and (c) and (f) are the 
models’ sensitivities. The diagonal high 
probability ridges in (a,b) and (d,e) reflect 
the survival and growth sub-kernel, 
and the high probability ‘hotspots’ on 
the bottom right in (a,d) represent the 
reproduction and recruitment sub-kernel
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are likely to be caused by the differences in spawning synchrony and 
fertilization success among these species (Shlesinger & Loya, 2019). 
For both populations, large colonies had a greater influence on pop-
ulation trajectories than small colonies.

As expected in corals with a massive growth form, the growth 
rates of both species were slow, and in the 3-year study period (from 
2015 to 2018) the increase in colony diameter averaged less than 
two centimetres. Nonetheless, perturbation analyses revealed that 
the population growth rates (λ) of both species were most sensitive 
to changes in colony growth, followed by changes in reproduction. 
As both the survival and reproductive potential of corals increase 
rapidly with colony size, individual colony growth effectively in-
fluences all other demographic processes. Together with the rela-
tively low recruitment rates observed in this study, especially for P. 
lamellina, the finding that colony growth was most influential on the 
population growth rate was not unexpected. However, given that re-
duced coral growth and calcification might be associated with distur-
bances such as ocean warming and acidification (Cantin et al., 2010; 
Comeau et al., 2014; Pratchett et al., 2015), our results suggest that 
future alterations of coral growth rates may have substantial nega-
tive consequences on overall coral population dynamics.

The probability of coral colonies being fertile, the proportion 
of gravid polyps within the corals, and colony fecundity increased 
with colony size. Nonetheless, a variety of environmental and phys-
iological stressors can reduce coral fecundity, gamete quality and 
fertilization success (Feldman et  al.,  2018; Hartmann et  al.,  2018; 
Liberman et al., 2021; Omori et al., 2001; Paxton et al., 2016; Ward 
et al., 2000). Reductions in fecundity or fertilization rate can further 
result in reductions in coral recruitment, leading to population decline. 

Similarly, as coral fertilization and subsequent recruitment are largely 
density dependent (Levitan et al., 2004; Nozawa et al., 2015; Oliver 
& Babcock,  1992; Teo & Todd,  2018), changes in adult abundances 
can also result in parallel changes in coral recruitment (Doropoulos 
et al., 2015; Gilmour et al., 2013; Hughes et al., 2019). While acute dis-
turbances such as thermal stress can completely terminate or signifi-
cantly reduce coral reproductive output for more than 2 years after a 
thermal stress event (Johnston et al., 2020; Levitan et al., 2014), chronic 
disturbances can also have deleterious effects on coral reproduction 
(Hartmann et al., 2018; Loya et al., 2004; Tomascik & Sander, 1987). 
In the present study, the estimates of coral reproductive parameters 
were based on data collected ca. 3 decades ago. Since fecundity may 
have declined through that 30-year period, we simulated reductions in 
fecundity and examined the impact that such reductions may have on 
the rate of coral population growth. While reduced fecundity lowered 
the rates of population growth of both species, its effect on the popu-
lation of D. favus was more pronounced than its effect on the popula-
tion of P. lamellina. These results, in combination with the elasticity and 
perturbation analyses, show that reproduction and recruitment had 
more impact on the rates of population growth of D. favus than on the 
rates of P. lamellina, further emphasizing species-specific differences.

Overall, the two coral species studied here share many similari-
ties in their life-history traits and demographic rates—they are both 
slow-growing, highly fecund hermaphroditic broadcast-spawning 
species with a massive growth form, belonging to the same fam-
ily Merulinidae. Coral species possessing such traits are generally 
regarded as ‘stress-tolerant’, resistant species (Darling et al., 2012; 
Klepac & Barshish, 2020; Loya et al., 2001). Given the challenges of 
identifying coral species, particularly in the field, and that life-history 

