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1. Introduction

1.1. Overview

The understanding of many aspects of Ricci flow has advanced dramatically in the last

fifteen years. This has led to numerous applications, the most notable being Perelman’s

landmark proof of the geometrization and Poincaré conjectures. Nonetheless, from an

analytical viewpoint, a number of fundamental questions remain, even for 3-dimensional

Ricci flow. One of these concerns the nature of Ricci flow with surgery, a modification of

Ricci flow that was central to Perelman’s proof. Surgery, an idea initially developed by

Hamilton, removes singularities as they form, allowing one to continue the flow. While

Perelman’s construction of Ricci flow with surgery was spectacularly successful, it is not

entirely satisfying due to its ad hoc character and the fact that it depends on a number

of non-canonical choices. Furthermore, from a PDE viewpoint, Ricci flow with surgery

does not provide a theory of solutions to the Ricci flow PDE itself, since surgery violates

the equation. In fact, Perelman himself was aware of these drawbacks and drew attention

to them in both of his Ricci flow preprints [P1, p. 37] and [P2, p. 1], respectively:

“It is likely that by passing to the limit in this construction [of Ricci

flow with surgery ] one would get a canonically defined Ricci flow through

singularities, but at the moment I do not have a proof of that.”

“Our approach ... is aimed at eventually constructing a canonical Ricci

flow ... a goal, that has not been achieved yet in the present work.”

Motivated by the above, the paper [KL2] introduced a new notion of weak (or

generalized) solutions to Ricci flow in dimension 3 and proved the existence within this

class of solutions for arbitrary initial data, as well as a number of results about their

geometric and analytical properties.

In this paper we show that the weak solutions of [KL2] are uniquely determined

by their initial data (see Theorem 1.1 below). In combination with [KL2], this implies

that the associated initial value problem has a canonical weak solution, thereby proving

Perelman’s conjecture (see Corollary 1.2). We also show that this weak solution depends

continuously on its initial data, and that it is a limit of Ricci flows with surgery (see

Corollary 1.4). In summary, our results provide an answer to the long-standing problem

of finding a satisfactory theory of weak solutions to the Ricci flow equation in the 3-

dimensional case.

From a broader perspective, it is interesting to compare the results in this paper

with work on weak solutions to other geometric PDEs.

The theory of existence and partial regularity of such weak solutions has been studied
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extensively. As with PDEs in general, proving existence of solutions requires a choice of

objects and a topology that is strong enough to respect the equation, but weak enough to

satisfy certain compactness properties. Establishing the finer structure of solutions (e.g.

partial regularity) requires, generally speaking, a mechanism for restricting blow-ups.

For minimal surfaces, harmonic maps and harmonic map heat flow, good notions of weak

solutions with accompanying existence and partial regularity theorems were developed

long ago [Al], [Si], [SU], [CS]. By contrast, the theory of weak solutions to mean curvature

flow, the Einstein equation and Ricci flow, are at earlier stages of development. For

mean curvature flow, for instance, different approaches to weak solutions (e.g. (enhanced)

Brakke flows and level set flow) were introduced over the last forty years [Bra], [ES],

[CGG], [I1]. Yet, in spite of deep results for the cases of mean convex or generic initial

conditions [W1], [W3], [W4], [CM], to our knowledge, the best results known for flows

starting from a general compact smooth surface in R3 are essentially those of [Bra], which

are presumably far from optimal. For the (Riemannian) Einstein equation many results

have been obtained in the Kähler case and on limits of smooth Einstein manifolds, but

otherwise progress toward even a viable definition of weak solutions has been rather

limited. Progress on Ricci flow has been limited to the study of specific models for an

isolated singularity [FIK], [AK], [ACK] and the Kähler case, which has advanced rapidly

in the last ten years after the appearance of [ST].

Regarding uniqueness of weak solutions, our focus in this paper, much less is known.

The paper [I2] describes a mechanism for non-uniqueness, stemming from the dynamical

instability of cones, which is applicable to a number of geometric flows. For example,

for mean curvature flow of hypersurfaces in Rn this mechanism provides examples of

non-uniqueness in high dimensions. Ilmanen and White [W2] found examples of non-

uniqueness starting from compact smooth surfaces in R3. Examples for harmonic map

heat flow are constructed in [GR], [GGM], and for Ricci flow in higher dimensions there

are examples in [FIK], which suggest non-uniqueness. Since any discussion of uniqueness

must refer to a particular class of admissible solutions, the interpretation of some of the

above examples is not entirely clear, especially in the case of higher-dimensional Ricci

flow, where a definition of weak solutions is lacking. In the other direction, uniqueness

has been proven to hold in only a few cases: harmonic map heat flow with 2-dimensional

domain [St], mean convex mean curvature flow [W3] and Kähler–Ricci flow [ST], [EGZ].

The proofs of these theorems rely on special features of these flows. In [St], the flow

develops singularities only at a finite set of times, and at isolated points. The striking

proof of uniqueness in [W3] is based on comparison techniques for scalar equations and a

geometric monotonicity property specific to mean convex flow (see also the recent paper

[HW], which localizes the mean convexity assumption). Lastly, Kähler–Ricci flow has
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many remarkable features that play a crucial role in its uniqueness argument: the singu-

larities, whose form is quite rigid, arise at a finite set of times determined by the evolution

of the Kähler class; also, techniques specific to scalar equations play an important role.

The method of proving uniqueness used in this paper is completely different in spirit

from earlier work. Uniqueness is deduced by comparing two flows with nearby initial

condition and estimating the rate at which they diverge from one another. Due to the

nature of the singularities, which might in principle occur at a Cantor set of times, the

flows can only be compared after the removal of their almost singular regions. Since one

knows nothing about the correlation between the almost singular parts of the two flows,

the crux of the proof is to control the influence of effects emanating from the boundary

of the truncated flows. This control implies a strong stability property, which roughly

speaking states that both flows are close away from their almost singular parts if they

are sufficiently close initially. A surprising consequence of our analysis is that this strong

stability result applies not just to Ricci flows with surgery and the weak solutions of

[KL2], but to flows whose almost singular parts are allowed to evolve in an arbitrary

fashion, possibly violating the Ricci flow equation at small scales.

The main ideas of our proof may throw light on uniqueness problems in general.

When distilled down to its essentials, our proof is based on the following ingredients:

(1) A structure theory for the almost singular part of the flow, which is based on a

classification of all blow-ups, not just shrinking solitons.

(2) Uniform strict stability for solutions to the linearized equation, for all blow-ups.

(3) An additional quantitative rigidity property for blow-ups that makes it possible

to fill in missing data to the evolution problem, after recently resolved singularities.

This list, which is not specific to Ricci flow, suggests a tentative criterion for when

one might expect, and possibly prove, uniqueness for weak solutions to a given geometric

flow. From a philosophical point of view, it is natural to expect (1) and (2) to be necessary

conditions for uniqueness. However, implementation of even (1) can be quite difficult.

Indeed, to date there are few situations where such a classification is known. It turns out

that (3) is by far the most delicate part of the proof in our setting and it is responsible

for much of the complexity in the argument (see the overview of the proof in §2 for more

discussion of this point). Another context where the above criteria may be satisfied is

the case of mean curvature flow of 2-spheres in R3, where uniqueness is conjectured to

hold [W2].

We mention that our main result implies that weak solutions to Ricci flow behave

well even when one considers continuous families of initial conditions. This continuous

dependence leads to new results for diffeomorphism groups of 3-manifolds and spaces of

metrics with positive scalar curvature, which will be discussed elsewhere [BK1]–[BK3].
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1.2. Background and setup

In preparation for the statements of our main results, which will be presented in the

next subsection, we now recall in greater detail some facts about Perelman’s Ricci flow

with surgery [P2], [KL1], [MT], [BBM+] and the weak solutions from [KL2], which will

be needed for our setup. As these constructions are generally very technical, we will

continue in a relatively informal style. The reader who is already familiar with this

material may skip this subsection and proceed to the presentation of the main results in

§1.3.
In his seminal paper [Ha1], Hamilton introduced the Ricci flow equation

∂tg(t)=−2Ric(g(t)), g(0)= g0

and showed that any Riemannian metric g0 on a compact manifold can be evolved into a

unique solution (g(t))t∈[0,T ). This solution may, however, develop a singularity in finite

time. In [P1], Perelman analyzed such finite-time singularities in the 3-dimensional case

and showed that those are essentially caused by two behaviors:

• Extinction (e.g. the flow becomes asymptotic to a shrinking round sphere).

• The development of neck pinches (i.e. there are regions of the manifold that be-

come more and more cylindrical, ≈S2×R, modulo rescaling, while the diameter of the

cross-sectional 2-sphere shrinks to zero).

Based on this knowledge, and inspired by a program suggested by Hamilton, Perel-

man specified a surgery process in which the manifold is cut open along small cross-

sectional 2-spheres, the high-curvature part of the manifold and extinct components are

removed, and the resulting spherical boundary components are filled in with 3-disks en-

dowed with a standard cap metric. This produces a new smooth metric on a closed

manifold, from which the Ricci flow can be restarted. The process may then be iter-

ated to yield a Ricci flow with surgery. More specifically, a Ricci flow with surgery is a

sequence of conventional Ricci flows (g1(t))t∈[0,T1], (g2(t))t∈[T1,T2], (g3(t))t∈[T2,T3], ... on

compact manifolds M1, M2, M3, ... , where (Mi+1, gi+1(Ti)) arises from (Mi, gi(Ti)) by

a surgery process, as described before.

As mentioned in §1.1, the construction of a Ricci flow with surgery depends on a

variety of auxiliary parameters, for which there does not seem to be a canonical choice,

such as the following:

• The scale of the cross-sectional 2-sphere along which a neck pinch singularity is

excised; this scale is often called the surgery scale.

• The precise position and number of these 2-spheres.

• The standard cap metric that is placed on the 3-disks which are glued into the

2-sphere boundary components.
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surgery

Figure 1. In a Ricci flow with surgery (left figure) surgeries are performed at a positive scale,
whereas a singular Ricci flow (right figure) “flows through” a singularity at an infinitesimal

scale. The hatched regions in the left figure mark the surgery points, i.e. the points that are

removed or added during a surgery.

• The method used to interpolate between this metric and the metric on the nearby

necks.

Different choices of these parameters may influence the future development of the

flow significantly (as well as the space of future surgery parameters). Hence, a Ricci flow

with surgery cannot be constructed in a canonical way or, in other words, a Ricci flow

with surgery is not uniquely determined by its initial metric.

It is therefore a natural question whether a Ricci flow with surgery can be replaced

by a more canonical object, which one may hope is uniquely determined by its initial

data. This question was first addressed in [KL2], where the notion of a singular Ricci

flow, a kind of weak solution to the Ricci flow equation, was introduced. In these flows,

surgeries have been replaced by singular structure, i.e. regions with unbounded curvature,

which may be thought of as “surgery at an infinitesimal scale” (see Figure 1).

In order to present the definition and summarize the construction of a singular Ricci

flow, we need to introduce the spacetime picture of a Ricci flow or a Ricci flow with

surgery. For this purpose, consider a Ricci flow with surgery consisting of the conven-

tional Ricci flows (M1, (g1(t))t∈[0,T1]), (M2, (g2(t))t∈[T1,T2]), ... and form the following

4-dimensional spacetime manifold (see Figure 2 for an illustration):

M := (M1×[0, T1]
⋃
ϕ1

M2×[T1, T2]
⋃
ϕ2

M3×[T2, T3]
⋃
ϕ3

... )\S. (1.1)

Here S denotes the set of surgery points, i.e. the set of points that are removed or

added during a surgery step and ϕi:Mi⊃Ui!Ui+1⊂Mi+1 are isometric gluing maps,

which are defined on the complement of the surgery points in Mi×{Ti} andMi+1×{Ti}.
The above construction induces a natural time-function t:M![0,∞), whose level-sets

are called time-slices, as well as a time-vector field ∂t on M with ∂t ·t=1. The Ricci

flows (g1(t))t∈[0,T1], (g2(t))t∈[T1,T2], ... induce a metric g on the horizontal distribution
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0

T1

T1

T2

T2

T3

M1×[0, T1]

M2×[T1, T2]

M3×[T2, T3]

surgery

surgery

∂t

0

T1

T2

T3

t

⇝

M4

Figure 2. A Ricci flow with surgery (left) can be converted to a Ricci flow spacetime (right)

by identifying pre and post-surgery time-slices and removing surgery points. The white circles
in the right figure indicate that surgery points were removed at times T1 and T2.

{dt=0}⊂TM, which satisfies the Ricci flow equation

L∂tg=−2Ric(g).

The tuple (M, t, ∂t, g) is called a Ricci flow spacetime (see Definition 5.1 for further

details). We will often abbreviate this tuple by M.

Note that a Ricci flow spacetime M that is constructed from a Ricci flow with

surgery by the procedure above is incomplete (see Definition 5.3 for more details). More

specifically, the time-slices corresponding to surgery times are incomplete Riemannian

manifolds, because surgery points, consisting of necks near neck pinches or standard caps

are not included in M. So, these time-slices have “holes” whose “diameters” are ⩽Cδ,

where δ is the surgery scale and C is a universal constant. A Ricci flow with this property

is called Cδ-complete (see again Definition 5.3 for further details).

In [KL2] it was shown that every Riemannian manifold is the initial time-slice of

a Ricci flow spacetime M whose time-slices are zero-complete, which we also refer to

as complete (see Figure 3 for an illustration). This means that the time-slices of M
may be incomplete, but each time-slice can be completed as a metric space by adding a

countable set of points. Note that since the curvature after a singularity is not uniformly

bounded, we cannot easily control the time until a subsequent singularity arises. In fact,

it is possible—although not known at this point— that the set of singular times on a

finite time-interval is infinite or even uncountable. See [KL3] for a proof that this set has

Minkowski dimension ⩽ 1
2 .
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0

M4
t

∂t

(M, g0)

Figure 3. Example of a zero-complete Ricci flow spacetime with initial time-slice (M, g0).

We briefly review the construction of the (zero-complete) Ricci flow spacetime M in

[KL2]. Consider a sequence of Ricci flows with surgery with surgery scale δi!0, starting

from the same given initial metric, and construct the corresponding Ricci flow spacetimes

Mδi as in (1.1). Using a compactness argument, it was shown in [KL2] that, after passing

to a subsequence, we have convergence

Mδi!M (1.2)

in a certain sense. The Ricci flow spacetime M can then be shown to be zero-complete.

We remark that even though the surgery scale in this flow is effectively zero, which

seems more canonical than in a Ricci flow with surgery, the entire flow may a priori not

be canonical; i.e. the flow is a priori not uniquely determined by its initial data.

We also remind the reader that, while a Ricci flow spacetime describes a singular

flow, the metric tensor field g on M is not singular itself, since the spacetime manifold

M does not “contain the singular points”. In other words, M describes the flow only on

its regular part. A flow that includes singular points can be obtained, for example, by

taking the metric completion of the time-slices. However, we do not take this approach,

in order to avoid having to formulate the Ricci flow equation at the added singular

points. This is in contrast to weak forms of other geometric flows, such as the Brakke

flow (generalizing mean curvature flow), which is defined at singular points and therefore

not smooth everywhere.

In lieu of an interpretation of the Ricci flow equation at the (non-existent) singular

points of a Ricci flow spacetime, it becomes necessary to characterize the asymptotic
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geometry in its almost singular regions. This is achieved via the canonical neighbor-

hood assumption, which states that regions of high curvature are geometrically close to

model solutions— κ-solutions —modulo rescaling (see Definition 5.6 for more details).

Roughly speaking, this implies that these regions are either spherical, neck-like or cap-

like. κ-solutions (see Definition 5.4 for more details) arise naturally as blow-up limits of

conventional 3-dimensional Ricci flows and have also been shown to characterize high-

curvature regions in Ricci flows with surgery. Moreover, the Ricci flow spacetimes con-

structed in [KL2] also satisfy the canonical neighborhood assumption in an even stronger

sense (for more details see the discussion after Definition 5.6).

1.3. Statement of the main results

We now state the main results of this paper in their full generality. Some of the termi-

nology used in the following was informally introduced in the previous subsection. For

precise definitions and further discussions we refer the reader to §5.
Our first main result is the uniqueness of complete Ricci flow spacetimes that satisfy

the canonical neighborhood assumptions. These spacetimes were also sometimes called

“weak Ricci flows” in the previous two subsections.

Theorem 1.1. (Uniqueness of Ricci flow spacetimes, general form) There is a uni-

versal constant εcan>0 such that the following holds.

Let (M, t, ∂t, g) and (M′, t′, ∂t′ , g
′) be two Ricci flow spacetimes that are both (0, T )-

complete for some T∈(0,∞] and satisfy the εcan-canonical neighborhood assumption at

scales (0, r) for some r>0. If the initial time-slices (M0, g0) and (M′
0, g

′
0) are isometric,

then the flows (M, t, ∂t, g) and (M′, t′, ∂t′ , g
′) are isometric as well.

More precisely, assume that there is an isometry ϕ: (M0, g0)!(M′
0, g

′
0). Then, there

is a unique smooth diffeomorphism ϕ̂:M[0,T ]!M′
[0,T ] such that

ϕ̂∗g′ = g, ϕ̂|M0 =ϕ, ϕ̂∗∂t = ∂t′ , t′�ϕ̂= t.

A Ricci flow spacetime is “(0, T )-complete” if the zero-completeness property holds

up to time T (see Definition 5.3).

Both properties that are imposed on M and M′ in Theorem 1.1 hold naturally for

the Ricci flow spacetimes constructed in [KL2]. So, we obtain the following corollary.

Corollary 1.2. There is a universal constant εcan>0 such that the following holds.

For every compact Riemannian manifold (M, g) there is a unique (i.e. canonical)

Ricci flow spacetime (M, t, ∂t, g) whose initial time-slice (M0, g0) is isometric to (M, g)

and that is zero-complete, and such that for every T>0 the time-slab M[0,T ) satisfies

the εcan-canonical neighborhood assumption at scales (0, rT ) for some rT>0.
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While we will not discuss this here, we remark that it is possible to modify the

arguments in [Ba2]–[Ba6] to show that the flow M becomes non-singular past some

time T>0 and we have a curvature bound of the form |Rm|<C/t. So, the scale rT in

Corollary 1.2 can even be chosen independently of T .

Coming back to Theorem 1.1, we draw attention to the fact that the time-slices of

M and M′, including the initial time-slices, may have infinite diameter or volume. Also,

they may have unbounded curvature even in bounded subsets, for instance when the flow

starts from a manifold with finite-diameter cuspidal ends. We also emphasize that the

constant εcan is universal and does not depend on any geometric quantities.

Theorem 1.1 will follow from a stability result for Ricci flow spacetimes. We first

present a slightly less general, but more accessible version of this stability result. In

the following theorem, we only require the completeness and the canonical neighborhood

assumption to hold above some small scale ε, i.e. where the curvature is ≲ε−2. As such,

the theorem can also be used to compare two Ricci flows with surgery or a Ricci flow

with surgery and a Ricci flow spacetime, via the construction (1.1). Furthermore, we

only require the initial time-slices of M and M′ be close in the sense that there is a

sufficiently precise bilipschitz map ϕ, which may only be defined on regions where the

curvature is not too large. As a consequence, the two Ricci flow spacetimes M and M′

can only be shown to be geometrically close. More specifically, the map ϕ̂ that compares

M with M′ can only shown to be bilipschitz and may not be defined on high-curvature

regions. The map ϕ̂ is also not necessarily ∂t-preserving (see Definition 6.12), but it

satisfies the harmonic map heat flow equation (see Definition 6.13).

Theorem 1.3. (Stability of Ricci flow spacetimes, weak form) For every δ>0 and

T<∞ there is an ε=ε(δ, T )>0 such that the following holds.

Consider two (ε, T )-complete Ricci flow spacetimes M and M′ that each satisfy the

ε-canonical neighborhood assumption at scales (ε, 1).

Let ϕ:U!U ′ be a diffeomorphism between two open subsets U⊂M0 and U ′⊂M′
0.

Assume that |Rm|⩾ε−2 on M0\U and

|ϕ∗g′0−g0|⩽ ε.

Assume also that the ε-canonical neighborhood assumption holds on U ′ at scales (0, 1).

Then, there is a time-preserving diffeomorphism ϕ̂: Û!Û ′ between two open subsets

Û⊂M[0,T ] and Û
′⊂M′

[0,T ] that evolves by the harmonic map heat flow and that satisfies

ϕ̂=ϕ on U∩Û and

|ϕ̂∗g′−g|⩽ δ.

Moreover, |Rm|⩾δ−2 on M[0,T ]\Û .
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We remark that the condition that the ε-canonical neighborhood assumption holds

on U ′ at scales (0, 1) is automatically satisfied if the curvature scale on U ′ is >ε, which is

implied by a bound of the form |Rm|<cε−2 on U ′ (see Definition 5.6 for further details).

Theorem 1.3 is formulated using only C0-bounds on the quantity ϕ∗g′−g, which
measures the deviation from an isometry. Using a standard argument involving local

gradient estimates for non-linear parabolic equations, these bounds can be improved to

higher-derivative bounds as follows:

Addendum to Theorem 1.3. Let m0⩾1 and C<∞. If in Theorem 1.3 we addi-

tionally require that

|∇m(ϕ∗g′0−g0)|⩽ ε

and

|∇mRm|⩽C

on U for all m=0, ...,m0+2, and allow ε to depend on m0 and C, then

|∇m(ϕ̂∗g′−g)|⩽ δ

on Û for all m=0, ...,m0.

A similar addendum applies to Theorem 1.5 below.

Combining Theorem 1.3 with [KL2, Theorem 1.2] (see also [KL2, p. 6]) we obtain

the following.

Corollary 1.4. Let (M, g) be a compact Riemannian manifold, and consider a

sequence of Ricci flows with surgery starting from (M, g), for a sequence of surgery scales

δi!0. Let Mδi be the corresponding Ricci flow spacetimes, as defined in (1.1). Then,

the Mδi converge to a unique Ricci flow spacetime as in (1.2).

We remark that in the case of mean curvature flow a similar result holds: In [He],

[L] it was shown that the 2-convex mean curvature flow with surgery constructed in [HS]

converges to the level set flow as the surgery parameter tends to zero. However, their

proofs, which are remarkably elementary, are entirely different from ours: they use a

quantitative variant of the barrier argument from White’s uniqueness theorem [W3]. A

similar convergence result holds for mean convex mean curvature flow with surgery in

R3, as constructed in [BH], [HK].

Lastly, we state the stability theorem for Ricci flow spacetimes in its full generality.

The following theorem is an improvement of Theorem 1.3 for the following reasons:

• It provides additional information on the bilipschitz constant and establishes a

polynomial dependence on the curvature.
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• It states that the precision of the canonical neighborhood assumption can be

chosen independently of time and bilipschitz constant.

• In provides a condition under which the map ϕ̂ is almost surjective.

Theorem 1.5. (Strong stability of Ricci flow spacetimes) There is a constant E<∞
such that, for every δ>0, T<∞ and E⩽E<∞, there are constants εcan=εcan(E) and

ε=ε(δ, T, E)>0 such that for all 0<r⩽1 the following holds.

Consider two (εr, T )-complete Ricci flow spacetimes M and M′ that each satisfy

the εcan-canonical neighborhood assumption at scales (εr, 1).

Let ϕ:U!U ′ be a diffeomorphism between two open subsets U⊂M0 and U ′⊂M′
0.

Assume that |Rm|⩾(εr)−2 on M0\U and

|ϕ∗g′0−g0|⩽ εr2E(|Rm|+1)E

on U . Assume moreover that the εcan-canonical neighborhood assumption holds on U ′

at scales (0, 1).

Then, there is a time-preserving diffeomorphism ϕ̂: Û!Û ′ between two open subsets

Û⊂M[0,T ] and Û ′⊂M′
[0,T ] that evolves by the harmonic map heat flow, satisfies ϕ̂=ϕ

on U∩Û and that satisfies

|ϕ̂∗g′−g|⩽ δr2E(|Rm|+1)E

on Û . Moreover, we have |Rm|⩾r−2 on M[0,T ]\Û .

If additionally |Rm|⩾(εr)−2 on M′
0\U ′, then we have |Rm|⩾r−2 on M′

[0,T ]\Û
′.

1.4. A brief sketch of the proof, and further discussion

We now give a very brief and informal outline of the proof. See §2 for a more detailed

overview.

Theorem 1.1, the main uniqueness theorem, is obtained from the strong stability

Theorem 1.3 or 1.5 via a limit argument. In Theorems 1.3 and 1.5 we are given a pair of

Ricci flow spacetimes M and M′, and an almost isometry ϕ:M0⊃U!U ′⊂M′
0 between

open subsets of their initial conditions, and our goal is to construct an almost isometry

ϕ̂:M⊃Û!Û ′⊂M′ that extends ϕ forward in time. The construction of ϕ̂ involves a

procedure for choosing the domain Û of ϕ̂, and the map ϕ̂ on this domain. These two

procedures interact in a complex way, and for this reason they are implemented by means

of a simultaneous induction argument.

We now indicate some of the highlights in the two steps of the induction.
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The domain Û is chosen to contain all points in M whose curvature |Rm| lies

(roughly) below a certain threshold and is obtained from M by means of a delicate

truncation argument. The truncation uses the fact that, roughly speaking, the part of

M with large curvature looks locally either like a neck, or like a cap region. We cut along

neck regions so that the time-slices of Û have spherical boundary. A critical complication

stems from the occurrence of moments in time when the presence of cap regions interferes

with the need to cut along neck regions. This occurrence necessitates modification of the

domain by either insertion or removal of cap regions.

The map ϕ̂ is constructed by solving the harmonic map heat flow equation for its

inverse ϕ̂−1. There are many interrelated issues connected with this step, of which the

three most important are:

• The distortion of the map ϕ̂ must be controlled under the harmonic map heat

flow. For this, our main tool is an interior decay estimate, which may be applied away

from the spacetime boundary of Û .

• The presence of boundary in Û introduces boundary effects, which must be con-

trolled. It turns out that the geometry of shrinking necks implies that the neck boundary

recedes rapidly, which helps to stabilize the construction.

• The insertion of the cap regions alluded to above necessitates the extension of the

map ϕ̂ over the newly added region. The implementation of this extension procedure

relies on a delicate interpolation argument, in which the geometric models for the cap re-

gions must be aligned with the existing comparison map ϕ̂ within tolerances fine enough

to prolong the construction. This step hinges on several ingredients and their precise

compatibility— rigidity theorems for the models of the cap regions [Ha2], [Bre2], quan-

titative asymptotics of the models [Bry], and strong decay estimates for the distortion of

the map ϕ̂.
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2. Overview of the proof

In this section we will describe the proof of the main theorem. Our aim here is to cover

the most important ideas in an informal way, with many technicalities omitted. The first

subsection of this overview provides an initial glimpse of the argument. It is intended
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to be accessible to readers outside the field who would like to gain some sense of how

the proof goes. The remaining subsections delve into the proof in greater detail and are

primarily intended for people working in the area.

The main part of the paper is concerned with the proof of the strong stability theo-

rem, Theorem 1.3 or 1.5, which asserts that two Ricci flow spacetimes are geometrically

close, given that their initial data are geometrically close and we have completeness as

well as the canonical neighborhood assumption in both spacetimes above a sufficiently

small scale. All other results of this paper will follow from this theorem; in particular,

the uniqueness theorem (Theorem 1.1) will follow from Theorem 1.3 or 1.5 via a limit

argument.

In the strong stability theorem, we consider two Ricci flow spacetimes M and M′,

whose initial time-slices, (M0, g0) and (M′
0, g

′
0), are geometrically close or even isometric.

Our goal is the construction of a map ϕ:M⊃U!M′, defined on a sufficiently large

domain U , whose bilipschitz constant is sufficiently close to 1. In Theorems 1.3 and 1.5,

this map is denoted by ϕ̂. However, in the main part of this paper, as well as in this

overview, the hat will be omitted.

Our basic method for constructing ϕ, which goes back to DeTurck [DT], is to solve

the harmonic map heat flow equation for the inverse ϕ−1. In the non-singular case when

both Ricci flow spacetimes M and M′ may be represented by ordinary smooth Ricci

flows on compact manifolds (M, g(t)) and (M ′, g′(t)), this reduces to finding a solution

ϕ(t):M!M ′ to the equation ∂t(ϕ
−1)=∆(ϕ−1). As DeTurck observed, the family of

difference tensors h(t):=(ϕ(t))∗g′(t)−g(t), which quantify the deviation of ϕ(t) from

being an isometry, then satisfies the Ricci–DeTurck perturbation equation :

∂th(t)=∆g(t)h(t)+2Rmg(t)(h(t))+∇h(t)∗∇h(t)+h(t)∗∇2h(t). (2.1)

If ϕ(0) is an isometry, then h(0)≡0. So, by the uniqueness of solutions to the strictly

parabolic equation (2.1), one gets that h(t)≡0 for all t⩾0, and hence the two given Ricci

flows are isometric. In our case we are given that h(0) is small, and want to show that it

remains small. Equation (2.1) has several properties that are important for maintaining

control over of the size of the perturbation h, as the construction proceeds.

2.1. The construction process, an initial glimpse

In the general case, in which M and M′ may be singular, the domain of the map ϕ will

be the part of M that is not too singular, i.e. the set of points whose curvature is not too

large. Note that this means that we will effectively be solving the harmonic map heat

flow equation with a boundary condition.
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M M′

ϕ
−−−−−−−−−!

N 1

N 2

N 3

N 4

N 5

Figure 4. Comparison domain N⊂M and comparison ϕ between M and M′. The extension

cap on the initial time-slice of N 5 is outlined in bold.

The main objects of our construction are a subset N⊂M, called the comparison

domain, and a time-preserving diffeomorphism onto its image ϕ:N!M′, called the

comparison (map). We construct N and ϕ by a simultaneous induction argument using

discrete time increments [tj−1, tj ]. The domain N is the union

N =N 1∪N 2∪...∪N J ,

where N j lies in the time-slab of M corresponding to the time-interval [tj−1, tj ]. The

restriction of ϕ to each time-slab N j is denoted by ϕj :N j!M′. In the induction step,

we enlarge N and ϕ in two stages: in the first we determine N J+1, and in the second we

define the map ϕJ+1:N J+1!M′.

Before proceeding, we introduce the curvature scale ρ, which will be used throughout

the paper. The precise definition may be found in §6.1, but for the purposes of this

overview, ρ can be any function that agrees up to a fixed factor with R−1/2 wherever

|Rm| is sufficiently large. Here R denotes the scalar curvature. Note that ρ has the

dimension of length.

We will now provide further details on the geometry of N and ϕ.

Fix a small comparison scale rcomp>0. Our goal is to choose the comparison domain

N such that it roughly contains the points for which ρ≳rcomp. Then, we will have

R⩽Cr−2
comp on N and R⩾cr−2

comp on M\N for some constants C, c>0. The constant

rcomp will also determine the length of our time steps: we set tj=jr
2
comp, so that the

time steps have duration r2comp.

Each time-slab N j will be chosen to be a product domain on the time-interval

[tj−1, tj ]. That is, the flow restricted to N j can be described by an ordinary Ricci flow
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parameterized by the time-interval [tj−1, tj ], on the initial time-slice of N j . We will

sometimes denote this initial time-slice of N j by N j
tj−1

and the final time-slice by N j
tj .

Note that N j
tj−1

and N j
tj are diffeomorphic, as N j is a product domain. Each domain N j

will moreover be chosen in such a way that its time-slices N j
t are bounded by 2-spheres

of diameter ≈rcomp that are central 2-spheres of sufficiently precise necks (i.e. cylindrical

regions) in M.

We now discuss the inductive construction of N and ϕ. For this purpose, assume that

N 1, ...,N J and ϕ1, ..., ϕJ have already been constructed. Our goal is now to construct

N J+1 and ϕJ+1.

We first outline the construction of N J+1. Our construction relies on the canonical

neighborhood assumption, which guarantees that the large curvature part of the Ricci

flow looks, roughly speaking, locally either neck-like or like a cap region diffeomorphic

to a 3-ball. Using this geometric characterization, the final time-slice N J+1
tJ+1

of N J+1 is

obtained by truncating the time-tJ+1-slice MtJ+1
along a suitable collection of central 2-

spheres of necks of scale ≈rcomp. Due to the fact that a neck region shrinks substantially

in a single time step and our neck regions have nearly constant scale, this process will

ensure that the boundaries of successive time steps are separated by a distance ≫rcomp.

So, our truncation process typically yields a rapidly receding “staircase” pattern (see

Figure 4). However, it can happen that a cap region evolves in such a way that its

scale increases slowly over a time-interval of duration ≫r2comp, so that at time tJ , this

cap region is not contained in the final time-slice N J
tJ , but is contained in the initial

time-slice N J+1
tJ . This behavior occurs, for instance, a short time after a generic neck

pinch singularity. In such a situation, the comparison domain N is enlarged at time tJ

by a cap region, which we call an extension cap (see again Figure 4). It then becomes

necessary to extend the comparison map ϕ over the inserted region.

We now turn to the second stage of the induction step—the construction of the

comparison map ϕJ+1:N J+1!M′.

As mentioned above, we will construct ϕJ+1 by solving the harmonic map heat flow

equation for the inverse diffeomorphism (ϕJ+1)−1. For now, we will only provide a brief

indication of a few of the obstacles that arise, leaving more detailed discussion to the

subsequent subsections of this overview:

• (Controlling h, §2.2) Since our objective is to produce a map that is almost an

isometry, one of the key ingredients in our argument is a scheme for maintaining control

on the size of the metric perturbation h=ϕ∗g′−g as the map ϕ evolves. Our main tool

for this is an interior decay estimate for |h| with respect to a certain weight.

• (Treatment of the boundary, §2.3) The Ricci flow spacetime restricted to the prod-

uct domain N J+1 is given by an ordinary Ricci flow on the manifold with boundary
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N J+1
tJ+1

. The process for solving the harmonic map heat flow equation must take this

boundary into account and maintain control on any influence it may have on the rest of

the evolution.

• (Extending the comparison, §2.4 and §2.5) As mentioned above, it may be neces-

sary to extend the comparison map ϕ over an extension cap at time tJ . This requires

a careful analysis of the geometry of M and M′ in neighborhoods of the cap and its

image, showing that both are well approximated by rescaled Bryant solitons. Then, the

extension of ϕ is obtained by gluing the pre-existing comparison map with suitably nor-

malized Bryant soliton “charts”. This gluing construction is particularly delicate, since

it must maintain sufficient control over the quality of the comparison map.

The actual construction of the comparison map ϕ is implemented using a continuity

argument. The above issues interact with one another in a variety of different ways. For

instance, both the treatment of the boundary and the procedure for extending ϕ over cap

regions are feasible only under certain assumptions on the smallness of h, and both cause

potential deterioration of h, which must be absorbed by the argument for controlling h.

We defer further discussion of these interactions, and other points of a more technical

nature, to §2.6.

2.2. Controlling the perturbation h

In order to control the perturbation h=ϕ∗g′−g in the inductive argument described

above, we will consider the following weighted quantity:

Q≈ e−HtR−E/2|h| ≈ e−HtρE |h|. (2.2)

Here R denotes the scalar curvature and we have H>0 and E>2. We will show that this

quantity satisfies an interior decay estimate, which may be thought of as a quantitative

semi-local version of a maximum principle: rather than asserting that Q cannot attain

an interior maximum, it roughly states that Q, evaluated at a point (x, t), must be a

definite amount smaller than its maximum over a suitable parabolic neighborhood around

(x, t) (see below for a more precise statement). This interior decay estimate will allow

us to promote, and sometimes improve, a bound of the form Q⩽
Q forward in time. We

emphasize that the presence of the factor ρE , and the fact that E is strictly larger than

2, are both essential for the interior decay estimate. Moreover, the freedom to choose E

large (>100, say) will be of crucial importance at a later point in our proof (see §2.5).
Before providing further details on this estimate, we want to illustrate the function

of the weights in the definition of Q. The weight e−Ht serves a technical purpose, which

we will neglect in this overview. To appreciate the role of the weight R−E/2, consider for
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Figure 5. A parabolic ball B(x, t, r)×[t−r2, t] of radius r.

a moment a classical Ricci flow (M, g(t)) with a perturbation h(t) that evolves by (2.1).

Suppose that h(0) is bounded and supported in a region of large scalar curvature. So, due

to the existence of the weight R−E/2, the quantity Q is small at time zero. Our estimates

will imply that Q remains small throughout the flow. Therefore, at any later time, the

perturbation hmust be small at points where the curvature is controlled. In the following,

we will exploit this phenomenon, since, heuristically, we are considering two Ricci flow

spacetimes M and M′ whose initial data is either equal or very similar away from the

almost singular regions, where the scalar curvature is large. So, even if M and M′

were a-priori significantly different at those almost singular scales— resulting in a large

perturbation h(t) there— then Q would still be small, initially. Thus, the perturbation is

expected to decay as we move forward in time and towards regions of bounded curvature,

establishing an improved closeness there. More specifically, as remarked in the previous

subsection, h may a priori only satisfy a rough bound near the neck-like boundary of

each N j . However, as R≈r−2
comp near such a boundary and rcomp is assumed to be small,

our estimate suggests a significant improvement of this bound in regions where R≈1.

We now explain the statement of the interior decay estimate in more detail, in the

case of a classical Ricci flow on M×[0, T ). Assume that the perturbation h is defined on

a sufficiently large backwards parabolic region P⊂M×[0, T ) around some point (x, t).

If H is chosen sufficiently large and |h|⩽ηlin on P for some sufficiently small ηlin, where

both H and ηlin depend on E, then our estimate states that

Q(x, t)⩽ 1
100 sup

P
Q. (2.3)

Here “P sufficiently large” means, roughly speaking, that the parabolic region P contains

a product domain of the form B(x, t, r)×[t−r2, t] (a parabolic ball), where B(x, t, r) is
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the r-ball centered at (x, t) in the time-t slice M×{t}, and r is equal to a large constant

times the scale ρ(x, t) (see Figure 5).

In fact, the choice of the factor 1
100 in (2.3) is arbitrary: for any α>0 we have the

estimate

Q(x, t)⩽α sup
P
Q, (2.4)

as long as we increase the size of the parabolic neighborhood P accordingly. An important

detail here is that the constant ηlin in the bound |h|⩽ηlin can be chosen independently

of α.

The decay estimate (2.3) will be used to propagate a bound of the form

Q⩽ 
Q (2.5)

throughout most parts of the comparison domain N . Here we will choose the constant 
Q

in such a way that (2.5) holds automatically near the neck-like boundary of the N j and

such that (2.5) implies |h|⩽ηlin wherever ρ⩾rcomp. Note that at scales ρ≫rcomp, the

bound (2.5) implies a more precise bound on |h|, whose quality improves polynomially

in ρ.

We will prove the interior decay estimate using a limit argument combined with a

vanishing theorem for solutions of the linearized Ricci–DeTurck equation on κ-solutions,

which uses an estimate of Anderson and Chow [AC]. See §9 for more details.

2.3. Treatment of the boundary

We now discuss aspects of the inductive construction of the map ϕJ+1:N J+1!M′

(sketched in §2.1) that are related to the presence of a boundary in the time slices N J+1
t .

While the actual approach used in the body of the paper is guided by considerations

that are beyond the scope of this overview, we will describe some of the main points in

a form that is faithful to the spirit of the actual proof.

Recall from §2.1 that we wish to construct ϕJ+1 by solving the harmonic map heat

flow equation (for the inverse (ϕJ+1)−1), in such a way that ϕ yields a perturbation

h=ϕ∗g′−g satisfying the bound Q⩽
Q near the neck-like boundary of N j , where Q is

as in §2.2. Thus we need to specify boundary conditions so that the resulting evolution

respects the bound Q⩽
Q.

Our strategy exploits the geometry of the boundary of N J+1. Recall from §2.1 that

N J+1 is a product domain, and its boundary is collared by regions that look very close

to shrinking round half-cylinders (half-necks) with scale comparable to rcomp. Under

a smallness condition on h imposed in the vicinity of boundary components of N J+1
tJ ,
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NJ+1
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Figure 6. A parabolic neighborhood (hatched region) inside a comparison domain (shaded

region). In order to apply the interior estimate at time tJ near the boundary of NJ+1, a

large parabolic neighborhood must fit underneath the staircase pattern.

we argue that at time tJ , our map ϕ must map the half-neck collar regions around

the boundary to regions in the time-tJ slice M′
tJ that are nearly isometric to half-necks.

Moreover, we will show that both half-necks evolve over the time-interval [tJ , tJ+1] nearly

like round half-necks. We then use this characterization and a truncation procedure to

find an approximate product domain N ′ J+1⊂M′ that serves as the domain for the

evolving inverse map ϕ−1. It turns out that if the half-neck regions in M and M′ are

sufficiently cylindrical, and ϕ is initially (at time tJ) sufficiently close to an isometry

near the collar regions, then the map ϕJ+1 produced by harmonic map heat flow remains

sufficiently close to an isometry near the boundary of N J+1, in the sense that Q⩽
Q.

The above construction is feasible only under improved initial control on |h|, which
necessitates an improved bound of the form Q⩽α
Q, for some α≪1, near the boundary

components of N J+1
tJ . To verify this improved bound, we apply the strong form of the

interior decay estimate, (2.4), using parabolic regions that are large depending on α.

This requires the geometry of the staircase pattern of the comparison domain to be “flat

enough” to create enough space for such a parabolic region “under the staircase” (see

Figure 6). Such flatness can be guaranteed, provided the half-neck collars are sufficiently

precise.

2.4. Defining ϕ on extension caps

We recall from §2.1 that in the inductive construction of the time slab N J+1, we some-

times encounter extension caps, i.e. 3-disks C in the time-tJ slice MtJ of M that belong

to time slab N J+1, but that were not present in the preceding time slab N J . In this

and the next subsection, we discuss how these extension caps are handled in the second

stage of the induction step, in which ϕJ+1 is defined on N J+1.
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Recall that we assume inductively that the map ϕJ , as constructed in the previous

step, restricts to an almost isometric map of the final time-slice N J
tJ of N J into M′

tJ .

We would like to proceed with the construction of ϕJ+1 on N J+1 using harmonic map

heat flow, as described in the previous subsection. However, in order to do this, ϕJ+1

must be defined on the initial time-slice N J+1
tJ , whereas the previous induction step only

determined ϕJ on the complement of the extension caps. Thus we must first extend ϕJ

over the extension caps to an almost isometry defined on N J+1
tJ .

A priori, it is unclear why such an extension should exist; after all, since ϕ has thus

far only been defined on N J
tJ , one might not expect an extension cap C⊂N J+1

tJ to be

nearly isometric to a corresponding 3-ball region in M′.

To obtain such an extension, we will need to combine several ingredients. The first

is the canonical neighborhood assumption, which asserts that the geometry of M and

M′ near any point of large curvature is well approximated by a model Ricci flow—a

κ-solution. For regions such as extension caps, the κ-soliton model is a Ricci flow on R3.

Up to rescaling, the only known example of this type is the Bryant soliton, a rotationally

symmetric steady gradient soliton, which can be expressed as a warped product

gBry = dr2+a2(r)gS2 ,

where a(r)∼
√
r as r!∞. Bryant solitons commonly occur as singularity models of

type-II blow-ups of singularity models, for example in the formation of a degenerate neck

pinch [GZ], [AIK]. Moreover, they also occur in Ricci flow spacetimes when a singularity

resolves. It is a well-known conjecture of Perelman that the Bryant soliton is the only

κ-solution on R3, up to rescaling and isometry. This conjecture would imply that a

Bryant soliton always describes singularity formation/resolution processes as above, and

in particular the geometry of extension caps. Although this conjecture remains open,

by using a combination of rigidity results of Hamilton and Brendle [Ha2], [Bre2], it is

possible to show that Bryant solitons always describe the geometry at points where the

curvature scale increases in time (i.e. where the scalar curvature decreases). Such points

are abundant near a resolution of a singularity, as the curvature scale increases from zero

to a positive value.

The above observation will be central to our treatment of extension caps. We will

show that it is possible to choose the time slabs {N j} so that each extension cap arises

“at the right time”, meaning at a time when the geometry near the extension cap in

M and its counterpart in M′ is sufficiently close to the Bryant soliton—at possibly

different scales. The main strategy behind this choice of time will be to choose two

different thresholds for the curvature scale on N , specifying when an extension cap may,

and when it must, be constructed. As curvature scales only grow slowly in time (with



uniqueness and stability of ricci flow 23

respect to the time scale corresponding to the curvature), this extra play will produce

sufficiently many time-steps during which an extension cap may, but need not necessarily

be constructed. It can be shown that at one of these time-steps the geometry in both

M and M′ is in fact close to a Bryant soliton. This time-step will then be chosen as the

“right time” for the construction of the extension cap.

The fact that the geometry near both the extension caps in M and the corresponding

regions in M′ can be described by the same singularity model (the Bryant soliton) is

necessary in order to construct the initial time-slice of ϕJ+1. However, it is not sufficient,

as it is still not guaranteed that ϕJ at time tJ extends over the extension caps almost

isometrically, due to the following reasons:

• The scales of the approximate Bryant soliton regions in M and M′ may differ, so

that they are not almost isometric.

• Even if there is an almost isometry of the approximate Bryant soliton regions, in

order to define a global map, there must be an almost isometry that is close enough to

the existing almost isometry (given by ϕJ) on the overlap, so that the two maps may be

glued together to form an almost isometry.

These issues will be resolved by the Bryant extension principle, which will be dis-

cussed in the next subsection.

2.5. The Bryant extension principle

In the process of determining the initial data (at time tJ) of ϕ
J+1 on or near the extension

caps, as mentioned in the previous subsection, we are faced with the following task (see

Figure 7 for an illustration). We can find two regions W⊂MtJ and W ′⊂M′
tJ in the

time-tJ slices of M and M′ that are each geometrically close to a Bryant soliton modulo

rescaling by some constants λ and λ′, respectively. Moreover, the region W contains

an extension cap C⊂MtJ . The map ϕJ restricted to W \C is an almost isometric map

W \C!W ′. Our task is then to find another almost isometric map ψ:W!W ′, which is

defined on the entire regionW , and that coincides with ϕJ away from some neighborhood

of C. Although in this overview we have largely avoided any mention of quantitative

features of the proof, we point out that this step hinges on careful consideration of

asymptotics, in order to make our construction independent of the diameters of W , W ′,

and C. In particular, it turns out to be of fundamental importance that we have the

freedom to choose the exponent E in the definition of Q in (2.2) to be large.

We obtain ψ as follows. We use the fact that W and W ′ are approximate (rescaled)

Bryant soliton regions to define an approximate homothety ψ0:W!W
′ that scales dis-

tances by the factor λ′/λ, possibly after shrinking W , W ′ somewhat. The map ψ0 is
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MtJ

M′
tJ

ψϕJ

W \C V C

Figure 7. Extending the map ϕJW\C over the extension cap C to an almost isometry ψ:W!W ′.

unique up to pre/post-composition with almost isometries, i.e. approximate rotations

around the respective tips. We then compare ψ0 with ϕJ on W \C, and argue that ψ0

may be chosen so that it may be glued to ϕJ , to yield the desired map ψ. To do this, we

must show that

• ψ0 is an approximate isometry not just an approximate homothety, i.e. the ratio

of the scales λ′/λ nearly equals 1.

• ψ0 may be chosen to be sufficiently close to ϕJ on a suitably chosen transition

zone V ⊂W \C.
However, we are only given information on the map ϕJ far away from tip of the

extension cap C, where the metric is close to a round cylinder. Using this information,

we must determine to within small error the scale of the tips and the discrepancy between

the two maps. This aspect makes our construction quite delicate, because the only means

of detecting the scale of the tip is to measure the deviation from a cylindrical geometry

near V , which is decaying polynomially in terms of the distance to the tip. The crucial

point in our construction is that we can arrange things so that this deviation can be

measured to within an error that decays at a faster polynomial rate.

We now explain in some more detail the delicacy of the construction and our strategy

for the case of showing that λ′/λ is nearly equal to 1. The problem of matching ϕJ and

ψ0 on V will be handled similarly. The only means to compare λ and λ′ is the almost

isometry ϕJ :W \C!W ′. This almost isometry implies that the cross-sectional spheres
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of W \C have approximately the same diameter as their images in W ′. Unfortunately,

the closeness of these diameters does not imply a bound on λ′/λ, since these diameters

vary—and even diverge—as we move away from the tips of W and W ′, and ϕJ may

map cross-sectional spheres of W to other almost-cross-sectional spheres in W ′ that are

closer or farther from the tip. This fact requires us to estimate the deviations from the

cylindrical geometry in W and W ′ by analyzing the precise asymptotics of the Bryant

soliton. If the precision of ϕJ is smaller than these deviations, then ϕJ can be used

to compare further geometric quantities on W and W ′, not just the diameters of the

cross-sectional spheres. Combined with the almost preservation of the diameters of these

spheres, this will imply that λ′/λ≈1.

The precision of the almost isometry ϕJ is measured in terms of |h|. Using the

bound Q⩽
Q, as discussed in §2.2, we obtain a bound of the form

|h|≲RE/2≲ ρ−E . (2.6)

Since W is an approximate rescaled Bryant soliton region and ρ!∞ as one goes to

infinity on the Bryant soliton, the bound (2.6) improves as we move further away from

the tip of W . If the exponent E is chosen large enough, then the precision of the almost

isometry ϕJ in the transition zone V ⊂W is good enough to compare the deviations from

a cylinder in V and its image, to very high accuracy. As mentioned before, this will

imply that λ′/λ≈1.

For more details, we refer to §10.
We mention that the mechanism that we are exploiting here can be illustrated using

a cantilever: the longer the cantilever, and the less rigid it is, the more its tip may

wiggle. However, the rigidity of a cantilever depends not only on its length, but also on

the rigidity of the attachment at its base. A longer cantilever may be more stable than

a short one, as long as the attachment at its base is chosen rigid enough to compensate

for the increase in length. (Here, we are assuming the lever itself to be infinitely rigid.)

2.6. Further discussion of the proof

In this subsection we touch on a few additional features of the induction argument

sketched in §2.1. Due to the complexity of the underlying issues, our explanations will

be brief and relatively vague. For more details, we refer to §7.
We recall the bound Q⩽
Q from §2.2, which enabled us to guarantee a bound of

the form |h|⩽ηlin in most parts of the comparison domain N . As discussed in that

subsection, this bound is propagated forward in time using the interior decay estimate.

The bound Q⩽
Q, especially the factor ρE in its definition, was also crucial in the Bryant
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extension process. In fact, it could be used to construct the initial time-slice of a new

almost isometry ϕJ+1, defined on the extension caps, that is precise enough such that a

bound of the form |h|⩽ηlin holds on or near each extension cap.

However, the bound Q⩽
Q, which is typically stronger than |h|⩽ηlin, may not remain

preserved during the Bryant extension process; it may deteriorate by a fixed factor. In

order to control the quality of the comparison map, measured by |h|, after the Bryant

extension process has been performed, we will consider an additional bound of the form

Q∗ ≈ eH(T−t) |h|
R3/2

≈ eH(T−t)ρ3|h|⩽ 
Q∗.

The constant 
Q∗ will be chosen such that this bound implies the bound |h|⩽ηlin wherever

it holds on N . Due to the small exponent 3≪E, which makes the bound Q∗⩽
Q∗ weaker

than Q⩽
Q at large scales, this bound still holds on and near each extension cap after

the Bryant extension process has been carried out.

Both bounds, Q⩽
Q and Q∗⩽
Q∗ will be propagated forward in time via the interior

decay estimate from §2.2. The bound Q⩽
Q will hold at all points on the comparison

domain N that are sufficiently far (in space and forward in time) from an extension cap,

while the bound Q∗⩽
Q∗ will hold sufficiently far (in space) from the neck-like boundary

of N . It will follow that, for a good choice of parameters, at least one of these bounds

holds at each point of the comparison domain N . This fact will enable us to guarantee

that |h|⩽ηlin everywhere on N .

Even though the bound Q⩽
Q may not hold in the near future of an extension cap,

it may be important that it holds at some time in the future, thus allowing us to control

the comparison map near a future neck-like boundary component, as described in §2.3.
In order to guarantee this bound near such neck-like boundary components, in the future

of extension caps, we first ensure that the neck-like boundary and the extension caps

of the comparison domain are sufficiently separated (in space and time). Then, we use

the strong form of the interior decay estimate to show that a weak bound of the form

Q⩽W
Q, W≫1, which holds after a Bryant extension process, improves as we move

forward in time and eventually implies Q⩽
Q. This interior decay estimate relies on the

fact that |h|⩽ηlin, which is guaranteed by the bound Q∗⩽
Q∗.

3. Organization of the paper

The theorems stated in the introduction are proven in §13. They are all consequences of a

more technical stability theorem, Theorem 13.1, which first appears in §13. This theorem
asserts the existence of a comparison map between two Ricci flow spacetimes, satisfying
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a (large) number of geometric and analytic bounds. As explained in the overview in the

preceding section, Theorem 13.1 is proven using a simultaneous induction argument, in

which the domain of this comparison map and the comparison map itself are constructed.

The induction step consists of two stages; the first one is concerned with the comparison

domain, and the second with the comparison map. These two stages are implemented

in §11 and §12, respectively, and the induction hypotheses are collected beforehand as a

set of a-priori assumptions, in §7. Both induction steps are formulated using objects and

terminology that are introduced in preliminaries sections, §5 and §6. The arguments in

§12 rely on two main ingredients: the interior decay estimate, which is discussed in §9,
and the Bryant extension principle, which is presented in §10. We will also make use of

a number of technical tools, which appear in §8.
To facilitate readability and verifiability, we have made an effort to make the proof

modular and hierarchical. This eliminates unnecessary interdependencies, and minimizes

the number of details the reader must bear in mind at any given stage of the proof. For

instance, the two stages of the induction argument are formulated so as to be completely

logically independent of each other. Also, within §12, which constructs the inductive

extension of the comparison map, the argument is split into several pieces, which have

been made as independent of one another as possible.

4. Conventions

4.1. Orientability

Throughout the paper we impose a blanket assumption that all 3-manifolds are ori-

entable. The results remain true without this assumption— for instance Theorem 1.1

can be deduced from the orientable case by passing to the orientation cover. However,

proving the main result without assuming orientability would complicate the exposition

by increasing the number of special cases in many places. It is fairly straightforward,

albeit time consuming, to modify the argument to obtain this extra generality.

4.2. Conventions regarding parameters

The statements of the a-priori assumptions in §7 involve a number of parameters, which

will have to be chosen carefully. We will not assume these parameters to be fixed through-

out the paper; instead, in each theorem, lemma or proposition we will include a list of

restrictions on these parameters that serve as conditions for the hypothesis to hold. These

restrictions state that certain parameters must be bounded from below or above by func-

tions depending on certain other parameters. When we prove the main stability result,
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Theorem 13.1, by combining our two main propositions, Propositions 11.1 and 12.1, we

will need to verify that these restrictions are compatible with one another. This can be

verified most easily via the parameter order, as introduced and discussed in §7.5. This

parameter order is chosen in such a way that the required bounds from below/above on

each parameter, if any, are given by a function depending on parameters that precede

it. Hence, in order to verify the compatibility of all restrictions, it suffices to check that

each parameter restriction is compatible with the parameter order in this way.

Throughout the entire paper, we will adhere to the convention that small (greek

or arabic) letters stand for parameters that have to be chosen small enough and capital

(greek or arabic) letters stand for parameters that have to be chosen sufficiently large.

When stating theorems, lemmas or propositions, we will often express restrictions on

parameters in the form

y⩽ ȳ(x) and Z ⩾Z(x).

By this we mean that there are constants ȳ and Z, depending only on x such that if

0<y⩽ȳ and Z⩾Z, then the subsequent statements hold. Furthermore, in longer proofs,

we will introduce a restriction on parameters in the same form as a displayed equation.

This makes it possible for the reader to check quickly that these restrictions are accurately

reflected in the preamble of the theorem, lemma or proposition. Therefore, she/he may

direct their full attention to the remaining details of the proof during the first reading.

5. Preliminaries I

In the following we define most of the notions that are needed in the statement of the

main results of this paper, as stated in §1.3.

Definition 5.1. (Ricci flow spacetimes) A Ricci flow spacetime is a tuple (M, t, ∂t, g)

with the following properties:

(1) M is a smooth 4-manifold with (smooth) boundary ∂M.

(2) t:M![0,∞) is a smooth function without critical points (called time function).

For any t⩾0 we denote by Mt :=t−1(t)⊂M the time-t slice of M.

(3) M0=t−1(0)=∂M, i.e. the initial time-slice is equal to the boundary of M.

(4) ∂t is a smooth vector field (the time vector field), which satisfies ∂tt≡1.

(5) g is a smooth inner product on the spatial sub-bundle ker(dt)⊂TM. For any t⩾0

we denote by gt the restriction of g to the time-t-slice Mt (note that gt is a Riemannian

metric on Mt).

(6) g satisfies the Ricci flow equation: L∂tg=−2Ric(g). Here, Ric(g) denotes the

symmetric (0, 2)-tensor on ker(dt) that restricts to the Ricci tensor of (Mt, gt) for all
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t⩾0.

For any interval I⊂[0,∞) we also write MI=t−1(I) and call this subset the time-

slab of M over the time-interval I. Curvature quantities on M, such as the Riemannian

curvature tensor Rm, the Ricci curvature Ric, or the scalar curvature R will refer to

the corresponding quantities with respect to the metric gt on each time-slice. Tensorial

quantities will be imbedded using the splitting TM=ker(dt)⊕⟨∂t⟩.
When there is no chance of confusion, we will sometimes abbreviate the tuple

(M, t, ∂t, g) by M.

Ricci flow spacetimes were introduced by Lott and the second author (see [KL1]).

The definition above is almost verbatim that of [KL1] with the exception that we require

Ricci flow spacetimes to have initial time-slice at time zero and no final time-slice. This

can always be achieved by applying a time-shift and removing the final time-slice from

M. Ricci flows with surgery, as constructed by Perelman in [P2], can be turned easily

into Ricci flow spacetimes by removing a relatively small subset of surgery points. See

(1.1) in §1.2 for further explanation.

We emphasize that, while a Ricci flow spacetime may have singularities— in fact the

sole purpose of our definition is to understand flows with singularities— such singularities

are not directly captured by a Ricci flow spacetime, as “singular points” are not contained

in the spacetime manifold M. Instead, the idea behind the definition of a Ricci flow

spacetime is to understand a possibly singular flow by analyzing its asymptotic behavior

on its regular part.

Any (classical) Ricci flow of the form (gt)t∈[0,T ), 0<T⩽∞ on a 3-manifoldM can be

converted into a Ricci flow spacetime by setting M=M×[0, T ), letting t be the projection

to the second factor and letting ∂t correspond to the unit vector field on [0, T ). Vice

versa, if (M, t, ∂t, g) is a Ricci flow spacetime with t(M)=[0, T ) for some 0<T⩽∞ and

the property that every trajectory of ∂t is defined on the entire time-interval [0, T ), then

M comes from such a classical Ricci flow.

We now generalize some basic geometric notions to Ricci flow spacetimes.

Definition 5.2. (Length, distance and metric balls in Ricci flow spacetimes) Let

(M, t, ∂t, g) be a Ricci flow spacetime. For any two points x, y∈Mt in the same time-

slice of M we denote by d(x, y) or dt(x, y) the distance between x and y within (Mt, gt).

The distance between points in different time-slices is not defined.

Similarly, we define the length length(γ) or lengtht(γ) of a path γ: [0, 1]!Mt whose

image lies in a single time-slice to be the length of this path when viewed as a path inside

the Riemannian manifold (Mt, gt).

For any x∈Mt and r⩾0 we denote by B(x, r)⊂Mt the r-ball around x with respect
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to the Riemannian metric gt.

Our next goal is to characterize the (microscopic) geometry of a Ricci flow spacetime

near a singularity or at an almost singular point. For this purpose, we will introduce a

(curvature) scale function ρ:M!(0,∞] with the property that

C−1ρ−2⩽ |Rm|⩽Cρ−2 (5.1)

for some universal constant C<∞. The quantity ρ will be a (pointwise) function of

the curvature tensor and therefore it can also be defined on (3-dimensional) Riemann-

ian manifolds. For the purpose of this section, it suffices to assume that ρ=|Rm|−1/2.

However, in order to simplify several proofs in subsequent sections, we will work with a

slightly more complicated definition of ρ, which we will present in §6.1 (see Definition 6.1).

Nonetheless, the discussion in the remainder of this subsection and the main results of

the paper, as presented in §1.3, remain valid for any definition of ρ that satisfies (5.1).

We now define what we mean by completeness for Ricci flow spacetimes. Intuitively,

a Ricci flow spacetime is called complete if its time-slices can be completed by adding

countably many “singular points” and if no component appears or disappears suddenly

without the formation of a singularity.

Definition 5.3. (Completeness of Ricci flow spacetimes) We say that a Ricci flow

spacetime (M, t, ∂t, g) is (r0, t0)-complete, for some r0, t0⩾0, if the following holds: Con-

sider a path γ: [0, s0)!M[0,t0] such that infs∈[0,s0) ρ(γ(s))>r0 for all s∈[0, s0) and
(1) its image γ([0, s0)) lies in a time-slice Mt and the time-t length of γ is finite or

(2) γ is a trajectory of ∂t or of −∂t.
Then, the limit lims%s0 γ(s) exists.

If (M, t, ∂t, g) is (r0, t0)-complete for all t0⩾0, then we also say that it is r0-complete.

Likewise, if (M, t, ∂t, g) is zero-complete, then we say that it is complete.

Note that the Ricci flow spacetimes constructed [KL2] are zero-complete, see [KL2,

Proposition 5.11 (a) and Definition 1.8]. A Ricci flow with surgery and δ -cutoff, as

constructed by Perelman in [P2], can be turned into a Ricci flow spacetime as in (1.1)

that is cδr-complete for some universal constant c>0, as long as the cutoff is performed

in an appropriate way,(1) see [KL2, §3].

(1) As Perelman’s objective was the characterization of the underlying topology, he allowed (but
did not require) the removal of macroscopic spherical components during a surgery step. In contrast,

Kleiner and Lott’s version (cf. [KL1]) of the cutoff process does not allow this. However, both cutoff
approaches allow some flexibility on the choice of the cutoff spheres inside the ε-horns. Some of these
choices may result in the removal of points of scale larger than cδr; in such a case cδr-completeness

cannot be guaranteed. Nevertheless, in both approaches it is always possible to perform the cutoff in
such a way that the resulting Ricci flow spacetime is cδr-complete.
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Lastly, we need to characterize the asymptotic geometry of a Ricci flow spacetime

near its singularities. This is done by the canonical neighborhood assumption, a notion

which is inspired by Perelman’s work ([P2]) and which appears naturally in the study

of 3-dimensional Ricci flows. The idea is to impose the same asymptotic behavior near

singular points in Ricci flow spacetimes as is encountered in the singularity formation of

a classical (smooth) 3-dimensional Ricci flow. The same characterization also holds in

high-curvature regions of Perelman’s Ricci flow with surgery that are far enough from

“man-made” surgery points. Furthermore, an even stronger asymptotic behavior was

shown to hold on Ricci flow spacetimes as constructed by Lott and the second author

in [KL2].

The singularity formation in 3-dimensional Ricci flows is usually understood via sin-

gularity models called κ-solutions (see [P1, §11]). The definition of a κ-solution consists

of a list of properties that are known to be true for 3-dimensional singularity models.

Interestingly, these properties are sufficient to allow a qualitative (and sometimes quanti-

tative) analysis of κ-solutions. We refer the reader to Appendix C and to [P2] and [KL1]

for further details.

Let us recall the definition of a κ-solution.

Definition 5.4. (κ-solution) An ancient Ricci flow

(M, (gt)t∈(−∞,0])

on a 3-dimensional manifold M is called a (3-dimensional) κ-solution, for κ>0, if the

following holds:

(1) (M, gt) is complete for all t∈(−∞, 0],

(2) |Rm| is bounded on M×I for all compact I⊂(−∞, 0],

(3) secgt⩾0 on M for all t∈(−∞, 0],

(4) R>0 on M×(−∞, 0],

(5) (M, gt) is κ-non-collapsed at all scales for all t∈(−∞, 0].

(This means that for any (x, t)∈M×(−∞, 0] and any r>0 if |Rm|⩽r−2 on the time-t

ball B(x, t, r), then we have |B(x, t, r)|⩾κrn for its volume.)

We will compare the local geometry of a Ricci flow spacetime to the geometry of

κ-solution using the following concept of pointed closeness.

Definition 5.5. (Geometric closeness) We say that a pointed Riemannian manifold

(M, g, x) is ε-close to another pointed Riemannian manifold (�M, ḡ, x̄) at scale λ>0 if

there is a diffeomorphism onto its image

ψ:B
�M (x̄, ε−1)−!M



32 r. h. bamler and b. kleiner

such that ψ(x̄)=x and

∥λ−2ψ∗g−ḡ∥C[ε−1](B�M (x̄,ε−1))<δ.

Here the C [ε−1]-norm of a tensor h is defined to be the sum of the C0-norms of the tensors

h, ∇ḡh, ∇ḡ,2h, ..., ∇ḡ,[ε−1]h with respect to the metric ḡ.

We can now define the canonical neighborhood assumption. The main statement of

this assumption is that regions of small scale (i.e. high curvature) are geometrically close

to regions of κ-solutions.

Definition 5.6. (Canonical neighborhood assumption) Let (M, g) be a (possibly in-

complete) Riemannian manifold. We say that (M, g) satisfies the ε-canonical neighbor-

hood assumption at some point x if there is a κ>0, a κ-solution (�M, (ḡt)t∈(−∞,0]) and a

point x̄∈�M such that ρ(x̄, 0)=1 and such that (M, g, x) is ε-close to (�M, ḡ0, x̄) at some

(unspecified) scale λ>0.

We say (M, g) satisfies the ε-canonical neighborhood assumption at scales (r1, r2),

for some 0⩽r1<r2, if every point x∈M with r1<ρ(x)<r2 satisfies the ε-canonical neigh-

borhood assumption.

We say that a Ricci flow spacetime (M, t, ∂t, g) satisfies the ε-canonical neighborhood

assumption at a point x∈M if the same is true at x in the time-slice (Mt(x), gt(x)).

Moreover, we say that (M, t, ∂t, g) satisfies the ε-canonical neighborhood assumption at

scales (r1, r2) if the same is true for all its time-slices. Lastly, we say that a subset X⊂M
satisfies the ε-canonical neighborhood assumption at scales (r1, r2), if the ε-canonical

neighborhood assumption holds at all x∈X with ρ(x)∈(r1, r2).

Note that if M is a Ricci flow spacetime as constructed in [KL2], then M[0,T ]

satisfies the ε-canonical neighborhood assumption at scales (0, r), where r=r(ε, T )>0

[KL2, Theorem 1.3 and Proposition 5.30]. If M is the Ricci flow spacetime of a Ricci

flow with surgery and δ-cutoff, as constructed by Perelman in [P2], then M satisfies the ε-

canonical neighborhood assumption at x∈M, provided the scale of x lies in the interval

(10h, r). Here h=h(ε, t) and r(ε, t) are decreasing functions of time, which appear in

Perelman’s construction, h⩽δ2r, and δ=δ(ε, t) may be chosen as small as desired.

Observe that we do not assume a global lower bound on κ in Definition 5.6. This

slight generalization from other notions of the canonical neighborhood assumption does

not create any serious issues, since by Perelman’s work [P2], every 3-dimensional κ-

solution is a κ0-solution for some universal κ0>0, unless it homothetic to a quotient of

a round sphere (see assertion (a) of Lemma C.1 for further details).

We also remark that in Definition 5.5 we have put extra care in describing how

the C [ε−1]-norm has to be understood. The reason for this is that the model metric ḡ

in Definition 5.6 is not fixed. So, it would be problematic, for example, to define the
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C [ε−1]-norm using coordinate charts on �M , as the number and sizes of those coordinate

charts may depend on the Riemannian manifold (�M, ḡ).

It may seem more standard to require spacetime closeness to a κ-solution on a

backwards parabolic neighborhood—as opposed to closeness on a ball in a single time-

slice— in the definition of the canonical neighborhood assumption. Such a condition

would be stronger and, as our goal is to establish a uniqueness property, it would lead to

a formally less general statement. We point out that spacetime closeness to a κ-solution is

a rather straightforward consequence of time-slice closeness. The main purpose of the use

of time-slice closeness in our work is because our uniqueness property also applies to Ricci

flow spacetime with singular initial data. For this reason, the canonical neighborhood

assumption also has to be applicable to the initial time-slice M0 or to time-slices Mt for

small t.

6. Preliminaries II

In this section we present basic definitions and concepts that will be important for the

proofs of the main results of this paper.

6.1. Curvature scale

As mentioned in §5, we will now define a notion of a curvature scale ρ that will be

convenient for our proofs. The main objective in our definition will be to ensure that

ρ=
(
1
3R

)−1/2

wherever the sectional curvature is almost positive. For this purpose, observe that there is

a constant c0>0 such that the following holds. Whenever Rm is an algebraic curvature

tensor with the property that its scalar curvature R is positive and all its sectional

curvatures are bounded from below by − 1
10R, then c0|Rm|⩽ 1

3R. We will fix c0 for the

remainder of this paper.

Definition 6.1. (Curvature scale) Let (M, g) be a 3-dimensional Riemannian mani-

fold and x∈M be a point. We define the (curvature) scale at x to be

ρ(x)=min
{(

1
3R+(x)

)−1/2
, (c0|Rm|(x))−1/2

}
. (6.1)

Here, R+(x):=max{R(x), 0} and we use the convention 0−1/2=∞.

If r0>0, then we set ρr0(x):=min{ρ(x), r0}. Lastly, if (M, t, ∂t, g) is a Ricci flow

spacetime, then we define ρ, ρr0 :M!R such that they restrict to the corresponding scale

functions on the time-slices.
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Lemma 6.2. There is a universal constant C<∞ such that

C−1ρ−2(x)⩽ |Rm|(x)⩽Cρ−2(x). (6.2)

Moreover, there is a universal constant ε0>0 such that if x satisfies the εcan-canonical

neighborhood assumption for some εcan⩽ε0, then R(x)=3ρ−2(x).

Proof. The bound (6.2) is obvious. For the second part of the lemma observe that,

for sufficiently small εcan, we have R(x)>0 and sec⩾− 1
10R(x) at x. So,(

1
3R+(x)

)−1/2
⩽ (c0|Rm|(x))−1/2.

The normalization constant 1
3 in front of the scalar curvature in (6.1) is chosen

purely for convenience. More specifically, we will frequently consider the following round

shrinking cylinder evolving by Ricci flow:(
S2×R,

(
gt=

(
2
3−2t

)
gS2+gR

)
t∈(−∞,1/3]

)
.

The scale of this cylinder and the normalization of the curvature scale have been chosen

in such a way that ρ( · , 0)≡1 and ρ( · ,−1)≡2 hold, which can be remembered easily;

more generally, we have

ρ( · , t)≡
√
1−3t.

Definition 6.3. ((Weakly) thick and thin subsets) Let X be a subset of a Riemannian

manifold (M, g) or Ricci flow spacetime (M, t, ∂t, g) and r>0 a number. We say that X

is r-thick if ρ(X)>r and weakly r-thick if ρ(X)⩾r. Similarly, we say that X is r-thin or

weakly r-thin if ρ(X)<r or ρ(X)⩽r, respectively.

6.2. Basic facts about the Bryant soliton

In the following, we will denote by (MBry, (gBry,t)t∈R) the Bryant soliton and with tip

xBry∈MBry normalized in such a way that ρ(xBry)=1. The Bryant soliton was first

constructed [Bry]. A more elementary construction can also be found in [Ap2]. Recall

that (MBry, (gBry,t)t∈R) is a steady gradient soliton all whose time-slices are rotationally

symmetric with center xBry. More specifically, (MBry, gBry,t) can be expressed as a

warped product of the form

gBry,t= dσ2+w2
t (σ)gS2 ,

where wt(σ)∼
√
σ for large σ. We refer to Lemma B.1 for a more extensive list of

properties of the Bryant soliton that are being used in this paper. Note that, due to
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the normalization of MBry, the definition of ρ and (B.2) of Lemma B.1, we have ρ⩾1 on

MBry. This fact will be important in this paper.

We will set gBry :=gBry,0 for the time-zero slice of the Bryant soliton. Furthermore,

we will denote by MBry(r):=B(xBry, r) the r-ball around the tip with respect to gBry

and for 0<r1<r2, we will denote by MBry(r1, r2) the open (r1, r2)-annulus around xBry.

6.3. Geometry of Ricci flow spacetimes

The goal of this subsection is to introduce several notions that we will frequently use in

order to describe points or subsets in Ricci flow spacetimes.

Definition 6.4. (Points in Ricci flow spacetimes) Let (M, t, ∂t, g) be a Ricci flow

spacetime and x∈M be a point. Set t:=t(x). Consider the maximal trajectory γx: I!M,

I⊂[0,∞) of the time-vector field ∂t such that γx(t)=x. Note that then t(γx(t
′))=t′ for

all t′∈I. For any t′∈I we say that x survives until time t′ and we write

x(t′) := γx(t
′).

Similarly, if X⊂Mt is a subset in the time-t slice, then we say that X survives until

time t′ if this is true for every x∈X and we set X(t′):={x(t′):x∈X}.

We will also use the following two notions.

Definition 6.5. (Time-slice of a subset) Let (M, t, ∂t, g) be a Ricci flow spacetime

and let X⊂M be a subset. For any time t∈[0,∞) we define the time-t slice of X to

be Xt :=X∩Mt and for any interval I⊂[0,∞) we define the I-time slab of X to be

XI :=X∩MI .

Definition 6.6. (Product domain) Let (M, t, ∂t, g) be a Ricci flow spacetime and let

X⊂M be a subset. We call X a product domain if there is an interval I⊂[0,∞) such

that for any t∈I any point x∈X survives until time t and x(t)∈X.

Note that a product domain X can be identified with the product Xt0×I for an

arbitrary t0∈I. IfXt0 is sufficiently regular (e.g. open or a domain with smooth boundary

in Mt0), then the metric g induces a classical Ricci flow (gt)t∈I on Xt0 . We will often

use the metric g and the Ricci flow (gt)t∈I synonymously when our analysis is restricted

to a product domain.

Definition 6.7. (Parabolic neighborhood) Let (M, t, ∂t, g) be a Ricci flow spacetime.

For any y∈M let Iy⊂[0,∞) be the set of all times until which y survives. Now consider
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a point x∈M and two numbers a⩾0, b∈R. Set t:=t(x). Then, we define the parabolic

neighborhood P (x, a, b)⊂M as follows:

P (x, a, b) :=
⋃

y∈B(x,a)

⋃
t′∈[t,t+b]∩Iy

y(t′).

If b<0, then we replace [t, t+b] by [t+b, t]. We call P (x, a, b) unscathed if B(x, a) is

relatively compact in Mt and if Iy⊃[t, t+b] or Iy⊃[t+b, t]∩[0,∞) for all y∈B(x, a).

Lastly, for any r>0 we introduce the simplified notation

P (x, r) :=P (x, r,−r2)

for the (backward) parabolic ball with center x and radius r.

Note that, if P (x, a, b) is unscathed, then it is a product domain of the form B(x, a)×
Iy for any y∈B(x, a). We emphasize that P (x, a, b) can be unscathed even if t+b<0, that

is when it hits the initial time-slice earlier than expected. So, an unscathed parabolic

neighborhood is not necessarily of the form B(x, a)×[t+b, t] if b<0.

6.4. Necks

Borrowing from Definition 5.5, we will introduce the notion of a δ -neck.

Definition 6.8. (δ-neck) Let (M, g) be a Riemannian manifold and U⊂M an open

subset. We say that U is a δ-neck at scale λ>0 if there is a diffeomorphism

ψ:S2×(−δ−1, δ−1)−!U

such that ∥∥λ−2ψ∗g−
(
2
3gS2+gR

)∥∥
C[δ−1](S2×(−δ−1,δ−1))

<δ.

We call the image ψ(S2×{0}) a central 2-sphere of U and every point on a central

2-sphere a center of U .

Note that by our convention (see Definition 6.1) we have ρ≡1 on
(
S2×R, 23gS2+gR

)
.

So, on a δ-neck at scale λ we have ρ≈λ, where the accuracy depends on the smallness

of δ. We also remark that a δ-neck U has infinitely many central 2-spheres, as we may

perturb ψ slightly. This is why we speak of a central 2-sphere of U , as opposed to the

central 2-sphere. Similarly, the centers of U are not unique, but form an open subset

of U .
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6.5. Ricci–DeTurck flow and harmonic map heat flow

In this subsection we recall some of the basic facts about the harmonic map heat flow

and the Ricci–DeTurck flow equation in the classical setting, which were first observed

by DeTurck [DT] and Hamilton [Ha4, §6]. More details, including precise statements of

short-time existence and regularity of these flows, can be found in Appendix A.

Consider two n-dimensional manifolds M and M ′, each equipped with a smooth

family of Riemannian metrics (gt)t∈[0,T ], (g
′
t)t∈[0,T ]. Let moreover (χt)t∈[0,T ], χt:M

′!M

be a smooth family of maps.

Definition 6.9. We say that the family (χt)t∈[0,T ] moves by harmonic map heat flow

between (M ′, g′t) and (M, gt) if it satisfies the following evolution equation:

∂tχt=∆g′t,gt
χt=

n∑
i=1

(∇gt
dχt(ei)

dχt(ei)−dχt(∇
g′t
eiei)), (6.3)

where {ei}ni=1 is a local frame on M ′ that is orthonormal with respect to g′t.

Assume now for the remainder of this subsection that (gt)t∈[0,T ] and (g′t)t∈[0,T ] evolve

by the Ricci flow equations

∂tgt=−2Ricgt and ∂tg
′
t=−2Ricg′t .

Furthermore, assume for the rest of this subsection that all the maps χt are diffeo-

morphisms and consider their inverses ϕt :=χ
−1
t . A basic calculation (see Appendix A

for more details) reveals that the pullback g∗t :=ϕ
∗
t g

′
t evolves by the Ricci–DeTurck flow

equation

∂tg
∗
t =−2Ricg∗t −LXgt (g

∗
t )
g∗t , (6.4)

where the vector field Xgt(g
∗
t ) is defined by

Xgt(g
∗
t ) :=∆g∗t ,gt idM =

n∑
i=1

(∇gt
eiei−∇g∗t

ei ei), (6.5)

for a local frame {ei}ni=1 that is orthonormal with respect to g∗t .

The advantage of the Ricci–DeTurck flow equation over the Ricci flow equation is

that it is a non-linear, strongly parabolic equation in the metric g∗t . More specifically,

if we express g∗t in terms of the perturbation ht :=g
∗
t −gt, then (6.4) becomes the Ricci–

DeTurck flow equation for perturbations

∇∂tht=∆gtht+2Rmgt(ht)+Qgt [ht]. (6.6)
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Here we view gt as a background metric. All curvature quantities and covariant deriva-

tives are taken with respect to gt. On the left-hand side of (6.6), we moreover use

Uhlenbeck’s trick:

(∇∂tht)ij =(∂tht)ij+g
pq
t (Ricgtpj(ht)iq+Ricgtip(ht)qj).

The expressions on the right-hand side of (6.6) are to be interpreted as follows:

(Rmgt(ht))ij = gpqt R
u

pij (ht)qu

and Qgt [ht] is an algebraic expression in gt, ht, ∇ht, ∇2ht of the form

Qgt [ht] = (gt+ht)
−1∗(gt+ht)−1∗∇ht∗∇ht

+(gt+ht)
−1∗(gt+ht)−1∗Rmgt ∗ht∗ht+(gt+ht)

−1∗(gt+ht)−1∗ht∗∇2ht.

See (A.10) in Appendix A for an explicit formula for Qgt . The precise structure of the

quantity Qgt will, however, not be of essence in this paper.

We remark that in the classical setting and in the compact case, the uniqueness of

solutions to the Ricci flow equation follows from the existence of solutions to (6.3) and

the uniqueness of solutions to (6.6). More specifically, for any two Ricci flows (gt)t∈[0,T ]

and (g′t)t∈[0,T ] on M and M ′ for which there is an isometry χ:M ′!M with χ∗g0=g
′
0

one first constructs a solution (χt)t∈[0,τ) of (6.3), for some maximal τ<T , with initial

condition χ0=χ. The resulting perturbation ht=ϕ
∗
t g

′
t−gt, for ϕt=χ−1

t , solves (6.6), as

long as it is well defined. As h0≡0, we obtain by uniqueness that ht≡0, as long as it is

defined. It then follows that χt is an isometry for all t∈[0, T ]=[0, τ ] and by (6.3) that

∂tχt≡0.

In this paper we will mostly analyze solutions ht to (6.6) of small norm. Via a

limit argument, such solutions can be understood in terms the linearized Ricci–DeTurck

equation

∇∂th
′
t=∆gth

′
t+2Rmgt(h

′
t).

For more details on this, see §9.

6.6. Maps between Ricci flow spacetimes

In this subsection consider two Ricci flow spacetimes (M, t, ∂t, g) and (M′, t′, ∂t′ , g
′),

which we will abbreviate in the following by M and M′. Our goal will be to characterize

maps between subsets of these spacetimes. Using the terminology introduced above,

we will then generalize the notions introduced in the previous subsection to Ricci flow

spacetimes.
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Definition 6.10. (Time-preserving and time-equivariant maps) Let X⊂M be a sub-

set and ϕ:X!M′ be a map. We say that ϕ is time-preserving if t′(ϕ(x))=t(x) for all

x∈X. We say that ϕ is a-time-equivariant, for some a∈R, if there is some t0∈R such

that t′(ϕ(x))=at(x)+t0 for all x∈X.

Observe that a time-preserving map is also 1-time-equivariant.

Definition 6.11. (Time-slices of a map) If ϕ:X⊂M!M′ is time-equivariant and

t∈[0,∞) such that Xt=X∩Mt ̸=∅, then we denote by

ϕt :=ϕ|Xt :Xt−!M′
t′ ⊂M′

the time-t slice of ϕ. Here t′ is chosen such that ϕ(Xt)⊂M′
t′ .

Definition 6.12. (∂t-preserving maps) Let ϕ:X!M′ be a differentiable map de-

fined on a sufficiently regular domain X⊂M. If (dϕ)∗∂t=∂t′ , then we say that ϕ is

∂t-preserving.

Note that the image of a product domain under a time-equivariant and ∂t-preserving

map is again a product domain.

Definition 6.13. (Harmonic map heat flow) Let Y ⊂M′ be a subset. We say that a

map χ:Y!M evolves by harmonic map heat flow if it is 1-time-equivariant and if at all

times t, t′∈[0,∞) with Yt ̸=∅ and χ(Yt′)⊂M′
t the identity

dχ(∂t′)= ∂t+∆g′t,gt
χt (6.7)

holds on the interior of Y . The last term in this equation denotes the Laplacian of the

map ψt: (M′
t′ , g

′
t′)!(Mt, gt) (see (6.3) for further details).

It is not difficult to see that the notions of harmonic map heat flow in Definition 6.13

corresponds to Definition 6.9 in the case in which M and M′ can be described in terms of

classical Ricci flows (M, (gt)t∈I) and (M ′, (g′t)t∈I′), respectively. The same is true in the

case in which χ is the inverse of a diffeomorphism ϕ:X!Y ⊂M′, where X is a product

domain in M whose time-slices are domains with smooth boundary. In this case, which

will be of main interest for us (see Definition 7.2), the equation (6.7) makes sense and

holds, by continuity, on all of Y .

Next, we generalize the concept of Ricci–DeTurck flow to the setting of Ricci flow

spacetimes.

Definition 6.14. Consider a smooth symmetric (0, 2)-tensor field h on the sub-bundle

ker(dt)⊂TM over a sufficiently regular domainN⊂M (in this paper we will only consider
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the case in which N is a domain with smooth boundary or is a product domain whose

time-slices are domains with smooth boundary). We say that h is a Ricci–DeTurck

perturbation (on N) if

L∂t(g+h)=−2Ric(g+h)−LXg(g+h)(g+h), (6.8)

where Xg(g+h) is defined on each time-slice Xt as in (6.5).

If X is a product domain of the form X ′×I, and if we identify g and h with smooth

families of the form (gt)t∈I and (ht)t∈I , then (6.8) is equivalent to the classical Ricci–

DeTurck equation (6.4).

The following lemma is an immediate consequence of our discussion from §6.5.

Lemma 6.15. Let X⊂M be open or a product domain whose time-slices are do-

mains with smooth boundary and consider a diffeomorphism ϕ:X!Y :=ϕ(X)⊂M′. As-

sume that the inverse map ϕ−1:Y!X evolves by harmonic map heat flow. Then, the

perturbation h:=ϕ∗g′−g is a Ricci–DeTurck perturbation in the sense of Definition 6.14.

7. A-priori assumptions

In this section we introduce the objects and conditions that will be used to formulate

and prove the main result (Theorem 13.1), which asserts the existence of a certain type

of map between subsets of Ricci flow spacetimes. The domain of the map will be called

a comparison domain (Definition 7.1), and the map itself a comparison (Definition 7.2).

The comparison and its domain will be subject to a number of a-priori assumptions

(Definitions 7.4 and 7.5). These definitions have been tailored to facilitate an existence

proof by induction over time steps.

We recommend reading the overview in §2 prior to reading this section, because it

provides motivation for the structures defined here, and gives some indication of the role

they play in the proof. We refer the reader to §5 and §6 for the definitions relevant to

this section.

7.1. Comparison domains

We begin with a definition that collects the qualitative features of the domain of our

comparison map. Additional assumptions of a quantitative nature are imposed later,

in the a-priori assumptions. Loosely speaking, a comparison domain is a sequence of

product domains N 1, ...,N J defined on successive time-intervals, whose time-slices have

spherical boundary (see Figure 8 for an illustration). One observes two types of behavior
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t0

t1

t2

t3

t4

t5 ...

...

...

...

N 1

N 2

N 3

N 4

N 5

D
extension cap

Figure 8. Example of a comparison domain defined over the time-interval [0, t5] and a cut.

The dark shaded regions indicate the picture of the comparison domain at integral time-steps

t0, ..., t5. The extension cap at time t3 is shaded very dark. This extension cap is contained
in a cut D, which is outlined in bold. Note that cuts, such as D, occur in the definition of a

comparison, not of a comparison domain.

near the boundary as one transitions from one product domain to the next: boundary

components can either “recede”, or they can be filled in by 3-balls. In the main existence

proof, the latter case corresponds to the situation when the comparison map is extended

over a cap region lying in a subset that is approximated by a Bryant soliton; for this

reason, we call the closures of such 3-balls extension caps.

Definition 7.1. (Comparison domain) A comparison domain (defined over the time-

interval [0, tJ ]) in a Ricci flow spacetime M is a triple (N , {N j}1⩽j⩽J , {tj}Jj=0), where

the following holds:

(1) The times 0=t0<...<tJ partition the time-interval [0, tJ ]. EachN j (for 1⩽j⩽J)

is a subset of M[tj−1,tj ], and

N =
⋃

1⩽j⩽J

N j ⊂M[0,tJ ].
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(2) For all 1⩽j⩽J the subset N j is closed in M, and is a product domain, in the

sense of Definition 6.6.

(3) For all 1⩽j<J , we have ∂N j+1
tj ⊂IntN j

tj . Here IntN j
tj denotes the interior of

N j
tj inside Mtj . Consequently, the difference N j+1

tj \IntN j
tj is a closed subset of Mtj

that is a domain with smooth boundary, with boundary contained in N j
tj .

(4) For every 1⩽j<J , the components of N j+1
tj \IntN j

tj are 3-disks, which are called

extension caps.

For any t<tJ , we define the forward time-t slice Nt+ of N to be the set of accu-

mulation points of Nt̄ as t̄&t, and if t=tJ we define Nt+=Nt. We define the backward

time-slices Nt− similarly, but taking accumulation points as t̄%t, and when t=0, we put

N0−=N0. Thus if t∈(tj−1, tj) then Nt±=N j
t , Ntj−=N j

tj and Ntj+=N j+1
tj if 1⩽j<J .

Observe that Nt=Nt−∪Nt+.

In the case J=0 the comparison domain (N=∅, { }, {t0}) is called the empty com-

parison domain.

When there is no chance of confusion, we will sometimes abbreviate

(N , {N j}Jj=1, {tj}Jj=0)

by N .

7.2. Comparisons

Next, we collect the basic properties of our comparison maps between Ricci flow space-

times. Roughly speaking, a comparison is a map between Ricci flow spacetimes that is

defined on a comparison domain. Away from the transition times, the inverse of this map

solves the harmonic map heat flow equation for the evolving metrics, or equivalently, the

pullback metric satisfies the Ricci–DeTurck equation. At a transition time, the compari-

son is extended over the extension caps. In order to guarantee a good interpolation, it is

necessary to adjust the comparison over a region that is much larger than the extension

cap. As a consequence, the comparison, when viewed as a map between spacetimes, may

have jump discontinuities near every extension cap. The discontinuity locus is contained

in a disjoint union of closed disks, which we will call cuts (see Figure 8 for an illustration).

In the following definition, we allow a comparison to be defined on a shorter time-

interval than the comparison domain. This is done for technical reasons having to do with

a two part induction argument. More specifically, in §11, we will analyze a comparison

that is defined on an entire comparison domain (over a time-interval [0, tJ ]) and then

extend the comparison domain by one time-step (to the time-interval [0, tJ+1]), without

extending the comparison itself. So, we will end up with a comparison domain that is
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defined up to some time tJ+1, while the comparison itself still remains defined only up

to time tJ .

Definition 7.2. (Comparison) Let M and M′ be Ricci flow spacetimes and consider

a comparison domain (N , {N j}Jj=1, {tj}Jj=0) defined over the time-interval [0, tJ ] in M.

A triple (Cut, ϕ, {ϕj}J∗

j=1) is a comparison from M to M′ defined on (N , {N j}Jj=1,

{tj}Jj=0) (over the time-interval [0, tJ∗ ]) if the following holds:

(1) J∗⩽J .

(2) Cut=Cut1 ∪ ...∪CutJ
∗−1, where each Cutj is a collection of pairwise disjoint

3-disks inside IntNtj+.

(3) Each D∈Cut contains exactly one extension cap of the domain (N , {N j}Jj=1,

{tj}Jj=0) and every extension cap of (N , {N j}Jj=1, {tj}Jj=0) that is contained in M[0,tJ∗−1]

is contained in one element of Cut.

(4) Each ϕj :N j!M′ is a time-preserving diffeomorphism onto its image. More

precisely, ϕj may be extended to a diffeomorphism onto its image defined on an open

neighborhood of N j in the manifold with boundary M[tj−1,tj ].

(5) If J∗⩾1, then ϕ:
⋃J∗

j=1 N j\
⋃

D∈Cut D!M′ is a continuous map that is smooth

on the interior of
⋃J∗

j=1 N j\
⋃

D∈Cut D. If J∗=0, then we assume that ϕ:∅!∅ is the

trivial map.

(6) ϕ=ϕj on the open time slab N j
(tj−1,tj)

for all j=1, ..., J∗.

(7) For all j=1, ..., J∗, the inverse map (ϕj)−1:ϕj(N j)!N j evolves by harmonic

map heat flow (according to Definition 6.13).

We define ϕtj− to be ϕj |N j
tj

if 0<j⩽J∗ and ϕ10 if j=0. Similarly, we define ϕtj+ to

be ϕj |N j+1
tj

if 0⩽j<J∗ and ϕJ
∗ |NJ∗

tJ∗
if j=J∗.

We remark that Definition 7.2 implies that ϕ is injective, and that ϕ−1 satisfies the

harmonic map heat flow equation everywhere it is defined.

Note that by Definition 7.2, the only comparison in the case J∗=0 is the trivial

comparison (Cut=∅, ϕ:∅!∅,∅).

As explained in §6.5, a map whose inverse is evolving by harmonic map heat flow

induces a Ricci–DeTurck flow on its domain. We will now use this fact to define the

Ricci–DeTurck perturbation associated with a comparison.

Definition 7.3. (Associated Ricci–DeTurck perturbation) Consider a comparison do-

main (N , {N j}Jj=1, {tj}Jj=0) in a Ricci flow spacetime M that is defined over the time-

interval [0, tJ ] and a comparison (Cut, ϕ, {ϕj}J∗

j=1) from M to M′ defined on this domain

over the time-interval [0, tJ∗ ] for some J∗⩽J .

Define h:=ϕ∗g′−g on N \
⋃

D∈Cut D and hj :=(ϕj)∗g′−g on N j for all 1⩽j⩽J∗.
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Then, we say that (h, {hj}J∗

j=1) is the associated Ricci–DeTurck perturbation for

(Cut, ϕ, {ϕj}J
∗

j=1).

Moreover, for 1⩽j⩽J∗ we set htj− :=h
j
tj , and define ht0− :=h10. Likewise, for 0⩽j⩽J

∗−1

we set htj+ :=h
j+1
tj and htJ∗+=hJ∗tJ∗ .

Note that by Lemma 6.15 the tensors h and hj are Ricci–DeTurck perturbations in

the sense of Definition 6.14.

7.3. A-priori assumptions I: the geometry of the comparison domain

Next, we introduce a-priori assumptions for a comparison (Cut, ϕ, {ϕj}J∗

j=1) defined on

a comparison domain (N , {N j}Jj=1, {tj}Jj=0). We first state the first six a-priori as-

sumptions, (APA1)–(APA6), which characterize the more geometric properties of the

comparison domain and the comparison. These are the only a-priori assumptions needed

to implement the first part of the main induction argument, in §11.
To make it easier to absorb the list of conditions, we make some informal preliminary

remarks. The construction of the comparison domain and comparison involves a com-

parison scale rcomp. Most of the a-priori assumptions impose conditions at scales that

are defined relative to rcomp. For instance, the final time-slice of each product domain

N j of the comparison domain is assumed to have boundary components that are central

2-spheres of necks at scale rcomp. Moreover, we assume the comparison domain to be

λrcomp-thick and to contain all Λrcomp-thick points at integral time-slices. These and

similar characterizations will be made in a-priori assumptions (APA1)–(APA3).

In addition, we impose two assumptions, (APA4) and (APA5), that restrict the

situations when a component can be discarded or added, respectively. To appreciate the

role of these two conditions, the reader may wish to imagine a scenario when a Bryant-

like cap region in M evolves through a range of scales, initially well below λrcomp, then

well above Λrcomp, possibly fluctuating between these over a time scale ≫r2comp. Then,

initially the cap region will lie outside the comparison domain, because its scale is too

small, and later it will necessarily lie in the comparison domain, because it has scale

>Λrcomp. A-priori assumptions (APA4) and (APA5) ensure that these events occurs

when the tip of the cap has scale in the range approximately (λrcomp, 10λrcomp), and

that they do not occur unnecessarily too often.

Finally, a-priori assumption (APA6) states that the comparison itself is an almost

isometry of high enough precision.

We mention that a-priori assumptions (APA1)–(APA6) depend on a number of pa-

rameters, which will be chosen in the course of this paper. Also, as with Definition 7.2,
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in the following definition we do not require a comparison to be defined on the entire

comparison domain (see the discussion before Definition 7.2).

Definition 7.4. (A-priori assumptions (APA1)–(APA6)) Let (N , {N j}Jj=1, {tj}Jj=0)

be a comparison domain in a Ricci flow spacetime M that is defined over the time-interval

[0, tJ ] and consider a comparison (Cut, ϕ, {ϕj}J∗

j=1) from M to M′ on this domain to

another Ricci flow spacetime M′ that is defined over the time-interval [0, tJ∗ ] for some

J∗⩽J .

We say that (N , {N j}Jj=1, {tj}Jj=0) and (Cut, ϕ, {ϕj}J∗

j=1) satisfy a-priori assump-

tions (APA1)–(APA6) with respect to the tuple of parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

if the following holds:

(APA1) We have tj=j ·r2comp for each 0⩽j⩽J .

(APA2) All points in N are λrcomp-thick.

(APA3) For every 1⩽j⩽J , the backward time-slice Ntj−=N j
tj has the following

properties:

(a) The boundary components of Ntj− are central 2-spheres of δn-necks at

scale rcomp.

(b) Ntj− contains all Λrcomp-thick points of Mtj .

(c) Each component of Ntj− contains a Λrcomp-thick point.

(d) Each component of Mtj \IntNtj− with non-empty boundary contains a

10λrcomp-thin point.

(e) The points on each cut D∈Cut are Λrcomp-thin.

(APA4) (Discarded disks become thin) Suppose 1⩽j⩽J , and C is a component of

Ntj−1−\IntNtj−1+ (if j⩾2) or M0\IntN0+ (if j=1) such that the following holds:

(a) C is diffeomorphic to a 3-disk.

(b) ∂C⊂Ntj−1+.

Then, either C does not survive until time tj (as in Definition 6.4), or for some time

t∈[tj−1, tj ] we can find a weakly λrcomp-thin point on C(t) (recall the notation C(t) from
Definition 6.4).

(APA5) (Geometry of extension caps) For each 1⩽j⩽J∗ and every component C of

Mtj \IntNtj− the following holds: C is an extension cap of (N , {N j}Jj=1, {tj}Jj=0) if and

only if there is a component C′ of M′
tj \ϕtj−(IntNtj−) such that the following holds:
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(a) C and C′ are 3-disks.

(b) ∂C′=ϕtj−(∂C).
(c) There is a point x∈C such that (Mtj , x) is δb-close to the pointed Bryant

soliton (MBry, gBry, xBry) at scale 10λrcomp.

(d) There is a point x′∈M′
tj , at distance ⩽Dcaprcomp from C′, such that

(M′
tj , x

′) is δb-close to the pointed Bryant soliton (MBry, gBry, xBry) at some

scale in the interval [D−1
caprcomp, Dcaprcomp].

(e) C and C′ have diameter ⩽Dcaprcomp.

(APA6) Consider the Ricci–DeTurck perturbation (h, {h}J∗

j=1) associated with the

comparison (Cut, ϕ, {ϕj}J∗

j=1).

If J∗⩾1, then |h|⩽ηlin on
⋃J∗

j=1 N j\
⋃

D∈Cut D. Moreover, the εcan-canonical neigh-

borhood assumption holds at scales (0, 1) on
⋃J∗

j=1 ϕ
j(N j).

We point out that a-priori assumptions (APA1)–(APA4) are conditions on the com-

parison domain only. On the other hand, a-priori assumption (APA5) places restrictions

on extension caps in terms of the comparison map and the local geometry of the image.

This is to ensure that extension caps arise only when the geometry of the domain and

target are nice enough to allow an extension of a comparison on that is a precise enough

almost isometry.

7.4. A-priori assumptions II: analytic conditions on the comparison

Lastly, we introduce a further set of a-priori assumptions, (APA7)–(APA13), which char-

acterize the behavior of the perturbation h and the geometry of the cuts more precisely.

These assumptions will become important in §12, where we will extend the comparison

by one time-step onto a larger comparison domain.

We now give a brief overview of a-priori assumptions (APA7)–(APA13). A-priori

assumptions (APA7)–(APA10) impose global bounds on the Ricci–DeTurck perturbation

h via two quantities Q and Q∗. These bounds essentially introduce a pointwise weight,

which depends on the curvature scale ρ and time. A-priori assumption (APA7) imposes

a bound on Q on the comparison domain, on the complement of forward parabolic

neighborhoods of cuts. Similarly, a-priori assumption (APA9) imposes a bound on Q∗ at

points of the comparison domain that are far enough away from its neck-like boundary.

For an illustration of the domains on which these bounds do or do not hold, see Figure 9.

A-priori assumption (APA8) introduces a weaker bound on Q, which holds essentially

everywhere on the comparison domain. Note that the constant W in this bound will

be chosen to be large. Therefore, a-priori assumption (APA8) will not directly imply



uniqueness and stability of ricci flow 47

no Q-bound

cut

no Q∗-bound

...

...

...

Figure 9. The bound Q⩽
Q in (APA7) holds on all of N except for the hatched region. The

bound Q∗⩽
Q∗ in (APA9) holds on all of N except for the dotted region.

a-priori assumption (APA7).

A-priori assumption (APA10) states that Q∗ is small on each cut and a-priori as-

sumption (APA12) guarantees a good bound on Q and Q∗ on the initial time-slice. A-

priori assumption (APA11) controls the geometry of the cuts. Lastly, a-priori assumption

(APA13) imposes a bound on tJ .

Definition 7.5. (A-priori assumptions (APA7)–(APA13)) Let (N , {N j}Jj=1, {tj}Jj=0)

be a comparison domain in a Ricci flow spacetime M that is defined on the time-interval

[0, tJ ] and consider a comparison (Cut, ϕ, {ϕj}J∗

j=1) on this domain to another Ricci flow

spacetime M′ that is defined on the same time-interval [0, tJ ].

We say that (N , {N j}Jj=1, {tj}Jj=0) and (Cut, ϕ, {ϕj}Jj=1) satisfy a-priori assump-

tions (APA7)–(APA13) with respect to the tuple of parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp)

if the following holds. Define the functions

Q := eH(T−t)ρE1 |h| and Q∗ := eH(T−t)ρ31|h|

on N \
⋃

D∈Cut D, where t:M![0,∞) is the time-function. On Ntj± we denote by Q±

and Q∗
± the corresponding values for htj±. We also set Q± :=Q on N \

⋃
D∈Cut D. Set


Q := 10−E−1ηlinr
E
comp and 
Q∗ := 10−1ηlin(λrcomp)

3.
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Then

(APA7) (Q⩽
Q if no cuts in nearby past) For all x∈N \
⋃

D∈Cut D for which

P (x,Aρ1(x))∩D=∅ for all D∈Cut,

we have

Q(x)⩽ 
Q.

Note that the bound is also required to hold if P (x,Aρ1(x)) ̸⊂N .

(APA8) We have

Q⩽W ·
Q on N \
⋃

D∈Cut

D.

(APA9) (Q∗⩽
Q∗ away from time-slice boundary) For all x∈N \
⋃

D∈Cut D for which

B(x,Aρ1(x))⊂Nt(x)−, we have

Q∗(x)⩽ 
Q∗.

(APA10) On every cut D∈Cut, we have

Q∗
+⩽ ηcut
Q

∗.

(APA11) For every cut D∈Cut, D⊂Mtj , the following holds: The diameter of D
is less than Dcutrcomp and D contains a 1

10Dcutrcomp-neighborhood of the extension cap

C=D\IntNtj−.

(APA12) We have Q⩽ν
Q and Q∗⩽ν
Q∗ on N0 (i.e. at time zero).

(APA13) We have tJ⩽T .

Note that a-priori assumptions (APA7)–(APA13) are vacuous if J=0.

We briefly comment on the purpose of a-priori assumptions (APA7)–(APA9).

As explained in §2, a-priori assumption (APA7), the bound Q⩽
Q, serves as a main

ingredient for the Bryant extension principle, as long as E is chosen large enough. It will

also be used to ensure that |h|⩽ηlin at most points of the comparison domain.

Note however that 
Q is chosen such that the bound Q⩽
Q only implies |h|⩽ηlin
when ρ1≳rcomp. So, it does not imply |h|⩽ηlin everywhere on the comparison domain.

Unfortunately, we will not be able to remedy this issue by replacing 
Q in a-priori as-

sumption (APA7) by a smaller constant, as our solution of the harmonic map heat flow

will introduce an error of magnitude depending on δn near the neck-like boundary of N .

More specifically, assuming that the bound Q⩽
Q holds near the neck-line boundary,

which has scale ≈rcomp, then errors would force 
Q≳rEcompη
′, where η′=η′(δn). On the

other hand, since we would want the inequality Q⩽
Q to enforce the bound |h|⩽ηlin
everywhere in N , and since N may contain points of scale ≈λrcomp, we would need to
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T

E

H

ηlin

ν δn λ Dcap Dcut

ηcut

W A Λ

rcomp

δb εcan

Figure 10. All restrictions on the parameters that will be imposed throughout this paper.