F I G U R E  5   Predicted population dynamics of the massive corals (a) Dipsastraea favus and (b) Platygyra lamellina on the reefs of the Gulf of 
Eilat and Aqaba, Red Sea from 2018 to 2063. Blue lines represent the mean of 500 stochastic projections (depicted as thin light blue lines) 
based on the population growth rate (λ) derived from the integral projection models (IPMs) for the original fecundity values (λ = 1.071 for D. 
favus and λ = 0.957 for P. lamellina). Red lines represent the mean of 500 stochastic projections (depicted as thin light red lines) based on the 
population growth rate (λ) derived from the IPMs with fecundity reduced to half (λ = 1.038 for D. favus and λ = 0.948 for P. lamellina)
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traits frequently express ecological functionality (Madin et al., 2016; 
Mouillot et al., 2013), there is an increasing interest in heuristically 
categorizing corals for comparative purposes. For example, some 
studies emphasize ‘weedy’ versus ‘non-weedy’ (Knowlton,  2001), 
or massive versus branching morphologies (Álvarez-Noriega 
et  al.,  2016; Comeau et  al.,  2014; Klepac & Barshish,  2020; Loya 
et al., 2001; Pisapia et al., 2020), or some other multi-dimensional 
trait measures (Darling et  al.,  2012; Denis et  al.,  2017; González-
Barrios et al., 2020; van Woesik, Franklin, et al., 2012). In most cases, 
studies using trait categories largely aim to estimate ‘winners’ and 
‘losers’ (sensu Loya et al., 2001), or differential functionality follow-
ing disturbances and ecosystem-wide changes (Denis et  al.,  2017; 
González-Barrios et al., 2020; Mouillot et al., 2013). While such ap-
proaches yield valuable insights, they amalgamate species (or even 
genera), which may result in the loss of subtle yet different species-
specific responses, as shown here. For example, branching cor-
als of the highly speciose genus Acropora are generally recognized 
as highly susceptible to thermal-stress (Graham et  al.,  2015; Loya 
et al., 2001; Mies et al., 2020), yet species level responses may vary 
considerably (Muir et al., 2017; van Woesik et al., 2011). Similarly, 
both species studied here would be classified as ‘stress-tolerant’ 
or resistant coral species. Nonetheless, the two species displayed 
contrasting trajectories—one population was thriving whereas the 
second population was declining. Thus, although grouping corals by 
genera, functional traits or morphology can be appealing and pro-
ductive from several aspects, it also masks subtle species-specific 
trends that can have major ecological repercussions.

In recent years, many coral reefs throughout the world have 
suffered from mass bleaching events, however, the reefs in the 
Gulf of Eilat and Aqaba, in the northern part of the Red Sea have 
not shown such responses—in large part because of the unusually 
high thermal tolerance of the corals in this region (Bellworthy & 
Fine, 2017; Fine et al., 2013; Osman et al., 2018). As such, this re-
gion is regarded as a potential climate-change refugium. Moreover, 
some of these northern Red Sea reefs even recovered following 
decades of anthropogenic stressors because of effective man-
agement that reduced many of the past stressors (Shlesinger & 
Loya,  2016). Nonetheless, ongoing increases in anthropogenic 
pressures together with the changing climate are threatening this 
coral-reef ecosystem (Genin et  al.,  2020; Kleinhaus et  al.,  2020; 
Reverter et  al.,  2020; Rosenberg et  al.,  2019; Shlesinger & 
Loya,  2019) and may cause subtle, slow-acting chronic changes 
that can eventually lead to local or regional declines in coral pop-
ulations. Given the challenges of repeated sampling of the exact 
same areas, populations and colonies on the reef, our study rep-
resents a relatively restricted spatial extent. Therefore, it might 
be possible that the populations of the studied species will show 
different trends in other habitats or sites. Similarly, although 
this study spanned a 3-year period in which the overall annual 
coral community recruitment rates were similar (Shlesinger & 
Loya, 2019), it is plausible that on a longer timeframe, recruitment 
rates will vary, and there might be years with sporadic high recruit-
ment events that could counter the population decline.

Moreover, it is important to note that the projections of our 
models are only as good as the conditions under which they were 
constructed. Therefore, if the environmental conditions on the reefs 
deteriorate in the future, then so will the population growth rates. 
Cant et al. (2020) found that the population growth rates of some 
coral groups were substantially reduced during an acute thermal-
stress event, or under simulations of possible future ocean condi-
tions. For example, they found that Pocillopora had a population 
growth rate value (λ) of 0.812, which declined to 0.299 the year fol-
lowing a thermal-stress event. By contrast, Turbinaria showed little 
change over time (Cant et al., 2020). These findings, together with 
our results, emphasize the need to augment ecological studies and 
status assessments with species-specific demographic approaches 
to fully understand the changes that are occurring on coral reefs.

With the developments of image-based techniques assembling 
photomosaics and 3D reconstructions (Pedersen et al., 2019; Rossi 
et al., 2020; Yuval et al., 2021), the ease of monitoring specific coral 
colonies and reef plots along large spatial and temporal scales is 
growing rapidly. Accordingly, long-term studies can benefit tremen-
dously from incorporating these techniques to capture and derive 
valuable demographic information (Edmunds & Riegl, 2020). Yet, the 
identification of corals at the species level can be a challenging task 
that would restrict the feasibility of collecting species-specific de-
mographic data. Therefore, it might be useful to focus on a limited 
set of key species that could be relatively easy to identify. Indeed, 
detailed demographic information at the species level can provide 
early warning signs of population declines. In turn, demographic 
approaches can be extended to provide a useful predictive tool for 
guiding management actions that are aimed to reduce anthropo-
genic pressures and maintain ecosystem biodiversity so that coral 
reefs can be preserved in perpetuity.
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