Each parameter in this graph can be chosen depending only on the parameters that can be
reached by following the arrows backwards. Note that the graph does not contain any oriented

circles.

have 
Q≲(λrcomp)
Eηlin. Combining the two inequalities, we get η′(δn)≲λEηlin, so we end

up with a condition of the form δn⩽δn(ηlin, λ). However, to construct the comparison

domain so that its boundary consists of (roughly) δn-necks, we need a condition of the

form λ⩽λ(δn), which is incompatible. In summary, the constant 
Q cannot be chosen

such that a-priori assumption (APA7) is both weak enough to hold near the boundary

of N and strong enough to imply |h|⩽ηlin at all points of scale ≳λrcomp.

The bound Q∗⩽
Q∗ in a-priori assumption (APA9), on the other hand, automatically

implies |h|⩽ηlin everywhere on N . However, we are not imposing it near the neck-like

boundary of N .

Lastly, note that the bound Q⩽
Q may be violated after a Bryant extension con-

struction. Therefore, we have not imposed it in a-priori assumption (APA7) at points

that lie in the near future of cuts. At these points, the bound Q∗⩽
Q∗ will be used to

guarantee |h|⩽ηlin. Moreover, the bound Q⩽W
Q from a-priori assumption (APA8) will

be used to partially retain a-priori assumption (APA7) in the future of a cut. Using the

interior decay from §9, this bound can in turn be improved to the bound Q⩽
Q from

a-priori assumption (APA7) after a sufficient time.
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7.5. Parameter order

As mentioned earlier, the a-priori assumptions, as introduced in the last two subsections,

involve several parameters, which will need to be chosen carefully in the course of this

paper. Each step of our construction will require that certain parameters be chosen

sufficiently small/large depending on certain other parameters. In order to show that

these parameters can eventually be chosen such that all restrictions are met, we need

to ensure that these restrictions are not circular. For this purpose, we introduce the

following parameter order:

T, E, H, ηlin, ν, δn, λ, Dcap, ηcut, Dcut, W, A, Λ, δb, εcan, rcomp.

In the entire paper, we will require each parameter to be chosen depending only on

preceding parameters in this list. So, parameters can eventually be chosen successively

in the order indicated by this list.

For a more detailed picture of all the parameter restrictions imposed in this paper

see Figure 10. These restrictions also appear in the preamble of our main technical result,

Theorem 13.1. Note that, as these restrictions are not completely linear, there are several

admissible parameter orders. We have chosen the above parameter order, because we

found it to be most intuitive.

We advise the first-time reader that it is not necessary to follow all parameter re-

strictions in detail when going through the proofs of this paper. Instead, it suffices to

check that the above parameter order is obeyed in each step.

8. Preparatory results

In this section we collect a variety of technical results that will be needed in the proof of

the main theorem. These are based on definitions from §§5–7. The reader may wish to

skim (or skip) this section on a first reading.

8.1. Consequences of the canonical neighborhood assumption

The completeness and canonical neighborhood assumptions, as introduced in Defini-

tions 5.3 and 5.6 lead in a straightforward way to local bounds on geometry, including

local control on curvature and its derivatives, as well as control on neck and non-neck

structure. We begin this subsection with a few such results (Lemmas 8.1–8.7), and

then use them to deduce control on scale distortion of bilipschitz maps (Lemma 8.9),

self-improvement of necks (Lemma 8.10) and scale bounds near necks (Lemma 8.11).
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Our first two results are direct consequences of the definition of the canonical neigh-

borhood assumption, and properties of κ-solutions.

Lemma 8.1. (a) For every A<∞ there is a constant C=C(A)<∞ such that, if

εcan⩽ ε̄can(A)

and a Riemannian manifold M satisfies the εcan-canonical neighborhood assumption at

x∈M , then the following holds on the ball B(x,Aρ(x)) for all 0⩽m⩽A:

ρ=
√
3R−1/2, C−1ρ(x)⩽ ρ⩽Cρ(x), |∇mRm |⩽Cρ−2−m(x).

(b) There is a C<∞ such that, if

εcan⩽ ε̄can

and M is a Ricci flow spacetime that satisfies the εcan-canonical neighborhood assumption

at some point x∈M, then

|∂tρ2|(x)= 3|∂tR−1|(x)⩽C.

(c) Given δ>0, if

εcan⩽ ε̄can(δ)

and M is a Ricci flow spacetime that satisfies the εcan-canonical neighborhood assumption

at some point x∈M, then

∂tρ
2(x)= 3∂tR

−1(x)⩽ δ.

Proof. Assertion (a) follows from the definition of the canonical neighborhood as-

sumption, assertions (c) and (d) of Lemma C.1 and Lemma 6.2.

For assertions (b) and (c) we recall that in a Ricci flow the time derivative ∂tR(x)

may be expressed as a universal continuous function F (Rm(x),∇Rm(x),∇2 Rm(x)) of

spatial curvature derivatives. Now, assertions (b) and (c) follow from the definition of

the canonical neighborhood assumption, and assertion (e) of Lemma C.1.

Lemma 8.2. For every δ>0 there is a constant C0=C0(δ)<∞ such that, if

εcan⩽ ε̄can(δ),

then the following holds.

Assume that (M, g) is a Riemannian manifold that satisfies the εcan-canonical neigh-

borhood assumption at some point x∈M . Then, one of the following hold :

(a) x is the center of a δ-neck at scale ρ(x).

(b) There is a compact, connected domain V ⊂Mt with connected (possibly empty

boundary) such that the following hold :
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(1) B(x, δ−1ρ(x))⊂V .

(2) ρ(y1)<C0ρ(y2) for all y1, y2∈V .

(3) diamV <C0ρ(x).

(4) If ∂V ̸=∅, then

(i) ∂V is a central 2-sphere of a δ-neck.

(ii) Either V is a 3-disk or it is diffeomorphic to a twisted interval bundle

over RP 2.

(iii) Any two points z1, z2∈∂V can be connected by a continuous path inside

∂V whose length is less than

min{d(z1, x), d(x, z2)}−100ρ(x).

(5) If V is diffeomorphic to a twisted interval bundle over RP 2, then

ρ(y1)< 2ρ(y2) for all y1, y2 ∈V .

Proof. This follows immediately from Lemma C.2 using the definition of the canon-

ical neighborhood assumption.

Lemma 8.3. Suppose M is an (r0, t0)-complete Ricci flow spacetime. If for some

r>r0 we have ρ>r on a parabolic neighborhood P (x, a, b)⊂M[0,t0], then it is unscathed.

Proof. Let t=t(x). From the (r0, t0)-completeness of M, any unit speed geodesic in

Mt starting at x can be extended up to a length of at least a. Therefore, the exponential

map expx:TxMt⊃B(0, a)!Mt is well defined, and has compact image

expx(B(0, a))=B(x, a).

If y∈B(x, a), then since ρ>r on P (x, a, b), it follows from (r0, t0)-completeness that y(t̄)

is defined on [t, t+b] if b>0 or [t+b, t]∩[0,∞) if b<0.

Next, we derive a few results based on the bounds in Lemma 8.1.

Lemma 8.4. (Scale nearly constant on small two-sided parabolic balls) If L>1 and

η⩽ η̄(L) and εcan⩽ ε̄can,

then the following holds.

Suppose that 0<r⩽1 and M is an (εcanr, t0)-complete Ricci flow spacetime satis-

fying the εcan-canonical neighborhood assumption at scales (εcanr, 1). If for some point

x∈Mt with t∈[0, t0] we have ρ1(x)⩾r, then the parabolic neighborhoods

P± :=P (x, ηρ1(x),±(ηρ1(x))
2)∩M[0,t0]
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are unscathed and

L−1ρ1(x)⩽ ρ1⩽Lρ1(x) (8.1)

on P+∪P−.

Proof. If

εcan⩽ ε̄can,

then, by Lemma 6.2 and assertions (a) and (b) of Lemma 8.1, there is a constant C0<∞
such that near any point that satisfies the εcan-canonical neighborhood assumption we

have

|∇ρ|, |∂tρ2|⩽C0. (8.2)

Now choose a point y∈P±, and let γ: [0, a]!M be a curve from x to y that is a con-

catenation of curves γ1 and γ2, where γ1 is a unit speed curve from x to y(t) of length

<ηρ1(x), and γ2 is the integral curve of ±∂t from y(t) to y. Then, by (8.2), we have

|(ρ1�γ1)′(s)|⩽C0 and |(ρ21�γ2)′(s)|⩽C0, (8.3)

wherever the derivatives are defined and ρ1�γi(s)>εcanr. Therefore, if

η⩽ η̄(L),

then (8.1) follows by integrating the derivative bound (8.3). The fact that P± are un-

scathed follows from Lemma 8.3.

Lemma 8.5. (Backward survival control) If δ>0, A<∞ and

εcan⩽ ε̄can(δ, A),

then the following holds.

Suppose that r>0 and M is an (εcanr, t0)-complete Ricci flow spacetime satisfying

the εcan-canonical neighborhood assumption at scales (εcanr, r). Let x∈Mt with t∈[0, t0]
and assume that ρ(x)⩾r. Then, x(t′) exists for all t̄∈[t−Ar2, t]∩[0,∞), and we have

ρ(x(t̄))> (1−δ)r.

Proof. Set t:=t(x) and let δ#>0 be a constant whose value we will choose at the end

of the proof. Recall that ρr=min{ρ, r}. By assertion (c) of Lemma 8.1, and assuming

εcan⩽ ε̄can(δ#),
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we have
d

dt̄
(ρ2r(x(t̄)))⩽ δ# (8.4)

for all t̄⩽t for which both x(t̄) and the derivative exist and ρ2r(x(t̄))>(εcanr)
2. Therefore,

if

δ#⩽ δ̄(δ, A),

then we may integrate (8.4) to obtain that ρ2r(x(t̄))>(1−δ)r for all t̄⩽t for which

t− t̄⩽Ar2

and x(t̄) is defined. Assuming

εcan< 1−δ,

we can use the (εcanr, t0)-completeness to show that x(t̄) is defined for all

t̄∈ [t−Ar2, t]∩[0,∞).

Lemma 8.6. (Bounded curvature at bounded distance) For every A<∞ there is a

constant C=C(A)<∞ such that if

εcan⩽ ε̄can(A),

then the following holds.

Let 0<r⩽1 and consider an (εcanr, t0)-complete Ricci flow spacetime M that sat-

isfies the εcan-canonical neighborhood assumption at scales (εcanr, 1). If x∈M[0,t0] and

ρ1(x)⩾r, then P (x,Aρ1(x)) is unscathed and we have

C−1ρ1(x)<ρ1<Cρ1(x) on P (x,Aρ1(x)). (8.5)

Proof. We claim that there is a constant C1=C1(A)<∞ such that

C−1
1 ρ1(x)⩽ ρ1⩽C1ρ1(x) on B(x,Aρ1(x)). (8.6)

This is immediate if ρ1≡1 onB(x,Aρ1(x)), so suppose ρ1(y)<1 for some y∈B(x,Aρ1(x)).

By the continuity of ρ1, we may choose y such that ρ1(y)∈
(
1
2ρ1(x), 1

)
. Applying assertion

(a) of Lemma 8.1 to the ball B(y, 4Aρ(y))⊃B(x,Aρ1(x)), we get (8.6).

If

εcan⩽ ε̄can(A),

then using (8.6), we may apply Lemma 8.5 at any point z∈B(x,Aρ1(x)) to conclude

that γ(t̄) is defined and

ρ1(z(t̄))⩾ 1
2C

−1
1 ρ1(x)>εcanr
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for all t̄∈[t−Aρ1(x)2, t]∩[0,∞). Thus, P (x,Aρ1(x)) is unscathed by Lemma 8.3.

Next, by assertion (a) of Lemma 8.1 there is a universal constant C2<∞ such that

if

εcan⩽ ε̄can(A),

then for all t̄∈[t−Aρ21(x)]∩[0,∞) we have∣∣∣∣ ddt̄ (ρ21(z(t̄))
∣∣∣∣<C2,

provided the derivative is defined. Integrating this bound yields

ρ21(z(t̄))⩽C
2ρ21(z)

for C=C(A)<∞. Thus (8.5) holds.

In the next result we combine the bounded curvature at bounded distance estimate

(Lemma 8.6) with a distance distortion estimate to find a parabolic neighborhood cen-

tered at a point x that contains all parabolic neighborhoods of the form P (y,A2ρ1(y)),

where y varies over some parabolic neighborhood P (x,A1ρ1(x)).

Lemma 8.7. (Containment of parabolic neighborhoods) For any A1, A2<∞ there

is a constant A′=A′(A1, A2)<∞ with A′⩾A1+A2 such that if

εcan⩽ ε̄can(A1, A2),

then the following holds.

Let 0<r⩽1 and consider an (εcanr, t0)-complete Ricci flow spacetime M that sat-

isfies the εcan-canonical neighborhood assumption at scales (εcanr, 1). If x∈M[0,t0] and

ρ1(x)⩾r, then the parabolic neighborhood P (x,A′ρ1(x)) is unscathed and we have

P (y,A2ρ1(y))⊂P (x,A′ρ1(x)) (8.7)

for all y∈P (x,A1ρ1(x)).

Proof. We first use Lemma 8.6, assuming

εcan⩽ ε̄can(A1),

to argue that P (x,A1ρ1(x)) is unscathed and

ρ1<C1(A1)ρ1(x) on P (x,A1ρ1(x)) (8.8)
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for some C1=C1(A1)<∞.

The constant A′ will be determined in the course of the proof. Again, by Lemma 8.6,

assuming

εcan⩽ ε̄can(A
′), (8.9)

we find that P (x, 2A′ρ1(x)) is unscathed and that ρ1>c2(A
′)ρ1(x)⩾c2r>εcanr on it. At

any point z∈P (x, 2A′ρ1(x)) with ρ1(z)<1 the curvature operator is close to that of a

κ-solution. Since κ-solutions have non-negative Ricci curvature, we can argue that

Ric⩾−c22(A′)ρ−2(z)⩾−ρ−2
1 (x)

at z if we assume a bound of the form (8.9). On the other hand, at any z∈P (x, 2A′ρ1(x))

with ρ1(z)=1 we have ρ(z)⩾1, and therefore Ric⩾−C2 at z for some universal constant

C2. So, in summary, we have

Ric⩾−C2ρ
−2
1 (x) on P (x, 2A′ρ1(x)). (8.10)

Now consider a point y∈P (x,A1ρ1(x)). Set tx :=t(x) and ty :=t(y). We first claim

that for

A′⩾A′(A1, A2)

we have

B(y,A2ρ1(y))⊂P (x,A′ρ1(x)). (8.11)

Assume not and choose a smooth curve γ: [0, 1]!(P (x, 2A′ρ1(x))ty between y and a point

z∈P (x, 2A′ρ1(x))\P (x,A′ρ1(x)) such that ℓty (γ)<A2ρ1(y). Note that for all t′∈[ty, tx]
the curve γt′ : [0, 1]!Mt with γt′(s):=(γ(s))(t′) is defined and its image is contained in

P (x, 2A′ρ1(x)). So, by (8.10) and (8.8), we have

dtx(y(tx), z(tx))⩽ ℓtx(γtx)

< exp(C2ρ
−2
1 (x)A2

1ρ
2
1(x))·A2ρ1(y)

⩽C1A2 exp(C2A
2
1)ρ1(x)

So

A′ρ1(x)⩽ dtx(x, y)+dtx(y, z(tx))<A1ρ1(x)+C1A2 exp(C2A
2
1)ρ1(x).

Now set

A′(A1, A2) :=A1+C1A2 exp(C2A
2
1)+

√
A2

1+A
2
2.

Then, we obtain a contradiction and thus (8.11) holds. Since

(A′)2⩾A2
1+A

2
2,

we obtain (8.7).
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The next two results concern the behavior of the curvature scale ρ under nearly

isometric mappings. We begin with a convergence lemma that shows that an immersion

between Riemannian manifolds must nearly preserve the scale, provided it is nearly

an isometry, and we have sufficient control on the curvature and possibly curvature

derivatives on the domain and target. The main point is that the map is only assumed

to be an almost isometry in the C0-sense.

Lemma 8.8. Suppose that {(Z1
k , g

1
k, z

1
k}∞k=1 and {(Z2

k , g
2
k, z

2
k)}∞k=1 are sequences of

pointed smooth Riemannian manifolds such that for some r0>0 and for each i=1, 2 the

ball B(zik, r0)⊂Zik is relatively compact for all k, and one of the following holds :

(i) supB(zik,r0)
|Rm|gik!0 as k!∞.

(ii) lim supk!∞ supB(zik,r0)
|∇jRm|gik<∞ for 0⩽j⩽5.

Let {ϕk:Z1
k!Z

2
k}∞k=1 be a sequence of smooth maps such that ϕk(z

1
k)=z

2
k and

sup
B(z1k,r0)

|(ϕ∗kg2k−g1k)|g1k! 0 as k!∞. (8.12)

Then, after passing to a subsequence, the scale functions converge to the same limit :

lim
k!∞

ρ(z1k)= lim
k!∞

ρ(z2k)∈ [0,∞)∪{∞}.

Proof. We first prove the lemma under the additional conditions that the ϕks are

diffeomorphisms and the injectivity radii at z1k satisfy

lim inf
k!∞

InjRad(Z1
k , g

1
k, z

1
k)> 0. (8.13)

Using standard injectivity radius estimates, conditions (i), (ii), (8.12), and (8.13)

imply that for every r<r0, and sufficiently large k, the injectivity radius is bounded

uniformly from below on B(zik, r)⊂Zik. By standard compactness arguments, after

passing to a subsequence, the sequence of pointed balls {(B(zik, r0), g
i
k, z

i
k)}∞k=1 con-

verges to a pointed C4-Riemannian manifold (Zi∞, g
i
∞, z

i
∞), that is a proper r0-ball

(i.e. balls of radius <r0 are relatively compact), and there is a basepoint-preserving

map ϕ∞: (Z1
∞, z

1
∞)!(Z2

∞, z
2
∞) that is an isometry of the Riemannian distance functions,

where, for each i=1, 2, the following holds:

• If {gik} satisfies (i), then the pointed convergence

(B(zik, r0), g
i
k, z

i
k)! (Zi∞, z

i
∞)

is with respect to the Gromov–Hausdorff topology and Zi∞ is flat.

• If {gik} satisfies (ii), then the pointed convergence

(B(zik, r0), g
i
k, z

i
k)! (Zi∞, g

i
∞, z

i
∞)

is with respect to the C4-topology.
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In view of the above, we have ρ(zik)!ρ(z
i
∞)∈[0,∞)∪{∞} as k!∞ for i=1, 2.

Since ϕ∞ is an isometry (of distance functions) between C4 Riemannian manifolds, it

is a C3-isometry of Riemannian manifolds, and hence it preserves curvature tensors:

ϕ∗∞(Rm(z2∞))=Rm(z1∞). It follows that ρ(z1∞)=ρ(z2∞).

We now return to the general case. We may assume after shrinking r0 that the

conjugate radius of Z1
k at z1k is ⩾2r0. For i=1, 2, let (W i

k, w
i
k) be the ball B(0, 2r0)⊂

Tz1kZ
1
k with basepoint wik=0∈B(0, 2r0), and let h1k :=exp∗

z1k
gik and h2k :=(ϕk �expz1k)

∗g2k.

Then, the injectivity radius at w1
k satisfies InjRad(W 1

k , h
1
k, w

1
k)⩾r0, and B(wik, r0)⊂W i

k

is relatively compact. Therefore, applying the above argument to the identity maps

W 1
k!W

2
k , we obtain the lemma.

Lemma 8.9. (Scale distortion of bilipschitz maps) There is a constant 103<CSD<∞
such that the following holds if

ηlin⩽ η̄lin, δn⩽ δ̄n, εcan⩽ ε̄can and rcomp⩽ r̄comp.

Let M and M′ be (εcanrcomp, t0)-complete Ricci flow spacetimes. Consider a closed

product domain X⊂M[0,t0] on a time-interval of the form [t−r2comp, t], t⩾r
2
comp, such

that the following holds :

(i) ∂Xt consists of embedded 2-spheres that are each centers of δn-necks at scale

rcomp.

(ii) Each connected component of Xt contains a 2rcomp-thick point.

Let t̄∈[t−r2comp, t], t
′⩾0 and consider a diffeomorphism onto its image ϕ:Xt̄!M′

t′

such that |ϕ∗g′t′−gt̄|⩽ηlin. We assume that M satisfies the εcan-canonical neighborhood

assumption at scales (0, 1) on Xt̄, and that M′ satisfies the εcan-canonical neighborhood

assumption at scales (0, 1) on ϕ(Xt̄).

Then, for any x∈Xt̄, we have

C−1
SDρ1(x)<ρ1(ϕ(x))<CSDρ1(x). (8.14)

This lemma will later be applied whenever a bound on the distortion of the scale

function under a comparison (as defined in Definition 7.2) is needed. The product domain

X in this lemma will later be taken to be a time-slab N j of a comparison domain (as

defined in Definition 7.1) and ϕ will denote the time-slice of a comparison. Assumptions

(i) and (ii) correspond to a-priori assumptions (APA3) (a) and (APA3) (d), respectively

(see Definition 7.4).

In order to avoid confusion, we point out that usually it is possible to derive stronger

scale distortion bounds than (8.14), with CSD replaced by a constant that can be chosen

arbitrarily close to 1. These stronger bounds follow simply via local gradient estimates,
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due to the parabolic nature of the comparison. This approach, however, fails if the point

x lies close to the spatial or time-like boundary of X. This is why we have to work with

a larger constant CSD in this paper.

Proof. Assume the lemma was false. Then, there are sequences ηlin,k!0, δn,k!0,

εcan,k!0, rcomp,k!0, {Mk}, {M′ k}, {Xk}, {xk}, {tk}, {t̄k}, {t′k} and ϕk:X
k
t̄k
!M′ k

t′k

satisfying the assumptions of the lemma, such that

ρ1(xk)

ρ1(ϕk(xk))
! 0 or

ρ1(xk)

ρ1(ϕk(xk))
!∞ as k!∞. (8.15)

To simplify notation, we let Mk :=Mk
t̄k

and M ′
k :=M′k

t′k
denote the time-slices, with

metrics gk and g′k, respectively, and let Yk :=X
k
t̄k
⊂Mk be the relevant time-slice of the

product domain Xk.

Let rk :=min{ρ1(xk), ρ1(ϕk(xk))}. In view of (8.15), we have rk!0. Note that, by

our assumptions, for each of xk and ϕk(xk), either the εcan,k-canonical neighborhood

assumption holds, or we have ρ1(xk)=1 or ρ1(ϕk(xk))=1, respectively. In the first case

we may use the estimates on the derivatives of curvature in assertion (a) of Lemma 8.1,

and we have

|∇jRm|<C1r
−2−j
k on B(xk, rk) or B(ϕk(xk), rk), (8.16)

respectively, for some universal C1<∞ and large k and 0⩽j⩽5, and in the second case

we may apply Lemma 8.6 to obtain

|Rm|<C2 on B(xk, rk) or B(ϕk(xk), rk), (8.17)

respectively, for some universal C2<∞ and large k.

Case 1. lim infk!∞ r−1
k d(xk, ∂Yk)>0.

If we let ĝk :=r
−2
k gk and ĝ′k :=r

−2
k g′k, then the assumptions of Lemma 8.8 hold for

the sequence {ϕk: (IntYk, ĝk, xk)!(M ′
k, ĝ

′
k, ϕk(xk))} by (8.15)–(8.17) and the fact that

rk!0. Hence, after passing to a subsequence,

lim
k!∞

ρĝk(xk)= lim
k!∞

ρĝ′k(ϕk(xk)).

Since for every k the εcan,k-canonical neighborhood assumption holds at one of the points

xk, ϕk(xk), the above limit must equal 1. This contradicts (8.15).

Case 2. lim infk!∞ r−1
k d(xk, ∂Yk)=0.

After passing to a subsequence, we may assume that

lim
k!∞

r−1
k d(xk, ∂Yk)= 0. (8.18)
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For each k we may choose a boundary component Σk⊂Xk
tk

such that

lim
k!∞

r−1
k d(xk,Σk(t̄k))= 0.

Let Uk be the 10rcomp,k-neighborhood of Σk in Xk
tk
. If k is large, then

1
2rcomp,k <ρ< 2rcomp,k on Uk.

So, by assumption (ii) and the fact that δn,k!0, it follows that Uk does not fully contain

the component of Xk
tk

in which it lies, and moreover it does not intersect any other

boundary components of Xk
tk
. Therefore, we can pick yk∈Xk

tk
with d(yk,Σk)=rcomp,k.

By Lemma 8.6, there is a universal constant C3<∞ such that, for large k, we have

C−1
3 rcomp,k ⩽ ρ⩽C3rcomp,k (8.19)

on Uk(t̄k), in particular on Σk(t̄k). By (8.16) or (8.17) and the fact that

B(xk, rk)∩Σk(t̄k) ̸=∅

for large k, we get rk⩽C4rcomp,k for large k, where C4<∞ is a universal constant. By

(8.19), (8.18), and a distance distortion estimate, we have xk∈Uk(t̄k), and therefore

rk⩽ρ1(xk)⩽C3rcomp,k for large k. Hence, limk!∞ r−1
comp,kd(xk, ∂Yk)=0. By a distance

distortion estimate, there is a universal constant C5<∞ such that, for large k,

C−1
5 rcomp,k ⩽ d(yk(t̄k), xk), d(yk(t̄k), ∂Yk)⩽C5rcomp,k. (8.20)

So, using (8.20) and Case 1, we can find a uniform C6<∞ such that

C−1
3 C−1

6 rcomp,k ⩽C
−1
6 ρ1(yk(t̄k))⩽ ρ1(ϕk(yk(t̄k)))⩽C6ρ1(yk(t̄k))⩽C3C6rcomp,k.

Since d(ϕk(yk(t̄k)), ϕk(xk))⩽2C3rcomp,k for large k, Lemma 8.6 gives

C−1
7 rcomp,k ⩽ ρ1(ϕk(xk))⩽C7rcomp,k

for some uniform C7<∞ and large k. This contradicts (8.15).

In the following lemma we show that a region that is bilipschitz close to a cylinder

contains a smaller region on which we have closeness to a cylinder in the Cm-sense,

provided that the canonical neighborhood assumption holds. So, the smaller region is a

neck of arbitrarily high accuracy, as long as the bilipschitz control on the larger region

is strong enough.
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Lemma 8.10. (Self-improvement of necks) If

δ#> 0, δ⩽ δ̄(δ#) and εcan⩽ ε̄can(δ#),

then the following holds.

Let (M, g) be a Riemannian manifold and x∈M be a point that satisfies the εcan-

canonical neighborhood assumption. Let r>0 be a constant and ψ:S2×(−δ−1, δ−1)!M

be a diffeomorphism onto its image that satisfies x∈ψ(S2×{0}) and

∥r−2ψ∗g−gS
2×R∥C0 <δ,

where gS
2×R denotes the round cylindrical metric with ρ≡1, and the C0-norm is taken

over the domain of ψ.

Then, x is a center of a δ#-neck in M at scale r.

Proof. Without loss of generality, we may assume that r=1.

Assume that the lemma was false for some δ#>0. Then, we can find sequences δk!0

and εcan,k!0, as well as a sequence {(Mk, gk, xk)} of pointed Riemannian manifolds and

a sequence {ψk:S2×(−δ−1
k , δ−1

k )!Mk} of diffeomorphisms onto their images such that,

for all k, the following holds:

(1) (Mk, gk) satisfies the εcan,k canonical neighborhood assumption at xk;

(2) xk∈ψk(S2×{0});
(3) ∥ψ∗

kgk−gS
2×R∥C0<δk!0;

(4) xk is not a center of a δ#-neck at scale 1.

Let r̂k :=ρ1(xk). Then, letting

(Z1
k , g

1
k, z

1
k) := (S2×(−δ−1

k , δ−1
k ), r̂−2

k gS
2×R, ψ−1

k (xk)),

(Z2
k , g

2
k, z

2
k) := (Mk, r̂

−2
k gk, xk),

and ϕk :=ψk, the assumptions of Lemma 8.8 hold by (3) above and assertion (a) of

Lemma 8.1 together with the choice of r̂k. Therefore, we have ρ(xk)!ρ(ψ
−1
k (xk))=1 as

k!∞. It follows that (Mk, gk, xk) is εcan,k-close at scale tending to 1 to the final time-

slice (M̂k, ĝk, x̂k) of a κk-solution with ρ(x̂k)=1, as k!∞. Hence, diam(M̂k, ĝk)!∞.

Since ρ(x̂k)=1, it follows that (M̂k, ĝk) cannot be a round metric for large k. So,

by assertions (a) and (b) of Lemma C.1, after passing to a subsequence, the sequence

{(Mk, gk, xk)} converges in the pointed smooth topology to the final time-slice

(M∞, g∞, x∞)

of some κ-solution. However, by property (3) above, we conclude that (M∞, g∞) is

isometric as a metric space to (S2×R, gS2×R) equipped with the induced length metric.

So, (M∞, g∞) is isometric as a Riemannian manifold to (S2×R, gS2×R). Thus xk is a

center of a δ#-neck at scale 1 for large k, contradicting (4).
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The next lemma gives control on the scale at bounded distance to a neck, assuming

the canonical neighborhood assumption.

Lemma 8.11. (Scale bounds near necks) There is a constant δ0>0 such that for

every X<∞ there is a constant Y =Y (X)<∞ such that, if

εcan⩽ ε̄can(X),

then the following holds.

Let (M, g) be a (possibly incomplete) Riemannian manifold and let Σ⊂M be a

central 2-sphere of a δ0-neck at scale 1 in M . Assume that M satisfies the εcan-canonical

neighborhood assumption at some point in Σ.

Consider a point x∈M \Σ and let C be the component of M \Σ containing x. If

d(x,Σ)⩽X and diam C⩾Y, then ρ1(x)>
1
10 . Here the diameter is taken with respect to

the distance function of (M, g).

The proof uses the geometry of non-negatively curved manifolds to bound neck scales

from below. The argument is a variation on part of Perelman’s proof of compactness of

κ-solutions (see [P1]).

Proof. Fix X<∞ and some small constant δ0>0. The precise conditions on the

smallness of δ0 will become clear in the course of the proof.

Assume that the statement of the lemma was false (for fixed X) and choose sequences

Yk!∞ and εcan,k!0. Then, we can find counterexamples (Mk, gk), Σk, xk, Ck⊂Mk\Σk
such that (Mk, gk) satisfies the εcan,k-canonical neighborhood assumption at some point

yk∈Σk, d(xk,Σk)⩽X, diam Ck⩾Yk, but ρ(xk)⩽ 1
10 .

If

δ0⩽ δ̄0,

then the injectivity radius at yk is uniformly bounded from below by a positive constant.

So, after passing to a subsequence, we may assume that

• The sequence of pointed Riemannian manifolds (Mk, gk, yk) converges to the

pointed final time-slice (M∞, g∞, y∞) of some κ-solution.

• The 2-spheres Σk⊂Mk converge to a central 2-sphere Σ∞ of a 2δ0-neck U∞⊂M∞

at scale 1.

• The points xk converge to a point x∞∈M∞ such that ρ(x∞)⩽ 1
10 .

• d(x∞, y∞)⩾ 1
4δ

−1
0 , since we may assume that ρ> 1

2 on the 2δ0-neck U∞.

As diam Ck⩾Yk!∞, the κ-solution M∞ must be non-compact. If

δ0⩽ δ̄0,
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thenM∞ cannot be isometric to a quotient of a round cylinder, because U∞ is a 2δ0-neck

of scale 1, while ρ(x∞)⩽ 1
10 . Therefore, M∞ is diffeomorphic to R3, and the 2-sphere Σ∞

bounds a compact domain, and a non-compact domain Z. We cannot have x∞∈M∞\Z,
since this would imply that diam Ck⩽2 diam(M∞\Z) for large k, contradicting the fact

that diam Ck!∞. So, x∞∈Z.
Let γ⊂M∞ be a minimizing geodesic ray starting from y∞, and pick z∈γ∩Z, to be

determined later. Let y∞z, zx∞ and x∞y∞ be minimizing geodesic segments between

the corresponding pairs of points. Assuming

δ0⩽ δ̄0,

the segments y∞z and y∞x∞ may intersect Σ∞ at most once and are nearly parallel to

the R-factor of the neck U∞. Therefore, both segments are contained in Z apart from

the endpoint y∞, and they form an angle of at most 1
4π at y∞. By Toponogov’s theorem,

this implies that the comparison angle ∠̃y∞(x∞, z) is at most 1
4π. Provided that d(z, y∞)

is sufficiently large, we therefore have ∠̃x∞(y∞, z)>
1
4π.

Fix some small δ1>0 whose value we will determine later. If

δ0⩽ δ̄0

and d(z, y∞) is sufficiently large, then ρ−1(x∞)min{d(x∞, z), d(x∞, y∞)} is large enough

that we may apply [KL1, Corollary 49.1] to conclude that x∞ is a center of a δ1-neck,

with central 2-sphere Σx∞⊂M∞. If δ1⩽δ̄1, then the segments x∞z and x∞y∞ intersect

Σx∞ only at x∞ and are nearly parallel to the R-factor the neck at x∞. Since their

angle at x∞ is > 1
4π, it follows that y∞ and z lie in distinct connected components of

M∞\Σx∞ .

Let c0 be the diameter of a central 2-sphere of a round cylinder of scale 1. If δ0⩽δ̄0,

we may choose a point y′∞∈Σ∞ such that d(y′∞, y∞)⩾0.99c0. Now consider geodesic

segments y∞z and y′∞z. If δ0⩽δ̄0, both segments are contained in Z, and since Σx∞

separates y∞ from z, both segments intersect Σx∞ . If δ0⩽δ̄0 then

|d(z, y∞)−d(z, y′∞)|< 0.01c0,

as follows by applying the triangle inequality to points on y∞z and y′∞z at distance
1
2δ

−1
0 . Therefore, after swapping the labels of y∞ and y′∞ if necessary, we may assume

without loss of generality that there is a point y′′∞∈y′∞z such that d(z, y′′∞)=d(z, y∞)

and d(y∞, y
′′
∞)>.98c0. Similarly, if δ1⩽δ̄1, there are points w∞∈y∞z and w′

∞∈y′′∞z such

that

d(w∞, w
′
∞)< 1.01c0ρ(x∞)< 1

5c0,
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d(w∞, z)=d(w
′
∞, z) and one of w∞ and w′

∞ lies on Σx∞ . By Toponogov’s theorem

(monotonicity of comparison angles) we have

d(y∞, y
′′
∞)

d(y∞, z)
⩽
d(w∞, w

′
∞)

d(w∞, z)
.

So, if d(z, y∞) is sufficiently large, then

0.98c0⩽ d(y∞, y
′′
∞)⩽ 2d(w∞, w

′
∞)< 2

5c0,

which is a contradiction.

8.2. Promoting time-slice models to spacetime models

Our next two results show that under appropriate completeness and canonical neighbor-

hood assumptions, if a time-slice of a Ricci flow spacetime is close to a neck or a Bryant

soliton, then a parabolic region is also close to a neck or Bryant soliton, respectively.

The proofs are standard convergence arguments based on a rigidity property of necks

and Bryant solitons among κ-solutions.

Lemma 8.12. (Time-slice necks imply spacetime necks) If

δ#> 0, 0<δ⩽ δ̄(δ#), 0<εcan⩽ ε̄can(δ#), 0<r⩽ r̄,

then the following holds.

Assume that M is an (εcanr, t0)-complete Ricci flow spacetime that satisfies the

εcan-canonical neighborhood assumption at scales (εcanr, 1). Let a∈
[
−1, 14

]
and consider

a time t⩾0 such that t+ar2∈[0, t0].
Assume that U⊂Mt+ar2 is a δ-neck at scale r

√
1−3a. So, there is a diffeomorphism

ψ1:S
2×(−δ−1, δ−1)−!U

such that

∥r−2ψ∗
1gt+ar2−gS

2×R
a ∥C[δ−1] <δ. (8.21)

Here, (gS
2×R

t )t∈(−∞,1/3) denotes the shrinking round cylinder with ρ( · , 0)=1 at time 0

and the C [δ−1]-norm is taken over the domain of ψ1.

Then, there is a product domain U∗⊂M[t−r2,t+r2/4]∩[0,t0] and an r2-time-equivariant

and ∂t-preserving diffeomorphism

ψ2:S
2×(−δ−1

# , δ−1
# )×[t∗, t∗∗]−!U∗,
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with t+t∗r2=max{t−r2, 0} and t+t∗∗r2=min
{
t+ 1

4r
2, t0

}
, such that

ψ2|S2×(−δ−1
# ,δ−1

# )×{a} =ψ1|S2×(−δ−1
# ,δ−1

# )

and

∥r−2ψ∗
2g−gS

2×R∥
C

[δ
−1
#

] <δ#.

Here the C [δ−1
# ]-norm is taken over the domain of ψ2.

Note that the lemma can be generalized to larger time-intervals. We have omitted

this aspect, as it will not be important for us later. We also remark that one may prove

a more general result to the effect that any parabolic region is close to a parabolic region

in a κ-solution.

Proof. For the following proof, we may assume that r̄ and ε̄can are chosen small

enough such that any point x∈M with 1
10r⩽ρ(x)⩽10r satisfies the εcan-canonical neigh-

borhood assumption.

Assuming

δ⩽ δ̄,

we have the following bound on the image of ψ1:

1
4r⩽

1
2r
√
1−3a<ρ< 2r

√
1−3a⩽ 4r. (8.22)

Assume now that the statement of the lemma was false for some fixed δ#>0.

So, there are sequences εcan,k!0, δk!0, rk⩽r̄, tk⩾r2k, ak∈[−1, 14 ], t0,k⩾0, t
∗
k∈[−1, 0],

t∗∗k ∈[0, 14 ], with tk+t
∗
kr

2
k=max{tk−r2k, 0} and tk+t

∗∗
k r

2
k=min

{
tk+

1
4r

2
k, t0,k

}
, as well as a

sequence {Mk} of Ricci flow spacetimes that satisfy the εcan,k-canonical neighborhood

assumption at scales (εcan,krk, 1) and maps ψ1,k belonging to δk-necks at time tk and

scale rk
√
1−3ak, but for which the conclusion of the lemma fails. After passing to a sub-

sequence, we may assume that t∗∞ :=limk!∞ t∗k, t
∗∗
∞ :=limk!∞ t∗∗k and a∞ :=limk!∞ ak

exist.

Choose a∗∞∈[t∗∞, a∞] and a∗∗∞∈[a∞, t∗∗∞] minimal and maximal, respectively, such

that for any d>0 and any compact interval [s1, s2]⊂(a∗∞, a
∗∗
∞) the following holds for

large k (possibly depending on d, s1 and s2): For all x∈ψ1,k(S
2×(−d, d)) and t′∈[tk+

s1r
2
k, tk+s2r

2
k] the point x(t′) is defined and we have

1
10rk ⩽ ρ(x(t

′))⩽ 10rk. (8.23)

Note that, by the remark in the beginning of the proof, this implies that x(t′) satisfies

the canonical εcan,k-canonical neighborhood assumption. By (8.22) and Lemma 8.4, we

know that a∗∞<a∞ if a∞>t∗∞ and a∗∗∞>a∞ if a∞<t∗∗∞.
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By the choices of a∗∞, a
∗∗
∞ we can find sequences dk!∞, a∗k∈[−1, ak] and a

∗∗
k ∈

[
ak,

1
4

]
with limk!∞ a∗k=a

∗
∞ and limk!∞ a∗∗k =a∗∗∞ such that the set

Pk := (ψ1,k(S
2×(−dk, dk)))([tk+a∗kr2k, tk+a∗∗k r2k])

is well defined and such that 1
10rk⩽ρ⩽10rk on Pk. For every k consider the parabolically

rescaled flow (g′k,s)s∈(a∗k,a
∗∗
k ) on S

2×(−dk, dk) with

g′k,s := r−2
k ĝtk+sr2k , (8.24)

where ĝtk+sr2k denotes the pullback of gtk+sr2k under the composition of ψ1,k with the

map

ψ1,k(S
2×(−dk, dk))−!Pk

that is given by the time (s−ak)r2k-flow of ∂t.

By (8.23) and the εcan,k-canonical neighborhood assumption (see assertion (a) of

Lemma 8.1), we obtain that the curvature of (g′k,s)s∈(a∗k,a
∗∗
k ), along with its covariant

derivatives, is uniformly bounded. Together with (8.21), these bounds imply uniform

Cm-bounds on the tensor fields (g′k,s) themselves. So, by passing to a subsequence, we

obtain that the (g′k,s) converge to a Ricci flow (g′∞,s)s∈(a∗∞,a∗∗∞ ) on S
2×R, which extends

smoothly to the time-interval [a∗∞, a
∗∗
∞].

The εcan,k-canonical neighborhood assumption implies that all time-slices of this

limit are final time-slices of κ-solutions. By (8.21) we know that g′∞,a∞=gS
2×R

a∞ . Since

S2×R has two ends, g′∞,s splits off an R factor for all s∈(a∗∞, s∗∞) and must therefore be

homothetic to a round cylinder. It follows that g′∞,s=g
S2×R
s for all s∈[a∗∞, a∗∗∞]. Since

this limit is unique, we obtain that the (g′k,s) converge to (g′∞,s) even without passing to

a subsequence.

As 1
2⩽ρ⩽2 on (S2×R)×(a∗∞, a

∗∗
∞), we get that, for any d>0 and [s1, s2]∈(a∗∞, a∗∗∞),

we have 1
4rk⩽ρ⩽4rk on (ψ1,k(S

2×(−d, d)))([s1, s2]) for large k. So, by Lemma 8.4

and the minimal and maximal choices of a∗∞ and a∗∗∞, we have a∗∞=t∗∞ and a∗∗∞=t∗∗∞.

Moreover, after adjusting the sequence dk!∞, we may assume that a∗k=t
∗
k and a∗∗k =t∗∗k

for large k.

For large k we now define ψ2,k by extending ψ1,k restricted to S2×(−δ−1
# , δ−1

# )

forward and backward using the flow of r2k∂t. Then, we have

r−2
k ψ∗

2,kgk = g′k,s

on (S2×(−δ−1
# , δ−1

# ))×[t∗k, t
∗∗
k ]. So, it suffices to show that g′k,s converges to gS

2×R on

(S2×(−δ−1
# , δ−1

# ))×[t∗k, t
∗∗
k ] uniformly in the C [δ−1

# ]-sense. To see this, note that g′k,s from



uniqueness and stability of ricci flow 67

(8.24) is uniformly bounded on (S2×(−δ−1
# , δ−1

# ))×
[
−1, 14

]
in every Cm-norm and that

we have uniform convergence of g′k,s to gS
2×R on every subset of the form

(S2×(−δ−1
# , δ−1

# ))×[s1, s2]

for [s1, s2]⊂(t∗∞, t
∗∗
∞), in every Cm-norm.

For notation and facts about the Bryant soliton, see §6.2 and Appendix B. In the

following result, it is important that ρ⩾1 on the normalized Bryant soliton.

Lemma 8.13. (Propagating Bryant-like geometry) If

δ#> 0, T <∞, δ⩽ δ̄(δ#, T ), εcan⩽ ε̄can(δ#, T ) and r⩽ r̄,

then the following holds.

Assume that M is an (εcanr, t0)-complete Ricci flow spacetime that satisfies the

εcan-canonical neighborhood assumption at scales (εcanr, 1). Let t∈[0, t0] and consider a

diffeomorphism onto its image

ψ1:MBry(δ
−1)×{0}−!Mt

with the property that

∥r−2ψ∗
1gt−gBry∥C[δ−1](MBry(δ−1)×{0})<δ. (8.25)

Then, there is an r2-time equivariant and ∂t-preserving diffeomorphism onto its image

ψ2:MBry(δ
−1
# )×[t∗, t∗∗]−!M[t−Tr2,t+Tr2]∩[0,t0],

where t∗⩽0⩽t∗∗ are chosen such that

t+t∗r2 =max{t−Tr2, 0} and t+t∗∗r2 =min{t+Tr2, t0}.

The map ψ2 has the property that ψ2=ψ1 on MBry(δ
−1
# )×{0} and

∥r−2ψ∗
2g−gBry∥

C
[δ

−1
#

] <δ#,

where the norm is taken over the domain of ψ2.

Proof. The proof is similar to the proof of Lemma 8.12.

In the following, we may assume that r̄ and ε̄can are chosen small enough such

that any point with x∈M with 1
10r⩽ρ(x)⩽10r satisfies the εcan-canonical neighborhood

assumption.
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Assuming

δ⩽ δ̄,

we have
1
4r⩽ ρ on Imψ1 and 1

4r⩽ ρ(ψ1(xBry))⩽ 4r.

Assume now that the statement of the lemma was false for some fixed δ#>0 and

T<∞. So, there are a sequences {εcan,k}, {δk}, {t0,k}, {rk}, {tk}, {t∗k} and {t∗∗k } such

that εcan,k!0, δk!0, as well as a sequence {Mk} of (εcan,krk, t0,k)-complete Ricci flow

spacetimes that satisfy the εcan-canonical neighborhood assumption at scales (εcan,krk, 1)

and a sequence of maps {ψ1,k} satisfying the hypotheses of the lemma, but for which

the conclusion of the lemma fails for all k. By passing to a subsequence, we may assume

that t∗∞ :=limk!∞ t∗k and t∗∗∞ :=limk!∞ t∗∗k exist.

Choose a∗∞∈[t∗∞, 0], a∗∗∞∈[0, t∗∗∞] minimal and maximal, respectively, such that for

any d>0 and any compact interval [s1, s2]⊂(a∗∞, a
∗∗
∞) the following holds for large k: For

every x∈ψ1,k(MBry(d)) and t
′∈[tk+s1r2k, tk+s2r2k] the point x(t′) is well defined and we

have ρ(x(t′))⩾ 1
10rk and ρ((ψ1,k(xBry))(t

′))⩽10rk. Note that a∗∞<0 if t∗∞<0 and a∗∗∞>0

if t∗∗∞>0, due to Lemma 8.4.

As in the proof of Lemma 8.12, we can now find sequences dk!∞ and a∗k∈[t∗k, 0],
a∗∗k ∈[0, t∗∗k ] with limk!∞ a∗k=a

∗
∞ and limk!∞ a∗∗k =a∗∗∞, such that the product domains

Pk := (ψ1,k(MBry(dk)))([tk+a
∗
kr

2
k, tk+a

∗∗
k r

2
k])

are well defined and such that

ρ⩾ 1
10rk on Pk,

and

ρ((ψ1,k(xBry))(t
′))⩽ 10rk for all t′ ∈ [tk+a

∗
kr

2
k, tk+a

∗∗
k r

2
k].

So, (ψ1,k(xBry))(t
′) satisfies the εcan,k-canonical neighborhood assumption for all

t′ ∈ [tk+a
∗
kr

2
k, tk+a

∗∗
k r

2
k].

For every k consider the parabolically rescaled flow (g′k,s)s∈[a∗k,a
∗∗
k ] onMBry(dk) with

g′k,s :=r
−2
k ĝtk+sr2k , where ĝtk+r2ks denotes the pullback of gtk+sr2k under the composition

of ψ1,k with the map

Mk
tk
⊃ψ1,k(MBry(dk)×{0})−!Pk,

given by the time r2ks-flow of ∂t. By the εcan,k-canonical neighborhood assumption at

(ψ1,k(xBry))(t
′) (see assertion (a) of Lemma 8.1) and a distance distortion estimate on Pk,

we obtain that the curvature of this flow, along with its derivatives, is uniformly bounded
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by a constant that may only depend on the spatial direction. Together with (8.25), these

bounds imply uniform local Cm-bounds on the tensor fields (g′k,s) themselves.

So, by passing to a subsequence, we obtain that (g′k,s) converges to a Ricci flow

(g′∞,s)s∈(a∗∞,a∗∗∞ ) on MBry with uniformly bounded curvature, which extends smoothly

to the time-interval [a∗∞, a
∗∗
∞]. By the εcan,k-canonical neighborhood assumption at

(ψ1,k(xBry))(t
′) and the compactness of κ-solutions (see (a) and (b) of Lemma C.1),

we find that all time-slices of this limit are final time-slices of κ-solutions. By (8.25), we

furthermore know that g′∞,0=gBry,0.

We now claim that g′∞,s=gBry,s for all s∈[a∗∞, a∗∗∞]. For s⩾0, this follows from the

uniqueness of Ricci flows with uniformly bounded curvature. To verify this in the case

s<0, recall that there is a κ-solution (g′′s )s∈(−∞,0] on MBry such that g′′0=g
′
a∗∞

. Now,

set g′′′s :=g′∞,s if a∗∞⩽s⩽0 and g′′′s :=g′ ′s−a∗∞ if s<a∗∞. Then, (g′′′s )s∈(−∞,0] is a smooth

κ-solution (possibly after adjusting κ). Since ∂tRg′′′(xBry, 0)=0, it follows from Propo-

sition C.3 that (MBry, (g
′′′
s )s∈(−∞,0], xBry) is isometric to (MBry, (gBry,t)t∈(−∞,0], xBry).

Thus g′∞,s=gBry,s for all s∈[a∗∞, a∗∗∞]. As in the proof of Lemma 8.12, the uniqueness of

the limit implies that the (g′k,s) converge to (g
′
∞,s) even without passing to a subsequence.

So, (g′∞,s)s∈[a∗∞,a∗∗∞ ] satisfies ρ⩾1 everywhere and ρ(xBry, s)=1 for all s∈[a∗∞, a∗∗∞].

Therefore, by the minimal and maximal choices of a∗∞ and a∗∗∞ and Lemma 8.4, we obtain

that a∗∞=t∗∞ and a∗∗∞=t∗∗∞. Moreover, after possibly adjusting the sequence dk!∞, we

may assume that a∗k=t
∗
k and a∗∗k =t∗∗k for large k. The claim now follows as in the proof

of Lemma 8.12.

8.3. Identifying approximate Bryant structure

In the next result, we exploit the rigidity theorems of Hamilton and Brendle to show

that a large region must be well approximated by a Bryant soliton if the scale is nearly

increasing at a point.

Lemma 8.14. If

δ#> 0, δ⩽ δ̄(δ#) and εcan⩽ ε̄can(δ#),

then the following holds.

If M is a Ricci flow spacetime satisfying the εcan-canonical neighborhood assumption

at x∈M, and ∂tρ
2(x)⩾−δ, then (Mt, x) is δ#-close to (MBry, gBry, xBry) at any scale

a∈((1−δ)ρ(x), (1+δ)ρ(x)).

Note that ∂tρ
2 is scaling invariant.
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Proof. Suppose the lemma was false for some δ#>0. Then, there a sequence {Mk}
of Ricci flow spacetimes satisfying the (1/k)-canonical neighborhood assumption at xk∈
Mk

tk
, such that ∂tρ

2(xk)⩾−1/k, but (Mk
tk
, xk) is not δ#-close to (MBry, gBry, xBry) at

some scale ak∈((1−1/k)ρ(xk), (1+1/k)ρ(xk)).

By the definition of the canonical neighborhood assumption, for every k there is a

pointed κk-solution (�Mk, (ḡk,t)t∈(−∞,0], x̄k) with ρ(x̄k)=1 and a diffeomorphism onto its

image

ψk:B(x̄k, 0, k)−!Mk
tk

with ψk(x̄k)=xk such that, for some λk>0 with λk/ρ(xk)!1, we have

∥λ−2
k ψ∗

kgk−ḡk∥Ck(B(x̄k,k))<k
−1.

So, we also have

∥a−2
k ψ∗

kgk−ḡk∥Ck(B(x̄k,k))! 0.

Hence, lim infk!∞ ∂tρ
2(x̄k)⩾0. Therefore, (Mk, (ḡk,t)t∈(−∞,0]) cannot be a shrinking

round spherical space form for large k. So, by assertions (a), (b) and (e) of Lemma C.1,

after passing to a subsequence, (�Mk, (ḡk,t)t∈(−∞,0], x̄k) converges in the pointed smooth

topology to a κ-solution (�M∞, (ḡ∞,t)t∈(−∞,0], x̄∞) with ∂tρ
2(x̄∞)=0. Now, by Proposi-

tion C.3, it follows that (�M∞, (ḡ∞,t)t∈(−∞,0], x̄∞) is isometric to a Bryant soliton. This

is a contradiction.

By combining Lemmas 8.14 and 8.13, we can deduce closeness to a Bryant soliton

on a parabolic region.

Lemma 8.15. (Nearly increasing scale implies Bryant-like geometry) If

α, δ > 0, 1⩽ J <∞, β⩽ β̄(α, δ, J), εcan⩽ ε̄can(α, δ, J) and r⩽ r̄(α)

then the following holds.

Let 0<r⩽1. Assume that M is an (εcanr, t0)-complete Ricci flow spacetime that

satisfies the εcan-canonical neighborhood assumption at scales (εcanr, 1).

Let t∈[Jr2, t0] and x∈Mt. Assume that x survives until time t−r2 and that

αr⩽ ρ(x)⩽α−1r and ρ(x(t−r2))⩽ ρ(x)+βr.

Let a∈[ρ(x(t−r2)), ρ(x)+βr]. Then, (Mt′ , x(t
′)) is δ-close to (MBry, gBry, xBry)

at scale a for all t′∈[t−r2, t]. Also, there is an a2-time-equivariant and ∂t-preserving

diffeomorphism onto its image

ψ:MBry(δ
−1)×[−J ·(ar−1)−2, 0]−!M
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such that ψ(xBry, 0)=x and

∥a−2ψ∗g−gBry∥C[δ−1] <δ,

where the norm is taken over the domain of ψ.

Proof. Let 2>L>1 and δ′>0 be constants whose values will be determined in the

course of this proof. By Lemma 8.5, and assuming that

εcan⩽ ε̄can(α,L) and r⩽ r̄(α),

we obtain that for all t′∈[t−r2, t] we have

1
2αr⩽L

−1ρ(x)⩽ ρ(x(t′))⩽Lρ(x(t−r2)).

If moreover

β⩽ β̄(α,L),

then

ρ(x(t−r2))⩽ ρ(x)+βr⩽ ρ(x)+(L−1)αr⩽Lρ(x).

Therefore, L−1ρ(x)⩽ρ(x(t′))⩽L2ρ(x) and a∈[L−1ρ(x(t′)), L2ρ(x(t′))] for all t′∈[t−r2, t].
We also obtain that x(t′) satisfies the εcan-canonical neighborhood assumption for all

t′∈[t−r2, t], assuming that

εcan⩽ ε̄can and r⩽ r̄.

By the mean value theorem, we can find a t′∈[t−r2, t] at which

∂tρ
2(x(t′))⩾−2ρ(x(t′))· (L

2−L−1)ρ(x)

r2
⩾−2α−2(L2−L−1)L.

Therefore, if

L⩽ 1+	L(δ′) and εcan⩽ ε̄can(δ
′),

then Lemma 8.14 implies that (Mt′ , x) is δ′-close to (MBry, gBry, xBry) at scale a. As-

suming

δ′⩽ δ̄′(α, δ, J), εcan⩽ ε̄can(α, δ, J) and r⩽ r̄(α),

the claim now follows from Lemma 8.13.
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8.4. The geometry of comparison domains

The results in this subsection analyze the structure of comparison domains (and related

subsets) of spacetimes that satisfy completeness and canonical neighborhood conditions,

as well as some of the a-priori assumptions (APA1)–(APA6), as introduced in §7.
The first two results— the Bryant slice lemma (Lemma 8.16) and the Bryant slab

lemma (Lemma 8.17)—describe the structure of comparison domains in approximate

Bryant regions. These results are helpful in showing that neck-like boundaries of com-

parison domains and cuts are far apart (Lemma 8.19), and in facilitating the construction

of the comparison domain in §11.
The Bryant slice lemma characterizes how a domain X in a time-slice Mt that is

bounded by a central 2-sphere of a sufficiently precise neck intersects a domain W⊂Mt

that is geometrically close to a Bryant soliton. The domain X will later be equal to

either backward time-slice Ntj− of a comparison domain or the domain Ω from §11.

Lemma 8.16. (Bryant slice lemma) If

δn⩽ δ̄n, 0<λ< 1, Λ⩾Λ and δ⩽ δ̄(λ,Λ),

then the following holds for some D0=D0(λ)<∞.

Consider a Ricci flow spacetime M and let r>0 and t⩾0. Consider a subset X⊂Mt

such that the following holds :

(i) X is a closed subset and is a domain with smooth boundary.

(ii) The boundary components of X are central 2-spheres of δn-necks at scale r.

(iii) X contains all Λr-thick points of Mt.

(iv) Every component of X contains a Λr-thick point.

Consider the image W of a diffeomorphism

ψ:W ∗ :=MBry(d)−!W ⊂Mt,

such that d⩾δ−1 and

∥(10λr)−2ψ∗gt−gBry∥C[δ−1](W∗)<δ.

Then, ψ(xBry) is 11λr-thin. Moreover, if C :=W \IntX ̸=∅, then

(a) C is a 3-disk containing ψ(xBry).

(b) C is a component of Mt\IntX, and ∂C⊂∂X.

(c) C is 9λr-thick and 1.1r-thin.

(d) C⊂ψ(MBry(D0(λ)))⊂IntW .
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Proof. Assuming

δ⩽ δ̄(λ,Λ),

it follows from the definition of W ∗ that ∂W is Λr-thick, W is 9λr-thick, and the image

of the tip ψ(xBry) is 11λr-thin. The fact that ∂W is Λr-thick and assumption (iii) imply

that ∂W⊂IntX.

Consider a boundary component Σ⊂∂X with Σ∩W ̸=∅. Let UΣ⊂Mt be a δn-neck

at scale r that has Σ as a central 2-sphere. If

δn⩽ δ̄n,

then we have .99r<ρ<1.01r on UΣ. Assuming

Λ⩾ 10,

we find that, then UΣ∩∂W=∅ and hence UΣ⊂W .

Next, if

δ⩽ δ̄(λ),

then .98(10λ)−1<ρ<1.02(10λ)−1 on ψ−1(UΣ). Moreover, the 2-sphere Σ∗ :=ψ−1(Σ) is

isotopic within the set {.98(10λ)−1⩽ρ⩽1.02(10λ)−1}⊂W ∗ to the 2-sphere

Σ̂∗ = {ρ=1.02(10λ)−1}

in W ∗.

By Alexander’s theorem, Σ∗ bounds a 3-disk V ∗
Σ⊂W ∗. By the previous paragraph,

we have V ∗
Σ⊂V̂ ∗

Σ :={ρ⩽1.02(10λ)−1}. Thus, if

δ⩽ δ̄(λ),

then VΣ :=ψ(V
∗
Σ)⊂ψ(V̂ ∗

Σ) is 1.1r-thin and contains ψ(xBry).

Lastly, suppose that Σ1 and Σ2 are distinct components of ∂X that intersect W .

Let VΣ1
and VΣ2

be the corresponding 3-disk components, as defined in the discussion

above. Since ψ(xBry)∈VΣ1
∩VΣ2

, we may assume (after reindexing) that VΣ1
⊂VΣ2

.

If X0 is the component of X containing Σ1=∂VΣ1
, then it must be contained in VΣ2

since every arc leaving VΣ2
must intersect ∂X⊃∂VΣ2

. Thus, X0 is 1.1r-thin, contradicting

assumption (iv) for

Λ> 1.1.

Thus W intersects at most one component of ∂X.

Now, suppose C :=W \IntX is non-empty. Since ∂W⊂IntX, we have C ̸=W . By

the discussion above, we see that ∂X∩W consists of a single 2-sphere component Σ,

where Σ bounds a 3-disk VΣ which contains ψ(xBry). Thus C=VΣ, and assertions (a)–(c)

now follow immediately. For assertion (d), recall that C⊂ψ(V̂ ∗
Σ)=ψ({ρ⩽1.02(10λ)−1}),

which can easily be converted into the desired bound.
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Next we consider a parabolic region W⊂M[t0,t1] inside a time-slab of a Ricci flow

spacetime that is geometrically close to an evolving Bryant soliton. Moreover, we consider

two domains X0 and X1 that are contained in the initial and final time-slices Mt0 and

Mt1 of this time-slab, respectively, and whose boundary components are central 2-spheres

of sufficiently precise necks. The Bryant slab lemma describes the complements of these

domains in W and characterizes their relative position.

Lemma 8.17. (Bryant slab lemma) If

δn⩽ δ̄n, 0<λ< 1, Λ⩾Λ and δ⩽ δ̄(λ,Λ),

then the following holds.

Consider a Ricci flow spacetime M and let r>0 and t0⩾0. Set t1 :=t0+r
2. For i=

0, 1 let Xi⊂Mti be a closed subset that is a domain with boundary, satisfying conditions

(i)–(iv) from Lemma 8.16 and, in addition,

(v) X1(t) is defined for all t∈[t0, t1], and ∂X1(t0)⊂IntX0.

Consider a “δ-good Bryant slab” in M[t0,t1], i.e. the image W of a map

ψ:W ∗ =MBry(d)×[−(10λ)−2, 0]−!M[t0,t1],

where d⩾δ−1 and ψ is a (10λr)2-time equivariant and ∂t-preserving diffeomorphism

onto its image and

∥(10λr)−2ψ∗g−gBry∥C[δ−1](W∗)<δ.

Set Ci :=Wti \IntXi⊂Mti for i=0, 1. Then, the following holds :

(a) Ci(t) is well defined and 9λr-thick.

(b) If C1 ̸=∅, then C0⊂C1(t0) and C0=C1(t0)\IntX0.

Proof. Assuming

0<λ< 1, Λ⩾Λ, δn⩽ δ̄n and δ⩽ δ̄(λ,Λ),

Lemma 8.16 may be applied in the ti-time-slice for i=0, 1 and W is 9λr-thick. Since, by

definition, Ci⊂Wti , assertion (a) now follows from the fact that W is a product domain.

We now verify assertion (b). If C1 ̸=∅, then ψ(xBry, 0)∈C1, by Lemma 8.16. So,

since W is a product domain, we get that ψ(xBry,−(10λ)−2)∈C1(t0). If C0 ̸=∅, then

both C1(t0) and C0 are 3-disks in Wt0 containing ψ(xBry,−(10λ)−2). By assumption (v)

we have ∂C1(t0)⊂∂X1(t0)⊂IntX0 and hence ∂C1(t0) is disjoint from C0⊂Mt0 \IntX0.

Therefore, C0⊂C1(t0). This gives C0=(Wt0 \IntX0)∩C1(t0)=C1(t0)\IntX0.
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We now show that a parabolic region P (x, a,−b) lies in a comparison domain

(N , {N j}Jj=1, {tj}Jj=0),

provided the ball B(x, a, b) lies in N and P (x, a,−b) “avoids the cuts”; see below for

further discussion.

Lemma 8.18. (Parabolic neighborhoods inside the comparison domain) Consider a

Ricci flow spacetime M, a comparison domain (N , {N j}Jj=1, {tj}Jj=0) in M and a set

Cut=Cut1 ∪ ...∪CutJ−1, where Cutj is a collection of pairwise disjoint 3-disks inside

Ntj+ in such a way that each extension cap of N is contained in some D∈Cut.
Let x∈M, a, b>0 and assume that B(x, a)⊂N and that P (x, a,−b)∩D=∅ for all

D∈Cut. Then,

P (x, a,−b)⊂N \
⋃

D∈Cut

D. (8.26)

As the notation suggests, the set Cut will later denote the set of cuts of a comparison,

according to Definition 7.2. However, we will use Lemma 8.18 at a stage of the proof

when this comparison will not have been fully constructed. More specifically, we will

later consider a comparison domain defined over the time-interval [0, tJ+1] and have to

take Cut to be the union Cut∪CutJ . Here Cut is the set of cuts of a comparison that

is only defined on the time-interval [0, tJ ] and CutJ is a set of freshly constructed cuts

at time tJ , which will not be part of a comparison yet. For this reason we have phrased

Lemma 8.18—and similarly Lemma 8.19 below—without using the terminology of a

comparison and have instead only listed the essential properties of Cut.

Proof. Set t:=t(x). Consider a point y∈B(x, a) and choose j minimal with the

property that y(t) is defined and y(t)∈N for all t∈[tj , t]. Assume that tj>0 and tj>t−b.
Then, y(tj)∈Ntj+\Ntj−. So, y(tj) is contained in an extension cap and therefore y(tj)∈D
for some D∈Cut, in contradiction to our assumption. So, tj=0 or tj⩽t−b. It follows that
P (x, a,−b)⊂N . Combining this with the assumption of the lemma yields (8.26).

The following result shows that any point near the neck-like boundary of a compar-

ison domain is far from cuts, in the sense that there is a large backward parabolic region

that is disjoint from the cuts. This result plays an important role in §12, where it allows

us to isolate behavior occurring at the cuts from behavior that occurs near the neck-like

boundary.

Lemma 8.19. (Boundaries and cuts are far apart) If

ηlin> 0, δn⩽ δ̄n, λ⩽ λ̄, Dcut> 0, A0> 0, Λ⩾Λ ,

δb⩽ δ̄b(λ,Dcut, A0,Λ), εcan⩽ ε̄can(λ,Dcut, A0,Λ), rcomp⩽ r̄comp,
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then the following holds.

Suppose that 0<T<∞, and consider Ricci flow spacetimes M and M′ that are

(εcanrcomp, T )-complete and that satisfy the εcan-canonical neighborhood assumption at

scales (εcanrcomp, 1). Let (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) be a comparison domain on the time-

interval [0, tJ+1], and (Cut, ϕ, {ϕj}Jj=1) be a comparison from M to M′ defined on

this comparison domain over the interval [0, tJ ]. Assume that tJ+1⩽T and that this

comparison domain and comparison satisfy a-priori assumptions (APA1)–(APA6) for

the tuple of parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp).

Let CutJ be a set of pairwise disjoint 3-disks in IntNtJ+ such that each D∈CutJ

contains an extension cap of the comparison domain. Assume that the diameter of each

D∈Cut∪CutJ is less than Dcutrcomp.

Suppose that x∈Nt=Nt−∪Nt+ and that

P (x,A0ρ1(x))∩D ̸=∅

for some D∈Cut∪CutJ , where D⊂Mtk .

Then, B(x,A0ρ1(x))⊂Nt+∩Nt− if t>tk, and B(x,A0ρ1(x))⊂Nt+ if t=tk.

As in Lemma 8.18 we have introduced a set CutJ of “synthetic” cuts at time tJ in

order to avoid complications due to the possible lack of a map ϕJ+1 that extends the

comparison (Cut, ϕ, {ϕj}Jj=1) past time tJ .

The sketch of the proof is as follows. The cut D contains an extension cap, which

by a-priori assumption (APA5) and Lemma 8.13 implies that a large future parabolic

region is Bryant-like. Then, the Bryant slice and slab lemmas, applied inductively on

time steps, imply that the comparison domain contains this Bryant-like region for many

time steps, which excludes neck-like boundary in the vicinity.

Proof. Pick y∈P (x,A0ρ1(x))∩D. By Lemma 8.6 and a-priori assumption (APA2),

if

εcan⩽ ε̄can(λ,A0),

then

C−1
1 ρ1(x)⩽ ρ1(y)⩽C1ρ1(x), (8.27)

for some C1=C1(A0)<∞.

By Definition 7.2 (3) and our assumptions regarding CutJ , we know that D contains

an extension cap C. A-priori assumption (APA5) implies that there is a point z∈C such

that (Mtj , z) is δb-close to a Bryant soliton at scale 10λrcomp.
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Let δ#>0 be a constant that will be chosen at the end of the proof.

Choose l∈{2, ..., J+1} such that t∈[tl−1, tl) or [tl−1, tl] if l=J+1. Since D⊂Mtk ,

we have k⩽l−1. By a-priori assumption (APA3) (e) and (8.27), we have

tl−tk ⩽ (A0ρ1(x))
2+r2comp⩽ ((A0C1Λ)

2+1)r2comp. (8.28)

Assuming

δb⩽ δ̄b(λ,A0,Λ, δ#), εcan⩽ ε̄can(λ,A0,Λ, δ#) and rcomp⩽ r̄comp,

we can use (8.28), a-priori assumption (APA2) and Lemma 8.13 to find a (10λrcomp)
2-

time equivariant and ∂t-preserving diffeomorphism

ψ:W ∗ :=MBry(δ
−1
# )×[0, (tl−tk)·(10λrcomp)

−2]−!M

onto its image, such that ψ(xBry, 0)=z and

∥(10λrcomp)
−2ψ∗g−gBry∥

C
[δ

−1
#

]
(W∗)

<δ#.

Let W :=ψ(W ∗).

In the following we will apply the Bryant slice lemma (Lemma 8.16) at time tj for

X=Ntj−, using the time-slice Wtj , where k⩽j⩽l. We will also apply the Bryant slab

lemma (Lemma 8.17) for X0=Ntj−1− and X1=Ntj−, using the time slabW[tj−1,tj ], where

k+1⩽j⩽l. Note that assumptions (i)–(iv) of the Bryant slice lemma hold due to a-priori

assumptions (APA3) (a)–(c) and assumption (v) of the Bryant slab lemma holds due to

Definition 7.1 (3). If

δn⩽ δ̄n, 0<λ< 1, Λ⩾Λ and δ#⩽ δ̄#(λ,A0,Λ),

then the remaining assumptions of both the Bryant slice and the Bryant slab lemma

are satisfied. This means, in particular, that the time-slice Wtj and the slab W[tj−1,tj ]

satisfy the assumptions of the Bryant slice/slab lemma for all k⩽j⩽l and all k+1⩽j⩽l,

respectively.

Claim. (a) Wtj⊂Ntj− for all k+1⩽j⩽l.

(b) Wt⊂Nt+∩Nt− if t>tk, and Wt⊂Nt+ if t=tk.

Proof. Let Cj :=Wtj \IntNtj− for k⩽j⩽l. By assertion (a) of the Bryant slice lemma,

we know that Cj is either empty or is a 3-disk in IntWtj for all k⩽j⩽l. Furthermore,

assertion (b) of the Bryant slice lemma implies that Ck=C.
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We will now show by induction that Cj=∅ for all k+1⩽j⩽l. This will imply

assertion (a).

To see this, observe first that if Ck+1 ̸=∅, then by the Bryant slab lemma we have

C=Ck⊂Ck+1(tk). However, since C is an extension cap, we have C⊂Ntk+, in contradiction

to the fact that Int Ck+1(tk)⊂Mtk \Ntk+.

Next, assume that k+2⩽j⩽l and that Cj−1=∅, but Cj ̸=∅. Then, by the Bryant

slab lemma, Cj(t) is defined and 9λrcomp-thick for all t∈[tj−1, tj ]. Since Cj−1=∅, W is

a product domain and Cj⊂IntWtj , we have Cj(tj−1)⊂IntWtj−1⊂Ntj−1−. So, Cj(tj−1)

is a component of Ntj−1−\IntNtj−1+ and ∂Cj(tj−1)⊂Ntj−1+. This, however, contradicts

a-priori assumption (APA4), finishing the induction.

To see assertion (b), observe that by assertion (a) for j=l⩾k+1 we have

Wt=Wtl(t)⊂Ntl−(t).

As t<tl if l ̸=J+1 and Nt+=Nt− if l=J+1, this implies that Wt⊂Nt+. Assume now

that t>tk. If t>tl−1, then we trivially have Wt⊂Nt+=Nt−. Lastly, if t=tl−1>tk, then

l−1⩾k+1 and therefore assertion (a) yields that Wtl−1
⊂Ntl−1−.

We will now show that B(x,A0ρ1(x))⊂Wt. In combination with assertion (b) of the

claim, this completes the proof of the lemma.

By the assumption of the lemma, we have dtk(y, z)<Dcutrcomp. So, if

δ#⩽ δ̄#(λ,Dcut),

then y∈D⊂Wtk . Recall that Ric>0 on (MBry, gBry). So, gBry is decreasing in time.

Therefore, if

δ#⩽ δ̄#(λ,Dcut),

then

dt(y(t), z(t))⩽ 2dtk(y, z)⩽ 2Dcutrcomp.

Now, by (APA3) (e),

dt(x, z(t))⩽ dt(x, y(t))+dt(y(t), z(t))

<A0ρ1(x)+2Dcutrcomp

⩽A0C1ρ1(y)+2Dcutrcomp

< (A0C1Λ+2Dcut)rcomp.

Therefore, assuming

δ#⩽ δ̄#(λ,Dcut, A0,Λ),

we have B(x,A0ρ1(x))⊂Wt, as desired.
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The next lemma characterizes parabolic neighborhoods whose initial time-slices in-

tersect a cut of a comparison. It states that points that belong to such an initial time-slice,

but not to the corresponding cut, must have large scale if certain parameters are chosen

appropriately. We also obtain that such an initial time-slice must be far from cuts that

occur at earlier times. The first assertion will follow from the fact that the geometry

on and near a cut is geometrically sufficiently close to a Bryant soliton and the second

assertion will be a consequence of Lemma 8.19.

The results of the following lemma are specific for the proof in §12.4. As in the

previous lemmas, we will use a set CutJ of “synthetic” cuts in time-tJ -slice. Instead, we

have listed the relevant properties of the cuts as assumptions of the lemma.

Lemma 8.20. For all C#<∞, if

δn⩽ δ̄n, λ⩽ λ̄, Dcut⩾Dcut(λ,C#), Λ⩾Λ,

δb⩽ δ̄b(λ,C#, Dcut, A0,Λ), εcan⩽ ε̄can(λ,Dcut, A0,Λ), rcomp⩽ r̄comp(C#),

then the following holds.

Suppose that 0<T<∞, and consider Ricci flow spacetimes M and M′ that are

(εcanrcomp, T )-complete and that satisfy the εcan-canonical neighborhood assumption at

scales (εcanrcomp, 1). Let (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) be a comparison domain on the time-

interval [0, tJ+1], and (Cut, ϕ, {ϕj}Jj=1) be a comparison from M to M′ defined on this

comparison domain over the time-interval [0, tJ ]. Assume that tJ+1⩽T and that this

comparison domain and comparison satisfy a-priori assumptions (APA1)–(APA6) for

the tuple of parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp).

Let CutJ be a set of pairwise disjoint 3-disks in NtJ+ such that each D∈CutJ contains

exactly one extension cap of the comparison domain.

Assume that the diameter of every D∈Cut∪CutJ is less than Dcutrcomp and that the
1
10Dcutrcomp-neighborhood of every extension cap is contained in some D∈Cut∪CutJ .

Let x∈N and t:=t(x). Let Bt−T0
:=(B(x,A0ρ1(x)))(t−T0) be the initial time-slice

of the parabolic neighborhood P (x,A0ρ1(x),−T0) for some 0⩽T0⩽(A0ρ1(x))
2 and as-

sume that Bt−T0
∩D0 ̸=∅ for some D0∈Cut∪CutJ .

Then,

ρ1⩾C#rcomp on Bt−T0
\D0.

Moreover, for all y∈Bt−T0 , we have

P (y,A0ρ1(y))∩D=∅

for all D∈Cut with D⊂M[0,t(y)).
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Proof. Let t:=t(x) and choose j∈{1, ..., J} such that tj=t−T0, so Bt−T0
∪D0⊂Mtj .

Let C0 be the extension cap that is contained in D0.

By Lemma 8.6 and a-priori assumption (APA2), and assuming

εcan⩽ ε̄can(λ,A0),

we find that the parabolic neighborhood P (x,A0ρ1(x)) is unscathed and that

C−1
1 ρ1(x)⩽ ρ1⩽C1ρ1(x) (8.29)

on P (x,A0ρ1(x)), where C1=C1(A0)<∞. By a distance distortion estimate this implies

that Bt−T0
⊂B(x(tj), A1ρ1(x)) for some A1=A1(A0)<∞.

Choose a point z∈∂C0⊂Ntj−∩D0. By a-priori assumption (APA3) (a) and assuming

δn⩽ δ̄n,

we have 1
2rcomp⩽ρ1(z)⩽2rcomp. So, again by Lemma 8.6, and assuming

εcan⩽ ε̄can(Dcut),

we obtain that

C−1
2 rcomp⩽ ρ1⩽C2rcomp on D0

for some C2=C2(Dcut)<∞. Combining this bound with (8.29) and the fact that

Bt−T0
∩D0 ̸=∅,

we obtain that

C−2
1 C−1

2 rcomp⩽ ρ1⩽C
2
1C2rcomp on Bt−T0

. (8.30)

Therefore, for all y∈Bt−T0
,

dtj (y, z)⩽ (2C2
1C2A1+Dcut)rcomp⩽C3rcomp, (8.31)

for some C3=C3(Dcut, A0)<∞.

By a-priori assumption (APA5) (c), there is a diffeomorphism

ψ:MBry(δ
−1
b )−!W ⊂Mtj

such that ψ(xBry)⊂C0 and

∥(10λrcomp)
−2ψ∗gtj−gBry∥

C[δ
−1
b

](MBry(δ
−1
b ))

<δb.
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So, by (8.31), and the fact that z∈∂C0 and that the diameter of C0⊂D0 is bounded by

Dcutrcomp, we have

Bt−T0
⊂W, (8.32)

assuming that

δb⩽ δ̄b(λ,Dcut, A0).

Choose

D# =D#(λ,C#)<∞

such that ρ>20λC# on MBry\MBry(D#) (see Lemma B.1). So, if

δb⩽ δ̄b(λ,C#) and rcomp⩽ r̄comp(C#),

then

ρ1⩾C#rcomp on W \ψ(MBry(D#)). (8.33)

If

Dcut⩾Dcut(λ,D#(λ,C#)) and δb⩽ δ̄b,

then MBry(D#)⊂D0. Together with (8.32) and (8.33), this implies the first assertion of

this lemma.

For the second assertion note that by (8.30) and (8.31) we have

B(y, C2
1C2C3ρ1(y)) ̸⊂Ntj−

for all y∈Bt−T0
. So, the second assertion follows from Lemma 8.19, assuming

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A0,Λ),

εcan⩽ ε̄can(λ,Dcut, A0,Λ), rcomp⩽ r̄comp.

This finishes the proof.

9. Semilocal maximum principle

In this section we will show that small Ricci–DeTurck perturbations satisfy a uniform

decay estimate when weighted by a suitable function of time and scale. More precisely,

we show that quantities of the form

Q := eH(T−t)ρE1 |h|

satisfy a semi-local maximum principle as long as the Ricci–DeTurck perturbation h is

small enough, and the Ricci flow background satisfies appropriate geometric assumptions.
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The estimates of this section are based on a vanishing theorem for solutions h of the

linearized Ricci–DeTurck equation on a κ-solution background, for which |h|R−1−χ is

uniformly bounded, where χ>0 (see Theorem 9.5). The most important ingredient for

the proof of this vanishing theorem is a maximum principle due to Chow and Anderson

(see [AC]).

We first present the two main results of this section, Propositions 9.1 and 9.2. The

first result states that a Ricci–DeTurck perturbation decays by a factor of at least 100 in

the interior of a large enough neighborhood, in a weighted sense, as long as the solution

is small enough. The factor 100 is chosen arbitrarily here and can be replaced by any

number >1.

Proposition 9.1. (Semi-local maximum principle) If

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), εcan⩽ ε̄can(E),

then there are constants L=L(E), C=C(E)<∞ such that the following holds.

Let M be a Ricci flow spacetime and pick x∈Mt. Let us assume that M is

(εcanρ1(x), t)-complete and satisfies the εcan-canonical neighborhood assumption at scales

(εcanρ1(x), 1).

Then, the parabolic neighborhood P :=P (x, Lρ1(x)) is unscathed and the following is

true. Let h be a Ricci–DeTurck perturbation on P . Assume that |h|⩽ηlin everywhere on

P and define the scalar function

Q := eH(T−t)ρE1 |h| (9.1)

on P , where T⩾t is some arbitrary number.

Then, in the case t>(Lρ1(x))
2 (i.e. if P does not intersect the time-zero slice) we

have

Q(x)⩽ 1
100 sup

P
Q.

In the case t⩽(Lρ1(x))2 (i.e. if P intersects the time-zero slice) we have

Q(x)⩽ 1
100 sup

P
Q+C sup

P∩M0

Q.

Note that the parabolic neighborhood P may be defined on a time-interval of size

less than (Lρ1(x))
2 if P intersects the initial time-slice M0. By performing a time shift,

Proposition 9.1 can be generalized to the case in which P is defined on a time-interval

of size less than (Lρ1(x))
2 that does not necessarily intersect M0. This fact will be used

in §12 when P intersects a cut, i.e. a discontinuity locus of h, at some positive time.
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We also remark that the constant T in Proposition 9.1 does not have any mathemati-

cal significance and could be eliminated from the statement. It appears in Proposition 9.1

only to conform with the notation later in the paper where it is used.

In the next result, we improve the interior estimate and replace the factor 100 by

an arbitrary factor. As a trade-off, we need to choose the parabolic neighborhood on

which h and Q are defined large enough; note however that we do not need to change

the bound on |h| appearing in the assumptions.

Proposition 9.2. (Interior decay) If

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), α> 0,

A⩾A(E,α), εcan⩽ ε̄can(E,α),

then there is a constant C=C(E)<∞ such that the following holds.

Let M be a Ricci flow spacetime and x∈Mt. Assume M is (εcanρ1(x), t)-complete

and satisfies the εcan-canonical neighborhood assumption at scales (εcanρ1(x), 1).

Consider the parabolic neighborhood P :=P (x,Aρ1(x)) and let h be a Ricci–DeTurck

perturbation on P such that |h|⩽ηlin everywhere. Define Q as in (9.1).

Then, in the case t>(Ar)2 (i.e. if P does not intersect the time-zero slice) we have

Q(x)⩽α sup
P
Q.

In the case t⩽(Ar)2 (i.e. if P intersects the time-zero slice) we have

Q(x)⩽α sup
P
Q+C sup

P∩M0

Q.

We remark that it follows from the proof that the parabolic neighborhood P (x,

A ρ1(x)) is unscathed, although we cannot guarantee this for P (x,Aρ1(x)). Due to the

way the proposition will be applied later, it is more convenient to state the conditions

using the possibly larger scale A.

The proofs of Propositions 9.1 and 9.2 are based on the following strong maximum

principle for solutions of the linearized Ricci–DeTurck flow. This maximum principle is

a special case of a result of Anderson and Chow (cf. [AC]). The proof of Anderson and

Chow’s result simplifies in this special case, which is why we have decided to include it

in this paper.

Lemma 9.3. (Strong maximum principle of Anderson–Chow) Let (M, (gt)t∈(−T,0]),

T>0, be a Ricci flow on a connected 3-manifold M such that (M, gt) has non-negative

sectional curvature for all t∈(−T, 0].
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Consider a solution (ht)t∈[−T,0] of the linearized Ricci–DeTurck equation on M , i.e.

∂tht=∆L,gtht ⇐⇒ ∇∂tht=∆gtht+2Rmgt(ht).

Assume that

|h|⩽CR on M×(−T, 0]

for some C>0 and that |h|(x0, 0)=CR(x0, 0) for some x0∈M . Then,

|h|=CR on M×(−T, 0].

Proof. Using Kato’s inequality it is not hard to see that, wherever |h| ̸=0, we have

∂t|h|⩽∆gt |h|+2
Rm(h, h)

|h|2
·|h|.

On the other hand, whenever R>0, we have

∂t(CR)=∆gt(CR)+2
|Ric|2

R
·CR.

So, the claim follows by the strong maximum principle applied to |h|−CR, if we can

show that, for any symmetric 2-tensor h,

Rm(h, h)

|h|2
⩽

|Ric|2

R
. (9.2)

To see (9.2), let hij ̸=0 be a non-zero 3-dimensional symmetric 2-tensor and Rmijkl

be a 3-dimensional algebraic curvature tensor with non-negative sectional curvature. We

denote by Ricij and R its Ricci and scalar curvatures. Without loss of generality, we may

assume that |h|=1 and that Ricij is diagonal. Then, Rmijkl is only non-zero if {i, j, k, l}
has cardinality 2. Set a1 :=Rm2332, a2 :=Rm1331, a3 :=Rm1221 and xi :=hii. Then,

Rm(h, h)=Rmijkl hilhjk

=−2a1h
2
23−2a2h

2
13−2a3h

2
12+2a1h22h33+2a2h11h33+2a3h11h22

⩽ 2(a1x2x3+a2x1x3+a3x1x2).

On the other hand,

|Ric|2 =(a2+a3)
2+(a1+a3)

2+(a1+a2)
2

and

R=2(a1+a2+a3).

Since x21+x
2
2+x

2
3⩽|h|2=1, the next lemma implies (9.2).
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Lemma 9.4. If x21+x
2
2+x

2
3⩽1 a1, a2, a3⩾0 and a1+a2+a3>0, then

a1x2x3+a2x1x3+a3x1x2⩽
(a2+a3)

2+(a1+a3)
2+(a1+a2)

2

4(a1+a2+a3)
, (9.3)

Proof. Let λ1⩽λ2⩽λ3 be the eigenvalues of the symmetric matrix

A :=
1

2

 0 a3 a2

a3 0 a1

a2 a1 0


and denote by v1, v2, v3∈R3 the corresponding orthonormal basis of eigenvectors. The

left-hand side of (9.3) is bounded from above by λ3.

Since the trace of A vanishes and its determinant equals 1
4a1a2a3⩾0, we must have

λ1, λ2⩽0 and λ3⩾0. In the case λ3=0, we are done. So, assume from now on that λ3>0.

Consider the vector

u :=

 1

1

1

= c1v1+c2v2+c3v3.

Since

Au=
1

2

 a2+a3

a1+a3

a1+a2

 and uTAu= a1+a2+a3,

we obtain
c21λ

2
1+c

2
2λ

2
2+c

2
3λ

2
3

c21λ1+c
2
2λ2+c

2
3λ3

=
(a2+a3)

2+(a1+a3)
2+(a1+a2)

2

4(a1+a2+a3)
.

Since λ1, λ2<0 and numerator and denominator of the first fraction are both positive,

we obtain

λ3 =
c23λ

2
3

c23λ3
⩽

(a2+a3)
2+(a1+a3)

2+(a1+a2)
2

4(a1+a2+a3)
.

This is what we wanted to show.

Theorem 9.5. (Vanishing theorem) Consider a 3-dimensional κ-solution

(M, (gt)t∈(−∞,0])

and a smooth, time-dependent tensor field (ht)t∈(−∞,0] on M that satisfies the linearized

Ricci–DeTurck equation

∂tht=∆L,gtht.

Assume that there are numbers χ>0 and C<∞ such that

|h|⩽CR1+χ on M×(−∞, 0]. (9.4)

Then, h≡0 everywhere.
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Proof. Assume that h0 ̸≡0. Since (M, (gt)t∈(−∞,0]) has uniformly bounded curva-

ture, we have

|h|⩽C ′R

for some C ′<∞. Choose a sequence (xk, tk)∈(−∞, 0]×M such that

lim
k!∞

|h|(xk, tk)
R(xk, tk)

= sup
M×(−∞,0]

|h|
R
.

It follows from (9.4) that

CRχ(xk, tk)⩾
|h|(xk, tk)
R(xk, tk)

.

So, there is a c>0 such that R(xk, tk)>c for all k. Consider the sequence of pointed

flows (M, (gt+tk)t∈(−∞,0], xk). After passing to a subsequence, this sequence converges

to a pointed κ-solution (M∞, (g∞,t)t∈(−∞,0], x∞). Similarly, consider the sequence of

time-dependent tensor fields hk( · , t+tk). After passing to another subsequence, these

tensor fields converge to a solution (h∞,t)t∈(−∞,0] of the linearized Ricci–DeTurck flow

on M∞×(−∞, 0]. The bound (9.4) carries over in the limit to

|h∞|⩽CR1+χ (9.5)

and by the choice of the points (xk, tk) we obtain the extra property that

|h∞|(x∞, 0)
R(x∞, 0)

= sup
M∞×(−∞,0]

|h∞|
R

= sup
M×(−∞,0]

|h|
R

=:C ′> 0.

We can now apply the strong maximum principle, Lemma 9.3, and obtain that

|h∞| ≡C ′R on M∞×(−∞, 0].

Combining this with (9.5) yields that, on M∞×(−∞, 0],

C ′R⩽CR1+χ.

So, R is uniformly bounded from below on M∞×(−∞, 0]. It follows that

(M, (g∞,t)t∈(−∞,0])

cannot be the round shrinking cylinder or a quotient thereof. If M∞ was non-compact,

then we can obtain the round shrinking cylinder as a pointed limit of (M, (g∞,t)t∈(−∞,0]),

which contradicts the positive lower bound on R. If, on the other hand,M∞ was compact,

then the maximum principle applied to the evolution equation of R would imply that

minM∞ R( · , t)!0 as t!−∞, again contradicting the positive lower bound on R.
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Proof of Proposition 9.1. Fix some E>2 for the remainder of the proof. By linearity

of the desired bounds, we may assume for simplicity that T=t(x).

Next, observe that, by bounded curvature at bounded distance, Lemma 8.6, for any

choice of L<∞ we may choose εcan⩽ε̄can(L) small enough such the parabolic neighbor-

hood P (x, Lρ1(x)) is unscathed and such that ρ1>c0(L)ρ1(x) on this parabolic neigh-

borhood for some c0=c0(L)>0.

Assume now that the statement was false (for fixed E>2). Choose sequences

ηlin,k, εcan,k!0 and Hk, Lk, Ck!∞ such that εcan,k is small enough depending on Lk, as

discussed in the preceding paragraph. For each k we can choose a Ricci flow spacetime

Mk, points xk∈Mk,tk , an (unscathed) parabolic neighborhood Pk :=P (xk, Lkρ1(xk))

and a Ricci–DeTurck perturbation hk on Pk such that |hk|⩽ηlin,k on Pk, which violate

the conclusion of the proposition. Thus, setting

Qk(y) := eHk(tk−t(y))ρE1 (y)|hk|(y) for y ∈Pk,

either tk :=t(xk)>(Lkρ1(xk))
2 and

Qk(xk)>
1

100 sup
Pk

Qk (9.6)

or tk=t(xk)⩽(Lkρ1(xk))2 and

Qk(xk)>
1

100 sup
Pk

Qk+Ck sup
Pk∩Mk,0

Qk. (9.7)

Let us rephrase the bounds (9.6) and (9.7) in a more convenient form. To do this, let

αk :=|hk(xk)|⩽ηlin,k!0 and consider the tensor field h′k :=α
−1
k hk. Then, h

′
k is a solution

to the rescaled Ricci–DeTurck equation (A.11) for α=αk:

|h′k|(xk)= 1 (9.8)

and, on Pk,

|h′k|=
|hk|

|hk|(xk)
= e−Hk(tk−t)

(
ρ1

ρ1(xk)

)−E
· Qk
Qk(xk)

.

So, by (9.6) and (9.7), we have

|h′k|⩽ 100e−Hk(tk−t)

(
ρ1

ρ1(xk)

)−E
on Pk (9.9)

and, if Pk∩Mk,0 ̸=∅, then

|h′k|⩽C−1
k e−Hk(tk−t)

(
ρ1

ρ1(xk)

)−E
on Pk∩Mk,0. (9.10)
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We now distinguish two cases.

Case 1. tk⩾cρ21(xk) for all k and some c>0.

The metric gk restricted to Pk can be expressed in terms of a classical Ricci flow

(gk,t)t∈[tk−∆tk,tk] on Bk :=B(xk, Lkρ1(xk)), where

∆tk :=min{tk, (Lkρ1(xk))2}.

Let rk :=ρ1(xk) and

T∞ := lim sup
k!∞

r−2
k ∆tk ⩾ c> 0.

Consider the parabolically rescaled flows

(g′k,t := r−2
k gk,r2kt+tk)t∈[−r−2

k ∆tk,0]
.

By bounded curvature at bounded distance, Lemma 8.6, and since εcan,k!0, for any

s<∞ and T ′<T∞, for sufficiently large k we find uniform bounds on the curvature of

g′k,0 on the g′k,0-ball B(xk, 0, s) over the time-interval [−T ′, 0].

Case 1a. We have lim infk!∞ ρ1(xk)>0, and the injectivity radius satisfies

lim inf
k!∞

InjRad(g′k,0, xk)> 0.

After passing to a subsequence, we may extract a smooth limiting pointed flow

(M∞, (g∞,t)t∈(−T∞,0], x∞). Due to (9.9) and the local gradient estimates from Lemma

A.2, the reparameterized tensor fields (r−2
k h′

k,r2kt+tk
)t∈[−r−2

k ∆tk,0]
converge, after passing

to another subsequence, to a smooth solution (h′∞,t)t∈(−T∞,0] on M∞ of the linearized

Ricci–DeTurck equation with background metric (g∞,t)t∈(−T∞,0] (see (A.12)), such that

|h′∞|(x∞, 0)=1. (9.11)

Since limk!∞Hkρ
2
1(xk)=∞, we can use the exponential factor in (9.9) to show that

h′∞≡0 on M∞×(−T∞, 0), which implies h′∞(x∞, 0)=0. This contradicts (9.11).

Case 1a′. We have lim infk!∞ ρ1(xk)>0, and the injectivity radius satisfies

lim inf
k!∞

InjRad(g′k, xk)= 0.

For some r̂>0, we may pull back g′k to the r̂-ball in the tangent space at xk via the

exponential map to reduce to Case 1a. Note that in Case 1a it was not important that

the time-slices of the limiting flow (M∞, (g∞,t)t∈(−T∞,0], x∞) were complete.
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Case 1b. lim infk!∞ ρ1(xk)=0, and the injectivity radius satisfies

lim inf
k!∞

InjRad(g′k(0), xk)> 0.

As explained in the beginning of Case 1a, by passing to a subsequence, we may

assume that the pointed flows (Bk, (g
′
k,t)k,t, xk) converge to a smooth pointed flow (M∞,

(g∞,t)t∈(−T∞,0], x∞) and, moreover, the tensor fields (r−2
k h′

k,r2kt+tk
)t∈[−r−2

k ∆tk,0]
converge

to a smooth solution (h′∞,t)t∈(−T∞,0] on M∞ of the linearized Ricci–DeTurck equation

with background metric (g∞,t)t∈(−T∞,0] (see (A.12)), such that (9.11) holds.

Using Lemma 8.6 and the canonical neighborhood assumption, it follows that R>0

everywhere on M∞×(−T∞, 0]. By assertion (a) of Lemma C.1, there is a κ0>0 such

that every κ-solution is either a shrinking round spherical space form or is a κ0-solution.

Therefore, in view of the injectivity radius bound, there is a κ1>0 such that, by the

canonical neighborhood assumption, every time-slice (M∞, g∞,t), t∈(−T∞, 0], is isomet-

ric to the final time-slice of a κ1-solution. Since, by assertion (e) of Lemma C.1, we have

∂tR⩾0 on κ-solutions, we get that (M∞, (g∞,t)t∈(−T∞,0], x∞) has bounded curvature, so

it is a κ-solution if T∞=∞.

Passing (9.9) to the limit yields

|h′∞|⩽ 100ρ−E ⩽ (C ′)E/2RE/2 on M∞×(−T∞, 0],

for some universal constant C ′<∞.

If T∞=∞, then the vanishing theorem (Theorem 9.5) yields that h′∞≡0, in contra-

diction to (9.11).

Now suppose that T∞<∞. We will show that, for some constant C ′′<∞, we have

|h′∞(x, t)|⩽C ′′(t+T∞). (9.12)

for all x∈M∞, t∈(−T∞, 0].
As (M∞, g∞,0) is isometric to the final time-slice of a κ1-solution, and therefore has

uniformly bounded curvature, we can find a constant a1>0 such that, for any L′, we

have

ρ>a1ρ1(xk) on B(xk, L
′ρ1(xk)),

as long as k is chosen large enough. So, by bounded curvature at bounded distance,

Lemma 8.6, there is a constant a2>0 such that for any L′<∞ we have

ρ>a2ρ1(xk) on P (xk, L
′ρ1(xk),−tk)
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for large k. By (9.9), (9.10) and Proposition A.12, we find a sequence ck!0 and a

constant C ′′<∞ such that, for any L′<∞, we have

|h′k|<C ′′ρ−2
1 (xk)·t+ck on P (xk, L

′ρ1(xk),−tk) (9.13)

for large k. Passing this bound to the limit implies (9.12).

Since sup |h′∞|<∞ , this forces h′∞≡0, again contradicting (9.11).

Case 1b′. lim infk!∞ ρ1(xk)=0, and the injectivity radius satisfies

lim inf
k!∞

InjRad(g′k(0), xk)= 0.

After passing to a subsequence, we may assume that InjRad(g′k(0), xk)!0 as k!∞.

By Lemma C.1, the universal covers of the flows (Mk, g
′
k,t) converge to shrinking round

spheres on the time-interval (−∞, 0]. We may now pull back the tensor fields hk to the

universal covers and reduce to Case 1b.

Case 2. lim infk!∞ ρ−2
1 (xk)tk=0.

In this case, by combining the curvature bounds from Lemma 8.6 with (9.9) and

(9.10), we can apply Proposition A.12 to show that there is a sequence ck!0 and con-

stants C ′′, L′<∞ such that (9.13) holds for large k. It follows that

lim
k!∞

|h′k|(xk)= 0,

in contradiction to (9.8).

Proof of Proposition 9.2. The bound follows by iterating the bound from Proposi-

tion 9.1.

Assume that

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), εcan⩽ ε̄can(E),

and set C=2C(E) and L=L(E) according to Proposition 9.1. So, Proposition 9.2 holds

if α⩾ 1
100 . Assume now by induction that α0<

1
100 and that Proposition 9.2 holds for

α=100α0 under an assumption of the form

A⩾A′ :=A(E, 100α0) and εcan⩽ ε̄can(E, 100α0).

Consider the point x∈M. By Lemma 8.7 we can find a constant

A′′ =A′′(L(E), A′(E, 100α0))<∞
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such that, if

εcan⩽ ε̄can(L(E), A′(E, 100α0)),

then the parabolic neighborhood P (x,A′ρ1(x)) is unscathed and we have

P (y,A′ρ1(y))⊂P (x,A′′ρ1(x)) for all y ∈P (x, Lρ1(x)).

Also, by bounded curvature at bounded distance, Lemma 8.6, assuming εcan⩽ε̄can(L(E)),

we know that ρ1⩾cρ1(x) on P (x, Lρ1(x)) for some c=c(L(E))>0.

Assume now that A⩾A′′ and apply Proposition 9.2 at each y∈P (x, Lρ1(x)) for

α=100α0. Note that in order to do this, we need to ensure that M is (εcanρ1(y), t(y))-

complete and satisfies the canonical neighborhood assumption at scales (εcanρ1(y), 1).

This can always be guaranteed if we assume that εcan⩽c(L(E))εcan(E, 100α0). Proposi-

tion 9.2 for α=100α0 gives us

sup
P (x,Lρ1(x))

Q⩽ 100α0 sup
P (x,A′′ρ1(x))

Q+C sup
P (x,A′′ρ1(x))∩M0

Q.

Applying Proposition 9.1 then implies (recall that we have replaced C by 2C)

Q(x)⩽
100α0

100
sup

P (x,Lρ1(x))

Q+

(
C

100
+
1

2
C

)
sup

P (x,A′′ρ1(x))∩M0

Q

⩽α0 sup
P (x,A′′ρ1(x))

Q+C sup
P (x,A′′ρ1(x))∩M0

Q.

This finishes the induction.

10. Extending maps between Bryant solitons

In this section we consider two regions that are close to Bryant solitons, at possibly

different scales, and an almost isometry between annular subdomains inside these regions.

We will then prove that the scales of both Bryant soliton regions are almost equal and

that the given almost isometry can be extended to an almost isometry, of possibly lesser

accuracy, over the entire Bryant soliton regions. An important aspect of the main result

of this section is that the accuracy that is required from the given almost isometry

depends only polynomially on the local scale—or on the distance from the tip.

Our main result, the Bryant extension proposition (Proposition 10.1), will be needed

in the proof of Proposition 12.2 in §12. In this proposition, we extend an almost isometry

between two Ricci flow spacetime time-slices over an extension cap. By assumption, the

accuracy of this almost isometry improves at a large polynomial rate as we move away

from the extension cap. As long as this polynomial rate is sufficiently large, we can use
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Proposition 10.1 to construct an extension of the almost isometry over the extension cap

whose accuracy still improves at a large polynomial rate. This enables us to retain the

fine geometric bounds needed to prolong our comparison.

In this section, we will use the notation (MBry, gBry, xBry) for the pointed Bryant

soliton with ρ(xBry)=1; for this and other notation related to the geometry of the Bryant

soliton, we refer to §6.2. We will also frequently use the curvature scale function

ρ:MBry −! (0,∞)

as introduced in Definition 6.1. Recall that (MBry, gBry) is an O(3)-invariant gradient

steady soliton diffeomorphic to R3 and ρ(x)!∞ as x!∞.

We first present a version of the Bryant comparison result in a form that is most

useful for its application in the proof of Proposition 12.2.

Proposition 10.1. (Bryant extension) If

E⩾E, C > 0, β > 0, D⩾D(E,C, β),

0<b⩽C, 0<δ⩽ δ̄(E,C, β,D, b),

then the following holds for any D′>0.

Let g and g′ be Riemannian metrics on MBry(D) and MBry(D
′), respectively, such

that for some λ∈[C−1, C],

∥g−gBry∥C[δ−1](MBry(D)) and ∥λ−2g′−gBry∥C[δ−1](MBry(D′))<δ. (10.1)

Consider a diffeomorphism onto its image

ϕ:MBry

(
1
2D,D

)
−!MBry(D

′)

such that for h:=ϕ∗g′−g we have, for all m=0, ..., 4,

ρEg |∇m
g h|g ⩽ b on MBry

(
1
2D,D

)
,

where ρg denotes the scale function with respect to the metric g. Then, there is a diffeo-

morphism onto its image ϕ̃:MBry(D)!MBry(D
′) such that the following holds :

(a) ϕ̃=ϕ on MBry(D−1, D).

(b) For h̃:=ϕ̃∗g′−g we have

ρ3g|h̃|g ⩽βb on MBry(D).
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We remark that there are several ways in which one could strengthen or sharpen

this proposition. We chose the statement above, because it is adequate for our purposes

and keeps the complications in the proof to a minimum. For example, the constant E

in this proposition could be taken to be equal to 100, or even smaller. Also, the choice

of the exponent 3 in assertion (b) is arbitrary. This exponent is needed in the proof

of Proposition 12.2, but it could be replaced by any other number, assuming that E is

chosen sufficiently large.

The Bryant extension Proposition 10.1 is a consequence of the following simpler

result, on which we will focus for the larger part of this section. A proof that Proposi-

tion 10.2 implies Proposition 10.1 is provided at the end of this section.

Proposition 10.2. (Bryant extension, simple form) There is a constant C<∞ such

that, if

0<α< 1, E⩾E and D⩾D(α),

then the following holds. Assume that

(i) g1=gBry and g2=λ
2
2gBry is a rescaled Bryant soliton metric.

(ii) λ2∈[α, α−1].

(iii) ϕ:MBry

(
1
2D,D

)
!MBry is a diffeomorphism onto its image.

(iv) For h=ϕ∗g2−g1 and for some b⩽α−1 we have, for all m=0, ..., 4,

|∇m
g1h|g1 ⩽ bD

−E on MBry

(
1
2D,D

)
.

Then, there a diffeomorphism onto its image ϕ̃:MBry(D)!MBry such that the fol-

lowing holds :

(a) ϕ̃=ϕ on MBry(D−1, D).

(b) For h̃:=ϕ̃∗g2−g1 we have

|h|g1 ⩽ b·Cα−CD−E+C on MBry(D).

The strategy of the proof is as follows. We first show that ϕ almost preserves

the curvature operator and its first covariant derivative, up to an error that decays

polynomially in D. As the scale of a Bryant soliton can be expressed in terms of the

curvature and its derivative, this will imply that the scale λ2 of g2 is close to the scale 1 of

g1, up to an error that decays polynomially in D. Similarly, we can argue that ϕ preserves

the distance function to the tip xBry up to a polynomially decaying error. Using this

extra information, we can in turn argue that ϕ is sufficiently close to an isometric rotation

of (MBry, gBry) around the tip xBry, again up to an error that decays polynomially in D.

By an interpolation argument, we eventually extend ϕ to a map on MBry(D) that is

equal to this isometric rotation sufficiently far away from the boundary.



94 r. h. bamler and b. kleiner

The proof will use some standard properties geometric properties of the Bryant

soliton, which are reviewed in Appendix B. Recall that xBry∈MBry denotes the tip, i.e.

the center of rotational symmetry, of MBry. In the following we furthermore denote by

σ :=dgBry
( · , xBry) the distance function from the tip.

The remainder of this section will be devoted to the proof of Proposition 10.2. Until

the end of the section, we will let g1=gBry, g2, λ2, etc., be as in the statement of this

proposition. Let g3=ϕ
∗g2. We begin with some estimates on the difference between

geometric quantities for g1 and g3.

We will use the convention that 1<C<∞ denotes a generic universal constant, which

may change from line to line.

Lemma 10.3. If

E⩾E and D⩾D(α),

then the following holds.

Let D=∇g3−∇g1 be the difference tensor for the Levi-Civita connections of g3

and g1, respectively. Then, we have

|T |g1 ⩽ b·CD−E on MBry

(
1
2D,D

)
,

where T is any tensor field from the following list :

{∇k
g1(g3−g1)}0⩽k⩽4, {∇k

g1D}0⩽k⩽3

{∇k
g1(Rmg3 −Rmg1),∇k

g1(Ricg3 −Ricg1),∇k
g1(Rg3−Rg1)}0⩽k⩽2.

The bound also holds if we view Ricgi , i=1, 3, as a (1, 1)-tensor.

Proof. Consider a point x∈MBry

(
1
2D,D

)
and identify TxMBry with R3 such that

g1,x corresponds to the Euclidean inner product. The tensors hx,∇g1hx, ...,∇4
g1hx and

Rmg1,x, ...,∇2
g1 Rmg1,x and Tx can be viewed as tensors on R3. As T can be written in

the form of an algebraic expression involving the tensors g1, (g1+h)
−1, h, ...,∇4

g1h and

Rmg1 , ...,∇2
g1 Rmg1 , there is a smooth tensor-valued function F such that

Tx=F (hx, ...,∇4
g1hx,Rmg1,x, ...,∇2

g1 Rmg1,x).

Note that

F (0, ..., 0,Rmg1,x, ...,∇2
g1 Rmg1,x)= 0.

So, by (B.8) we have

|Tx|g1 ⩽C|(hx, ...,∇4
g1hx)|g1 ⩽C(|hx|g1+...+|∇4

g1hx|g1)⩽CbD
−E ,

as long as E⩾E and D⩾D(α).
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We now prove that the scales of g1 and g2 are close, up to an error that decays

polynomially in D.

Lemma 10.4. (Scale detection) If

E⩾E and D⩾D(α),

then we have

|λ2−1|⩽ b·Cα−CD−E+4.

Proof. Set λ1 :=1. Then, gi=λ
2
i gBry for i=1, 2, and, by rescaling (B.2) and (B.3)

by λi, we obtain that, for i=1, 2,

Rgi+|∇gif |2gi ≡Rgi(xBry)=λ−2
i RgBry

(xBry) and dRgi =2Ricgi(∇gif, ·). (10.2)

In the following, we will express these equations in terms of the metrics g1 and g2, by

combining the difference estimates from the previous lemma with some estimates on the

geometry of the normalized Bryant soliton from Lemma B.1. It will then follow that λ1

and λ2 are close.

In the following, we will work on the annulus MBry

(
1
2D,D

)
and assume D>2CB ,

where CB is the constant from Lemma B.1. Therefore, σ> 1
2D>CB on MBry

(
1
2D,D

)
and thus the bounds of Lemma B.1 apply for g1. We may also assume that E⩾E

and D⩾D(α) have been chosen large enough so that g1 and g3 are 2-bilipschitz on

MBry

(
1
2D,D

)
.

From (B.5) in Lemma B.1 we obtain the following bound for the Ricci tensor, viewed

as a quadratic form on T ∗M :

Ricg1 >C
−1
B D−2g1.

Therefore, assuming D large enough, the inverse Ric−1
g1 , viewed as a map T ∗M!T ∗M ,

is well defined and satisfies

|Ric−1
g1 |g1 <CCBD

2. (10.3)

Hence, by Lemma 10.3, if E⩾E and D⩾D(α), then

|Ric−1
g1 (Ricg3 −Ricg1)|g1 ⩽ |Ric−1

g1 |g1 |Ricg3 −Ricg1 |g1 ⩽ b·CD−E+2.

So, if E⩾E and D⩾D(α), then the inverse of

I+Ric−1
g1 (Ricg3 −Ricg1)=Ric−1

g1 Ricg3

exists and we have

|Ric−1
g3 Ricg1 −I|g1 ⩽ b·CD−E+2.
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Therefore, again by (10.3),

|Ric−1
g3 −Ric−1

g1 |g1 ⩽ |Ric−1
g3 Ricg1 −I|g1 |Ric

−1
g1 |g1 ⩽ b·Cα

−CD−E+4. (10.4)

Using the second relation in (10.2) we find that

d(f �ϕ)−df =2Ric−1
g3 (dRg3)−2Ric−1

g1 (dRg1)

= 2(Ric−1
g3 −Ric−1

g1 )(dRg3)+2Ric−1
g1 (dRg3−dRg1).

(10.5)

So, as |dRg3 |g1⩽C|dRg3 |g3⩽Cλ−3
2 ⩽Cα

−3, we obtain by (10.3)–(10.5) and Lemma 10.3

that

|d(f �ϕ)−df |g1 ⩽ b·Cα−CD−E+4.

It follows using (B.7) that∣∣|d(f �ϕ)|2g3−|df |2g1
∣∣⩽ ∣∣|d(f �ϕ)|2g3−|df |2g3

∣∣+∣∣|df |2g3−|df |2g1
∣∣

⩽ |d(f �ϕ)−df |g3 ·|d(f �ϕ)+df |g3+C|h|g1 |df |2g1
⩽ b·Cα−CD−E+4(|d(f �ϕ)|g3+|df |g3)+b·Cα−CD−E

⩽ b·Cα−CD−E+4(|d(f �ϕ)−df |g3+2|df |g1)+b·Cα−CD−E

⩽ b·Cα−CD−E+4.

Combining this with (10.2) and Lemma 10.3 yields

|λ−2
2 −λ−2

1 |·RgBry(xBry)⩽ |Rg3−Rg1 |+
∣∣|d(f �ϕ)|2g3−|df |2g1

∣∣⩽ b·Cα−CD−E+4.

So, the bound on |λ2−1| follows for large enough D, as λ1=1.

Next, we prove that ϕ nearly preserves the radial distance function σ, up to an error

that decays polynomially in D.

Lemma 10.5. (ϕ nearly preserves σ) If

E⩾E and D⩾D(α), (10.6)

then we have, for k=0, 1, 2,

|∇k
g1(σ�ϕ−σ)|g1 ⩽ b·Cα

−CD−E+C . (10.7)

Proof. Let F : (0,∞)!(0,∞) be the function with the property that R=F �σ on

(MBry, gBry). Consider the constant CB from Lemma B.1. By (B.4), (B.6) and (B.8),

we have, for s>CB ,

C−1
B s−1<F (s)<CBs

−1, C−1
B s−2<−F ′(s)<CB , |F ′′(s)|, |F ′′′(s)|<CB . (10.8)
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So, there is a c0>0 such that F−1((0, c0))=(CB ,∞) and such that there is an inverse

H: (0, c0)!(CB ,∞) of F |(CB ,∞). A straightforward application of the chain rule gives

|H ′(r)|<CBr−2, |H ′′(r)|<Cr−6 and |H ′′′(r)|<Cr−10.

(Note that these bounds are not optimal.)

Assume now that E and D have been chosen large enough, in the sense of (10.6),

that 1
2<λ2<2 by Lemma 10.4 and that by (10.8) and Lemma 10.3 we have, for i=1, 3,

(10CB)
−1D−1<Rgi < 10CBD

−1< 1
10c0

on MBry

(
1
2D,D

)
. Then, on MBry

(
1
2D,D

)
σ�ϕ−σ=P (Rg1 , Rg3−Rg1 , λ2), (10.9)

where

P (r1, r2, λ) :=H(λ2(r1+r2))−H(r1).

Note that P (r, 0, 1)=0 for all r∈(0, c0) and that on ((10CB)
−1D−1, 10CBD

−1)2×
(
1
2 , 2

)
we have

|∂kP |⩽CD10

for k=1, 2, 3. So, for k=0, 1, 2, we have

|∂k1P |(r1, r2, λ)⩽CD10(|r2|+|λ−1|) on ((10CB)
−1D−1, 10CBD

−1)2×
(
1
2 , 2

)
.

So, (10.7) follows by differentiating (10.9) and using Lemmas 10.3 and 10.4.

Recall that the Bryant soliton metric is a warped product gBry=dσ
2+w2gS2 on

MBry\{xBry} and that C−1
B

√
s<w(s)<CB

√
s for large s (see Lemma B.1 for more de-

tails). Fix some D that is sufficiently large such that D>w(D). We now let g4=

dσ2
4+w

2
4gS2 be a warped product metric on MBry

(
D− 3

4w(D), D+ 1
4w(D)

)
with

σ4 =
σ−D
w(D)

and the warping function

w4 =w4(σ)= 1+σ4 =1+
σ−D
w(D)

.

Note that there is an isometry

Φ:MBry

(
D− 3

4w(D), D+ 1
4w(D)

)
−!A1/4,5/4 ⊂R3



98 r. h. bamler and b. kleiner

to a Euclidean annulus such that 1+σ4(x)=|Φ(x)|R3 . So

Φ
(
MBry(D− 1

2w(D), D)
)
=A1/2,1.

Due to Lemma 10.5, we may assume in the following that

ϕ
(
MBry(D− 1

2w(D), D)
)
⊂MBry

(
D− 3

4w(D), D+ 1
4w(D)

)
.

So, ϕ induces a map

Φ�ϕ�Φ−1:A1/2,1 −!A1/4,5/4.

We now show that ϕ restricted to MBry

(
D− 1

2w(D), D
)
almost preserves the metric

g4 and the function σ4. This is equivalent to saying that Φ�ϕ�Φ−1 almost preserves the

Euclidean metric and the radial distance function on R3.

Lemma 10.6. If

E⩾E and D⩾D(α), (10.10)

then, for k=0, 1,

|∇k
g4(σ4�ϕ−σ4)|g4 ⩽ b·Cα

−CD−E+C , (10.11)

|∇k
g4(ϕ

∗g4−g4)|g4 ⩽ b·Cα−CD−E+C , (10.12)

on MBry(D− 1
2w(D), D).

Proof. Let us first consider the rescaled metric ḡ1 :=w
−2(D)g1. This metric is a

warped product of the form

ḡ1 = dσ2
4+	w

2gS2 ,

where

	w=
w

w(D)
.

Note that for large D the metric ḡ1 on MBry

(
D− 3

4w(D), D+ 1
4w(D)

)
is geometrically

close to S2×
(
− 3

4 ,
1
4

)
equipped with the standard cylindrical metric. More precisely, if

we express 	w=	w(σ4) as a function in σ4, then, by (B.10) in Lemma B.1, we have the

following bounds, when σ4∈(− 3
4 ,

1
4 ):

|	w−1|⩽CD−1/2,

∣∣∣∣ d	wdσ4
∣∣∣∣⩽CD−1/2 and

∣∣∣∣d2	wdσ2
4

∣∣∣∣⩽CD−1/2. (10.13)

Let us now consider the map ϕ. We have

ϕ∗ḡ1−ḡ1 =λ−2
2 w−2(D)(ϕ∗g2−g1+(1−λ22)g1).
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Combining this with the scale detection Lemma 10.4 gives us the following bound for

k=0, 1, assuming an estimate of the form (10.10):

|∇k
ḡ1(ϕ

∗ḡ1−ḡ1)|ḡ1 ⩽ b·Cα−CD−E+C . (10.14)

Note that here we have taken the covariant derivative with respect to ḡ1, as opposed

to g1. This change produces a factor of the order of O(Dk/2), which can be absorbed

in the right-hand side. Similarly, by rescaling (10.7) in Lemma 10.5 and assuming an

estimate of the form (10.10), we obtain that, for k=0, 1, 2,

|∇k
ḡ1(σ4�ϕ−σ4)|ḡ1 ⩽ b·Cα

−CD−E+C . (10.15)

This implies (10.11) for k=0 immediately and for k=1 after observing that ḡ1 and g4

are uniformly bilipschitz for large D.

So, it remains to show (10.12). The bound (10.15) implies that, for k=0, 1,

|∇k
ḡ1(ϕ

∗dσ2
4−dσ2

4)|ḡ1 ⩽ b·Cα−CD−E+C . (10.16)

Combining (10.14) and (10.16), one gets

|∇k
ḡ1(ϕ

∗(	w2gS2)−	w2gS2)|ḡ1 = |∇k
ḡ1((ϕ

∗ḡ1−ḡ1)−(ϕ∗dσ2
4−dσ2

4))|ḡ1
⩽ b·Cα−CD−E+C .

(10.17)

Set now

χ :=
w2

4

	w2
=

(
1+σ4
	w

)2
.

Let us first express χ(σ4) as a function of σ4. Then, by (10.13) we have, for k=0, 1, 2, as

long as − 3
4<σ4<

1
4 ,

|χ|⩽C,
∣∣∣∣ dχdσ4

∣∣∣∣⩽C and

∣∣∣∣d2χdσ2
4

∣∣∣∣⩽C. (10.18)

It follows using (10.15) that

|χ�σ4�ϕ−χ�σ4|⩽CD−1/2|σ4�ϕ−σ4|⩽ b·Cα−CD−E+C , (10.19)

and

|∇ḡ1(χ�σ4�ϕ−χ�σ4)|ḡ1 ⩽ |(χ′
�σ4�ϕ)ϕ

∗ dσ4−(χ′
�σ4) dσ4|ḡ1

⩽ |χ′
�σ4�ϕ|·|ϕ∗dσ4−dσ4|ḡ1+|(χ′

�σ4�ϕ)−χ′(σ4)|·|dσ4|ḡ1
⩽ b·Cα−CD−E+C .



100 r. h. bamler and b. kleiner

So, assuming a bound of the form (10.10), we get using (10.17) that, for k=0, 1,

|∇k
ḡ1(ϕ

∗(w2
4gS2)−w2

4gS2)|ḡ1
= |∇k

ḡ1(ϕ
∗((χ�σ4)	w

2gS2)−(χ�σ4)	w
2gS2)|ḡ1

⩽ |∇k
ḡ1((χ�σ4�ϕ−χ�σ4)ϕ

∗(	w2gS2))|ḡ1
+|∇k

ḡ1((χ�σ4)(ϕ
∗(	w2gS2)−	w2gS2))|ḡ1

⩽ b·Cα−CD−E+C .

Combining this again with (10.16) gives us that, for k=0, 1,

|∇k
ḡ1(ϕ

∗g4−g4)|ḡ1 ⩽ b·Cα−CD−E+C

This implies (10.12) for k=0, as g4 and ḡ1 are uniformly bilipschitz for large D. To see

(10.12) for k=1, note that due to (10.18), we have |∇g4−∇ḡ1 |ḡ1⩽C.

In the following lemma, we extend the map Φ�ϕ�Φ−1:A1/2,1!A1/4,5/4 to a map ϕ̂

on the unit ball B1⊂R3.

Lemma 10.7. If

E⩾E and D⩾D(α), (10.20)

then there is a diffeomorphism onto its image ϕ̂:B1!R3 such that the following holds :

(a) |ϕ̂∗g4−g4|g4⩽b·Cα−CD−E+C .

(b) |σ4�ϕ̂−σ4|, |ϕ̂∗dσ4−dσ4|g4⩽b·Cα−CD−E+C .

(c) ϕ̂≡Φ�ϕ�Φ−1 on A5/6,1.

(d) ϕ̂≡ψ on B4/6 for an orthogonal map ψ∈O(3) of R3.

Proof. By Lemma 10.6 and the fact that g4≡Φ∗gR3 we have, for k=0, 1,

|∇k
R3((Φ�ϕ�Φ−1)∗gR3−gR3)|R3 ⩽ b·Cα−CD−E+C , (10.21)

|∇k
R3(r�(Φ�ϕ�Φ−1)−r)|R3 ⩽ b·Cα−CD−E+C , (10.22)

where r(x):=|x|R3 denotes the radial distance function on R3.

From now on we will only work on R3. To simplify notation, we will write ϕ instead

of Φ�ϕ�Φ−1. Expressing (10.21) for k=1 in Euclidean coordinates yields

∣∣∣∣ 3∑
s=1

(
∂2ϕs

∂xk∂xi
∂ϕs

∂xj
+

∂2ϕs

∂xk∂xj
∂ϕs

∂xi

)∣∣∣∣⩽ b·Cα−CD−E+C .
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Permuting the indices i, j and k cyclicly and using

2
∂2ϕs

∂xi∂xj
∂ϕs

∂xk
=

(
∂2ϕs

∂xi∂xj
∂ϕs

∂xk
+

∂2ϕs

∂xi∂xk
∂ϕs

∂xj

)
+

(
∂2ϕs

∂xj∂xk
∂ϕs

∂xi
+

∂2ϕs

∂xj∂xi
∂ϕs

∂xk

)
−
(

∂2ϕs

∂xk∂xi
∂ϕs

∂xj
+

∂2ϕs

∂xk∂xj
∂ϕs

∂xi

)
gives us ∣∣∣∣ 3∑

s=1

∂2ϕs

∂xi∂xj
∂ϕs

∂xk

∣∣∣∣⩽ b·Cα−CD−E+C .

Combining this with (10.21) for k=0 implies that, under a condition of the form, (10.20)

|d2ϕ|R3 ⩽ b·Cα−CD−E+C . (10.23)

Let now x0∈A1/2,1 be a point and consider the differential (dϕ)x0
:R3!R3. By (10.21),

there is a Euclidean isometry ψ′:R3!R3 with ψ′(x0)=ϕ(x0) and

|(dψ′)x0−(dϕ)x0 |R3 ⩽ b·Cα−CD−E+C .

Combining this with (10.22) gives us

|(dψ′)x0
((∇r)x0

)−(∇r)ψ′(x0)|R3 ⩽ b·Cα−CD−E+C .

So, again by (10.22), we have

|ψ′(0)|R3 =
∣∣ψ′(x0)−|x0|R3(dψ′)x0

((∇r)x0
)
∣∣
R3

⩽
∣∣ϕ(x0)−|x0|R3(∇r)ϕ(x0)

∣∣
R3+b·Cα−CD−E+C

⩽
∣∣ϕ(x0)−|ϕ(x0)|R3(∇r)ϕ(x0)

∣∣
R3+b·Cα−CD−E+C

= b·Cα−CD−E+C .

Set now ψ: =ψ′−ψ′(0). Then, ψ∈O(3) and, for k=0, 1,

|dψ(x0)−dϕ(x0)|R3 ⩽ b·Cα−CD−E+C

Integrating (10.23) along paths in A1/2,1 starting from x0 implies that, under an

assumption of the form (10.20), we have, for all x∈A1/2,1,

|dψ(x)−dϕ(x)|R3 ⩽ |(dψ)(x0)−dϕ)(x0)|R3+10 sup
A1/2,1

|d2ψ−d2ϕ|R3

⩽ b·Cα−CD−E+C .
(10.24)
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Integrating this bound once again along paths in A1/2,1 yields that

|ψ(x)−ϕ(x)|R3 ⩽ |ψ(x0)−ϕ(x0)|R3+10 sup
A1/2,1

|dψ(x)−dϕ(x)|R3

⩽ b·Cα−CD−E+C .
(10.25)

We now let {ζ1, ζ2} be a partition of unity on A1/2,1 such that ζ1≡1 on A5/6,1,

ζ2≡1 in B4/6, and |∇R3ζi|R3⩽C. Let ϕ̂:=ζ1ϕ+ζ2ψ. Then, assertions (c) and (d) hold

immediately and assertion (a) follows from (10.24) and (10.25). Assertion (b) follows

from (10.22), the fact that dr=dσ4 and that r�ψ=r.

Proof of Proposition 10.2. We only need to translate the result of Lemma 10.7 back

toMBry. By assertion (d) of Lemma 10.7 and the fact that MBry is rotationally symmet-

ric, we can find an isometry ψ̃:MBry!MBry with ψ̃(xBry)=xBry and ψ̃=Φ−1
�ψ�Φ. Set

ϕ̃:=Φ−1
�ϕ̂�Φ on MBry

(
D− 1

2w(D), D
)
and ϕ̃:=ψ on the closure of MBry

(
D− 1

2w(D)
)
.

By assertion (d) of Lemma 10.7, we know that ϕ̃ is smooth. By assertion (b), the map

ϕ̃ is injective if E⩾E and D⩾D(α). So, it remains to bound ϕ̃∗g2−g1 on MBry

(
D−

1
2w(D), D

)
. To do this, we first deal with the rescaling factor λ2 using Lemma 10.4:

|ϕ̃∗g2−g1|g1 ⩽ |ϕ̃∗g1−g1|g1+|(λ22−1)ϕ̃∗g1|g1 ⩽ |ϕ̃∗g1−g1|g1+b·Cα−CD−E+C .

So, it remains to bound ϕ̃∗g1−g1. For this purpose consider the rescaled metric

ḡ1 =w−2(D)g1 = dσ2
4+	w

2gS2 ,

as used in the proof of Lemma 10.6, and observe that

ḡ1 = dσ2
4+	w

2gS2 =
	w2

w2
4

(dσ2
4+w

2
4gS2)+

(
1− 	w2

w2
4

)
dσ2

4 .

Set χ�σ4 :=	w
2/w2

4 as in the proof of Lemma 10.6. As explained in this proof, we obtain

using (10.19) and assertions (a) and (b) of Lemma 10.7 that, under an assumption of the

form E⩾E and D⩾D(α), we have

|ϕ̃∗g1−g1|g1 = |ϕ̃∗ḡ1−ḡ1|ḡ1
⩽ (χ�σ4)|ϕ̃∗g4−g4|ḡ1+|χ�σ4�ϕ̃−χ�σ4|·|ϕ̃∗g4|ḡ1

+|1−(χ�σ4)|·|ϕ̃∗dσ2
4−dσ2

4 |ḡ1+|χ�σ4�ϕ̃−χ�σ4|·|ϕ̃∗dσ2
4 |ḡ1

⩽ b·Cα−CD−E+C .

This concludes the proof.
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Proof that Proposition 10.2 implies Proposition 10.1. Set

λ2 :=λ, g1 := gBry and g2 :=λ22gBry.

Assuming δ⩽δ̄(D), we have, using (B.4),

ρg ⩾ 1
2ρgBry

⩾ 1
4C

−1
B D1/2 on MBry

(
1
2D,D

)
. (10.26)

Now, consider the map ϕ from Proposition 10.1 and note that, by the assumptions of

this proposition and (10.26), that we have, for m=0, ..., 4,

|∇m
g (ϕ∗g′−g)|g ⩽ bρ−Eg ⩽ 4ECEB ·bD−E . (10.27)

We now claim that, for D⩾D(E,C) and δ⩽δ̄(E,C,D, b), we have

|∇m
g1(ϕ

∗g2−g1)|g1 ⩽C ′
1(E)bD−E (10.28)

for all m=0, ..., 4 and some constant

C ′
1 =C ′

1(E)<∞.

To see this, assume first that D⩾D(E,C) and δ⩽δ̄ such that the pairs of metrics

{g, ϕ∗g′}, {g, g1}, and {g′, g2} are each 2-bilipschitz with respect to one another. So,

g1, g, ϕ
∗g′ and ϕ∗g2 are pairwise 8-bilipschitz. As λ∈(C−1, C), we can find a constant

C ′
2=(C)<∞ such that by (10.1) we have, for all m=0, ..., 4,

|∇m
g1(g−g1)|g1 ⩽C

′
2δ, (10.29)

|∇m
ϕ∗g2(ϕ

∗g′−ϕ∗g2)|g1 ⩽ 8|∇m
g2(g

′−g2)|g2 �ϕ⩽C ′
2δ. (10.30)

We now argue similarly as in the proof of Lemma 10.3. The tensor ∇m
g1(ϕ

∗g2−g1)
can be written as an algebraic expression in terms of the five tensors g−1, (ϕ∗g2)

−1,

∇m′

g (ϕ∗g′−g), ∇m′

g1 (g−g1) and ∇m′

ϕ∗g2
(ϕ∗g′−ϕ∗g2), with m′⩽m (where we use g1 as a

background metric). So, pointwise,

∇m
g1(ϕ

∗g2−g1)=F (ϕ∗g′−g, ...,∇m
g (ϕ∗g′−g),

g−g1, ...,∇m
g1(g−g1), ϕ

∗g′−ϕ∗g2, ...,∇m
ϕ∗g2(ϕ

∗g′−ϕ∗g2)),

for some smooth, tensor-valued function F . By (10.27), (10.29) and (10.30), we therefore

obtain (10.28) as long as 2ECEB bD
−E and C ′′δ are sufficiently small.
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So, the conditions of Proposition 10.2 are fulfilled for α=α(E,C):=min{C ′ −1
1 , C−1}.

Therefore, if

E⩾E and D⩾D(α),

we obtain a diffeomorphism onto its image ϕ̃:MBry(D)!MBry such that

ϕ̃=ϕ on MBry(D−1, D)

and moreover there is a universal constant C ′
3<∞ such that

|ϕ̃∗g2−g1|g1 ⩽ b·C ′
3α

−C′
3D−E+C′

3 .

If δ⩽δ̄(E, b, α,D), then we may assume that the metrics g, g1, ϕ
∗g′ and ϕ∗g2 are pairwise

sufficiently bilipschitz close to another such that we still have for some universal C ′
4<∞

|ϕ̃∗g′−g|g ⩽ b·C ′
4α

−C′
4D−E+C′

4 .

By (B.4), we have

C ′
4α

−C′
4D−E+C′

4 ⩽β(10CB)
−3/2D−3/2⩽βρ−3

g on MBry

(
1
2D,D

)
,

as long as

E⩾C ′
4+4, D⩾D(E,α, β) and δ⩽ δ̄(E,α, β,D).

This implies assumption (b) of Proposition 10.1. Lastly, note that if

E⩾E and D⩾D(α),

then ϕ̃ is an immersion. So, since

ϕ̃(MBry(D−1, D))=ϕ(MBry(D−1, D))⊂MBry(D
′),

the image of ϕ̃ must be contained in MBry(D
′) as well.

11. Inductive step: extension of the comparison domain

11.1. Statement of the main result

Consider two Ricci flow spacetimes M and M′. The goal of this section is to ex-

tend a comparison domain N in M that is defined over a time-interval of the form

[0, tJ ] by one time-step, to a comparison domain that is defined over the time-interval

[0, tJ+1=tJ+r
2
comp]. In order to carry out this construction, we will assume the existence
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of a comparison from M to M′ defined on N that together with N satisfies a-priori

assumptions (APA1)–(APA6) for some tuple of parameters. Assuming that these pa-

rameters are chosen appropriately, we will show that the extended comparison domain

and the given comparison satisfy the same a-priori assumptions for the same tuple of

parameters.

The precise statement of the main result of this section is the following. We remind

the reader that we are using the notation for expressing parameter bounds explained

in §4.

Proposition 11.1. (Extending the comparison domain) Suppose that

ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄(δn), Dcap⩾Dcap(λ),

Λ⩾Λ(δn, λ), δb⩽ δ̄b(λ,Λ),

εcan⩽ ε̄can(δn, λ,Λ, δb), rcomp⩽ r̄comp(λ,Λ)

(11.1)

and assume that the following holds :

(i) M and M′ are two (εcanrcomp, T )-complete Ricci flow spacetimes that each sat-

isfy the εcan-canonical neighborhood assumption at scales (εcanrcomp, 1).

(ii) (N , {N j}Jj=1, {tj}Jj=0) is a comparison domain in M that is defined on the time-

interval [0, tJ ]. We allow the case J=0, in which this comparison domain is empty (see

Definition 7.1).

(iii) (Cut, ϕ, {ϕj}Jj=1) is a comparison from M to M′ defined on (N , {N j}Jj=1,

{tj}Jj=0) over the (same) time-interval [0, tJ ]. In the case J=0, this comparison is the

trivial comparison (see the remark after Definition 7.2).

(iv) (N , {N j}Jj=1, {tj}Jj=0) and (Cut, ϕ, {ϕj}Jj=1)) satisfy (APA1)–(APA6) for the

parameters (ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp).

(v) tJ+1 :=tJ+r
2
comp⩽T .

Then, there is a subset N J+1⊂M[tJ ,tJ+1] such that

(N∪N J+1, {N j}J+1
j=1 , {tj}

J+1
j=0 )

is a comparison domain defined on the time-interval [0, tJ+1] and such that

(N∪N J+1, {N j}J+1
j=1 , {tj}

J+1
j=0 )

and (Cut, ϕ, {ϕj}Jj=1) satisfy the a-priori assumptions (APA1)–(APA6) for the same

parameters (ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp).

We remind the reader that a-priori assumptions (APA1)–(APA6) allow for the possi-

bility that the comparison (Cut, ϕ, {ϕj}Jj=1) is defined on a shorter time-interval than the
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underlying comparison domain (see Definition 7.4). In particular, (APA5) and (APA6)

are only required to hold over the time-interval on which the comparison is defined, which

in the context of Proposition 11.1 is [0, tJ ].

We briefly explain the strategy of the proof of Proposition 11.1, which will be carried

out in the remainder of this section. In §11.2, we will first construct a domain Ω⊂MtJ+1

such that the corresponding product domain Ω([tJ , tJ+1])⊂M[tJ ,tJ+1] satisfies most of

the a-priori assumptions (APA1)–(APA6). The final time-slice N J+1
tJ+1

will later arise from

Ω by adding certain components of its complement MtJ+1
\Ω. This is by far the most

delicate part of the proof, because we need to accommodate both a-priori assumption

(APA3) (d), which forces certain components to be added to Ω, and a-priori assumption

(APA5), which imposes strong restrictions whenever the addition of such components

creates extension caps. The precise criterion for which components of MtJ+1
\Ω will be

added to Ω, will be given in §11.3 and some of the less problematic a-priori assumptions

will be verified in §11.4. The most important and complex step in our proof is Lemma 11.7

in §11.5, which effectively states that cap extensions only arise when a-priori assumption

(APA5) is satisfied. For more details, we refer the reader to the explanations given before

and after the statement of this lemma.

We make the standing assumption that hypotheses (i)–(v) of Proposition 11.1 hold

for the remainder of this section. The construction of the domain N J+1 and the veri-

fication of its properties will proceed in several stages, with each stage requiring addi-

tional inequalities on the parameters. The inequalities on the parameters imposed in

the assumptions of lemmas or in discussions in between lemmas will be retained for the

remainder of this section. So, the assertions of these lemmas or the conclusions of these

discussions continue to hold until the end of this section.

We remind the reader that, while the dependence on the parameters may seem

complex, it essentially suffices to observe that the parameter order, as discussed in §7.5,
is respected. We will continue our practice of introducing parameter bounds in separate

displayed equations, to facilitate verification of the parameter dependences.

11.2. Choosing an almost minimal domain containing all Λrcomp-thick points

As a first step toward the construction of N J+1, we will construct a precursor of its final

time-slice N J+1
tJ+1

—a subset Ω⊂MtJ+1
bounded by central 2-spheres of δn-necks at scale

rcomp that contains all Λrcomp-thick points. The final time-slice N J+1
tJ+1

of N J+1 will later

emerge from Ω by the addition of certain components of its complement inside MtJ+1
.

Consider the collection S of all embedded 2-spheres Σ⊂MtJ+1
that occur as central

2-spheres of δn-necks at scale rcomp in MtJ+1
.
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Lemma 11.2. We can find a subcollection S ′⊂S such that

(a) dtJ+1
(Σ1,Σ2)>10rcomp for all distinct Σ1,Σ2∈S ′.

(b) For every Σ∈S there is a Σ′∈S ′ such that dtJ+1
(Σ,Σ′)<100rcomp.

Proof. Let {x1, x2, ... }⊂MtJ+1
be a countable dense subset. We can successively

construct a sequence of collections ∅=S ′
0⊂S ′

1⊂...⊂S by the following algorithm: If xi

is in an rcomp-neighborhood of some Σ∈S with the property that dtJ+1
(Σ,Σ′)>10rcomp

for all Σ′∈S ′
i−1, then we set S ′

i :=S ′
i−1∪{Σ}. Otherwise, we set S ′

i :=S ′
i−1.

Set S ′ :=
⋃∞
i=1 S ′

i. Then, assertion (a) holds trivially and for assertion (b) observe

that every Σ∈S is rcomp-close to some xi. If S ′
i=S ′

i−1, then dtJ+1
(Σ,Σ′)⩽10rcomp for

some Σ′∈S ′
i−1 and if S ′

i=S ′
i−1∪{Σ′}, then xi is contained in an rcomp-neighborhood

of Σ′. In both cases, dtJ+1
(Σ,Σ′)<100rcomp.

We now fix the collection S ′ for the remainder of this section.

Lemma 11.3. If

δn⩽ δ̄n, λ⩽ λ̄(δn), Λ⩾Λ(δn), εcan⩽ ε̄can(δn), rcomp< 1,

then the collection S ′ separates the 100λrcomp-thin points of MtJ+1
from the Λrcomp-

thick points.

Proof. Suppose that the assertion of the lemma was false. Then, there is a continuous

path γ: [0, 1]!MtJ+1
\
⋃

Σ∈S′ Σ such that γ(0) is Λrcomp-thick and γ(1) is 100λrcomp-thin.

Without loss of generality, we may assume that γ has been chosen almost minimal in the

sense that any other such path has length at least lengthtJ+1
(γ)−rcomp.

We first argue that we may assume in the following that

dtJ+1
(γ([0, 1]),Σ′)> 1000rcomp for all Σ′ ∈S ′, (11.2)

Assume that dtJ+1
(γ(s′),Σ′)⩽1000rcomp for some s′∈[0, 1] and some Σ′∈S ′. Let U⊂

MtJ+1
be a δn-neck at scale rcomp that has Σ′ as a cross-sectional 2-sphere. If

δn⩽ δ̄n,

then γ(s′)∈U . Moreover, if

δn⩽ δ̄n, λ⩽ λ̄ and and Λ⩾Λ,

then no point on U is Λrcomp-thick or 100λrcomp-thin and therefore γ(0), γ(1) /∈U . Let

Σ∗⊂U be a cross-sectional 2-sphere of U , close to its boundary such that Σ∗ and Σ′
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bound a domain diffeomorphic to S2×[0, 1] inside U that contains γ(s′). It follows that

γ|[0,s′] and γ|[s′,1] intersect Σ∗. If

δn⩽ δ̄n,

then the diameter of Σ∗ is less than 10rcomp, and Σ∗ may be chosen such that the distance

between Σ∗ and γ(s′) is larger than 10rcomp. This implies that we can replace γ by a

path whose length is shorter than lengthtJ+1
(γ)−rcomp, in contradiction to its almost

minimality. Therefore, we may assume in the following that (11.2) holds.

By the intermediate value theorem, assuming

λ< 1
10 , Λ> 1 and rcomp< 1,

we may pick s∈[0, 1] such that x:=γ(s) has scale ρ(x)=rcomp. By the construction of S
and (11.2), assuming

δn⩽ δ̄n,

the point x cannot be the center of a δn-neck at scale rcomp. So, assuming

εcan⩽ ε̄can(δn) and rcomp< 1,

we can use Lemma 8.2 to find a compact subset V ⊂MtJ+1
with x∈V that has connected

boundary and on which C−1
0 rcomp<ρ<C0rcomp holds, where C0=C0(δn)<∞. So, assum-

ing

λ⩽ (100C0(δn))
−1 and Λ⩾C0(δn),

we can conclude that γ(0), γ(1) /∈V . Therefore, V must have exactly one boundary

component and this component is a central 2-sphere of a δn-neck.

We claim that ∂V is disjoint from all elements of S ′. Assume by contradiction that

∂V intersects some Σ′∈S ′. If

δn⩽ δ̄n, (11.3)

then we have 1
2rcomp<ρ<2rcomp on Σ′∩∂V . Again, assuming a bound of the form

(11.3), we find that ∂V is a central 2-sphere of a neck at some scale of the interval(
1
4rcomp, 4rcomp

)
. So, the intersection of ∂V with γ([0, 1]) is not further than 40rcomp

from the intersection with Σ′, in contradiction to (11.2).

Choose now s1∈[0, s) and s2∈(s, 1] such that γ(si)∈∂V . By Lemma 8.2, the path

γ|[s1,s2] can be replaced by a continuous path inside ∂V of length less than

lengthtJ+1
(γ|[s1,s2])−rcomp,

contradicting the minimality assumption of γ.
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Now let Ω⊂MtJ+1
be the union of the closures of all components of

MtJ+1
\
⋃

Σ∈S′

Σ

that contain Λrcomp-thick points. Then, by the previous lemma, Ω is weakly 100λrcomp-

thick.

Lemma 11.4. If

εcan⩽ ε̄can(λ),

then all points in Ω survive until time tJ .

Proof. This follows immediately from Lemma 8.5 and the fact that Ω is weakly

100λrcomp-thick.

Lemma 11.5. If J⩾1 and

δn⩽ δ̄n, Λ⩾Λ, εcan⩽ ε̄can and rcomp⩽ r̄comp(Λ),

then for every Λrcomp-thick point x∈MtJ+1
we have x(tJ)∈IntNtJ−.

Recall that x(tJ)∈MtJ denotes the image of x under the time −(tJ+1−tJ)-flow of

the time vector field ∂t (see Definition 6.4).

Proof. Assume that x(tJ) /∈IntNtJ−. By a-priori assumptions (APA3) (a) and (b),

Lemma 8.5 and assuming that

δn⩽ δ̄n, Λ⩾ 2, εcan⩽ ε̄can and rcomp⩽ r̄comp(Λ),

we have ρ(x)⩽2Λrcomp.

Let δ#>0 be a constant whose value we will determine in the course of the proof.

Assuming

Λ⩾ 1, εcan⩽ ε̄can(δ#) and rcomp⩽ r̄comp(Λ),

we can use Lemma 8.15 (for α=2Λ) to argue that (MtJ , x(tJ)) is δ#-close to (MBry, gBry,

xBry) at scale ρ(x)>Λrcomp. Since ρ is uniformly bounded from below on (MBry, gBry)

and diverges at infinity, there is a universal constant c>0 such that for

δ#⩽ δ̄#

we can find a path γ: [0, 1]!MtJ with

γ(0)=x(tJ), ρ(γ(1))>Λrcomp and ρ(γ(s))>cΛrcomp

for all s∈[0, 1]. So, by a-priori assumption (APA3) (b), we have γ(1)∈NtJ−. If

δn⩽ δ̄n and Λ⩾Λ,

then, by a-priori assumption (APA3) (a), the image γ([0, 1]) is disjoint from ∂NtJ−. It

follows that x(tJ)=γ(0)∈NtJ−.
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We remark that in the proof of Lemma 11.5, the use of Lemma 8.15, which is based

on the rigidity theorems of Hamilton and Brendle, may be replaced by a longer but more

elementary argument involving the maximum principle and the geometry of κ-solutions.

Lemma 11.6. If J⩾1 and

δn⩽ δ̄n, λ⩽ λ̄(δn), Λ⩾Λ(δn), εcan⩽ ε̄can(δn) and rcomp⩽ r̄comp(Λ),

then Ω(tJ)⊂IntNtJ−.

Proof. Let Ω0 be the closure of a component of MtJ+1
\
⋃

Σ∈S′ Σ that contains a

Λrcomp-thick point x. Note that, by definition of Ω, we have Ω0⊂Ω and the lemma

follows if we can show that Ω0(tJ)⊂IntNtj− for all such Ω0.

Fix Ω0 and a Λrcomp-thick point x∈Ω0 for the remainder of the proof and assume by

contradiction that Ω0(tJ) ̸⊂IntNtJ−. Suppose by contradiction that there is a point Let

z∈Ω0 with the property that z(tJ) /∈IntNtJ−. Choose a path γJ+1: [0, 1]!Ω0 within Ω0

such that x=γJ+1(0) and z=γJ+1(1). Without loss of generality, we may assume that

we have chosen z and γJ+1 almost minimal in the sense that for any other such choice

of z′ and γ′J+1 we have

lengthtJ+1
(γ′J+1)> lengthtJ+1

(γJ+1)−rcomp. (11.4)

By Lemma 11.5, assuming that

δn⩽ δ̄n, Λ⩾Λ, εcan⩽ ε̄can and rcomp⩽ r̄comp(Λ),

we have x(tJ)∈NtJ−. Denote by γJ : [0, 1]!MtJ the curve at time tJ corresponding to

γJ+1 under the (−r2comp)-flow of the time vector field ∂t, i.e. γJ(s)=(γJ+1(s))(tJ). This

path exists due to Lemma 11.4. Since γJ(1)=z(tJ) /∈IntNtJ−, we can find a parameter

s0∈[0, 1] such that γJ(s0)∈∂NtJ− and γJ([0, s0))⊂IntNtJ−. By truncating γJ and γJ+1,

we may assume without loss of generality that s0=1 and therefore z(tJ)=γJ(1)∈∂NtJ−

and γJ([0, 1))⊂IntNtJ−. The almost minimality property (11.4) of z and γJ+1 remains

preserved under this truncation process.

Let ΣJ⊂∂NtJ− be the boundary component that contains z(tJ). By a-priori as-

sumption (APA3) (a), ΣJ is a central 2-sphere of a δn-neck at scale rcomp in MtJ . Let

δ#>0 be a constant whose value we will determine later. By Lemma 8.12, assuming

δn⩽ δ̄n(δ#), εcan⩽ ε̄can(δ#)quadand rcomp⩽ r̄comp,

this implies that all points on ΣJ survive until time tJ+
1
4r

2
comp and ΣJ

(
tJ+

1
4r

2
comp

)
is a

central 2-sphere of a δ#-neck at scale 1
2rcomp. So, ρ

(
z
(
tJ+

1
4r

2
comp

))
<0.6rcomp, assuming

δ#⩽ δ̄#.
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By Lemma 8.5, this implies that ρ(γJ+1(1))=ρ(z)<0.7rcomp, assuming

εcan⩽ ε̄can and rcomp< 1.

Recall that at the other endpoint of γJ+1 we have ρ(γJ+1(0))=ρ(x)>Λrcomp. So,

by the intermediate value theorem, assuming

Λ> 1,

we can find a parameter s∈(0, 1) such that y :=γJ+1(s) has scale ρ(y)=rcomp.

Assuming that

δn⩽ δ̄n and Λ⩾Λ,

we can conclude that x and z cannot lie in δn-necks at scale rcomp, and therefore

dtJ+1
({x, z}, ∂Ω0)> 2000rcomp.

So, by the almost minimal choice of γJ+1 we find, using the same argument as the one

leading to (11.2) in the proof of Lemma 11.3, that

dtJ+1
(γ([0, 1]), ∂Ω0)> 1000rcomp, (11.5)

assuming that

δn⩽ δ̄n.

As the interior of Ω0 is disjoint from all elements of S ′, we can use assertion (b) of

Lemma 11.2 and (11.5) to conclude that the point y cannot be a center of a δn-neck at

scale rcomp, assuming

δn⩽ δ̄n.

We can hence apply Lemma 8.2 and find a smooth domain V ⊂MtJ+1
with y∈V . More-

over, we have C−1
0 (δn)rcomp<ρ<C0(δn)rcomp on V . So, by Lemma 8.5 and assuming

εcan⩽ ε̄can(δn),

all points on V survive until time tJ and

ρ⩾ 1
2C

−1
0 (δn)rcomp on V (tJ). (11.6)

Also, if

Λ>C0(δn),
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then x /∈V . In particular, this implies that ∂V ̸=∅. By Lemma 8.2, the boundary ∂V is

a central 2-sphere of a δn-neck. Choose s1∈[0, s) such that γJ+1(s1)∈∂V .

We claim that

z ∈V. (11.7)

If not, then we can choose s2∈(s, 1] such that γJ+1(s2)∈∂V . By Lemma 8.2, we can

connect γJ+1(s1) and γJ+1(s2) by a path γ′: [s1, s2]!∂V ⊂IntΩ0 whose length is less

than lengthtJ+1
(γ|[s1,s])−100rcomp. The concatenation of γJ+1|[0,s1], γ′ and γJ+1|[s2,1]

would have length less than lengthtJ+1
(γJ+1)−100rcomp, contradicting the almost mini-

mal choice of γJ+1 and confirming (11.7).

Next, we argue that

(∂V )(tJ)⊂ IntNtJ−. (11.8)

Note that, by our choice of γJ+1, we have (γJ+1(s1))(tJ)∈IntNtJ−. So, if (11.8) was

false, then (∂V )(tJ)∩∂NtJ− ̸=∅. Therefore, by Lemma 8.2 we would find a continuous

curve γ′′: [s1, 1]!∂V between γJ+1(s1) and a point z′∈∂V with z′(tJ)∈∂NtJ− such that

lengthtJ+1
(γ′′)⩽ dtJ+1

(γJ+1(s1), γJ+1(s))−100rcomp.

The concatenation of γ|[0,s1] with γ′′ would then have length of at most

lengthtJ+1
(γJ+1)−dtJ+1

(γJ+1(s1), γJ+1(s))+lengthtJ+1
(γ′′)

⩽ lengthtJ+1
(γJ+1)−100rcomp.

This, however, contradicts again the almost minimal choice of γJ+1, confirming (11.8).

The inclusion (11.7) implies that z(tJ)∈V (tJ). Let C∗ be the component of

MtJ \IntNtJ−

that is adjacent to ΣJ . As C∗ is path-connected and z(tJ)∈C∗, we can conclude, using

(11.8), that C∗⊂V . By a-priori assumption (APA3) (d), there must be a 10λrcomp-thin

point in C∗. So, if we choose

λ< 1
20C

−1
0 (δn),

then we obtain a contradiction to (11.6).

11.3. The definition of N J+1

We will now enlarge Ω to a subset Ω∗⊂MtJ+1
that will become the final time-slice N J+1

tJ+1

of the product domain N J+1. The components Z of the difference MtJ+1
\IntΩ fall into

(at least) one of the following four types:

(I) Z has non-empty boundary and all points on Z are weakly 10λrcomp-thick (in

particular Z is not a closed component of MtJ+1
).
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(II) (a) Z is diffeomorphic to a 3-disk.

(b) Z(t) is well defined and λrcomp-thick for all t∈[tJ , tJ+1].

(c) Z(tJ)⊂NtJ− if J⩾1.

(III) (a) Z is diffeomorphic to a 3-disk.

(b) Z(t) is well defined and λrcomp-thick for all t∈[tJ , tJ+1].

(c) C :=Z(tJ)\IntNtJ− is a component of MtJ \IntNtJ−, and there is a com-

ponent C′⊂M′
tJ \ϕ(IntNtJ−) such that a-priori assumptions (APA5) (a)–(e)

hold, that is, the following holds:

• C and C′ are 3-disks.

• ∂C′=ϕtJ−(∂C).

• There is a point x∈C such that (MtJ , x) is δb-close to the pointed Bryant

soliton (MBry, gBry, xBry) at scale 10λrcomp.

• There is a point x′∈M′
tJ , at distance ⩽Dcaprcomp from C′, such that

(M′
tj , x

′) is δb-close to the pointed Bryant soliton (MBry, gBry, xBry) at some

scale in the interval [D−1
caprcomp, Dcaprcomp].

• C and C′ have diameter ⩽Dcaprcomp.

(IV) None of the above.

Let Ω∗ be the union of Ω with all components Z⊂MtJ+1
\IntΩ that are of type

(I), (II) or (III). Assuming εcan⩽ε̄can(λ), each component of type (I)–(III) survives until

time tJ , either by definition or by Lemma 8.5. The subset Ω survives until time tJ

by Lemma 11.4. Therefore, we may define N J+1 to be the product domain with final

time-slice Ω∗:

N J+1 :=
⋃

t∈[tJ ,tJ+1]

Ω∗(t). (11.9)

To provide some motivation for the choice of Ω∗, we point out that if Ω∗⊂MtJ+1
is a

manifold with boundary obtained from Ω by adding some components of its complement,

and N J+1 is defined by (11.9), then one can check that (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) and

(Cut, ϕ, {ϕj}Jj=1) will only satisfy a-priori assumptions (APA1)–(APA6) if Ω∗ includes

all components of type (I)–(III). In this sense Ω∗ is the “minimal” candidate for an

extension of Ω that yields a comparison (domain) satisfying the a-priori assumptions.

In the remainder of this section we will complete the proof of Proposition 11.1 by ver-

ifying that (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) is a comparison domain, and (N , {N j}J+1

j=1 , {tj}
J+1
j=0 )

and (Cut, ϕ, {ϕj}Jj=1) satisfy a-priori assumptions (APA1)–(APA6). Most of the verifica-

tion is straightforward, using the results already established. The main difficulty will be

establishing the properties of extension caps, especially (APA5). The crucial fact here,

which we will prove in Lemma 11.7, is that components Z of type (I) and (II) satisfy
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Z(tJ)⊂NtJ−. In other words, extension caps are only caused by components of type

(III), which satisfy a-priori assumption (APA5).

The main idea of the proof of Lemma 11.7 will be to show that if Z(tJ) ̸⊂NtJ− for

some component Z of type (I), then a-priori assumption (APA5) would have forced an

extension cap to have occurred at some earlier time. For more details we refer to the

reader to the overview preceding the proof of Lemma 11.7 in §11.5.

11.4. Verification of Proposition 11.1, except for Definition 7.1 (4) and

(APA5)

We will now verify that (N∪N J+1, {N j}J+1
j=1 , {tj}J+1) satisfies properties (1)–(3) of

the definition of a comparison domain (Definition 7.1) and that (N∪N J+1, {N j}J+1
j=1 ,

{tj}J+1) and (Cut, ϕ, {ϕj}Jj=1) satisfy a-priori assumptions (APA1)–(APA4) and (APA6)

(see Definition 7.4). Most of these properties and assumptions will follow fairly easily,

apart from some technical points. The remaining verification of Definition 7.1 (4) and

a-priori assumption (APA5) requires some deeper discussion, which we postpone to the

next subsection.

We remind the reader that we assume inequalities of the form (11.1), such that the

conclusions of the lemmas from the preceding subsections are valid.

Property (1) of Definition 7.1 holds by construction.

Next, let us verify property (2) of Definition 7.1. Since it is a union of Ω with

connected components of its complement, Ω∗ is a closed subset of MtJ+1
, and is a domain

with smooth boundary, where the boundary components are connected components of

∂Ω. Since N J+1
t =Ω∗(t) is the image of Ω∗ under the (t−tJ+1)-flow of ∂t, which is defined

on a neighborhood of Ω∗, it follows that N J+1
t is a domain with smooth boundary for

all t∈[tJ , tJ+1]. Next, recall that Ω is weakly 100λrcomp-thick by Lemma 11.3. By the

definition of components of types (I)–(III) and Lemmas 8.5 and 8.6, assuming

λ⩽ λ̄, εcan⩽ ε̄can(λ) and rcomp⩽ r̄comp,

we find that, for all t∈[tJ , tJ+1], the following statements hold:

(A) The time-slice N J+1
t =Ω∗(t) is λrcomp-thick.

(B) For every x∈Ω∗ the parabolic neighborhood P (x, rcomp) is unscathed and is

crcomp-thick, where c=c(λ)>0.

Now, suppose that {yk}⊂N J+1 and yk!y∞∈Mt∞ . Then, yk=xk(tk) for some

xk∈Ω∗, tk∈[tJ , tJ+1], and tk!t∞. Clearly, xk(t∞)!y∞. So, {xk(t∞)} is a Cauchy

sequence in Mt∞ . Therefore, {xk} is Cauchy in MtJ+1
by (B) above and a distance
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distortion argument. Since Ω∗ is closed and λrcomp-thick, it is complete, assuming

εcan⩽ ε̄can(λ).

It follows that {xk} converges to some x∞∈Ω∗, and x∞(t∞)=y∞. Hence N J+1 is closed,

and we have verified property (2) of Definition 7.1.

We have ∂N J+1
tJ =(∂Ω∗)(tJ)⊂Ω(tJ). Since Ω(tJ)⊂IntNtJ− by Lemma 11.6, part

(3) of Definition 7.1 holds.

We now turn to the a-priori assumptions.

A-priori assumption (APA1) is obvious. By (A) above, N J+1 is λrcomp-thick; so

a-priori assumption (APA2) holds.

Note that we need only verify a-priori assumption (APA3) for NtJ+1−=Ω∗. A-priori

assumptions (APA3) (a)–(c) follow directly from the construction of Ω∗. To see a-priori

assumption (APA3) (d), consider a component

Z ⊂MtJ+1
\IntNtJ+1− =MtJ+1

\IntΩ∗

with non-empty boundary. Then, by construction, Z is a type-(IV) component of

MtJ+1
\Ω. As Z is not of type (I), it must contain a 10λrcomp-thin point. A-priori

assumption (APA3) (e) holds, since in Proposition 11.1 the comparison is defined over

the time-interval [0, tJ ], and does not include any cuts in MtJ .

Next, we verify a-priori assumption (APA4). Let C be a 3-disk component of

N J
tJ \IntN

J+1
tJ (if J⩾1) or M0\IntN 1

0 (if J=0), such that ∂C⊂N J+1
tJ . Assume by con-

tradiction that all points on C survive until time tJ+1 and that C(t) is λrcomp-thick for

all t∈[tJ , tJ+1]. Then, C(tJ+1) is contained in MtJ+1
\IntΩ∗ by the definition of N J+1.

Moreover, ∂(C(tJ+1))=(∂C)(tJ+1) is a 2-sphere contained in ∂Ω∗, and hence an entire

boundary component of Ω∗. It follows that C(tJ+1) is a component of MtJ+1
\IntΩ∗ that

is also a component of MtJ+1
\IntΩ of type (IV). However, it is also of type (II), which

is a contradiction.

Lastly, we point out that by the hypotheses of Proposition 11.1, we know that a-

priori assumption (APA6) holds for (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) and (Cut, ϕ, {ϕj}Jj=1) (recall

that Definition 7.4 only requires the bound in a-priori assumption (APA6) to hold in the

time-interval [0, tJ ]).

11.5. Proof of Proposition 11.1, concluded

It remains to verify Definition 7.1 (4) and a-priori assumption (APA5).
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We first verify the “if” direction of (APA5). To that end, suppose that J⩾1 and

that C is a component of MtJ \IntNtJ− such that there is a component

C′ ⊂M′
tJ \ϕtJ−(IntNtJ−)

satisfying a-priori assumptions (APA5)(a)–(e); in other words:

(a) C and C′ are 3-disks.

(b) ∂C′=ϕtJ−(∂C).
(c) There is a point x∈C such that (MtJ , x) is δb-close to the pointed Bryant soliton

(MBry, gBry, xBry) at scale 10λrcomp.

(d) There is a point x′∈M′
tJ , at distance ⩽Dcaprcomp from C′ such that (M′

tj , x
′)

is δb-close to the pointed Bryant soliton (MBry, gBry, xBry) at some scale in the interval

[D−1
caprcomp, Dcaprcomp].

(e) C and C′ have diameter ⩽Dcaprcomp.

We now claim that, under suitable assumptions on the parameters, C is a component

of N J+1
tJ \IntN J

tJ . Since C is a 3-disk by assumption, this will imply that C is an extension

cap.

To see this, we will apply the Bryant slab lemma (Lemma 8.17) for

X0 =N J
tJ and X1 =Ω.

Note that assumptions (i)–(iv) of the Bryant slab lemma hold due to Definition 7.1 (1),

a-priori assumptions (APA3) (a)–(c) and by the construction of Ω. Assumption (v) of

the Bryant slab lemma holds due to Lemma 11.6. So, the Bryant slab lemma can be

applied on the time-interval [tJ , tJ+1] if

δn⩽ δ̄n, 0<λ< 1, Λ⩾Λ and δ′⩽ δ̄′(λ,Λ), (11.10)

and if there is a map ψ with ψ(xBry,−(10λ)−2)=x and a δ′-good Bryant slab W⊂
M[tJ ,tJ+1], as required in the Bryant slab lemma. The existence of the map ψ and the

δ′-good Bryant slab W follows from (c) above and Lemma 8.13, and assuming

δb⩽ δ̄b(λ, δ
′), εcan⩽ ε̄can(λ, δ

′) and rcomp⩽ r̄comp.

Under assumptions of the same form as (11.10), we can also apply the Bryant slice lemma

(Lemma 8.16) at time ti, i=J, J+1, for ψ=ψti , W=Wti and X=Xi−J .

Let C0 :=WtJ \IntX0 and C1 :=WtJ+1
\IntX1 be as in the Bryant slab lemma. By the

Bryant slice lemma applied at time tJ+1, we know that x(tJ+1)=ψ(xBry, 0) is 11λrcomp-

thin. So, by construction of Ω, we have x(tJ+1)∈C1 ̸=∅. By assertions (a) and (b) of the
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Bryant slice lemma, we find that C0=C and that C1 is a 3-disk component ofMtJ+1
\IntΩ.

Assertions (a) and (b) of the Bryant slab lemma imply that C1(t) is 9λrcomp-thick for

all t∈[tJ , tJ+1], and C1(tJ)⊃C0 and C=C0=C1(tJ)\IntN J
tJ . It follows that Z :=C1 is a

component of type (III), and so Z(tJ)⊂Ω∗(tJ)=N J+1
tJ . Thus, C⊂N J+1

tJ \IntN J
tJ , and

since C is a component of MtJ \IntN J
tJ , it is also a component of N J+1

tJ \IntN J
tJ . Hence,

the “if” direction of (APA5) holds.

In order to verify Definition 7.1(4) and the “only if” direction of a-priori assumption

(APA5), we need the following fundamental result.

Lemma 11.7. (Structure of extension caps) If

ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄, Dcap⩾Dcap(λ), Λ⩾Λ(λ),

εcan⩽ ε̄can(λ,Λ, δb) and rcomp⩽ r̄comp(λ),

then the following holds.

If Z⊂MtJ+1
\IntΩ is a component of type (I), then Z(tJ)⊂NtJ−.

Before proceeding, we first explain how Lemma 11.7 completes the verification of

Proposition 11.1.

For this purpose consider a component C∗⊂N J+1
tJ \IntNtJ−. As Ω(tJ)⊂IntNtJ−,

we have C∗⊂N J+1
tJ \Ω(tJ). Thus, C∗⊂IntZ(tJ) for some component Z⊂MtJ+1

\IntΩ of

type (I), (II) or (III). By the above lemma and condition (II) (c), Z cannot be of type (I)

or (II) and therefore must be of type (III). Next, observe that C∗⊂Z(tJ)\IntNtJ−=:C
and

C=Z(tJ)\IntNtJ− ⊂N J+1
tJ \IntNtJ−.

As C∗ is a connected component of N J+1
tJ \IntNtJ−, it follows that C=C∗.

By (III) (c) we know that C∗=C is a 3-disk, which proves Definition 7.1 (4). The

remaining statements of (III) (c) imply that C∗=C satisfies (APA5) (a)–(e).

Next, we provide an outline of the proof of Lemma 11.7, neglecting several techni-

calities.

Assume by contradiction that Z is a type-(I) component with Z(tJ) ̸⊂NtJ−. This

means that Z(tJ) contains a component C of the complement MtJ−\IntNtJ−. As Z

consists of weakly 10λrcomp-thick points and C contains a 10λrcomp-thin point by a-

priori assumption (APA3) (d), there must be a point in C whose scale increases over the

time-interval [tJ , tJ+1]. By Lemma 8.15, this is only possible if Z and C lie in a large

spacetime region W⊂M that is very close to a Bryant soliton. More specifically, we may

assume that this region is 9λrcomp-thick and defined over a long backward time-interval

of the form [tJ−J# , tJ+1], where J#≫1.
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The existence of the component C and the Bryant like geometry onW will then force

the existence of a sequence of components Cj⊂Mtj \IntNtj− for j=J, J−1, ..., J−J#,
where CJ=C. This will follow from a-priori assumption (APA4), which forbids the discard

of components that remain λrcomp-thick during a time step.

Next, using the bilipschitz bound on the comparison map ϕ imposed by (APA6),

and the fact that W is not too neck-like, we will find that for t∈[tJ−J# , tJ ], the image

ϕt(W∩Nt) intersects a smoothly varying 3-disk region Ŵ ′
t⊂M′

t with scale and diameter

comparable to rcomp.

The union Ŵ ′⊂M′
[tJ−J#

,tJ ]
of these regions forms a “barrier region” that will help

us show the existence of a point z′∈Ŵ ′
tJ−J#

that survives until time tJ and that has the

property that z′(t)∈Ŵ ′ for all t∈[tJ−J# , tJ ]. The scale of z′(t) will be controlled from

above and below by a constant that is independent of J#. Therefore, if we choose J#

large enough, then we can find a time-step tj∈[tJ−J#+1, tJ−1] such that the scale of z(t)

hardly decreases over the time-interval [tj−1, tj ]. Using again Lemma 8.15 (this time in

M′), we will deduce that the geometry near z′(tj) is close to a Bryant soliton. This

means that (APA5) applies and would have forced Cj to be an extension cap, giving a

contradiction.

Proof of Lemma 11.7. Fix a type-(I) component Z⊂MtJ+1
\IntΩ for the remain-

der of the proof and assume that Z(tJ) ̸⊂NtJ . So, Z(tJ) intersects a component C of

MtJ \IntNtJ−. Because Z(tJ) is a closed subset, its topological boundary in MtJ is

∂Z(tJ), and since ∂Z(tJ)⊂∂Ω(tJ)⊂IntNtJ−, it is disjoint from MtJ \IntNtJ−. The

connectedness of C now implies that C⊂Z(tJ).
By a-priori assumption (APA3) (d) there is a 10λrcomp-thin point x∈C⊂Z(tJ). By

the type-(I) property and the discussion in §11.3, we know that x survives until time

tJ+1 and that x(tJ+1) is weakly 10λrcomp-thick. Moreover, by Lemma 8.5, we find that

x(tJ+1) is 11λrcomp-thin, assuming

λ⩽ 1
10 , εcan⩽ ε̄can(λ) and rcomp⩽ 1

10 .

We can therefore apply 8.15 to x and obtain that a large spacetime neighborhood of

x(tJ+1) is close to a Bryant soliton. More specifically, Lemma 8.15 implies the following.

Let δ#>0 and J#<∞ be constants whose values will be determined in the course of the

proof. Then, under a condition of the form

λ⩽ 1
20 , εcan⩽ ε̄can(λ, J#, δ#) and rcomp⩽ 1,

we can find a (10λrcomp)
2-time equivariant and ∂t-preserving diffeomorphism

ψ:W ∗ :=MBry(δ
−1
# )×[−min{J, J#+1}·(10λ)−2, 0]−!M



uniqueness and stability of ricci flow 119

onto its image such that ψ(xBry, 0)=x(tJ+1) and

∥(10λrcomp)
−2ψ∗g−gBry∥

C
[δ

−1
#

]
(W∗)

<δ#. (11.11)

Let W=ψ(W ∗). Note that W ∗ has been chosen in such a way that its image W has

initial time-slice tJ−J# if J#⩽J−1, and t1 otherwise.

Next, we show that the existence of the component C of MtJ \IntNtJ− forces the

existence of components Cj⊂Mtj \IntNtj− at a large number of earlier times tj⩽tJ . The

existence of these components will be deduced using a-priori assumption (APA4) and the

Bryant-like geometry on W .

Claim 11.8. (Cap hierarchy) If, in addition,

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ and δ#⩽ δ̄#(λ,Λ, J#),

then J⩾J#+1 and the following statements hold :

(a) For all J−J#⩽j⩽J the subset Cj :=Wtj \IntNtj− is a 3-disk.

(b) For all J−J#+1⩽j⩽J all points on Cj survive until time tj−1 and Cj−1⊂
Cj(tj−1).

(c) C=CJ .

Proof. In the following we will apply the Bryant slice lemmma (Lemma 8.16) at

time tj for X=Ntj−, where J−J#⩽j⩽J . We will also apply the Bryant slab lemma

(Lemma 8.17) for X0=Ntj−1− and X1=Ntj−, where J−J#+1⩽j⩽J . Note that assump-

tions (i)–(iv) of the Bryant slice lemma hold due to a-priori assumptions (APA3) (a)–(c)

and assumption (v) of the Bryant slab lemma holds due to Definition 7.1(3). If

δn⩽ δ̄n, 0<λ< 1, Λ⩾Λ and δ#⩽ δ̄#(J#, λ,Λ),

then the remaining assumptions of both the Bryant slice and the Bryant slab lemma

are satisfied. This means, in particular, that the time-slice Wtj and the slab W[tj−1,tj ]

satisfy the assumptions of the Bryant slice and slab lemmas, for all J−J#⩽j⩽J and

J−J#+1⩽j⩽J , respectively.

Since x∈C∩(WtJ \IntNtJ−), we know by the Bryant slice lemma at time tJ that

CJ :=WtJ−\IntNtJ is a 3-disk and is a component of MtJ \IntNtJ−. Hence, it coincides

with C, which proves assertion (c).

Fix some j with J−J#⩽j⩽J . Assume inductively that j⩾1, and that assertion

(a) holds for all j⩽j′⩽J and assertion (b) holds for all j+1⩽j′⩽J . If j=J−J#, then
J⩾J#+1, as claimed, and assertions (a) and (b) hold. So, assume in the following that

j>J−J#.
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By assertion (a) of the Bryant slab lemma, Cj(t) is defined and 9λrcomp-thick for all

t∈[tj−1, tj ]. Moreover, the subset Cj(tj−1) is a 3-disk component of Mtj−1
\IntNtj−1+

and ∂Cj(tj−1)⊂∂Ntj−1+. It follows from a-priori assumption (APA4) that j−1⩾1. Now

suppose that Cj−1=Wtj−1
\IntNtj−1−=∅. It follows that Cj(tj−1)⊂Wtj−1

⊂IntNtj−1−.

Therefore, Cj(tj−1)⊂Ntj−1−\IntNtj−1+, and since it is a 3-disk with boundary contained

in ∂Ntj−1+, it is a component of Ntj−1−\IntNtj−1+. This contradicts a-priori assumption

(APA4). Thus, Cj−1 ̸=∅ and by the Bryant slice lemma at time tj−1 it must be a 3-disk.

So, assertion (a) holds for j−1 and assertion (b) holds for j by the Bryant slab lemma.

By induction we conclude that J⩾J#+1, and (a) and (b) hold.

Next, we will construct the “barrier” region Ŵ ′ mentioned in the outline given

above. We remark that in the following construction, we have to choose Ŵ larger than

the reader may anticipate. The reason is purely technical: Due to the fact that a-priori

assumption (APA6) only gives us C0 bounds on the metric distortion of ϕ, the weakness

of the resulting scale distortion control (see Lemma 8.9) forces us to work in a region

whose boundary has scale a large multiple of rcomp.

We will now construct the subset Ŵ⊂W . For this purpose fix the (universal) con-

stant CSD from Lemma 8.9 and assume without loss of generality that CSD>100. Define

Ŵ ∗ ⊂MBry×[−(J#+1)(10λ)−2,−(10λ)−2]

to be the subset of points on which ρ⩽20C2
SD ·(10λ)−1. Then, Ŵ ∗ is closed and connected,

and its time-slices Ŵ ∗
t are pairwise isometric 3-disks for all

t∈ [−(J#+1)(10λ)−2,−(10λ)−2].

If

δ#⩽ δ̄#(λ, J#),

then

Ŵ ∗ ⊂W ∗ =MBry(δ
−1
# )×[−(J#+1)(10λ)−2,−(10λ)−2].

So, we may define

Ŵ :=ψ(Ŵ ∗)⊂M[tJ−J#
,tJ ].

Then, assuming

δ#⩽ δ̄#(λ, J#) and rcomp⩽ r̄comp,

we obtain that, for all t∈[tJ−J# , tJ ], the time-slice Ŵt is a 3-disk and

10C2
SDrcomp<ρ= ρ1< 40C2

SDrcomp on ∂Ŵt,

Wt\Int Ŵt is 10C2
SDrcomp-thick,

Ŵt is 40C2
SDrcomp-thin

(11.12)
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Claim 11.9. If

δn⩽ δ̄n, δ#⩽ δ̄#(λ,Λ, J#), εcan⩽ ε̄can and rcomp⩽ r̄comp,

then, the following statements hold :

(a) W⊂M\
⋃

D∈Cut D, and hence by Definition 7.2 (5) the map ϕ is well defined on

W[tJ−J#
,tJ ]∩N .

(b) For all J−J#<j⩽J and t∈[tj−1, tj ],

Wt\Int Ŵt⊂ IntN j
t .

(c) Cj⊂Int Ŵtj for all J−J#⩽j⩽J .

Proof. If

δ#⩽ δ̄#(λ,Λ, J#),

then for every J−J#⩽j⩽J+1 we get that ∂Wtj is Λrcomp-thick.

Suppose that D∩Wtj ̸=∅ for some D∈Cut. Note that this implies that J−J#⩽j<J .
Since D is Λrcomp-thin by (APA3) (e), it is disjoint from ∂Wtj . So, since D is connected by

Definition 7.2 (2), we have D⊂Wtj . By Definition 7.2 (3) the cut D contains an extension

cap. However, this contradicts assertion (b) of Claim 11.8. So, we have shown assertion

(a) of this claim.

Now suppose that J−J#<j⩽J and t∈[tj−1, tj ] or j=J−J# and t=tj . As ∂Wtj is

Λrcomp-thick, it is contained in Ntj− by (APA3) (b). Thus ∂Wt⊂N j . Moreover, if

δn⩽ δ̄n, εcan⩽ ε̄can and rcomp⩽ r̄comp,

then we obtain from Lemma 8.12 that ∂N j
t is 2.1rcomp-thin. In view of the fact that

Wt\Int Ŵt is connected and 10C2
SDrcomp-thick by (11.12), it is disjoint from ∂N j

t , and

hence contained in Nt. This proves assertion (b) and assertion (c) follows in the case

t=tj .

Next, we consider the image of Wt\Int Ŵt under ϕ, and show that the boundary

component ϕt(∂Ŵt) is adjacent to a region with controlled geometry.

Claim 11.10. Assuming

ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ(λ), δ#⩽ δ̄#(λ, J#),

εcan⩽ ε̄can(λ), rcomp⩽ r̄comp(λ),

there is a constant C1=C1(λ)<∞ with the following property.
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There is a subset Ŵ ′⊂M′
[tJ−J#

,tJ ]
such that, for every t∈[tJ−J# , tJ ],

(a) Ŵ ′
t is a 3-disk.

(b) Ŵ ′
t∩ϕt(Wt\Int Ŵt)=ϕt(∂Ŵt)=∂Ŵ

′
t .

(c) Ŵ ′ is compact and its relative topological boundary inside the time-slab

M′
[tJ−J#

,tJ ]

is equal to ⋃
t∈[tJ−J#

,tJ ]

∂Ŵ ′
t .

(d) Ŵ ′
t is C1rcomp-thin and C−1

1 rcomp-thick and diamt Ŵ
′
t⩽C1rcomp.

(e) ∂Ŵ ′
t is 10CSDrcomp-thick.

(f) For any J−J#⩽j⩽J the difference C′
j :=Ŵ

′
tj \ϕtj−(IntNtj−) is a 3-disk compo-

nent of M′
tj \ϕtj−(IntNtj−), and we have ∂C′

j=ϕtj−(∂Cj).

Proof. Fix t∈[tJ−J# , tJ ]. By (11.12), a-priori assumptions (APA2), (APA3) (a), (c),

(APA6) and Lemma 8.9, assuming

ηlin⩽ η̄lin, δn⩽ δ̄n, Λ⩾ 2, εcan⩽ ε̄can(λ) and rcomp⩽ r̄comp, (11.13)

we have

10CSDrcomp<ρ1 = ρ< 40C3
SDrcomp on ϕt(∂Ŵt), (11.14)

and

diamϕt(∂Ŵt)< 10 diam ∂Ŵt<C
′
1rcomp,

where C ′
1<∞ is a universal constant that can be determined in terms of CSD.

Choose x∈∂Ŵt. Using (11.12) and assuming

δ#⩽ δ̄#(λ, J#) and rcomp⩽ r̄comp,

we can find a point y∈Wt\Int Ŵt with ρ1(y)=ρ(y)=80C4
SDrcomp that can be connected

to x by a path of length at most C ′
2rcomp insideWt\Int Ŵt, for some C ′

2=C
′
2(λ)<∞. Let

x′=ϕt(x) and y
′=ϕt(y). Again, by the scale distortion Lemma 8.9, a-priori assumptions

(APA2), (APA3) (a), (c), (APA6), and assuming a bound of the form (11.13), we conclude

using (11.14) that

ρ(y′)> 80C3
SDrcomp> 2ρ(x′) (11.15)

and dM′
t
(x′, y′)<2C ′

2rcomp. So, there is a constant δ�=δ�(λ)>0 such that x′ cannot be

a center of a δ�-neck in M′
t.
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Let us now apply Lemma 8.2 to x′ for δ=δ�(λ). In order to satisfy the assumptions

of this lemma, we need to assume that

εcan⩽ ε̄can(λ) and rcomp⩽ r̄comp.

We obtain a constant C0=C0(δ
�(λ))<∞ and a compact subset V ′⊂M′

t, containing x
′

such that (compare with (11.14))

10C−1
0 CSDrcomp<ρ1 = ρ< 40C0C

3
SDrcomp on V ′, (11.16)

and such that diamt V
′<40C0C

3
SDrcomp. Moreover, we may assume that δ�(λ) is chosen

small enough such that B(x′,max{C ′
1, 2C

′
2}rcomp)⊂V ′. This implies that y′∈IntV ′ and

ϕt(∂Ŵt)⊂ IntV ′. (11.17)

We claim that V ′ is a 3-disk. To see this, we assume

δ#⩽ δ̄#(λ, J#) and rcomp⩽ r̄comp(λ),

such that ∂Wt is 40C0C
4
SDrcomp-thick and that 40C0C

4
SDrcomp⩽1. So, again, by the

scale distortion Lemma 8.9, a-priori assumptions (APA2), (APA3) (a), (c), (APA6), and

assuming (11.13), we obtain that ϕt(∂Wt) is 40C0C
3
SDrcomp-thick. Thus, by (11.16), we

have

ϕt(∂Wt)∩V ′ =∅. (11.18)

As x′ and ϕt(∂Wt) lie in the same connected component of M′
t, we must have ∂V ′ ̸=∅,

and due to (11.15), Lemma 8.2 implies that V ′ is a 3-disk.

By (11.17) the 2-sphere ϕt(∂Ŵt) bounds a 3-disk Ŵ ′
t⊂V ′. We now repeat the

construction above for all t∈[tJ−J# , tJ ] and set

Ŵ ′ :=
⋃

t∈[tJ−J#
,tJ ]

Ŵ ′
t .

Then, assertion (a) holds automatically.

Next, observe that Ŵ ′
t and ϕt(Wt\Int(Ŵt)) are compact connected domains with

smooth boundary that share a single boundary component ϕ(∂Ŵt). Therefore, assertion

(b) of this claim can fail only if ϕt(Wt\Int Ŵt)⊂Ŵ ′
t⊂V ′, which would contradict (11.18).

Thus assertion (b) holds.

In order to show assertion (c), it suffices to show that for all t∈[tJ−J# , tJ ], every point

q∈Int Ŵ ′
t is not contained in the relative boundary of Ŵ ′ inside M′

[tJ−J#
,tJ ]

. To see this,
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let U⊂M′
[tJ−J#

,tJ ]
be a product domain containing Ŵ ′

t that is open in M′
[tJ−J#

,tJ ]
. By

Claim 11.9 and Definition 7.2, the map ϕ is well defined and smooth on a neighborhood

of ⋃
t̄∈[tJ−J#

,tJ ]

Wt̄\Int Ŵt̄.

Therefore, after shrinking U if necessary, we may assume that if t̄∈[tJ−J# , tJ ] is close to

t, then (ϕ(Wt̄\Int Ŵt̄)∩Ut̄)(t) is defined and moves by smooth isotopy as t̄ varies. So,

by assertion (b) the 3-disk (Ŵ ′
t̄∩Ut̄)(t) varies by smooth isotopy as well and therefore it

contains a small neighborhood of q inside M′
t for t̄ close to t. This implies that a small

neighborhood of q is contained in
⋃
t̄∈[tJ−J#

,tJ ]
Ŵ ′
t̄ , which finishes the proof of assertion

(c). The same argument implies that Ŵ ′ is a finite union of compact subsets and must

therefore be compact.

Assertions (d) and (e) follow by construction of Ŵ ′
t and (11.16) and (11.14), as long

as C1>40C0C
3
SD.

Lastly, consider assertion (f). Suppose that J−J#⩽j⩽J .
Recall that Cj=Wtj \IntNtj− is a 3-disk by assertion (a) of Claim 11.8. By assertion

(b) of Claim 11.9, we have Wtj \Int Ŵtj⊂IntNtj−. So, Cj⊂Int Ŵtj . Therefore,

Ŵtj \Int Cj =Ntj−∩Ŵtj

is a compact connected manifold with boundary.

As ϕtj−(∂Ŵtj )=∂Ŵ
′
tj and ϕtj− :Ntj−!M′

tj is injective, the image

ϕtj−(Int Ŵtj∩Ntj−)

must either be contained in Ŵ ′
tj or in its complement. Since ϕtj− maps a neighborhood

of ∂Ŵtj in Ŵtj into Ŵ ′
tj , we obtain by connectedness that

ϕtj−(Ntj−∩Ŵtj )⊂ Ŵ ′
tj .

By the same argument, if N0 is the component of Ntj− that contains ∂Ŵtj , then

ϕtj−(N0\Ŵtj )

is disjoint from Ŵ ′
tj .

Assume now that there is a component N1 ̸=N0 of Ntj− with the property that

ϕtj−(N1) intersects Ŵ ′
tj . Then, again, since ϕtj−(∂Ŵtj )=∂Ŵ

′
tj and ϕtj− is injective,

we must have ϕtj−(N1)⊂Ŵ ′
tj . By a-priori assumption (APA3) (c), we know that N1

must contain a Λrcomp-thick point. So, by Lemma 8.9, a-priori assumptions (APA2),
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(APA3) (a), (c), (APA6) and assuming (11.13), these points must be mapped by ϕtj− to

C−1
SDΛrcomp-thick points in Ŵ ′

tj . Assuming

Λ⩾Λ(λ) and rcomp⩽ r̄comp(λ),

this, however, contradicts assertion (d) of this claim.

Combining the conclusions of the last two paragraphs, we obtain that

ϕtj−(Ntj−)∩Ŵ ′
tj =ϕtj−(N0)∩Ŵ ′

tj =ϕtj−(N0∩Ŵtj )=ϕtj−(Ntj−∩Ŵtj ).

Since ∂Ŵ ′
tj=ϕtj−(∂Ŵtj )⊂ϕtj−(IntNtj−) we obtain from Alexander’s theorem that

C′
tj = Ŵ ′

tj \ϕtj−(IntNtj−)= Ŵ ′
tj \ϕtj−(Ŵtj∩IntNtj−)

is a 3-disk. As C′
tj⊂Int Ŵ ′

tj , it is also a component of M′
tj \ϕtj−(IntNtj−). This estab-

lishes assertion (f).

Choose z′=ϕtJ−J#
−(z)∈ϕtJ−J#

−(∂CJ−J#). We now show that z′ survives until time

tJ and at some time lies at the tip of an approximate Bryant soliton.

Claim 11.11. If

ηlin⩽ η̄lin, δn⩽ δ̄n, J#⩾ J#(λ, δb), εcan⩽ ε̄can(λ, δb, J#), rcomp⩽ r̄comp(λ),

then, the following statements hold :

(a) z′(t) is defined and contained in Ŵ ′
t for all t∈[tJ−J# , tJ ].

(b) There is a j0∈{J−J#, ..., J−1} such that (M′
tj0
, z′(tj0)) is δb-close to

(MBry, gBry, xBry)

at scale ρ(z′(tj0))<C1(λ)rcomp.

Proof. By the scale distortion lemma (Lemma 8.9) and a-priori assumptions (APA2),

(APA3) (a), (c), (APA6) we obtain, assuming

ηlin⩽ ηlin, δn⩽ δ̄n, Λ⩾ 2, εcan⩽ ε̄can(λ) and rcomp⩽ r̄comp,

that

ρ(z′)= ρ1(z
′)<CSDρ1(z)< 2CSDrcomp.

Next, recall that the scalar curvature on any κ-solution is pointwise non-decreasing

in time (see assertion (e) of Lemma C.1). So, assuming

εcan⩽ ε̄can(J#) and rcomp⩽ r̄comp,
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we obtain from Lemma 6.2 that at any y∈M′, with εcanrcomp<ρ(y)<4CSDrcomp, we

have

∂tρ
2(y)= ∂t

(
1
3R

)
<C2

SDJ
−1
# . (11.19)

Choose t∗∈[tJ−J# , tJ ] maximal such that z′(t) is well defined for all t∈[tJ−J# , t∗).
By (11.19) we have ρ2(z′(t))<5C2

SDr
2
comp for all t∈[tJ−J#+1, t

∗), and therefore

ρ(z′(t))< 10CSDrcomp

for all such t. Suppose that t∗<tJ . As Ŵ ′ is compact, we must have z′(t) /∈Ŵ ′ for t close

to t∗. So, there is a t′∈[tJ−J# , t∗) such that z(t′) lies on the relative topological boundary

of Ŵ ′ inside M′
[tJ−J#

,tJ ]
. By assertions (c) and (e) of Claim 11.10 this, however, implies

that ρ(z′(t′))>10CSDrcomp, contradicting our previous conclusion. Therefore, t∗=tJ and

z′(t)∈Ŵ ′ for all t∈[tJ−J# , tJ ].
Since

J−1∑
j=J−J#+1

(ρ(z′(tj))−ρ(z′(tj−1)))= ρ(z′(tJ−1))−ρ(z′)>−ρ(z′)>−2CSDrcomp,

we can find a j0∈{J−J#+1, ... J−1} such that

ρ(z′(tj0))−ρ(z′(tj0−1))>− 2CSD

J#−1
rcomp.

Next, observe that

C−1
1 (λ)rcomp<ρ(z

′(tj0))<C1(λ)rcomp,

by assertion (d) of Claim 11.10. So, by Lemma 8.15, assuming

J#⩾ J#(λ, δb), εcan⩽ ε̄can(λ, δb), rcomp⩽ r̄comp(λ),

we find that (M′
tj0
, z′(tj0)) is δb-close to (MBry, gBry, xBry) at scale ρ(z

′(tj0)).

Consider the component C′
j0

from assertion (f) of Claim 11.10. We will now verify

that (APA5) (a)–(e) hold for C=Cj0 and C′=C′
j0
, forcing the existence of an extension

cap at time tj0 . A-priori assumptions (APA5) (a) and (b) hold by Claim 11.8 (a) and

Claim 11.10 (f). A-priori assumption (APA5) (c) is implied by (11.11), assuming

δ#⩽ δ̄#(δb, J#).

A-priori assumption (APA5) (d) and the diameter bound on C′
j0

in a-priori assumption

(APA5) (e) hold by Claim 11.10 (d) and Claim 11.11 (b), as long as

Dcap⩾C1(λ).
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Lastly, the diameter bound on Cj0 in a-priori assumption (APA5) (e) follows from the

fact that Cj0⊂Ŵtj0
and, by construction, assuming that

Dcap⩾Dcap(λ).

The conclusions of the previous paragraph combined with (APA5) imply that Cj0
must be an extension cap, which implies that Cj0⊂Ntj0+. This, however, contradicts

assertion (b) of Claim 11.8 for j=j0+1, which finishes the proof.

12. Inductive step: extension of the comparison map

12.1. Statement of the main result

In this section we consider a comparison domain defined on the time-interval [0, tJ+1], as

constructed in §11, and a comparison defined on the time-interval [0, tJ ]. Our goal will

be to extend the comparison to the time-interval [0, tJ+1]. The following proposition will

be the main result of this section.

Proposition 12.1. (Extending the comparison map by one step) Suppose that

T > 0, E⩾E, H ⩾H(E), ηlin⩽ η̄lin(E),

ν⩽ ν̄(T,E,H, ηlin), δn⩽ δ̄n(T,E,H, ηlin), λ⩽ λ̄,

Dcap> 0, ηcut⩽ η̄cut, Dcut⩾Dcut(T,E,H, ηlin, λ,Dcap, ηcut),

W ⩾W (E, λ,Dcut), A⩾A(E, λ,W ), Λ⩾Λ(λ,A),

δb⩽ δ̄b(T,E,H, ηlin, λ,Dcap, ηcut, Dcut, A,Λ),

εcan⩽ ε̄can(T,E,H, ηlin, λ,Dcap, ηcut, Dcut,W,A,Λ),

rcomp⩽ r̄comp(T,H, λ,Dcut),

(12.1)

and assume that

(i) M and M ′ are two (εcanrcomp, T )-complete Ricci flow spacetimes that each sat-

isfy the εcan-canonical neighborhood assumption at scales (εcanrcomp, 1).

(ii) (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) is a comparison domain in M, which is defined over the

time-interval [0, tJ+1]. We allow the case J=0.

(iii) The tuple (Cut, ϕ, {ϕj}Jj=1) is a comparison from M to M′ defined on

(N , {N j}J+1
j=1 , {tj}

J+1
j=0 )

over the time-interval [0, tJ ]. If J=0, then this comparison is trivial, as explained in

Definition 7.2.
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(iv) (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) and (Cut, ϕ, {ϕj}Jj=1) satisfy (APA1)–(APA6) for the

parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

and a-priori assumptions (APA7)–(APA13) for the parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

(v) tJ+1⩽T .

(vi) If J=0, then we assume in addition the existence of a map ζ:X!M′
0 with

the following properties. First, X⊂M0 is an open set that contains the δ−1
n rcomp-tubular

neighborhood around N0. Second, ζ:X!M′
0 is a diffeomorphism onto its image that

satisfies the following bounds on X:

|ζ∗g′0−g0|⩽ ηlin,

eHT ρE1 |ζ∗g′0−g0|⩽ ν
Q= ν ·10−E−1ηlinr
E
comp,

eHT ρ31|ζ∗g′0−g0|⩽ ν
Q∗ = ν ·10−1ηlin(λrcomp)
3.

Assume, moreover, that the εcan-canonical neighborhood assumption holds at scales (0, 1)

on the image ζ(X).

Then, under the above assumptions, there are a set CutJ of pairwise disjoint disks

in MtJ , a time-preserving diffeomorphism onto its image ϕJ+1:N J+1!M′ and a con-

tinuous map

ϕ̄:N \
⋃

D∈Cut∪CutJ

D−!M′

such that the following holds.

The tuple

(Cut∪CutJ , ϕ̄, {ϕj}J+1
j=1 )

is a comparison from M to M′ defined on (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) over the time-interval

[0, tJ+1]. This comparison and the corresponding domain still satisfy a-priori assump-

tions (APA1)–(APA6) for the parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

and a-priori assumptions (APA7)–(APA13) for the parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

Lastly, in the case J=0 we have ϕ10=ζ|N 1
0
.
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The proof of Proposition 12.1 is divided into three steps, which are of rather different

character. These are presented in §§12.2– 12.4, respectively.

In the first step, we identify the set of disks CutJ , and construct the initial map

ϕJ+1
tJ , at time tJ , so that it is defined on the union of NtJ− with the extension caps,

and agrees with ϕtJ− away from the cuts in CutJ . Here we use the Bryant extension

proposition (Proposition 10.1).

In the second step, we promote this extended map to a map ϕJ+1 that is defined on

a time-interval of the form [tJ , t
∗], for some t∗∈(tJ , tJ+1], by solving the harmonic map

heat flow equation. Unfortunately, at this point we cannot guarantee a priori that the

harmonic map heat flow equation admits a solution on the entire time-interval [tJ , tJ+1],

as it may develop a singularity at an earlier time. However, we can rule out such a

singularity as long as the solution satisfies certain uniform bounds. In such a case we

can indeed choose t∗=tJ+1.

In the third step, we verify that the map ϕJ+1, as constructed in the second step,

satisfies a-priori assumptions (APA1)–(APA12). Our main focus will be on a-priori as-

sumptions (APA6)–(APA9), as the remaining a-priori assumptions follow relatively easily

from our construction. Once this is done, a-priori assumption (APA6) provides sufficient

control on the map ϕJ+1 to rule out the development of a singularity up to time t∗ and

slightly after. It thus follows a posteriori that t∗=tJ+1, which finishes the proof.

Readers interested in a more detailed description of the steps above will find further

explanations embedded in §§12.2–12.4.
This section is organized as follows. The intermediate results, Propositions 12.2

and 12.8, are presented in the next two subsections. In order to reduce complexity, we

have organized the discussion in each of these subsections to be independent from the

remaining subsections; no assumptions are implicitly carried over to from one subsection

to the next. The last subsection (§12.4) contains the proof of the main proposition

(Proposition 12.1). This proof is linked to §12.2 and §12.3 only via the intermediate

results, Propositions 12.2 and 12.8, and does not depend on the details of their proofs.

As in §11, we introduce parameter bounds in displayed equations.

12.2. Extending the comparison over the extension caps

In this subsection, we consider a comparison domain (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ), which is

defined on the time-interval [0, tJ+1], and a comparison (Cut, ϕ, {ϕj}Jj=1), which is defined

on the time-interval [0, tJ ]. Based on this data, we will construct a collection of cuts CutJ

at time tJ and a map ϕ̂:NtJ−∪NtJ+!M′
tJ , which can be seen as an extension of ϕtJ−

away from the cuts. In Proposition 12.8, which is the main result of the next subsection,
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the initial value ϕtJ+ of the map ϕJ+1 will be taken to be the restriction of ϕ̂ to NtJ+.

In the proof of this proposition, it will turn out to be necessary that ϕ̂ is defined on a

slightly larger domain than ϕtJ+ due to technical reasons having to do with our process

for promoting ϕtJ+ to later times t>tJ .

Proposition 12.2. (Extending the comparison over the extension caps) Suppose

that
E⩾E, ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄,

Dcut⩾Dcut(T,E,H, ηlin, λ,Dcap, ηcut), Λ⩾Λ,

δb⩽ δ̄b(T,E,H, ηlin, λ,Dcap, ηcut, Dcut, A,Λ),

εcan⩽ ε̄can(T,E,H, ηlin, λ,Dcap, ηcut, Dcut, A,Λ),

rcomp⩽ r̄comp(T,H, λ,Dcut)

(12.2)

and assume that assumptions (i)–(v) of Proposition 12.1 hold and that J⩾1.

Then, there is a set of cuts CutJ at time tJ , i.e. a family of pairwise disjoint 3-

disks in IntNtJ+, and a diffeomorphism onto its image ϕ̂:NtJ−∪NtJ+!M′
tJ such that

the following hold :

(a) Each D∈CutJ contains exactly one extension cap of the comparison domain

(N , {N j}J+1
j=1 , {tj}

J+1
j=0 )

and each extension cap of this comparison domain that is in MtJ is contained in one

D∈CutJ .
(b) ϕ̂=ϕtJ− on NtJ−\

⋃
D∈CutJ D.

(c) Every cut D∈CutJ has diameter <Dcutrcomp and contains a 1
10Dcutrcomp-

neighborhood of the corresponding extension cap in D.

(d) The associated perturbation ĥ:=ϕ̂∗g′tJ −gtJ satisfies |ĥ|⩽ηlin on NtJ−∪NtJ+ and

eH(T−tJ )ρ31|ĥ|⩽ ηcut
Q∗

on each D∈CutJ .
(e) The εcan-canonical neighborhood assumption holds at scales (0, 1) on the image

ϕ̂(NtJ−∪NtJ+).

The main idea of the proof of this proposition is to use the Bryant extension pr-

position (Proposition 10.1) in order to construct the cuts D∈CutJ and the map ϕ̂ on

each D. The assumptions of that proposition hold due to a-priori assumptions (APA5)

and (APA7): the former implies that regions in M that are close to extension caps, as

well as the corresponding regions in M′, are geometrically close to Bryant solitons; the

latter gives the bound Q⩽
Q near each extension cap.
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While the strategy of proof can be summarized in a relatively straightforward way,

there are several technical issues that we need to address. First, we need to argue that

extension caps at time tJ are positioned close enough to a tip of an almost Bryant

soliton region and that those regions are far enough away from one another to allow a

separate construction of ϕ̂ in a large neighborhood of each extension cap. Second, we need

to verify the condition under which a-priori assumption (APA7) guarantees the bound

Q⩽
Q. Lastly, once the cuts D and the extensions have been constructed on each D, we

need to verify that the resulting map ϕ̂ satisfies all the desired properties, for example

that it is a diffeomorphism onto its image.

Proof. In the following proof we will always assume, without further mention, that

ηlin, λ, rcomp< 10−2, (12.3)

and that

δn⩽ δ̄n

is chosen small enough such that by a-priori assumption (APA3) (a) we have

0.9rcomp<ρ1 = ρ< 1.1rcomp on ∂NtJ−. (12.4)

By definition of the comparison domain

(N , {N j}J+1
j=1 , {tj}

J+1
j=0 ),

we know that NtJ+\IntNtJ− is a disjoint union of (possibly infinitely many) extension

caps Ci, i∈I, which are 3-disks. A-priori assumption (APA5) implies the existence of

components C′
i, i∈I, of M′

tJ \ϕtJ−(IntNtJ−) such that the following holds for all i∈I:
(1) C′

i is a 3-disk.

(2) ϕtJ−(∂Ci)=∂C′
i.

(3) There is a diffeomorphism ψi:MBry(δ
−1
b )!Wi⊂MtJ such that ψi(xBry)∈Ci and

∥(10λrcomp)
−2ψ∗

i gtJ −gBry∥
C[δ

−1
b

](MBry(δ
−1
b ))

<δb.

(4) There is a diffeomorphism ψ′
i:MBry(δ

−1
b )!W ′

i⊂M′
tJ such that

dtJ (ψ
′
i(xBry), C′

i)⩽Dcaprcomp

and

∥a−2
i (ψ′

i)
∗g′tJ −gBry∥

C[δ
−1
b

](MBry(δ
−1
b ))

<δb

for some scale ai∈[D−1
caprcomp, Dcaprcomp].

(5) Ci and C′
i have diameter ⩽Dcaprcomp.
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Since ϕtJ−:NtJ−!ϕ(NtJ−)⊂M′
tJ is a diffeomorphism onto its image, we obtain

from items (1) and (2) that the components C′
i, i∈I, are pairwise distinct.

We will assume in the following that

δb⩽ δ̄b

is chosen sufficiently small such that for all i∈I.
(6) lengths of curves inMBry(δ

−1
b ) are distorted by ψi by a factor of at least 9λrcomp

and at most 11λrcomp.

We now fix a constant D#<∞ whose value we will determine in the course of the

proof. This constant controls the size of the neighborhood around each extension cap Ci in
which we will carry out our construction of ϕ̂. More specifically, each such neighborhood

will be of the form ψi(MBry(D#))⊃Ci; in particular, its diameter will be approximately

D# ·10λrcomp. Outside these neighborhoods, we will set ϕ̂:=ϕtJ− and we will choose the

cuts CutJ to be disks that are contained in the corresponding ψi(MBry(D#)).

As we proceed with the proof of Proposition 12.2, we will establish several claims,

which hold under certain bounds on the parameters. At any point in the proof we will

assume that the parameter bounds of the preceding claims hold, so that we can apply

the assertions of these claims without restating the parameter bounds.

We first show that, under certain assumptions on our parameters, the neighborhoods

ψi(MBry(D#)) are pairwise disjoint and the extension caps Ci lie in bounded domains of

the form ψi(MBry(D0(λ))).

Claim 12.3. There is a constant D0=D0(λ)<∞ such that, if

δn⩽ δ̄n, Λ⩾Λ, D#⩾D0(λ), δb⩽ δ̄b(λ,Λ, D#) and rcomp⩽ r̄comp(D#),

then D#⩽δ
−1
b and the images ψi(MBry(D#)), i∈I, are pairwise disjoint. Moreover, for

all i∈I, we have

Ci⊂ψi(MBry(D0)) and ψi(MBry(D#))⊂Wi⊂NtJ−∪Ci (12.5)

and

9λrcompρ(x)<ρ(ψi(x))= ρ1(ψi(x))< 11λrcompρ(x) for all x∈MBry(D#). (12.6)

Proof. Fix some index i∈I. The bound (12.6) follows immediately from (3), provided

that

δb⩽ δ̄b(D#) and rcomp⩽ r̄comp(D#).
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Next, we invoke the Bryant slice lemma (Lemma 8.16), for X=NtJ+, assuming

δn⩽ δ̄n, Λ⩾Λ and δb⩽ δ̄b(λ,Λ).

Assumptions (i)–(iv) of this lemma hold due to Definition 7.1 and a-priori assumptions

(APA3) (a)–(c). The first inclusion in (12.5) is a restatement of assertion (d) of the

Bryant slice lemma and the second string of inclusions is a consequence of assertion (a).

Finally, assume that

ψi1(MBry(D#))∩ψi2(MBry(D#)) ̸=∅

for some i1 ̸=i2. Then, assuming

δb⩽ 10−2D−1
# ,

we must have Ci2⊂ψi2(MBry(D#))⊂Wi1 , contradicting the second string of inclusions of

(12.5). This finishes the proof of the claim.

In the second claim we show that the neighborhoods ψi(MBry(D#)) around the

extension caps Ci are mapped by ϕtJ− into the regions W ′
i , which are geometrically close

to Bryant solitons.

Claim 12.4. If

δb⩽ δ̄b(λ,Dcap, D#),

then D#<δ
−1
b and ϕtJ−(ψi(MBry(D#))\Int Ci)⊂W ′

i for all i∈I.

Proof. Fix an index i∈I and a point y∈ψi(MBry(D#))\Int Ci. By property (6)

above, we can find a continuous path γ: [0, 1]!NtJ− between y and a point z∈∂Ci
whose length is at most 11λrcomp ·2D#. Assuming (12.3), and using a-priori assump-

tion (APA6), we find that the length of its image ϕtJ−�γ is bounded by 100D#λrcomp.

So, since ϕtJ−(∂Ci)=∂C′
i, we have

dtJ (ϕtJ−(y), ∂C′
i)⩽ 100D#λrcomp.

On the other hand, by properties (4) and (5) above, we have

∂C′
i⊂B(ψ′

i(xBry), 2Dcaprcomp).

So, if

δb⩽ δ̄b(λ,Dcap, D#),

then we obtain that y∈W ′
i , as desired.
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This concludes our discussion on the relative positions of the components Ci and C′
i,

and the images of the maps ψi and ψ
′
i. We will now focus on the associated perturbation

htJ−=ϕ∗tJ−g
′
tJ −gtJ . In the next claim, and its proof, we use the bound Q⩽
Q, as asserted

by a-priori assumption (APA7), to deduce a bound on the weighted norm ρE |htJ−| on
ψi(MBry(D#))\Ci. Using a standard local derivative estimate, we will also deduce similar

weighted bounds on covariant derivatives of the form ∇mhtJ−.

Claim 12.5. There is a constant C=C(E)<∞ such that, if

ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ δb⩽ δ̄b(λ,Dcut, A,Λ, D#),

εcan⩽ ε̄can(λ,Dcut, A,Λ, D#), rcomp⩽ r̄comp,

then, for the associated perturbation htJ−=ϕ∗tJ−g
′
tJ −gtJ , the following holds for all i∈I

and all m=0, 1, ..., 4:

eH(T−tJ )ρE |∇mhtJ−|⩽Cλ−mr−m+E
comp on ψi(MBry(D0+1, D#−1)). (12.7)

As mentioned earlier, the main idea of the proof of this claim is to invoke the

bound Q⩽
Q from a-priori assumption (APA7). However, this bound is predicated on

the remoteness of cuts. In order to verify this remoteness, we will invoke Lemma 8.19.

Proof. Fix an index i∈I and a point x∈ψi(MBry(D0+1, D#−1)) for the remainder

of this proof. Then, by Claim 12.3, (12.3) and property (6) above, we have

B(x, λrcomp)⊂ψi(MBry(D0, D#))⊂NtJ−. (12.8)

So, for the corresponding parabolic neighborhood we have

P (x, λrcomp)⊂N J
(tJ−1,tJ ]

⊂N \
⋃

D∈Cut

D,

since D⊂M[0,tJ−1] for all D∈Cut.
Our goal will be to use a-priori assumption (APA7) to deduce the bound Q⩽
Q on

P (x, λrcomp). So, consider a point y∈P (x, λrcomp) and set t′ :=t(y). We now claim that,

for an appropriate choice of constants, we have

P (y,Aρ1(y))∩D=∅ for all D∈Cut. (12.9)

To see this, choose a point z∈∂Ci⊂∂NtJ− nearest to y(tJ). Then, by (12.8) and properties

(3) and (6) above,

dtJ (y(tJ), z)< 11D#λrcomp. (12.10)
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Let z′ :=z(t′). Since t′∈(tJ−1, tJ ], we can use the curvature bound on the product domain

N J from a-priori assumption (APA2) to derive a distortion estimate of the minimizing

geodesic between y(tJ) and z over the time-interval [t′, tJ ]. Since tJ−t′⩽(λrcomp)
2, we

obtain that, for some universal constant C ′
1<∞,

dt′(y, z
′)< 11eC

′
1D#λrcomp. (12.11)

Next, let us apply bounded curvature at bounded distance, Lemma 8.6, at z, along with

(12.10), while assuming

εcan⩽ ε̄can(D#).

We obtain a constant C ′
2=C

′
2(D#)<∞ such that, by (12.4),

C ′
2ρ1(y)⩾ ρ1(z)⩾ 0.9rcomp.

Combining this with (12.11), yields that

dt′(y, z
′)<D′ρ1(y)

for some D′=D′(D#)<∞. So, if t′<tJ , then B(y,D′ρ1(y)) ̸⊂Nt′−. We can now apply

Lemma 8.19 (boundaries and cuts are far apart), along with a-priori assumption (APA11),

assuming

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A,Λ, D
′(λ,D#)),

εcan⩽ ε̄can(λ,Dcut, A,Λ, D
′(λ,D#)), rcomp⩽ r̄comp,

and obtain (12.9). The case t′=tJ follows from the case t′<tJ by continuity.

Using (12.9) and a-priori assumption (APA7), we can now deduce that

eH(T−tJ )ρE1 (y)|ht′−(y)|⩽Q(y)⩽ 
Q=10−E−1ηlinr
E
comp. (12.12)

Next, we apply bounded curvature at bounded distance, Lemma 8.6, at x, along with

a-priori assumption (APA2), while assuming

εcan⩽ ε̄can(λ).

We obtain that there is a universal constant C ′
3<∞ such that

ρ(x)= ρ1(x)⩽C
′
3ρ1(y). (12.13)

The equality statement follows from (12.6). Combining (12.12) with (12.13) yields

eH(T−tJ )ρE(x)|htJ−(y)|⩽ 10−E−1C ′E
3 ηlinr

E
comp. (12.14)
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If y=x, then this bound implies (12.7) for m=0. The bounds on the higher derivatives

follow from (12.14) using (12.13), a-priori assumption (APA6), Shi’s estimates and stan-

dard local gradient estimates for the Ricci–DeTurck flow (see also Lemma A.2), assuming

ηlin⩽ η̄lin.

This finishes the proof.

We will now apply the Bryant extension proposition (Proposition 10.1) to the re-

strictions of the map ϕtJ− to each Wi, for suitably chosen D#. The resulting maps,

which will be denoted by ϕ̃i, will be only defined on the domains ψi(MBry(D#)), but will

be equal to ϕtJ− near the boundaries of these domains.

Claim 12.6. If

E⩾E, ηcut⩽ η̄cut, D#⩾D#(T,E,H, ηlin, λ,Dcap, ηcut),

δb⩽ δ̄b(T,E,H, ηlin, λ,Dcap, ηcut, D#),

then, for each i∈I, there is a diffeomorphism onto its image

ϕ̃i:ψi(MBry(D#−1))−!W ′
i

and a 3-disk

Di :=ψi(MBry(D#−2))⊂MtJ

such that the following holds :

(a) Ci⊂IntDi.
(b) ϕ̃i=ϕtJ− on ψi(MBry(D#−1))\IntDi.
(c) The perturbation h̃i :=ϕ̃

∗
i g

′
tJ −gtJ satisfies the following bounds on Di:

|h̃i|⩽ ηlin and eH(T−tJ )ρ31|h̃i|⩽ ηcut
Q∗ = ηcut ·10−1ηlin(λrcomp)
3.

(d) ϕ̃i(Di)=ϕtJ−(Di∩NtJ−)∪Int C′
i.

(e) Di contains the 8λD#rcomp-tubular neighborhood around Ci.

Proof. Fix some i∈I. Set bi :=ai(10λrcomp)
−1 and notice that property (4) from

above gives

bi ∈ [(10λ)−1D−1
cap, (10λ)

−1Dcap].

Assume that

D#⩾ 2(D0(λ)+1)+1 (12.15)
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and consider the map

ϕ�i :=ψ′ −1
i �ϕtJ−�ψi:MBry

(
1
2 (D#−1), D#−1

)
−!MBry(δ

−1
b ),

which is well defined by Claims 12.3 and 12.4. Let

g�i := (10λrcomp)
−2ψ∗

i gtJ and g′ �i := (10λrcomp)
−2ψ′ ∗

i g
′
tJ

be the pull-back metrics on Wi and W
′
i to MBry(D#). Notice that these pull-backs are

close to gBry and b2i gBry, respectively, by properties (3) and (4) above. Rescaling (12.7)

from Claim 12.5 by (10λrcomp)
−1 yields, for h�i :=(ϕ�i)

∗g′�i −g�i ,

ρE |∇mh�i |g�i ⩽C(E)e−H(T−tJ )(10λ)−E ·10m⩽C(E)(10λ)−E ·104,

for all m=0, 1, ..., 4. Here, we have used tJ⩽T . Note that ρ is taken with respect to g�i .

We now apply the Bryant extension proposition (Proposition 10.1) with D=D#−1,

b=C(E)(10λ)−E ·104, β=e−H(T−tJ )ηcut10
−4 ·ηlin ·b−1, C=max{(10λ)−1Dcap, b}, ϕ=ϕ�i ,

g=g�i , g
′=g′�i . We obtain that, if

E⩾E, D#⩾D#(T,E,H, ηlin, λ,Dcap, ηcut),

δb⩽ δ̄b(T,E,H, ηlin, λ,Dcap, ηcut, D#),

then there is a smooth map ϕ̃�i :MBry(D#−1)!MBry(δ
−1
b ), with

ϕ̃�i =ϕ�i on MBry(D#−2, D#−1), (12.16)

such that, for h̃�i :=(ϕ̃�i)
∗g′�i −ψ′ ∗g�i , we have

ρ3|h̃�i |g�i ⩽ ηcut ·e
−H(T−tJ ) ·10−4ηlin. (12.17)

Now, set ϕ̃i :=ψ
′
i�ϕ̃

�

i �ψ
−1
i . Then, assertion (b) holds due to (12.16). Rescaling (12.17)

by 10λrcomp implies the second bound in assertion (c). The first bound in assertion (c)

follows from the second assuming

ηcut⩽ η̄cut and δb⩽ δ̄b.

Assertion (a) follows from Claim 12.3 and (12.15).

To see assertion (d) observe first that, by assertion (b) and (12.5), from Claim 12.3

we have

∂(ϕ̃i(Di))= ϕ̃i(∂Di)=ϕtJ−(∂Di)= ∂(ϕtJ−(Di∩NtJ−)∪Int C′
i).
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So, the smooth domains on both sides of the equation in assertion (d) share the same

boundary and by assertion (b) these domains lie on the same side of this boundary. So,

they have to agree.

Assertion (e) follows for

D#⩾D#(λ) and δb⩽ δ̄b(λ)

from (12.5) in Claim 12.3 and property (6) from above.

Next, we combine the maps ϕ̃i and ϕtJ− to a map ϕ̂:NtJ−∪NtJ+!M′
tJ . To do this,

recall that by Claim 12.3, the subsets ψi(MBry(D#)), i∈I, are pairwise disjoint. So, the

3-disks Di, i∈I, are pairwise disjoint as well. Moreover, recall that, by Claim 12.3 and

Claim 12.6 (a), we have

NtJ−∪NtJ+ =NtJ−

⋃
i∈I

Int Ci=NtJ−

⋃
i∈I

Di.

Therefore, we can define ϕ̂:NtJ−∪NtJ+!M′
tJ as follows:

ϕ̂ :=

{
ϕ̃i, on each Di, i∈ I,
ϕtJ−, on NtJ−\

⋃
i∈I Di.

Claim 12.7. ϕ̂ is a diffeomorphism onto its image.

Proof. By assertions (a) and (b) of Claim 12.6, we know that ϕ̂ is smooth and has

non-degenerate differential. Next, we argue that ϕ̂ is injective. To see this, observe

that the maps ϕ̃i, i∈I, and ϕtJ− are each injective. So, it suffices to show that the

images ϕ̃i(Di), i∈I, and ϕtJ−(NtJ−\
⋃
i∈I Di) are pairwise disjoint. Using Claim 12.6 (d)

and the fact that the 3-disks Di, as well as the 3-disks C′
i, i∈I, are pairwise disjoint, it

follows immediately that the images ϕ̃i(Di), i∈I, are pairwise disjoint. Similarly, using

Claim 12.6 (d), we have, for all i∈I,

ϕ̃i(Di)∩ϕtJ−

(
NtJ−\

⋃
i∈I

Di
)
=(ϕtJ−(Di∩NtJ−)∪Int C′

i)∩ϕtJ−

(
Ntj−\

⋃
i∈I

Di
)
=∅,

as desired.

So, ϕ̂ is an injective smooth map with non-degenerate differential. In order to see

that ϕ̂ is even a diffeomorphism onto its image, it suffices to show that

ϕ̂−1: Im ϕ̂−!NtJ−∪NtJ+

is continuous, i.e. for any sequence xk∈NtJ−∪NtJ+ and any point x∞∈NtJ−∪NtJ+, if

lim
k!∞

ϕ̂(xk)= ϕ̂(x∞),
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then limk!∞ xk=x∞ itself. This can be seen as follows: If x∞ lies in the interior of

NtJ−∪NtJ+, then we are done by the inverse function theorem and the fact that ϕ̂ is

injective and has non-degenerate differential. So, assume that

x∞ ∈ ∂(NtJ−∪NtJ+)= ∂NtJ−\
⋃
i∈I

∂Ci= ∂NtJ−\
⋃
i∈I

Wi. (12.18)

The first equality follows from Definition 7.1 (3) and the last equality follows from (12.5)

in Claim 12.3. If for some k we have xk∈Dik for some ik∈I, then, by Claim 12.6 (d), by

the construction of Dik and by a-priori assumption (APA6) and (12.3), a ball of uniform

radius around ϕ̂(xk) must still be contained in

ϕ̂(ψik(MBry(D#)))⊂ ϕ̂(Wik).

Therefore, by (12.18), the distance dtJ (ϕ̂(x∞), ϕ̂(xk)) must be bounded from below by

a uniform constant. It follows that, for large k, we have xk∈NtJ−\
⋃
i∈I Di, and thus

ϕ̂(xk)=ϕtJ−(xk) by Claim 12.6 (b). Since ϕtJ− is a diffeomorphism onto its image, we

must have limk!∞ xk=x∞, which proves our claim.

Now let

CutJ := {Di : i∈ I}.

Then, assertion (a) of this proposition holds due to Claim 12.6 (a). Assertion (b) holds

by Claim 12.6 (b) and by the construction of ϕ̂. Assertion (d) of the proposition follows

from Claim 12.6 (c) and a-priori assumption (APA6). For assertion (e) recall that by

Claim 12.6 (d) we have

ϕ̂(NtJ−∪NtJ+)=ϕtJ−(NtJ−)
⋃
i∈I

C′
i

and C′
i⊂W ′

i for all i∈I. By a-priori assumption (APA6) we know that the εcan-canonical

neighborhood assumption holds at scales (0, 1) on ϕtJ−(NtJ−) and by property (4) above

we have ρ> 1
2D

−1
caprcomp>εcanrcomp on W ′

i for all i∈I, assuming

δb⩽ δ̄b and εcan⩽ ε̄can(Dcap).

Therefore, the εcan-canonical neighborhood assumption holds at scales (0, 1) on W ′
i as

well, which implies assertion (e).

Lastly, we argue that assertion (c) holds if we choose

Dcut =22λD#. (12.19)
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Fix some i∈I. By property (6) from the beginning of this proof, we have

diamDi< 2·11λD#rcomp =Dcutrcomp.

On the other hand, Claim 12.6 (e) states that Di contains a 8λD#rcomp-tubular neigh-

borhood around Ci and
8λD#⩾ 1

1022λD# = 1
10Dcut.

Lastly, let us review the choice of parameters. In the course of the proof, we have

introduced the auxiliary parameter D#, which is related to λ and Dcut via (12.19). Once

λ has been fixed, any lower bound on D# implies a lower bound on Dcut, as indicated in

(12.2). After fixing Dcut, the auxiliary parameter D# can be viewed as a constant of the

form D#(λ,Dcut). This constant influences the choices of δb, εcan and rcomp. So, these

parameters are bounded in terms of λ and Dcut, as shown in (12.2).

This completes the proof of Proposition 12.2.

12.3. Extending the comparison map past time tJ

The goal of this subsection is to evolve the map ϕ̂, as constructed in Proposition 12.2,

forward in time by the harmonic map heat flow. More specifically, we consider again

a comparison domain (N , {N j}J+1
j=1 , {tj}

J+1
j=1 ), defined over the time-interval [0, tJ+1],

and a comparison (Cut, ϕ, {ϕj}Jj=1) from M to M′ defined over the time-interval [0, tJ ].

We moreover consider the map ϕ̂:NtJ−∪NtJ+!M′ from Proposition 12.2. We will

then promote the map ϕ̂|NtJ+ to a map ϕJ+1:N J+1
[tJ ,t∗]

!M′, which is defined on a time-

interval of the form [tJ , t
∗], where t∗∈(tJ , tJ+1]. In this subsection we will not be able to

guarantee that t∗=tJ+1 —in fact t∗ may be quite close to tJ —since we will only solve

the harmonic map heat flow until |h| reaches a certain threshold. However, we will find

that if |h| does not reach this threshold on the time-interval [tJ , t
∗], then in fact t∗=tJ+1.

In the next subsection, we will then deduce various bounds on |h|, which will imply that

|h| stays below this threshold. Hence, it will follow that t∗=tJ+1 and so ϕJ+1 can indeed

be used to extend the comparison (Cut, ϕ, {ϕj}Jj=1) to the time-interval [0, tJ+1].

In the course of our construction, we will also discuss the case J=0, i.e. the case in

which ϕJ+1 is the comparison map in the first time-step. In this case, the comparison

(Cut, ϕ, {ϕj}Jj=1) is empty to start with and Proposition 12.2 does not apply. Instead,

we will assume in this case that ϕ̂ is the initial map ζ, as introduced in the assumptions

of Proposition 12.1.

Let us now state our main result of this subsection.
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Proposition 12.8. (Extending the comparison map until we lose control) If

E> 2, F > 0, H ⩾H(E), ηlin⩽ η̄lin(E),

ν⩽ ν̄(T,E, F,H, ηlin), δn⩽ δ̄n(T,E, F,H, ηlin), λ⩽ λ̄,

δb⩽ δ̄b(T,E, F,H, ηlin, λ,Dcut, A,Λ),

εcan⩽ ε̄can(T,E, F,H, ηlin, λ,Dcut, A,Λ), rcomp⩽ r̄comp,

(12.20)

then the following holds.

Assume that assumptions (i)–(vi) of Proposition 12.1 hold.

Recall that, in the case J=0, assumption (vi) imposes the existence of a domain

X⊂MtJ and map ζ:X!M′
tJ with certain properties. In this case, we set ϕ̂:=ζ.

In the case J⩾1, we set X :=NtJ−∪NtJ+ and consider the set CutJ and the map

ϕ̂:X!M′
tJ satisfying all assertions of Proposition 12.2.

Then, there is some time t∗∈(tJ , tJ+1] and a smooth, time-preserving diffeomor-

phism onto its image

ϕJ+1:N J+1
[tJ ,t∗]

−!M′,

with ϕJ+1
tJ =ϕ̂|NtJ+ , whose inverse

(ϕJ+1)−1:ϕJ+1(N J+1
[tJ ,t∗]

)−!N J+1
[tJ ,t∗]

evolves by harmonic map heat flow (see Definition 6.13) and such that the following holds

for the associated perturbation hJ+1 :=(ϕJ+1)∗g′−g (which is a Ricci–DeTurck flow):

(a) |hJ+1|⩽10ηlin on N J+1
[tJ ,t∗]

.

(b) For any t∈[tJ , t∗] and x∈N J+1
t whose time-t distance to ∂N J+1

t is smaller than

Frcomp, we have

Q+(x)= eH(T−t(x))ρE1 (x)|hJ+1(x)|< 
Q=10−E−1ηlinr
E
comp.

(c) If even |hJ+1|⩽ηlin on N J+1
t∗ , then t∗=tJ+1.

(d) ϕJ+1(N J+1
[tJ ,t∗]

) is εcanrcomp-thick.

We emphasize that we have introduced another auxiliary parameter, F , which we

will choose in §12.4, depending only on E. The bound in assertion (b), which holds

Frcomp-close to the boundary of ∂N J+1, will be helpful later, as we are not able to

apply the semi-local maximum principle, Proposition 9.1, too close to the boundary.

For this purpose, we will later choose F⩾L(E), where the latter is the constant from

Proposition 9.1.

Let us now explain the main strategy of the proof of Proposition 12.8. Observe first

that the parabolic domain N J+1⊂M is a product domain and the Ricci flow on it can
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be viewed as a conventional, non-singular Ricci flow. A similar domain, which contains

the image ϕ̂(NtJ+), can be found in M′. So, the proof of Proposition 12.8 can be reduced

to a relatively standard short-time and long-time existence statement for the harmonic

map heat flow between conventional Ricci flows on manifolds with boundary. Rather

than solving the harmonic map heat flow equation with a boundary condition, we found

it technically simpler to use a “grafting” construction to eliminate the boundary.

A large part of the following proof will be devoted to the characterization of the

geometry near the boundary of NtJ+ and the boundary of its image ϕ̂(NtJ+), which will

serve as a setup for the subsequent grafting construction. More specifically, our goal will

be to show that the boundary of NtJ+ and its image ϕ̂(NtJ+) are contained in regions that

look sufficiently neck-like on the time-interval [tJ , tJ+1]. To achieve this, we will employ

the following strategy. A-priori assumption (APA3) (a) provides neck structures near

∂NtJ+1− at time tJ+1. Using Lemma 8.12, these neck structures can be promoted back-

wards onto the time-interval [tJ , tJ+1]. The newly constructed neck structure at time tJ ,

near ∂NtJ+, a-priori assumption (APA7) and the interior decay estimate, Proposition 9.2,

can then be used to identify C0-neck structures near the boundary of ϕ̂(NtJ+)⊂M′
tJ .

Using the canonical neighborhood assumption and the self-improving property of necks

in κ-solutions, Lemma 8.10, these C0-neck structures imply the existence of neck struc-

tures of higher regularity in M′
tJ . Lastly, we use Lemma 8.12, to promote these neck

structures forward in M′, onto the time-interval [tJ , tJ+1].

Based on this characterization of the boundary of NtJ+ and its image, we perform a

grafting construction in the last phase of the proof. This grafting construction involves

cutting M[tJ ,tJ+1] and M′
[tJ ,tJ+1]

inside the previously identified neck regions, gluing on

shrinking round half-cylinders, and passing to a map between the grafted spacetimes.

We have thus reduced our discussion to standard existence results for the harmonic map

heat flow between complete manifolds. We remark that our approach is facilitated by

the fact that ϕ̂ is already defined on a larger neighborhood of NtJ+, therefore providing

enough space for an interpolation between the metric on M[tJ ,tJ+1] and the cylindrical

metric.

Proof of Proposition 12.8. Let δ#>0 be a constant whose value we will determine

at the end of the proof. It will only depend on T , E, H and ηlin, and influence only

the parameters ν, δn, δb and εcan. So, it lies between ηlin and ν in the parameter order

introduced in §7.5. To avoid an accumulation of a large number of different constants, in

what follows we will be using the standard practice of making a series of adjustments to

the constant δ#. This means, strictly speaking, that δ# is not really a single constant,

but takes on different values at different places in the proof, and the earlier values are

adjusted as functions of the later values.
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By a-priori assumption (APA3) (a), each boundary component Σ⊂∂N J+1
tJ+1

is the

central 2-sphere of a δn-neck UΣ⊂MtJ+1
at scale rcomp. Lemma 8.12 implies that, if

δn⩽ δ̄n(δ#), εcan⩽ ε̄can(δ#) and rcomp⩽ r̄comp,

then, for each such Σ, there is a product domain U∗
Σ⊂M[tJ ,tJ+1] that contains Σ and on

which the flow is δ#-close at scale rcomp to the round shrinking cylinder on the time-

interval [−1, 0]. By this we mean the following: we can find an r2comp-time-equivariant

and ∂t-preserving diffeomorphism

ψΣ:S
2×(−δ−1

# , δ−1
# )×[−1, 0]−!U∗

Σ

such that Σ=ψΣ(S
2×{0}×{0}) and

∥r−2
compψ

∗
Σg−gS

2×R∥
C

[δ
−1
#

] <δ#. (12.21)

Here, gS
2×R denotes the metric of the standard round shrinking cylinder spacetime and

the norm is taken over the domain of ψΣ.

By (12.21) and assuming

δ#⩽ δ̄# and rcomp⩽ r̄comp,

we have

1.9rcomp<ρ1 = ρ< 2.1rcomp on U∗
Σ,tJ

. (12.22)

So, by a-priori assumption (APA3) (a), applied at time tJ , and assuming

δn⩽ δ̄n,

we find that U∗
Σ,tJ

is disjoint from ∂N J
tJ if J⩾1. So, if J⩾1, since

Σ(tJ)⊂ ∂N J+1
tJ ⊂NtJ−,

it follows that U∗
Σ,tJ

⊂NtJ−⊂X.

On the other hand, if J=0, and

δn⩽ δ̄n,

then U∗
Σ,tJ

has diameter <10δ−1
# rcomp. So, assuming

δn⩽ δ̄n(δ#),
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we have U∗
Σ,tJ

⊂X. So, in summary,{
U∗
Σ,tJ

⊂NtJ− ⊂X, if J ⩾ 1,

U∗
Σ,tJ

⊂X, if J =0.
(12.23)

Consider the Ricci–DeTurck perturbation (h, {hj}Jj=1) associated with the compari-

son (Cut, ϕ, {ϕj}Jj=1), and let Q be defined as in Definition 7.5 of the a-priori assumptions

(APA7)–(APA13). We will now use a-priori assumption (APA7) to show that we have a

bound on Q in large parabolic neighborhoods near the boundary of NtJ+. In Claim 12.10

this bound will later be used to obtain an improved bound on Q, and therefore on h,

via the interior decay estimate, Proposition 9.2. For this purpose, let A#<∞ be a con-

stant whose value will be determined in the proof of Claim 12.10 (depending only on E

and δ#).

Claim 12.9. If J⩾1 and

δn⩽ δ̄n(A#), λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(A#, λ,Dcut,Λ, A),

εcan⩽ ε̄can(A#, λ,Dcut,Λ, A), rcomp⩽ r̄comp,

then, for any x∈∂N J+1
tJ , the parabolic neighborhood P (x,A#rcomp) is unscathed,

P (x,A#rcomp)⊂N \
⋃

D∈Cut∪CutJ

D, (12.24)

and we have the bound

Q⩽ 
Q on P (x,A#rcomp). (12.25)

Proof. Choose a boundary component Σ⊂∂N J+1
tJ+1

such that x∈Σ(tJ)⊂∂N J+1
tJ . So,

x∈U∗
Σ,tJ

. Assuming

δn⩽ δ̄n(A#),

we obtain, by similar arguments as those that led to (12.23), that

B(x,A#rcomp)⊂NtJ−. (12.26)

Next, using Lemma 8.7 along with (12.22), and assuming

εcan⩽ ε̄can(A#, A),

we can find a constant A′=A′(A#, A)<∞, with A′⩾A, such that P (x,A′ρ1(x)) is un-

scathed and

P (y,Aρ1(y))⊂P (x,A′ρ1(x)) for all y ∈P (x,A#rcomp). (12.27)
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We now show that P (x,A′ρ1(x)) is disjoint from the cuts. To do this, observe that,

for any t′∈(tJ , tJ+1], we have B(x(t′), A′ρ1(x)) ̸⊂N . So, by Lemma 8.19, along with

(12.22) and a-priori assumption (APA11), assuming

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A
′(A#, A),Λ),

εcan⩽ ε̄can(λ,Dcut, A
′(A#, A),Λ), rcomp⩽ r̄comp,

we find that P (x,A′ρ1(x))∩D=∅ for all D∈Cut∪CutJ . Combining this with (12.26)

gives us (12.24) via Lemma 8.18. Combining it further with (12.27) and a-priori assump-

tion (APA7) yields (12.25).

Next we improve the estimate from Claim 12.9 and use it to identify more precise

necks in M′.

Claim 12.10. If

E> 2, H ⩾H(E). ηlin⩽ η̄lin(E), A#⩾A#(E, δ#),

ν⩽ ν̄(E, δ#), εcan⩽ ε̄can(E, δ#), rcomp⩽ r̄comp,
(12.28)

then, for any component Σ⊂∂N J+1
tJ+1

, we have

|ϕ̂∗g′tJ −gtJ |<δ# on U∗
Σ,tJ

, (12.29)

and

∥r−2
comp(ϕ̂�ψΣ,tJ )

∗g′tJ −g
S2×R
−1 ∥C0 <δ#. (12.30)

Proof. Consider first the case J=0. In this case, by (12.23) and assumption (vi) of

this proposition we have, on U∗
Σ,t0

,

eHT ρE1 |ĥ|⩽ ν
Q= ν ·10−E−1ηlinr
E
comp ;

recall that ĥ=ϕ̃∗g′t0−gt0 . So, (12.29) follows from (12.22), assuming

ηlin⩽ 1 and ν⩽ ν̄(δ#).

Second, consider the case J⩾1. By (12.24) and assuming

A#⩾A#(δ#),

we have U∗
Σ,tJ

∩D=∅ for all D∈CutJ . So, therefore on U∗
Σ,tJ

we have ϕ̂=ϕtJ−, and hence

ϕ̂∗g′tJ −gtJ =htJ−.
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We will now apply Proposition 9.2 at every point of U∗
Σ,tJ

. To do this, note that by

(12.24) the perturbation h is defined and smooth on all of P (x,A#rcomp) and by a-priori

assumption (APA6) and (12.25) we have |h|⩽ηlin and Q⩽
Q everywhere on this parabolic

neighborhood. Moreover, if P (x,A#rcomp) intersects the initial time-slice M0, then by

a-priori assumption (APA12) we have Q⩽ν
Q on the intersection. Lastly, note that the

diameter of U∗
Σ,tJ

is bounded by 10δ−1
# rcomp for sufficiently small δ#. So, assuming

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), A#⩾A#(E, δ#),

ν⩽ ν̄(E, δ#), εcan⩽ ε̄can(E, δ#), rcomp⩽ r̄comp,

we conclude by Proposition 9.2 that Q<δ#
Q on U∗
Σ,tJ

. Note that here we have used

(12.22) and we applied Proposition 9.2 centered at all points in U∗
Σ,tJ

, with an appropriate

choice for the radius A.

So, on U∗
Σ,tJ

,

eH(T−tJ )ρE1 |htJ−|=Q<δ#
Q= δ# ·10−E−1ηlinr
E
comp.

Using (12.22) and the fact that tJ⩽T , due to assumption (v) of this proposition, we

obtain (12.29) assuming

ηlin⩽ η̄lin.

Finally, the bound (12.30) follows by combining (12.29) with (12.21) and adjusting

(the earlier instance of) δ#.

Next, we use (12.30) to establish the existence of a δ#-neck in M′.

Claim 12.11. If

δn⩽ δ̄n, (12.31)

then following holds. For any component Σ⊂∂NtJ+1− there is a δ#-neck U ′
Σ⊂M′

tJ at

scale 2rcomp that has a central 2-sphere which intersects ϕ̂(Σ(tJ))⊂M′
tJ .

Proof. Note that ϕ̂(Σ(tJ))=ϕ
J
tJ (Σ(tJ)), as D⊂IntNtj+ for all D∈CutJ (see Defini-

tion 7.2). The εcan-canonical neighborhood assumption holds on ϕ̂(Σ(tJ)) by assumption

(vi) of this proposition (if J=0) and by assertion (e) of Proposition 12.2 (if J⩾1). The

statement now follows from Lemma 8.10, assuming

εcan⩽ ε̄can(δ#),

after possibly adjusting δ#.
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By Lemma 8.12 and assuming

εcan⩽ ε̄can(δ#) and rcomp⩽ r̄comp,

we obtain furthermore, after adjusting δ#, the following.

Claim 12.12. Assuming parameter bounds of the same form as in (12.28) and

(12.31), the following holds.

For any component Σ⊂∂NtJ+1−, there is a product domain U ′∗
Σ ⊂M′

[tJ ,tJ+1]
on the

time-interval [tJ , tJ+1], with ϕ̂(Σ(tJ))⊂U ′ ∗
Σ,tJ

, on which the metric is δ#-close at scale

rcomp to the standard round shrinking cylinder. More specifically, there is an r2comp-time-

equivariant and ∂t-preserving diffeomorphism

ψ′
Σ:S

2×(−δ−1
# , δ−1

# )×[−1, 0]−!U ′∗
Σ

such that

∥r−2
compψ

′ ∗
Σ g

′−gS
2×R∥

C
[δ

−1
#

] <δ#. (12.32)

We furthermore have

ψ′
Σ(S

2×{0}×{−1})∩ϕ̂(Σ(tJ)) ̸=∅.

We now carry out the grafting construction. We begin by identifying product do-

mains in the time slabs M[tJ ,tJ+1] and M′
[tJ ,tJ+1]

that will be used in the construction.

For k=0, ..., 5, let Nk be the (open) 100krcomp-tubular neighborhood around NtJ+

in MtJ , and set N ′
k :=ϕ̂(Nk). Assuming

δ#⩽ δ̄# and δn⩽ δ̄n,

we obtain from (12.23) and assumption (vi) of this proposition that

N0 ⊂N1 ⊂ ...⊂N5 ⊂X,

N ′
0 ⊂N ′

1 ⊂ ...⊂N ′
5 ⊂ ϕ̂(X).

(12.33)

Moreover, assuming

ηlin⩽ 10−2 and δ#⩽ δ̄#,

Claim 12.12 and a-priori assumption (APA6) (if J⩾1) or the assumptions from the

proposition (if J=0) yield

N5\N0 ⊂
⋃

Σ⊂∂NJ+1
tJ+1

U∗
Σ,tJ and N ′

5\N ′
0 ⊂

⋃
Σ⊂∂NJ+1

tJ+1

U ′ ∗
Σ,tJ . (12.34)
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By construction and by (12.34), all points on N5=NtJ+∪(N5\N0) andN
′
5\N ′

0 survive un-

til time tJ+1. A-priori assumptions (APA2), (APA3) (a) and (c), (APA6), assertions (d)

and (e) of Proposition 12.2, (12.33), assumption (vi) of this proposition and Lemma 8.9,

as well as (12.32) and (12.34), imply, assuming

δ#⩽ δ̄#, ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ 1, Λ⩾ 2, εcan⩽ ε̄can(λ), rcomp⩽ r̄comp,

that

ρ>C−1
SDλrcomp>εcanrcomp on N ′

5.

Let t∗1∈[tJ , tJ+1] be maximal with the property that N ′
5(t) is defined and weakly

1
2C

−1
SDλrcomp-thick for all t∈[tJ , t∗1], where CSD is the constant from Lemma 8.9. Note

here that t∗1 is well defined by the (εcanrcomp, T )-completeness of M′ and Lemma 8.4,

assuming

εcan⩽ ε̄can(λ).

We can now express the flows g and g′ restricted to the product domains N5([tJ , t
∗
1]) and

N ′
5([tJ , t

∗
1]) by conventional Ricci flows (N5, (gt)t∈[tJ ,t∗1 ]

) and (N ′
5, (g

′
t)t∈[tJ ,t∗1 ]

).

Claim 12.13. (Grafting on round half-cylinders) After adjusting δ#, there are

smoothly varying Riemannian metrics (g+

t )t∈[tJ ,t∗1 ]
and (g′+t )t∈[tJ ,t∗1 ]

on smooth manifolds

N+ and N ′+, respectively, and a diffeomorphism ϕ+:N+!N ′+ such that the following

holds :

(a) N5 and N ′
5 can be viewed as open subsets of N+ and N

′
+, respectively.

(b) For all t∈[tJ , t∗1], we have g+

t =gt on N1⊂N+ and g′+t =g′t on N ′
1⊂N ′+.

(c) g+

t and g′+t are complete for all t∈[tJ , t∗1].
(d) For some constant C=C(λ)<∞, we have

|Rmg+t
|, |Rmg′+t

|⩽Cr−2
comp.

(e) (g+

t )t∈[tJ ,t∗1 ]
and (g′+t )t∈[tJ ,t∗1 ]

are “δ#-approximate Ricci flows”:

−δ#r−2
compg

+

t <∂tg
+

t +2Ricg+t <δ#r
−2
compg

+

t ,

−δ#r−2
compg

′+
t <∂tg

′+
t +2Ricg′+t <δ#r

−2
compg

′+
t .

(f) For some C∗=C∗(λ)<∞,

|∇m
g+t

Rm(g+

t )|g+t , |∇
m
g′+t

Rm(g′+t )|g′+t <C∗r−2
comp(t−tJ)−m/2

|∇m1

g+t
∂m2
t g+

t |g+t , |∇
m1

g′+t
∂m2
t g′+t |g′+t <C∗r−2

comp(t−tJ)−(m2−1+m1/2)
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for all t∈(tJ , t∗1] and m,m1,m2=0, ..., 100.

(g) There is a universal constant C∗∗<∞ such that, at every x∈N+ with

dg+tJ
(x,N+\N0)<δ

−1
# rcomp,

we have

|∇m
g+t

Rm(g+

t )|g+t (x)<C
∗∗r−2−m

comp

|∇m1

g+t
∂m2
t g+

t |g+t (x)<C
∗∗r−m1−2m2

comp

for all t∈(tJ , t∗1] and m,m1,m2=0, ..., 100.

(h) ϕ+=ϕ̂ on N2.

(i) We have |(ϕ+)∗g′+tJ −gtJ |g+t <δ# at every point x∈N+, with

dg+tJ
(x,N+\N0)<δ

−1
# rcomp.

(j) t∗1>tJ and if t∗1<tJ+1, then ⋃
t∈[tJ ,t∗1 ]

N ′
5(t)

must contain a C−1
SDλrcomp-thin point.

Proof. Using Lemma 8.4, we find that t∗1>tJ and that if t∗1<tJ+1, then N
′
5([tJ , t

∗
1])

must contain a C−1
SDλrcomp-thin point. This proves assertion (j).

For each component Σ⊂∂N J+1
tJ+1

, we may push forward r−2
compg

S2×R under ψΣ and ψ′
Σ

to obtain spacetime metrics on U∗
Σ and U

′∗
Σ . Using the product structure on U∗

Σ and U
′∗
Σ ,

these yield evolving metrics (gΣt )t∈[tJ ,tJ+1] and (g′Σt )t∈[tJ ,tJ+1] on the initial time-slices

U∗
Σ,tJ

, U
′∗
Σ,tJ

, and hence also on N5\N0 and N ′
5\N ′

0, by (12.34).

By a standard interpolation argument, we can construct smooth families of metrics

(g̃t)t∈[tJ ,t∗1 ]
and (g̃′)t∈[tJ ,t∗1 ]

on N5 and N ′
5 such that g̃t=gt and g̃′t=g

′
t on N1 and N ′

1,

respectively, and such that, for every component Σ⊂∂N J+1
tJ+1

, we have g̃t=g
Σ
t and g̃′=

g′Σt on (N5\N2)∩U∗
Σ,tJ

and (N ′
5\N ′

2)∩U ′∗
Σ,tJ

, respectively. Moreover, using (12.21) and

(12.32), and after possibly adjusting δ#, we may assume that, for every component

Σ⊂∂N J+1
tJ+1

, m1,m2<δ
−1
# , and t∈[tJ , t∗1], we have

|∇m1

gΣtJ
∂m2
t (g̃t−gΣt )|gΣt <δ#r

−m1−2m2
comp ,

|∇m1

g
′Σ
tJ

∂m2
t (g̃′t−g′Σt )|g′Σt <δ#r

−m1−2m2
comp

(12.35)
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on (N5\N0)∩U∗
Σ,tJ

and (N ′
5\N ′

0)∩U ′ ∗
Σ,tJ

. So, after possibly adjusting δ# once again, we

may assume that, on N5 and N ′
5, we have

−δ#r−2
compg̃t<∂tg̃t+2Ricg̃t <δ#r

−2
compg̃t,

−δ#r−2
compg̃

′
t<∂tg̃

′
t+2Ricg̃′t <δ#r

−2
compg̃

′
t.

Since these flows are isometric to round shrinking cylindrical flows near the ends of N5 and

N ′
5, we can attach round shrinking half-cylinders to these flows at each end. This produces

flows (g+

t )t∈[tJ ,t∗1 ]
and (g′+t )t∈[tJ ,t∗1 ]

on N+⊃N4 and N ′+⊃N ′
4 satisfying assertions (a)–(e)

of this claim. Assertion (g) also follows from (12.21), (12.32) and (12.35), after adjusting

δ#. Assertion (f) follows from Shi’s estimates in N1, N
′
1, N

+\N2, N
′+\N ′

2 and assertion

(g).

Since ϕ̂ is a (1+δ#)-bilipschitz map on N5\N2⊂
⋃

Σ U
∗
Σ,tJ

(see (12.29) and (12.34)),

and g̃tJ and g̃′tJ are isometric to subsets of round cylinders on the interior of N5\N2

and N ′
5\N ′

2, respectively, we can use a smoothing procedure (see also Lemma D.1) to

construct a diffeomorphism onto its image ϕ̃:N4!ϕ̃(N4)⊂N ′
5 such that ϕ̃=ϕ̂ on N2 and

ϕ̃∗g′+tJ =ϕ̃∗g̃′tJ =g̃tJ =g
+

tJ on N4\N3, and such that, after adjusting δ#,

|ϕ̃∗g′+tJ −g+

tJ |<δ# on U∗
Σ,tJ

∩N4, (12.36)

for every component Σ⊂∂N J+1
tJ+1

. We can now extend the diffeomorphism ϕ̃:N4!ϕ̃(N4)

to a diffeomorphism ϕ+ :N+!N ′+ such that it remains an isometry on N+\N4. Adjust-

ing δ# again, the map ϕ+ will satisfy assertions (h) and (i) of this claim, by (12.36) and

the fact that (ϕ+)∗g′+tJ =g
+

tJ on N+\N3.

We now construct the map ϕJ+1 by solving the harmonic map heat flow equation

starting from (ϕ+)−1, where ϕ+:N+!N ′+ is the map constructed in Claim 12.13.

Using Claim 12.13 and Proposition A.9 from the appendix, we obtain that, if

ηlin⩽ η̄lin and δ#⩽ δ̄#(ηlin),

then we can find a time t∗∈(tJ , t∗1] and a solution (χt)t∈[tJ ,t∗], with χt:N
′+!N+, to the

harmonic map heat flow equation with respect to (g′+t )t∈[tJ ,t∗1 ]
and (g+

t )t∈[tJ ,t∗1 ]
with the

following properties:

(1) χtJ =(ϕ+)−1.

(2) χt is a diffeomorphism for all t∈[tJ , t∗].
(3) |(χ−1

t )∗g′+t −g+

t |g+t <2ηlin for all t∈[tJ , t∗].
(4) If

|(χ−1
t∗ )∗g′+t∗ −g+

t∗ |g+
t∗
< 1.9ηlin

holds on N ′+, then t∗=t∗1.
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We first show that

χ−1
t (N0)⊂N ′

1 for all t∈ [tJ , t
∗]. (12.37)

After rescaling by r−2
comp, assuming

ηlin⩽ η̄lin and δ#⩽ δ̄#,

we may apply assertion (g) of Claim 12.13 and Proposition A.10, taking the constants δ

and A in the hypotheses to be δ=1 and A=C∗∗, to conclude that χ−1
t (∂N0)⊂N ′

1 for all

t∈[tJ , t∗]. Here, we have used a continuity argument, the fact that

χ−1
tJ (∂N0)=ϕ+(∂N0)= ϕ̂(∂N0)= ∂N ′

0

by assertion (h) of Claim 12.13, and property (3) above, to retain the hypotheses of

Proposition A.10. Therefore, since χ−1
t is a smoothly varying diffeomorphism, (12.37)

follows.

Now, set ϕ̄t :=χ
−1
t |N0 for t∈[tJ , t∗]. As g+

t =gt on N0 and g′+t =g′t on N
′
1 by assertion

(b) of Claim 12.13, we can view (ϕ̄t)t∈[tJ ,t∗] as a smooth, time-preserving diffeomorphism

onto its image of the form

ϕJ+1:N J+1
[tJ ,t∗]

−!N ′
1([tJ , t

∗])⊂M′,

whose inverse evolves by harmonic map heat flow equation with respect to g′ and g.

Consider the perturbation hJ+1=(ϕJ+1)∗g′−g. Assertion (a) of this proposition

follows from property (3) above.

If

ηlin⩽ η̄lin and δ#⩽ δ̄#(T,E,H, ηlin),

then for every x∈N+ with dg+tJ
(x,N+\N0)<δ

−1
# rcomp, after adjusting δ#, and by asser-

tions (e), (g), (i) of Claim 12.13 and property (3) above, we may apply Proposition A.13

to conclude that

|(χ−1
t )∗g′+t −g+

t |g+t (x)<e
−HT 10−E−1rEcompρ

−E
1 (x)ηlin<ηlin (12.38)

for all t∈[tJ , t∗]. If
δ#⩽ δ̄#(F ),

then (12.21) implies that, for every t∈[tJ , t∗] and every x∈N J+1
t such that

dt(x, ∂N J+1
t )<Frcomp,
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we have

dg+tJ
(x(tJ), N

+\N0)<δ
−1
# rcomp.

Hence,

|hJ+1(x)|= |(χ−1
t )∗g′+t −g+

t |g+t (x(tJ))<e
−HT 10−ErEcompρ

−E−1
1 (x)ηlin

by (12.38). This yields assertion (b) of this proposition.

Finally, we verify assertions (c) and (d) of this proposition. We first apply Lemma 8.9

and a-priori assumptions (APA2), (APA3) (a) and (c), (APA6), assuming

ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄, Λ⩾ 2, εcan⩽ ε̄can(λ), rcomp⩽ r̄comp,

to find that, for all t∈[tJ , t∗], the following holds: If the εcan-canonical neighborhood

assumption holds at scales (0, 1) on ϕJ+1
t (N J+1

t ), then ϕJ+1(N J+1
t ) is CSDλrcomp-thick.

By assertion (e) of Proposition 12.2, this condition holds for t=tJ . Therefore, assuming

εcan<C
−1
SDλ,

it holds for all t∈[tJ , t∗] by continuity. This shows assertion (d) of this proposition and

the fact that ϕJ+1
t∗ (N J+1

t∗ ) is CSDλrcomp-thick.

To see assertion (c) of this proposition, assume that |hJ+1|⩽ηlin on N J+1
t∗ . Then,

by the definition of ϕJ+1 we have the bound |(χ−1
t∗ )∗g′+t∗ −g+

t∗ |g+
t∗
⩽ηlin on N0. By (12.38)

it follows that |(χ−1
t∗ )∗g′+t∗ −g+

t∗ |g+
t∗
⩽ηlin holds everywhere on N+. So, property (4) above

implies t∗=t∗1. Combining this with the conclusion from the previous paragraph and

applying assertion (j) of Claim 12.13, yields t∗=t∗1=tJ+1, as desired.

12.4. Proof of Proposition 12.1, concluded

In this subsection we use the results of the previous subsections to prove our main

Proposition 12.1. More specifically, we will analyze the map

ϕJ+1:N J+1
[tJ ,t∗]

−!M′

that was constructed in Proposition 12.8. We will verify that this map satisfies a-priori

assumptions (APA1)–(APA12), and show that t∗=tJ+1. Therefore, ϕ
J+1 can be used to

extend the comparison (ϕ, {ϕj}Jj=1,Cut) to the time-interval [0, tJ+1]. This will finish

the proof of Proposition 12.1.

Our proof can be roughly summarized as follows: By the assumptions of Proposi-

tion 12.1, we may assume that a-priori assumptions (APA1)–(APA5) already hold until
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time tJ+1, and a-priori assumptions (APA6) and (APA7)–(APA12) already hold until

time tJ . We will refer to this assumption as the “induction hypothesis” henceforth. Us-

ing the induction hypothesis and the conclusions of Propositions 12.2 and 12.8, we will

then establish that a-priori assumptions (APA1)–(APA12) hold up to time t∗. The only

non-trivial assumptions in this step will be a-priori assumptions (APA6)–(APA9). We

will prove these assumptions using another continuity argument: We will assume that

relaxed versions of a-priori assumptions (APA7)–(APA9) hold up to some almost maxi-

mal time t∗∗⩽t∗ and, based on these extra assumptions, we prove a-priori assumptions

(APA6)–(APA9) up to time t∗∗. By a straightforward openness argument, it therefore

follows that t∗∗=t∗, and therefore that a-priori assumptions (APA6)–(APA9) hold up to

time t∗. Eventually, the fact that a-priori assumption (APA6) holds up to time t∗ and

assertion (c) of Proposition 12.8 imply that we indeed have t∗=tJ+1. This will finish our

proof.

We remark that throughout this entire subsection, we will introduce global termi-

nology and assumptions on the parameters, which will be understood to remain valid

for the remainder of the subsection. In particular, conditions on the parameters that

can be found in the following lemmas will be assumed to hold for the remainder of the

subsection, so that the conclusions of these lemmas can be applied immediately.

This subsection is structured as follows: We first set up our argument by recalling

the important assumptions from Proposition 12.1. In Lemma 12.14, we will then summa-

rize and put into context the results of the constructions from Propositions 12.2 and 12.8.

Next, we introduce the relaxed versions of a-priori assumptions (APA7)–(APA9) in equa-

tions (12.40)–(12.42), which hold up to some time t∗∗⩽t∗. In Lemma 12.15, we show

that t∗∗>tJ and that if the strong versions of a-priori assumptions (APA7)–(APA9) hold

up to time t∗∗, then we must in fact have t∗∗=t∗. Based on these relaxed versions of

a-priori assumptions (APA7)–(APA9), we will establish a-priori assumptions (APA6)–

(APA9) in Lemmas 12.16–12.19—one lemma per a-priori assumption and in this order.

Lastly, we wrap up our discussion, argue that t∗∗=t∗=tJ+1 and verify the assertions of

Proposition 12.1.

Further explanations of the arguments may be found after the statements of the

lemmas below.

In what follows, we will be considering the setup as described in assumptions (i)–

(vi) of Proposition 12.1. So, among other things, we assume that M and M′ are

(εcanrcomp, T )-complete and satisfy the εcan-canonical neighborhood assumption at scales

(εcanrcomp, 1). We consider a comparison domain (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) over the time-

interval [0, tJ+1], for J⩾0, and a comparison (Cut, ϕ, {ϕj}Jj=1) from M to M′ defined

on this comparison domain over the time-interval [0, tJ ]. If J=0, then this comparison
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is trivial, as explained after Definition 7.2. We also assume (N , {N j}J+1
j=1 , {tj}

J+1
j=0 ) and

(Cut, ϕ, {ϕj}Jj=1) satisfy a-priori assumptions (APA1)–(APA6) for the parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

and a-priori assumptions (APA7)–(APA13) for the parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

Moreover, we assume in the following that

tJ+1⩽T. (12.39)

If J⩾1, then assumptions (i)–(v) of Proposition 12.1 allow us to apply Proposi-

tion 12.2. Doing so yields the map ϕ̂:NtJ−∪NtJ+!M′
tJ and the set of cuts CutJ with

the properties as explained in assertions (a)–(e) of this proposition. If J=0, then we skip

this step.

Next, we fix an auxiliary constant F<∞, whose value will be determined in the

course of this subsection depending only on E. We can then apply Proposition 12.8 for

ϕ̂:X :=NtJ−∪NtJ+!M′
tJ from Proposition 12.2 (if J⩾1) or ϕ̂=ζ :X!M′

0 from assump-

tion (vi) of Proposition 12.1 (if J=0). Then, Proposition 12.8 yields a time t∗∈(tJ , tJ+1]

and a map ϕJ+1:N J+1
[tJ ,t∗]

!M′ satisfying assertions (a)–(d) of this proposition. Note that

Propositions 12.2 and 12.8 are only applicable if our parameters satisfy the bounds (12.2)

and (12.20). These bounds are implied by bounds of the form (12.1) and

ν⩽ ν̄(T,E, F,H, ηlin), δn⩽ δ̄n(T,E, F,H, ηlin),

δb⩽ δ̄b(T,E, F,H, ηlin, λ,Dcut, A,Λ), εcan⩽ ε̄can(T,E, F,H, ηlin, λ,Dcut, A,Λ).

(Note that assuming F=F (E), these bounds also follow from bounds of the form (12.1).)

In the following lemma we summarize the important properties of CutJ and ϕJ+1,

and we show how these objects can be used to extend the comparison (Cut, ϕ, {ϕj}Jj=1)

to a comparison that is defined over the time-interval [0, t∗].

Lemma 12.14. There is a unique map

ϕ̄:N[0,t∗]\
⋃

D∈Cut∪CutJ

D−!M′

such that (Cut∪CutJ , ϕ̄, {ϕj}J+1
j=0 ) is a comparison defined on the comparison domain

(N[0,t∗], {N j ,N J+1
[tJ ,t∗]

}Jj=1, {tj , t∗}Jj=0). This comparison is an extension of the compari-

son (Cut, ϕ, {ϕj}Jj=1) in the sense that

ϕ̄=ϕ on
J⋃
j=1

N j\
⋃

D∈Cut∪CutJ

D.
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Furthermore, this extended comparison and the comparison domain

(N[0,t∗], {N j ,N J+1
[tJ ,t∗]

}Jj=1, {tj , t∗}Jj=0)

satisfy the following properties :

(a) They satisfy a-priori assumptions (APA10)–(APA13) for the parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

(b) Let (h, {hj}J+1
j=1 ) be the associated Ricci–DeTurck perturbation (note that hJ+1

is only defined over the time-interval [tJ , t
∗]). Then, |h|⩽ηlin on

J⋃
j=1

N j\
⋃

D∈Cut∪CutJ

D

and |hJ+1|⩽10ηlin on N J+1
[tJ ,t∗]

. Moreover, ϕJ+1(N J+1
[tJ ,t∗]

) is εcanrcomp-thick.

(c) For any t∈[tJ , t∗] and x∈N J+1
t with dt(x, ∂N J+1

t )<Frcomp, we have

Q+(x)= eH(T−t)ρE1 (x)|hJ+1(x)|⩽ 
Q=10−E−1ηlinr
E
comp.

(d) If even |h|⩽ηlin on N J+1
t∗ , then t∗=tJ+1.

Proof. The construction of the map ϕ̄ and the verification of the properties of Def-

initions 7.1 and 7.2 are straightforward. A-priori assumptions (APA10) and (APA11)

follow directly from the corresponding a-priori assumptions of the induction hypothesis

and Proposition 12.2 (d) and (c). A-priori assumption (APA12) follows directly from

a-priori assumption (APA12) of the induction hypothesis (if J⩾1) or from assumption

(vi) in Proposition 12.1 (if J=0). Assertions (b)–(d) are just restatements of assertions

(a)–(d) of Proposition 12.8 combined with the induction hypthesis.

Note that by the assumptions of Proposition 12.1, the comparison domain

(N , {N j}J+1
j=1 , {tj}

J+1
j=0 )

satisfies a-priori assumptions (APA1)–(APA5) for the parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp).

For the remainder of this section, references to (APA1)–(APA5) will implicitly refer to

this larger comparison domain, rather than the comparison domain defined on the shorter

interval [0, t∗].
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It remains to verify a-priori assumptions (APA6)–(APA9). Once this has been ac-

complished, assertion (d) of Lemma 12.14 will immediately imply that t∗=tJ+1. So, we

have reduced our discussion to an analysis of the associated Ricci–DeTurck perturbation

and its derived quantities Q and Q∗.

We will verify a-priori assumptions (APA6)–(APA9) via another continuity argu-

ment, which we will set up now. Consider the comparison (Cut∪CutJ , ϕ̄, {ϕj}J+1
j=0 ) from

Lemma 12.14 and let (h, {hj}J+1
j=1 ) be the associated Ricci–DeTurck perturbation, as

mentioned in assertion (b) of this lemma. As in Definition 7.5 we define the quantities

Q= eH(T−t)ρE1 |h| and Q∗ = eH(T−t)ρ31|h|,

and the extensions Q± and Q∗
± to Ntj±. Moreover, again as in Definition 7.5, we set


Q := 10−E−1ηlinr
E
comp and 
Q∗ := 10−1ηlin(λrcomp)

3.

Choose a time t∗∗∈[tJ , t∗] such that, for all

x∈N J+1
[tJ ,t∗∗]

\
⋃

D∈CutJ

D,

the following conditions hold:

Q(x)⩽ 10
Q whenever P (x, 10Aρ1(x))∩D=∅ (12.40)

for all D∈Cut∪CutJ ,

Q(x)⩽ 10W
Q, (12.41)

Q∗(x)⩽ 10
Q∗ whenever B(x, 10Aρ1(x))⊂Nt(x)−. (12.42)

Note that these conditions are relaxed versions of a-priori assumptions (APA7)–

(APA9). The main objective of this subsection will be to show—under certain bounds on

our parameters— that assumptions (12.40)–(12.42) imply a-priori assumptions (APA6)

and (APA7)–(APA9) up to time t∗∗. The following lemma will help us conclude that it is

possible to choose t∗∗=t∗ if a-priori assumptions (APA7)–(APA9) have been established.

Lemma 12.15. If

E⩾E, F ⩾F , ηlin⩽ η̄lin, δn⩽ δ̄n, λ⩽ λ̄, ηcut⩽ η̄cut,

Dcut⩾Dcut(λ), W ⩾W (E, λ,Dcut), A⩾A, Λ⩾Λ,

δb⩽ δ̄b(λ,Dcut, A,Λ), εcan⩽ ε̄can(λ,Dcut, A,Λ), rcomp⩽ r̄comp(λ),

then we can choose t∗∗>tJ .
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Furthermore, there is a constant τ=τ(T,E,H, ηlin, λ, A, rcomp)>0 with the following

property. If a-priori assumptions (APA7)–(APA9) hold up to time t∗∗, meaning that,

for all x∈N J+1
[tJ ,t∗∗]

\
⋃

D∈CutJ D,

Q(x)⩽ 
Q whenever P (x,Aρ1(x))∩D=∅ (12.43)

for all D∈Cut∪CutJ ,

Q(x)⩽W
Q, (12.44)

Q∗(x)⩽ 
Q∗ whenever B(x,Aρ1(x))⊂Nt(x)−, (12.45)

then (12.40)–(12.42) even hold for all

x∈N J+1
[tJ ,min{t∗∗+τ,t∗}]\

⋃
D∈CutJ

D.

In other words, if (APA7)–(APA9) hold up to time t∗∗, then we may replace t∗∗ by

min{t∗∗+τ, t∗}. The important point here is that τ can be chosen independently of t∗∗.

In Lemmas 12.16–12.19 below, we will show that a-priori assumptions (APA7)–(APA9)

indeed hold up to time t∗∗, regardless of the choice of t∗∗. It will then follow by iterating

Lemma 12.15 that we can choose t∗∗=t∗ and that a-priori assumptions (APA7)–(APA9)

hold up to time t∗.

The main idea of the proof of Lemma 12.15 is that the relaxed conditions (12.40)–

(12.42) hold in the neighborhood of any point at which the stricter conditions (12.43)–

(12.45) are satisfied. Using the canonical neighborhood assumption, we will find a uni-

form lower bound on the size of such a neighborhood. Extra care has to be taken near the

cuts at time tJ . Here we will use the a-priori assumptions from our induction hypothesis

along with the geometry of the cuts to deduce that (12.44) and (12.45) even hold on and

near the cuts.

Proof. We first show that for all x∈NtJ+ (which may possibly lie on a cut)

Q+(x)⩽W
Q, (12.46)

Q∗
+(x)⩽ 
Q

∗ whenever B(x,Aρ1(x))⊂NtJ+. (12.47)

Note that the condition in (12.47) refers to the forward time-slice, in contrast to (12.45).

Let us first prove (12.47). If x∈D∈CutJ , then (12.47) follows from a-priori assump-

tion (APA10) (see assertion (a) of Lemma 12.14), assuming

ηcut⩽ 1.



158 r. h. bamler and b. kleiner

So, assume that

x∈NtJ+\
⋃

D∈CutJ

D.

If B(x,Aρ1(x))⊂NtJ−, then (12.47) follows from a-priori assumption (APA9) of the

induction hypothesis. So, assume that B(x,Aρ1(x)) ̸⊂NtJ−, but B(x,Aρ1(x))⊂NtJ+.

In other words, B(x,Aρ1(x)) intersects an extension cap C0⊂NtJ+\IntNtJ−. Choose

D0∈CutJ with C0⊂D0 and let C#<∞ be a constant whose value we will determine in

the course of the proof. We now apply Lemma 8.20 for A0=A and T0=0, assuming

δn⩽ δ̄n, λ⩽ λ̄, Dcut⩾Dcut(λ,C#), Λ⩾Λ,

δb⩽ δ̄b(λ,C#, Dcut, A,Λ), εcan⩽ ε̄can(λ,Dcut, A,Λ), rcomp⩽ r̄comp(C#)

Note that the assumptions of this lemma on the set Cut∪CutJ hold due to a-priori

assumption (APA11), which holds due to assertion (a) of Lemma 12.14. We find that

ρ1(x)⩾C#rcomp, (12.48)

and that P (x,Aρ1(x))∩D=∅ for all D∈Cut. So, by a-priori assumption (APA7) of the

induction hypothesis we have

eH(T−tJ )ρE1 (x)|h(x)|=Q(x)⩽ 
Q=10−E−1ηlinr
E
comp.

Combining this with (12.48) yields

Q∗(x)= eH(T−tJ )ρ31(x)|h(x)|⩽ ρ3−E1 (x)·10−E−1ηlinr
E
comp⩽C

3−E
# ηlinr

3
comp.

It follows that Q∗(x)⩽
Q∗ if C3−E
# ⩽10−1λ3, which holds assuming

E⩾ 4 and C#⩾C#(λ).

This finishes the proof of (12.47).

To see the bound (12.46), we only need to consider the case x∈D∈CutJ , due to

a-priori assumption (APA8) of the induction hypothesis. Then, again by a-priori as-

sumption (APA10) (see assertion (a) of Lemma 12.14) we have Q∗
+(x)⩽ηcut
Q

∗. By

a-priori assumptions (APA5) and (APA11), and assuming

δb⩽ δ̄b(λ,Dcut),

we conclude that there is a constant C ′=C ′(λ,Dcut)<∞ such that ρ1<C
′rcomp on D.

So

Q+(x)= eH(T−tJ )ρE1 (x)|htJ+(x)|= ρE−3
1 (x)Q∗

+(x)

⩽ (C ′)E−3rE−3
comp ·ηcut
Q∗ =(C ′)E−3rE−3

comp ·ηcut ·10−1ηlin(λrcomp)
3

=(C ′)E−3λ310Eηcut ·
Q.
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It follows that Q+(x)⩽W
Q, assuming

ηcut⩽ 1 and W ⩾W (E, λ,Dcut).

This finishes the proof of (12.46).

We will show that (12.40)–(12.42) hold slightly beyond time t∗∗ if t∗∗<t∗. The fact

that we can choose t∗∗>tJ will follow along the lines of the proof.

Let τ>0 be a constant to be determined in the course of the proof. It suffices

to argue that, if t∗∗<t∗ and if (12.43)–(12.45) hold on N J+1
[tJ ,t∗∗]

\
⋃

D∈Cut∪CutJ D and

(12.46), (12.47) hold on NtJ+, then (12.40)–(12.42) hold in N J+1
t′ whenever t′∈(t∗∗, t∗]

and t′−t∗∗<τ , where τ⩽τ̄(T,E,H, ηlin, λ, A, rcomp). To that end, choose t
′∈(t∗∗, t∗] with

t′−t∗∗<τ , and a point x′∈N J+1
t′ . Since N J+1

[tJ ,t∗] is a product domain, we have x′=x(t′)

for some x∈N J+1
t∗∗ .

First suppose that dt∗∗(x, ∂N J+1
t∗∗ )⩽rcomp. Assuming

τ ⩽ τ̄(λ, rcomp),

then by a distance distortion estimate based on a-priori assumption (APA2) and the fact

that N J+1
[tJ ,t∗]

is a product domain, we obtain dt′(x(t
′), ∂N J+1

t′ )<10rcomp. So, assuming

F ⩾ 10,

assertion (c) of Lemma 12.14 implies that (12.40) holds for x(t′). Thus, if

W ⩾ 1,

then (12.41) holds as well. Next, by a-priori assumption (APA3) (a), Lemma 8.12, and

assuming

δn⩽ δ̄n, εcan⩽ ε̄can and rcomp⩽ r̄comp,

we obtain that ρ(x(t′))> 1
2rcomp. So, B(x(t′), Aρ1(x(t

′))) ̸⊂N , assuming

A> 20,

and thus (12.42) holds.

Now, suppose dt∗∗(x, ∂N J+1
t∗∗ )>rcomp. By a-priori assumption (APA2), Lemma 8.4,

and assuming

τ ⩽ τ̄(E, λ, rcomp) and εcan⩽ ε̄can(λ),

we obtain that

(0.9)1/Eρ1(x)⩽ ρ1⩽ (1.1)1/Eρ1(x) on P (x, τ, τ). (12.49)
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Thus, on P (x, τ, τ),

0.9·eH(T−t)ρE1 (x)·|h|⩽Q⩽ 1.1·eH(T−t)ρE1 (x)·|h|. (12.50)

Assume now that P (x(t′), 10Aρ1(x(t
′)))∩D=∅ for all D∈Cut∪CutJ . By a-priori as-

sumption (APA2) and bounded curvature at bounded distance, Lemma 8.6, and assum-

ing

εcan⩽ ε̄can(λ,A),

we conclude that P (x(t′), 10Aρ1(x(t
′))) is unscathed. We also obtain a curvature bound

on this parabolic neighborhood, which implies, via a distance distortion estimate, that

P (x, 9Aρ1(x(t
′)))⊂P (x(t′), 10Aρ1(x(t

′))),

assuming

τ ⩽ τ̄(λ,A, rcomp).

Combining this with (12.49) and a-priori assumption (APA2), and assuming

E⩾ 1, A⩾A and τ ⩽ τ̄(λ,A, rcomp),

we obtain that P (y,Aρ1(y))⊂P (x(t′), 10Aρ1(x(t′))) for all y∈B(x, τ). This implies that,

for all such y, we have P (y,Aρ1(y))∩D=∅ for all D∈Cut∪CutJ . Therefore, by (12.43),

we have Q⩽
Q on B(x, τ). So, if

ηlin⩽ η̄lin,

then we can use Proposition A.12 together with a-priori assumption (APA2), (12.49),

(12.50) and assertion (b) of Lemma 12.14, and assuming

τ ⩽ τ̄(T,E,H, ηlin, λ, rcomp), (12.51)

to get that (12.40) holds.

Using similar arguments, properties (12.41) and (12.42) can be verified at x(t′) as

well, assuming a bound of the form (12.51). Note that if t∗∗=tJ , then we need to use

the bounds (12.46) and (12.47).

Assume, for the remainder of this subsection, that the parameter bounds that appear

in Lemma 12.15 hold and that t∗∗>tJ .

In the following we will verify a-priori assumptions (APA6)–(APA9) up to time t∗∗.

Whenever we say that “a-priori assumption (APAx) holds”, then we mean that

(N[0,t∗∗], {N j ,N J+1
[tJ ,t∗∗]

}Jj=1, {tj , t∗∗}Jj=1)
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and

(Cut∪CutJ , ϕ̄|N[0,t∗∗]
, {ϕj , ϕJ+1|NJ+1

[tJ ,t∗∗]
}Jj=1)

satisfy a-priori assumption (APAx) for the set of parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

Note that it follows from Lemma 12.14 (a), that a-priori assumptions (APA10)–(APA13)

hold.

Let us first verify a-priori assumption (APA6).

Lemma 12.16. (Verification of (APA6)) If

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ(λ,A), δb⩽ δ̄b(λ,Dcut, A,Λ),

εcan⩽ ε̄can(λ,Dcut, A,Λ), rcomp⩽ r̄comp,

then a-priori assumption (APA6) holds. In other words, we have |h|⩽ηlin on

N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D

and the εcan-canonical neighborhood assumption holds at scales (0, 1) on

J⋃
j=1

ϕj(N j)∪ϕJ+1(N J+1
[tJ ,t∗∗]

).

We summarize the idea of the proof. It only remains to establish the bound |h|⩽ηlin.
For points that are far enough away (compared to A) from the neck-like boundary

of N∪N J+1, we have Q∗⩽10
Q∗ from (12.42), and together with the lower bound

ρ1>λrcomp on N∪N J+1 from a-priori assumption (APA2), this implies |h|⩽ηlin. On the

other hand, points that are close to this boundary are far from the cuts, by Lemma 8.19.

So, at these points we may rely instead on the bound Q⩽10
Q from (12.40). This bound

implies |h|⩽ηlin as long as ρ1⩾ 1
10rcomp, a fact which follows from the neck-like structure

of the boundary of N J+1 and almost non-negative curvature (see Lemma 8.11).

Proof. The second part of a-priori assumption (APA6) follows from assertion (b) of

Lemma 12.14 and the induction hypothesis. So, it remains to prove the bound |h|⩽ηlin.
To this end, consider a point x∈N[0,t∗∗]\

⋃
D∈Cut∪CutJ D and set t:=t(x). Our goal

will be to show |h(x)|⩽ηlin. In the case t∈[0, tJ ], we are done by a-priori assumption

(APA6) from our induction hypothesis, and the fact that NtJ+\
⋃

D∈Cut∪CutJ D⊂NtJ−.

So, assume that t∈(tJ , t∗∗] and therefore x∈N J+1
(tJ ,t∗∗]

.
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We now distinguish the following two cases.

Case 1. B(x, 10Aρ1(x))⊂N J+1
t =Nt−.

In this case we can apply (12.42) and obtain that

eH(T−t)ρ31(x)|h(x)|=Q∗(x)⩽ 10
Q∗ = ηlin(λrcomp)
3.

Since by a-priori assumption (APA2) and assumption (12.39) we have ρ1(x)>λrcomp and

t⩽tJ+1⩽T , this implies |h(x)|⩽ηlin.

Case 2. B(x, 10Aρ1(x)) ̸⊂N J+1
t .

Let us first apply Lemma 8.19 along with a-priori assumption (APA11). We obtain

that, if

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A,Λ),

εcan⩽ ε̄can(λ,Dcut, A,Λ), rcomp⩽ r̄comp,

then P (x, 10Aρ1(x))∩D=∅ for all D∈Cut∪CutJ . So, by (12.40), we have

eH(T−t)ρE1 (x)|h(x)|=Q(x)⩽ 10
Q=10−Eηlinr
E
comp.

By assumption (12.39), we have t⩽tJ+1⩽T . So, in order to show that |h(x)|⩽ηlin, it
suffices to verify the bound

ρ1(x)⩾ 1
10rcomp. (12.52)

To see that (12.52) holds, choose first some point y∈∂N J+1
t with dt(x, y)<10Aρ1(x).

Let Σ⊂∂N J+1
t be the (spherical) boundary component of N J+1

t that contains y. Con-

sider the constant δ0>0 from Lemma 8.11. If

δn⩽ δ̄n, εcan⩽ ε̄can and rcomp⩽ r̄comp,

then, by a-priori assumption (APA3) (a) and Lemma 8.12, the component Σ has to be a

central 2-sphere of a δ0-neck in Mt at scale arcomp for some a∈[1, 2] and we must have

0.9rcomp<ρ1(y)< 2.1rcomp.

By bounded curvature at bounded distance, Lemma 8.6, along with a-priori assumption

(APA2), applied at x, and assuming

εcan⩽ ε̄can(λ,A),
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we find that ρ1(x)<C
′ρ1(y)<2.1C ′rcomp for some C ′=C ′(A)<∞. So

dt(x, y)< 10Aρ1(x)< 21C ′Arcomp.

Let Y#<∞ be a constant whose value we will fix at the end of the proof. By a-priori

assumption (APA3) (c), we can pick a Λrcomp-thick point z∈NtJ+1− in the same compo-

nent of NtJ+1− as Σ(tJ+1). By a-priori assumption (APA3) (a) and bounded curvature

at bounded distance, Lemma 8.6, applied at all points on ∂NtJ+1−, and assuming

δn⩽ δ̄n, Λ⩾Λ(Y#) and εcan⩽ ε̄can(Y#),

we obtain that dtJ (z(t), ∂NtJ+)>Y#rcomp.

By a-priori assumption (APA2) and a distance distortion estimate, it follows that

then

dt(z(t), ∂N J+1
t )>e−C

′′λ−2

Y#rcomp

for some universal constant C ′′<∞. We can then apply Lemma 8.11, assuming that

δn⩽ δ̄n, Y#⩾Y #(λ,A) and εcan⩽ ε̄can(A),

to show that ρ1(x)⩾ 1
10arcomp⩾ 1

10rcomp. So, (12.52) holds.

Next, we establish a-priori assumption (APA7).

Lemma 12.17. (Verification of (APA7)) If

E⩾E, F ⩾F (E), H ⩾H(E), ηlin⩽ η̄lin(E),

ν⩽ ν̄(E), δn⩽ δ̄n, λ⩽ λ̄, A⩾A(E,W ), Λ⩾Λ,

δb⩽ δ̄b(E, λ,Dcut, A,Λ), εcan⩽ ε̄can(E, λ,Dcut,W,A,Λ), rcomp⩽ r̄comp,

then a-priori assumption (APA7) holds. In other words, for all

x∈N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D

for which P (x,Aρ1(x))∩D=∅ for all D∈Cut∪CutJ , we have

Q(x)⩽ 
Q. (12.53)

The strategy of the proof is the following: Near the neck-like boundary of N , the

bound (12.53) is a direct consequence of assertion (c) of Lemma 12.14. So, it remains to

consider points that are far away from this neck-like boundary. If a relaxed bound of the
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form Q⩽10
Q holds on a parabolic neighborhood of size comparable to L(E) around such

a point, either via a-priori assumption (APA7) or (12.40), then we can use the semi-local

maximum principle, Proposition 9.1, and a-priori assumption (APA12) to improve this

bound by a factor of 1
10 . On the other hand, points for which such a relaxed bound is

absent in such a parabolic neighborhood must be close enough to a cut, and thus even

farther from the neck-like boundary. In this case, we can guarantee a bound of the form

Q⩽10W
Q by either (APA8) or (12.41) on an even larger parabolic neighborhood, of

size comparable to A. The bound (12.53) then follows from the interior decay estimate,

Proposition 9.2 and a-priori assumption (APA12), for large enough A.

Proof. Let x∈N[0,t∗∗]\
⋃

D∈Cut∪CutJ and assume that P (x,Aρ1(x))∩D=∅ for all

D∈Cut∪CutJ . Set t:=t(x). Our goal will be to show that Q(x)⩽
Q. By a-priori

assumption (APA7) from our induction hypothesis, we only need to consider the case

t>tJ and x∈N J+1
(tJ ,t∗∗]

.

Let L=L(E)<∞ be the constant from Proposition 9.1. By Lemma 8.7 and a-priori

assumption (APA2), and assuming

εcan⩽ ε̄can(L(E), λ, A),

we can find a constant A′=A′(L(E), A)<∞ with A′⩾max{A,L} such that P (x,A′ρ1(x))

is unscathed and

P (y, 10Aρ1(y))⊂P (x,A′ρ1(x)) for all y ∈P (x, Lρ1(x)). (12.54)

We now distinguish two cases.

Case 1. B(x, Lρ1(x)) ̸⊂N J+1
t .

The goal in this case will be to apply assertion (c) of Lemma 12.14. To do this,

we first need to bound ρ1(x) from above. For this purpose, choose z∈∂N J+1
t such that

dt(x, z)<Lρ1(x). By a-priori assumption (APA3) (a) and Lemma 8.12, and assuming

δn⩽ δ̄n, εcan⩽ ε̄can and rcomp⩽ r̄comp,

we know that z is a center of a sufficiently precise neck U⊂Mt at scale arcomp for

some a∈[1, 2] such that ρ1(z)<2.1rcomp. By bounded curvature at bounded distance,

Lemma 8.6, and assuming

εcan⩽ ε̄can(L(E)),

we therefore obtain ρ1(x)<Crcomp for some C=C(L(E))<∞. Thus,

dt(x, ∂N J+1
t )⩽ dt(x, z)<CLrcomp.
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We can now apply assertion (c) of Lemma 12.14, assuming

F >C(L(E))·L(E),

and obtain that Q(x)⩽
Q.

Case 2. B(x, Lρ1(x))⊂N J+1
t .

We distinguish two subcases.

Case 2a. P (x,A′ρ1(x))∩D=∅ for all D∈Cut∪CutJ .

Recall that P (x, Lρ1(x))⊂P (x,A′ρ1(x)). So, by Lemma 8.18, we have

P (x, Lρ1(x))⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D.

Using the assumption of Case 2a, (12.54), a-priori assumption (APA7) from the

induction hypothesis and (12.40), we obtain Q⩽10
Q on P (x, Lρ1(x)). By Lemma 12.16,

we have |h|⩽ηlin on P (x, Lρ1(x)). If P (x, Lρ1(x)) intersects the initial time-slice M0,

then a-priori assumption (APA12) also implies that Q⩽ν
Q on P (x, Lρ1(x))∩M0. So,

by Proposition 9.1, a-priori assumption (APA2), and assuming that

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), ν⩽ ν̄(E) and εcan⩽ ε̄can(E, λ),

we obtain the improved estimate Q(x)⩽
Q.

Case 2b. P (x,A′ρ1(x))∩D̸=∅ for some D∈Cut∪CutJ .

Applying Lemma 8.19 with A0=A
′ and a-priori assumption (APA11), and assuming

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A
′(E,A),Λ),

εcan⩽ ε̄can(λ,Dcut, A
′(E,A),Λ), rcomp⩽ r̄comp,

we find that B(x,Aρ1(x))⊂N . Recall moreover that by assumption of the lemma we

have P (x,Aρ1(x))∩D=∅ for all D∈Cut∪CutJ . Therefore, again by Lemma 8.18, we

obtain that

P (x,Aρ1(x))⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D.

By a-priori assumption (APA8) from the induction hypothesis and (12.41), we have

Q⩽10W
Q on P (x,Aρ1(x)). We will now apply Proposition 9.2 to P (x,Aρ1(x)) in order

to improve this estimate at x. To do this, observe that, by Lemma 12.16 we have |h|⩽ηlin
on P (x,Aρ1(x)) and if P (x,Aρ1(x)) intersects the initial time-slice M0, then a-priori
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assumption (APA12) implies that Q⩽ν
Q on P (x,Aρ1(x))∩M0. We can therefore apply

Proposition 9.2 to P (x,Aρ1(x)), along with a-priori assumption (APA2), assuming that

E> 2, H ⩾H(E), ηlin⩽ η̄lin(E), ν⩽ ν̄(E),

A⩾A(E,W ), εcan⩽ ε̄can(E, λ,W ),

and conclude that Q(x)⩽
Q. This finishes the proof.

Next, we verify a-priori assumption (APA8).

Lemma 12.18. (Verification of (APA8)) If

E⩾E, H ⩾H(E), ηlin⩽ η̄lin(E), ν⩽ ν̄(E),

δn⩽ δ̄n, λ⩽ λ̄, W ⩾W (E, λ,Dcut) A⩾A(E), Λ⩾Λ,

δb⩽ δ̄b(λ,Dcut, A,Λ), εcan⩽ ε̄can(E, λ,Dcut, A,Λ), rcomp⩽ r̄comp,

then a-priori assumption (APA8) holds. In other words, we have

Q⩽W
Q on N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D. (12.55)

Note that a main aspect of this lemma is that W does not depend on A. Otherwise

the inequality (12.55) would follow easily from (12.40) and (12.42). More specifically, at

points whose distance to an extension cap is bounded in terms of A, we can only use

(12.42) to obtain a bound on Q. However, the “conversion” factor between Q∗ and Q

at such a point depends on A. So, the bound (12.42) cannot be used directly to verify

(12.55).

The idea of the proof is the following. We may focus on the time-slab N J+1
[tJ ,t∗∗]

, since

the bound (12.55) follows from a-priori assumption (APA8) of the induction hypothesis.

The bound (12.55) follows from (12.40) (the relaxed version of (APA7)) at points that

are far away from the cuts, i.e. at distance comparable to A. For points that are close to

the cuts, we distinguish two cases. The strategy in the first case is to deduce (12.55) from

a-priori assumption (APA8) and its relaxed version (12.41) via the semi-local maximum

principle (Proposition 9.1). This argument only works at points that are still sufficiently

far away from the cuts, this time with separation comparable to L(E)≪A. In the second

case, we consider points that are close to cuts, comparable to L(E). At these points

(12.42) (the relaxed version of (APA9)) guarantees a bound of the form Q∗⩽10
Q∗. This

bound translates into a bound on Q and the conversion factor can be controlled in terms

of L(E), E, λ and Dcut. So, (12.55) follows as long we choose W larger than this

conversion factor.



uniqueness and stability of ricci flow 167

Proof. Consider a point x∈N J+1
[tJ ,t∗∗]

\
⋃

D∈CutJ D. Note that the case when

t := t(x)= tJ

follows from the induction hypothesis, so we assume in the following that t>tJ .

We distinguish the following cases.

Case 1. B(x, 10Aρ1(x)) ̸⊂N J+1
t .

Then, we can apply Lemma 8.19 along with a-priori assumption (APA11), assuming

that

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δ̄b(λ,Dcut, A,Λ),

εcan⩽ ε̄can(λ,Dcut, A,Λ), rcomp⩽ r̄comp,

and obtain that P (x, 10Aρ1(x))∩D=∅ for all D∈Cut∪CutJ . So, by (12.40), we have

Q(x)⩽10
Q. Therefore, Q(x)⩽W
Q, as long as

W ⩾ 10.

Case 2. B(x, 10Aρ1(x))⊂N J+1
t .

Choose L=L(E) from Proposition 9.1. We distinguish two subcases.

Case 2a. P (x, Lρ1(x))∩D=∅ for all D∈Cut∪CutJ .

Assume that

10A⩾L(E).

So, B(x, Lρ1(x))⊂N and thus, by Lemma 8.18,

P (x, Lρ1(x))⊂N J+1
[0,t∗∗]\

⋃
D∈Cut∪CutJ

D.

Let us now apply Proposition 9.1 to P (x, Lρ1(x)). To do this, note that by Lemma 12.16,

a-priori assumption (APA8) from the induction hypothesis and (12.41), we know that

|h|⩽ηlin and Q⩽10W
Q on P (x, Lρ1(x)). If P (x, Lρ1(x)) intersects M0, then, by a-

priori assumption (APA12), we also have Q⩽ν
Q on the intersection. Lastly, by a-priori

assumption (APA2), we have ρ1(x)>λrcomp. So, assuming

E> 2, H ⩾H(E), ν⩽ ν̄(E), ηlin⩽ η̄lin(E) and εcan⩽ ε̄can(E, λ),

we obtain from Proposition 9.1 that Q(x)⩽W
Q, as desired.
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Case 2b. P (x, Lρ1(x))∩D̸=∅ for some D∈Cut∪CutJ .

By a-priori assumptions (APA5) and (APA11), and assuming

δb⩽ δ̄b(λ,Dcut),

we can conclude that there is a constant C ′=C ′(λ,Dcut)<∞ such that ρ1⩽C ′rcomp

on D. Next, by bounded curvature at bounded distance, Lemma 8.6, applied at x,

a-priori assumption (APA2), and assuming that

εcan⩽ ε̄can(L(E), λ),

we obtain a constant C ′′=C ′′(L(E))<∞ such that

ρ1(x)⩽C
′′C ′rcomp.

Since B(x, 10Aρ1(x))⊂N J+1
t , we obtain from (12.42) that Q∗(x)⩽10
Q∗. Assuming

E⩾ 3 and λ⩽ 1,

we can now convert this bound to a bound on Q(x) as follows:

Q(x)= ρE−3
1 (x)Q∗(x)⩽ ρE−3

1 (x)10
Q∗

⩽ (C ′′(L(E))C ′(λ,Dcut)rcomp)
E−3ηlin(λrcomp)

3

⩽ 10E+1(C ′′(L(E))C ′(λ,Dcut))
E−310−E−1ηlinr

E
comp

⩽ 10E+1(C ′′(L(E))C ′(λ,Dcut))
E−3
Q.

So, Q(x)⩽W
Q, as long as

W ⩾W (E, λ,Dcut).

This finishes the proof.

Lastly, we establish a-priori assumption (APA9).

Lemma 12.19. (Verification of (APA9)) If

E⩾E, H ⩾H, ηlin⩽ η̄lin, ν⩽ ν̄, δn⩽ δ̄n, λ⩽ λ̄,

ηcut⩽ η̄cut, Dcut⩾Dcut(λ), A⩾A(E, λ), Λ⩾Λ,

δb⩽ δ̄b(λ,Dcut, A,Λ), εcan⩽ ε̄can(E, λ,Dcut, A,Λ), rcomp⩽ r̄comp(λ),

then a-priori assumption (APA9) holds. In other words, we have

Q∗(x)⩽ 
Q∗ =10−1ηlin(λrcomp)
3 (12.56)

for all x∈N[0,t∗∗]\
⋃

D∈Cut∪CutJ D for which B(x,Aρ1(x))⊂Nt(x)−.
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Let us first summarize the strategy of the proof. As in the previous proofs, the

semi-local maximum principle, Proposition 9.1, can be used to deduce (12.56) from a-

priori assumption (APA9) or its relaxed version (12.42) at points that are sufficiently

far away from the cuts and the neck-like boundary of N . Now, consider points that are

close to the neck-like boundary, but far enough (comparably to A) from this boundary

such that the assertion does not become vacuous. At such points, we use the bound

Q⩽10
Q from a-priori assumption (APA7) and its relaxed version (12.40) and the interior

decay estimate, Proposition 9.2, to overcome the conversion factor between Q and Q∗

for sufficiently large A. Lastly, consider points that are close to a cut. At such points,

we invoke the semi-local maximum principle, Proposition 9.1 with initial condition, on

a truncated parabolic neighborhood whose initial time-slice intersects the cut. We then

use a-priori assumption (APA10) or (APA7) to deduce a very good bound for Q∗ on this

initial time-slice. Proposition 9.1 then implies (12.56).

Proof. Consider a point

x∈N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D

such that B(x,Aρ1(x))⊂Nt(x)− and set t:=t(x). The case t⩽tJ follows from a-priori

assumption (APA9) of the induction hypothesis. So, in the following we assume that

t>tJ and therefore that B(x,Aρ1(x))⊂N J+1
t .

Let L=L(3) be the constant from Proposition 9.1 (for E=3). Using Lemma 8.7,

a-priori assumption (APA2), and assuming that

εcan⩽ ε̄can(L, λ,A),

we can find a constant A′=A′(A)<∞ with A′⩾A such that the parabolic neighborhood

P (x,A′ρ1(x)) is unscathed and such that

P (y, 10Aρ1(y))⊂P (x,A′ρ1(x)) for all y ∈P (x,Aρ1(x)). (12.57)

Let us now distinguish three cases.

Case 1. We have

P (x,A′ρ1(x),−(Lρ1(x))
2)⊂N[0,t∗∗]\

⋃
D∈Cut∪CutJ

D

and P (x,A′ρ1(x),−(Lρ1(x))
2) does not intersect the initial time-slice M0.
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So, assuming A⩾L, we have

P (x, Lρ1(x))⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D.

Using (12.57), a-priori assumption (APA9), (12.42) and Lemma 12.16, we find that

Q∗⩽ 10
Q∗ and |h|⩽ η̄lin

on P (x, Lρ1(x)). Since the exponent in the definition of Q∗ is 3>2, if

H ⩾H, ηlin⩽ η̄lin and εcan⩽ ε̄can(λ),

we may apply the semi-local maximum principle, Proposition 9.1, to deduce that

Q∗(x)⩽ 
Q∗,

which finishes the proof in this case. Note that here we have used a-priori assumption

(APA2).

Case 2. We have

B(x,A′ρ1(x)) ̸⊂N .

By Lemma 8.19 and a-priori assumption (APA11), and assuming that

δn⩽ δ̄n, λ⩽ λ̄, Λ⩾Λ, δb⩽ δb(λ,Dcut, A
′(A),Λ),

εcan⩽ ε̄can(λ,Dcut, A
′(A),Λ), rcomp⩽ r̄comp,

we find that

P (x,A′ρ1(x))∩D=∅ for all D∈Cut∪CutJ . (12.58)

So, by Lemma 8.18,

P (x,Aρ1(x))⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D. (12.59)

Combining (12.58) with (12.57), we obtain that, for all y∈P (x,Aρ1(x)),

P (y, 10Aρ1(y))∩D=∅ for all D∈Cut∪CutJ .

Therefore, by a-priori assumption (APA7) and (12.40), we obtain that

Q⩽ 10
Q on P (x,Aρ1(x)).
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Let us now convert this bound into a bound on Q∗. There are two ways of doing

this. One way would be to use Lemma 8.11, as in the proof of Lemma 12.16 leading up

to (12.52) to show that ρ1(x)⩾ 1
10rcomp. In the following, however, we will use a different

strategy, as it is technically easier.

Assuming

E⩾ 3

and using a-priori assumption (APA2) and (12.59), we have, on P (x,Aρ1(x)),

Q∗ = ρ3−E1 Q⩽ (λrcomp)
3−E ·10
Q=(λrcomp)

3−E ·10−EηlinrEcomp

⩽λ−Eηlin(λrcomp)
3 =10λ−E
Q∗.

We will now apply Proposition 9.2 to Q∗ on P (x,Aρ1(x)). To do this, observe that, by

Lemma 12.16, we have |h|⩽ηlin on P (x,Aρ1(x)). In addition, if P (x,Aρ1(x)) intersects

the initial time-slice M0, then by a-priori assumption (APA12) we have Q∗⩽ν
Q∗ on the

intersection. We also have ρ1(x)>λrcomp by a-priori assumption (APA2). So, if

H ⩾H, ηlin⩽ η̄lin, ν⩽ ν̄, A⩾A(E, λ) and εcan⩽ ε̄can(E, λ),

then we obtain that Q∗(x)⩽
Q∗, as desired.

Case 3. We have

B(x,A′ρ1(x))⊂N ,

and either

P (x,A′ρ1(x),−(Lρ1(x))
2) ̸⊂N[0,t∗∗]\

⋃
D∈Cut∪CutJ

D,

or P (x,A′ρ1(x),−(Lρ1(x))
2) intersects the initial time-slice M0.

In the following we will use the notation

Cutj = {D∈Cut∪CutJ :D⊂Mtj}.

Choose j0∈{1, ..., J} maximal with the property that

P (x,A′ρ1(x),−(t−tj0)) ̸⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D.

If no such j0 exists, then set j0 :=0. By Lemma 8.18, we have

P (x,A′ρ1(x),−(t−t′))⊂N[0,t∗∗]\
⋃

D∈Cut∪CutJ

D for all t′ ∈ (tj0 , t].



172 r. h. bamler and b. kleiner

Letting t′!tj0 and using the fact that N[0,t∗∗] is a closed subset of M, we obtain

P (x,A′ρ1(x),−(t−tj0))⊂N[0,t∗∗]\
⋃

D∈Cutj0+1 ∪...∪CutJ

D, (12.60)

and either j0=0 or there is a cut D0∈Cutj0 such that

P (x,A′ρ1(x),−(t−tj0))∩D0 ̸=∅. (12.61)

Let

Btj0 := (B(x, Lρ1(x)))(tj0).

In other words, Btj0 is the initial time-slice of the parabolic neighborhood

P (x, Lρ1(x),−(t−tj0)).

Note that, by (12.61), the perturbation h is defined everywhere on

P (x, Lρ1(x),−(t−tj0))\Btj0 ,

and it can be smoothly extended to the entire parabolic neighborhood by setting h=htj0+

on Btj0 . Similarly, we can extend Q∗ to the entire parabolic neighborhood

P (x, Lρ1(x),−(t−tj0))

by setting Q∗=Q∗
+ on Btj0 .

We will now bound Q∗=Q∗
+ on Btj0 . Let y∈Btj0 . Then, the two cases indicated

above lead to the following three subcases.

Case 3a. We have j0=0 and therefore y∈M0.

In this case, by a-priori assumption (APA12), we have

Q∗(y)⩽ ν
Q∗.

Case 3b. We have j0⩾1 and y∈D0.

In this case, a-priori assumption (APA10) yields

Q∗(y)⩽ ηcut
Q
∗.

Case 3c. We have j0⩾1 and y /∈D0.
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Our strategy in this case is to use the bound on Q(y) from a-priori assumption

(APA7) and translate it into a bound on Q∗(y). In order to do this, we need to ensure that

a-priori assumption (APA7) apply at y (or slightly earlier) and that ρ1(y) is sufficiently

large so that the Q-bound implies a good bound on Q∗.

Let C#<∞ be a constant whose value we will determined at the end of the proof.

We can now apply Lemma 8.20 and a-priori assumption (APA11), assuming

δn⩽ δ̄n, Dcut⩾Dcut(λ,C#), Λ⩾Λ, δb⩽ δ̄b(λ,C#, Dcut, A
′(A),Λ),

εcan⩽ ε̄can(λ,Dcut, A
′(A),Λ), rcomp⩽ r̄comp(C#),

to find that

ρ1(y)⩾C#rcomp

and P (y, 2Aρ1(y))∩D=∅ for all D∈Cut1 ∪ ...∪Cutj0−1. So, for any t′∈[tj0−1, tj0), suf-

ficiently close to tj0 , we have P (y(t′), Aρ1(y(t
′)))∩D=∅ for all D∈Cut∪CutJ . So, by

a-priori assumption (APA7) we have Q(y(t′))⩽
Q. Letting t′!tj0 yields Q(y)⩽
Q.

Assuming

E⩾ 4,

we obtain

Q∗(y)= ρ3−E1 (y)Q(y)⩽ (C#rcomp)
3−E ·
Q

=(C#rcomp)
3−E10−E−1ηlinr

E
comp⩽C

−1
# λ−310−E−1ηlin(λrcomp)

3⩽C−1
# λ−3
Q∗.

Summarizing the results of Cases (3a)–(3c), we obtain that

Q∗⩽ (ν+ηcut+C
−1
# λ−3)
Q∗ on Btj0 .

Similarly, as in Case (1), we can use (12.57) and (12.60) together with a-priori assumption

(APA9) and (12.42) to show that Q∗⩽10
Q∗ on P (x, Lρ1(x),−(t−tj0)). By Lemma 12.16,

we have |h|⩽ηlin on P (x, Lρ1(x),−(t−tj0)). We can now apply Proposition 9.1 along

with a-priori assumption (APA2), assuming

H ⩾H, ηlin⩽ η̄lin, ν⩽ ν̄, C#⩾C#(λ),

ηcut⩽ η̄cut, εcan⩽ ε̄can(λ),

to show that Q∗(x)⩽
Q∗, as desired.

We can finally finish the proof of Proposition 12.1. Lemmas 12.16–12.19 imply that

(N[0,t∗∗], {N j ,N J+1
[tJ ,t∗∗]

}Jj=1, {tj , t∗∗}Jj=1)
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and

(Cut∪CutJ , ϕ̄|N[0,t∗∗]
, {ϕj , ϕJ+1|NJ+1

[tJ ,t∗∗]
}Jj=1)

satisfy (APA6)–(APA9) whenever (12.40)–(12.42) hold, up to time t∗∗. So, by iterating

Lemma 12.15, we may choose t∗∗=t∗. Since a-priori assumption (APA6) holds for the

aforementioned comparison domain and comparison, we have |h|⩽ηlin on N J+1
t∗ . So, by

assertion (d) of Lemma 12.14, we obtain that t∗∗=t∗=tJ+1. So,

(N , {N j}J+1
j=1 , {tj}

J+1
j=1 ) and (Cut∪CutJ , ϕ̄, {ϕj}J+1

j=1 )

satisfy (APA1) and (APA6)–(APA9). A-priori assumptions (APA10)–(APA13) follow

from assertion (a) of Lemma 12.14. Recall that (APA2)–(APA5) hold by the assumptions

of Proposition 12.1.

Lastly note that the auxiliary parameter F was assumed to be large depending

only on E. So, it is straight forward to check that the assumptions of the parameters

imposed in the course of this proof all follow from (12.1). This finishes the proof of

Proposition 12.1.

13. Proofs of the main results

In this section we will combine the main results of §11 and §12 to prove the main result

of the paper, Theorem 13.1. We then prove some corollaries, including several stability

results and a uniqueness theorem, as presented in §1.3.

Theorem 13.1. (Existence of comparison domain and comparison) If

T > 0, E⩾E, H ⩾H(E), ηlin⩽ η̄lin(E),

ν⩽ ν̄(T,H, ηlin), δn⩽ δ̄n(T,H, ηlin), λ⩽ λ̄(δn),

Dcap⩾Dcap(λ), ηcut⩽ η̄cut, Dcut⩾Dcut(Dcap, ηcut),

W ⩾W (Dcut), A⩾A(W ), Λ⩾Λ(A), δb⩽ δ̄b(Λ),

εcan⩽ ε̄can(δb), rcomp⩽ r̄comp(Λ),

then the following holds.

Consider two (εcanrcomp, T )-complete Ricci flow spacetimes M and M′ that each

satisfy the εcan-canonical neighborhood assumption at scales (εcanrcomp, 1).

Let ζ: {x∈M0 :ρ(x)>λrcomp}!M′
0 be a diffeomorphism onto its image that satisfies

the following bounds :

|ζ∗g′0−g0|⩽ ηlin,

eHT ρE1 |ζ∗g′0−g0|⩽ ν
Q= ν ·10−E−1ηlinr
E
comp,

eHT ρ31|ζ∗g′0−g0|⩽ ν
Q∗ = ν ·10−1ηlin(λrcomp)
3.
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Assume moreover that the εcan-canonical neighborhood assumption holds at scales (0, 1)

on the image of ζ.

Then, for any J⩾1 with Jr2comp⩽T , there is a comparison domain

(N , {N j}Jj=1, {tj}Jj=0)

and a comparison (Cut, ϕ, {ϕj}Jj=1) from M to M′ defined on this domain such that

a-priori assumptions (APA1)–(APA6) hold for the tuple of parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

and a-priori assumptions (APA7)–(APA13) hold for the tuple of parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).

Moreover, ϕ0+=ϕ
1
0=ζ|N0

.

Proof of Theorem 13.1. The theorem follows from Propositions 11.1 and 12.1 by

induction on J . Both propositions can be applied under restrictions on the parameters

that follow from the restrictions stated in the beginning of this theorem. Note that in

the first step of the induction one applies Proposition 11.1 to produce the first time slab

N 1 of the comparison domain. By a-priori assumption (APA2) we have N 1
0 ⊂X :={x∈

M0 :ρ(x)>λrcomp}. Assuming

λ⩽ λ̄(δn), εcan⩽ ε̄can(δn),

by (APA3) and Lemma 8.6 it follows that the δ−1
n rcomp-tubular neighborhood around

N0 is contained in X. Hence, the map ζ from the assumptions of Theorem 13.1 satisfies

assumption (vi) of Proposition 12.1.

Note that we have simplified the restrictions on the parameters in the first part of this

theorem by omitting arguments in parameter restrictions if they have already appeared

in earlier restrictions. This simplification does not change the nature of these restrictions.

For example, since we have imposed the restriction H⩾H(E), we can assume without

loss of generality that H⩾E. Therefore, it is not necessary to list E in the restriction

for ν⩽ν̄(H, ηlin, T ), as ν already depends on H.

Next, we prove Theorem 1.5. This theorem is similar to Theorem 13.1; however the

parameters associated with the a-priori assumptions have been suppressed. The proof of

Theorem 1.5 requires the following result.
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Lemma 13.2. If

εcan⩽ ε̄can and r⩽ r̄,

then the following holds.

Let M be an (εcanr, T )-complete Ricci flow spacetime that satisfies the εcan-canonical

neighborhood assumption at scales (εcanr, 1). Let x∈M[0,T ] be a point with ρ(x)>r.

Then, there is a continuous path γ: [0, 1]!M[0,T ] between x and a point in M0 such

that t�γ is non-increasing and such that ρ(γ(s))>.9r for all s∈[0, 1].

Proof. A slightly different version of this statement, which would also be adequate

for our needs here, was proven in [KL2, Proposition 3.5]. For completeness, we provide

an alternative argument.

Set t0 :=t(x) and r0 :=ρ1(x)>r. By Lemma 8.5, assuming

εcan⩽ ε̄can and r⩽ r̄,

we know that x survives until time max{t0−r20, 0} and ρ1(x(t))⩾.95r0>.95r for all t∈
[max{t0−r20, 0}, t0]. So, if t0⩽r20, then we are done. Consider now the case t0>r

2
0. If

r0⩽ 1
2 and ρ(x(t0−r20))⩽ρ(x), then we can use Lemma 8.15, assuming

εcan⩽ ε̄can,

to show that (Mt0 , x(t0−r20)) is close enough to (MBry, gBry, xBry) such that there is a

point y∈Mt0−r20 with ρ(y)>ρ(x) and such that x(t0−r20) can be connected with y by a

continuous path inside Mt0−r20 whose image only consists of .9r0-thick points.

So, summarizing our conclusions, each x∈M[0,T ] can be connected with a point

y∈M[0,T ] by a path γ: [0, 1]!M[0,T ] such that t�γ is non-increasing and ρ(γ(s))>.9r0

for all s∈[0, 1], and one of the following holds:

(1) y∈M0,

(2) ρ(y)⩾.95ρ(x)>.95· 12 and t(y)=t(x)−ρ21(x),
(3) ρ(y)>ρ(x) and t(y)=t(x)−ρ21(x).
Iterating this process yields a sequence of points x0=x, x1, x2, ...∈M[0,T ] such that

xi and xi+1 can be connected by a path with the desired properties. It now remains to

show that this sequence terminates at some index i and that xi∈M0. To see this, note

that by (1)–(3) the sequence of times t(xi) is non-increasing and ρ(xi)>r, assuming

r⩽ .95· 14 .

Since

t(xi+1)= t(xi)−ρ21(xi)⩽ t(xi)−r2

in cases (2) and (3), the sequence must terminate after a finite number of steps.
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Proof of Theorem 1.5. Since we will invoke Theorem 13.1 below, in order to make

the estimates in Theorem 1.5 conform more closely with those in Theorem 13.1, it will be

convenient to prove the theorem for E replaced by 1
2E, ϕ replaced by ζ and ϕ̂ replaced

by ϕ. So, we assume that ζ:U!U ′ satisfies

|ζ∗g′0−g0|⩽ ε·rE(|Rm|+1)E/2,

and our goal is to construct ϕ: Û!Û ′ such that

|ϕ∗g′0−g0|⩽ δ ·rE(|Rm|+1)E/2.

We will first prove a slightly weaker version of the theorem in which we allow εcan

to also depend on T . We will mention how we can remove this dependence at the end of

this proof.

Fix T and E⩾E, where E is the constant from Theorem 13.1 and assume that E⩾3.

Based on these choices, fix constants H, ηlin, ν, δn, λ, Dcap, ηcut, Dcut, W , A, Λ, δb, εcan

and r̄comp that satisfy the restrictions stated in Theorem 13.1. Without loss of generality,

we may assume that r̄comp⩽1. Choose rcomp :=αr ·r̄comp, where 0<α=α(δ, T, E)⩽1 is a

constant whose value will be determined in the course of this proof.

We now verify the assumptions of Theorem 13.1. In what follows, we will be imposing

several upper bounds on the parameters α and ε. The upper bounds on α will only depend

on δ, T and E, and the upper bounds on ε will only depend on δ, T , E and α. As α

will not be chosen depending on ε, there will be no circular dependence. At a number of

steps in the following proof, we will also assume that the constants ηlin, δn and εcan have

been chosen smaller than some universal constant.

Assuming

ε⩽ εcan ·αr̄comp,

we get that M,M′ are (εcanrcomp, T )-complete and satisfy the εcan-canonical neighbor-

hood assumption at scales (εcanrcomp, 1). If

ε⩽ c1λ·αr̄comp,

for some universal constant c1>0, then

U∗ := {x∈M0 : ρ(x)>λrcomp}⊂U.

So, without loss of generality, we can replace ζ by ζ|U∗ .

Let us now verify the bounds on h0 :=ζ
∗g′0−g0 in the assumptions of Theorem 13.1.

For this purpose note that there is a universal constant C1<∞ such that

C−1
1 ρ−2

1 ⩽ |Rm|+1⩽C1ρ
−2
1 .
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Now by assumption of this theorem and the fact that

|Rm|+1⩽C1ρ
−2
1 <C1λ

−2r−2
comp⩽C1(λαr̄comp)

−2r−2,

on U∗, we have

|h0|⩽ ε·rE(|Rm|+1)E/2⩽ ε·CE/21 (λαr̄comp)
−E ⩽ ηlin,

as long as

ε⩽C−E/2
1 (λαr̄comp)

Eηlin.

Similarly, we obtain that

eHT ρE1 |h0|⩽C
E/2
1 eHT (|Rm|+1)−E/2|h0|⩽CE/21 eHT ·εrE

⩽ ν ·10−E−1ηlin(αr ·r̄comp)
E ,

as long as

ε⩽C−E/2
1 e−HT ·ν ·10−E−1ηlin(αr̄comp)

E

and

eHT ρ31|h0|⩽C
3/2
1 eHT (|Rm|+1)−3/2|h0|

⩽CE/21 (λαr̄comp)
3−Er3−E ·eHT (|Rm|+1)−E/2|h0|

⩽CE/21 (λαr̄comp)
3−EeHT ·εr3⩽ ν ·10−1(λαr ·r̄comp)

3,

as long as

ε⩽C−E/2
1 e−HT ·ν ·10−1(λαr̄comp)

E .

Note that the three bounds that we have imposed on ε in this paragraph depend only

on δ, T and E, assuming that α can be chosen depending on these three constants.

Lastly, note by assumption of this theorem the εcan-canonical neighborhood assump-

tion holds on the image of ζ.

We can therefore apply Theorem 13.1 and obtain a comparison domain

(N , {N j}Jj=1, {tj}Jj=0)

and a comparison (Cut, ϕ, {ϕj}Jj=1) that satisfy the a-priori assumptions (APA1)–(APA6)

for the parameters

(ηlin, δn, λ,Dcap,Λ, δb, εcan, rcomp)

and a-priori assumptions (APA7)–(APA13) for the parameters

(T,E,H, ηlin, ν, λ, ηcut, Dcut,W,A, rcomp).
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Without loss of generality, we may assume that T is an integral multiple of r2comp, i.e.

tJ=T ; otherwise we may decrease rcomp or increase T slightly.

Let now Û⊂M[0,T ] be the set of C2rcomp-thick points, where C2=C2(Λ)<∞ is

a constant whose value will be determined at the end of this paragraph. We claim

that Û⊂N \
⋃

D∈Cut D. To see this, consider x∈Û and choose j∈{1, ..., J} such that

x∈M[tj−1,tj ]. Then, by Lemma 8.4, if

C3⩾C3, C2⩾ΛC3, εcan⩽ ε̄
Lemma 8.4
can and rcomp⩽ r̄

Lemma 8.4
comp

then x survives until time tj and x(tj) is Λrcomp-thick. (Here, we have used the notation

ε̄Lemma 8.4
can and r̄Lemma 8.4

comp to avoid confusion with the upper bounds ε̄can and r̄comp from

Theorem 13.1.) So, by a-priori assumption (APA3) (b), we have x(tj)∈Ntj−, and thus

x∈N . Lastly, by a-priori assumption (APA3) (e), we have x ̸∈D for all D∈Cut.
By the choice of Û , we have

|Rm|+1⩾C−1
1 ρ−2

1 ⩾C
−1
1 C−2

2 r−2
comp =C−1

1 C−1
2 r̄−2

compα
−2r−2

on M[0,T ]\Û . So, if

α⩽ 1
2C

−1/2
1 C

−1/2
2 r̄comp ,

then |Rm|+1⩾4r−2⩾r−2+1 and therefore |Rm|⩾r−2 on M[0,T ]\Û . In the notation of

Theorem 1.5, we can now set ϕ̂:=ϕ|Û and Û ′ :=ϕ(Û).

We now need to verify the upper bound on |ϕ̃∗g′−g| on Û , in the notation of The-

orem 1.5. To this end, note that by a-priori assumption (APA8) we have

|h|⩽ e−H(T−t)ρ−E1 ·W ·10−E−1ηlin(αrr̄comp)
E

⩽CE/21 (|Rm|+1)E/2Wηlinα
ErE r̄Ecomp⩽ δ ·(|Rm|+1)E/2rE ,

as long as

α⩽ δ1/EC−1/2
1 W−1/Eη

−1/E
lin r̄comp.

We now show that |Rm|⩾r−2 on M′
[0,T ]\Û

′ for sufficiently small α and ε if we

additionally assume that |Rm|⩾(εr)−2 on M′
0\U ′. To see this, assume |Rm|(x′)<r−2

for some x′∈M′
[0,T ]\Û

′. So, ρ(x′)⩾ 1
2C

−1/2
1 r. We can now apply Lemma 13.2, assuming

that εcan is smaller than some universal constant, to find a continuous path γ: [0, 1]!

M′
[0,T ] between x′ and a point y′∈M′

0 such that ρ(γ(s))>C−1
3 r for all s∈[0, 1], where

C3 is some universal constant, and t′�γ is non-increasing. On the other hand, we have

ρ1<C
1/2
1 |Rm|−1/2⩽C1/2

1 εr on M′
0\U ′. So, if

ε⩽C−1/2
1 C−1

3 ,
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then y′∈U ′. Set y :=ζ−1(y′).

Our next goal is to show that y′∈Û ′
0. To see this, we will argue that ρ(y)>C2rcomp.

By Lemma 8.4, and assuming that εcan is smaller than some universal constant, we can

find a universal constant c2>0 such that ρ> 1
2C

−1
3 r on B(y′, c2r). So, as in the last

paragraph, we obtain that B(y′, c2r)⊂U ′, assuming

ε⩽ 1
2C

−1/2
1 C−1

3 .

If ρ(y′)<1, then we can use the εcan-canonical neighborhood assumption at y′ to deduce

bounds on higher curvature derivatives on B(y′, c2r) (as in Lemma 8.1), assuming that

εcan is smaller than some universal constant. On the other hand, if ρ(y′)⩾1, then we ob-

tain an improved bound of the form ρ>c3 on B(y′, c2r) for some universal constant c3>0

(via Lemma 8.6). So, using Lemma 8.8, applied similarly as in the proof of Lemma 8.9,

we obtain a universal constant c4>0 such that ρ(y)>c4r, assuming that ηlin, εcan and α

are smaller than some universal constant. So, if

α⩽ c4C
−1
2 ,

then ρ(y)>C2rcomp and therefore, by construction of Û , we have y∈Û0. It follows that

y′=ϕ(y)∈Û ′
0.

Choose s0∈[0, 1] minimal with the property that γ((s0, 1])⊂Û ′. As y∈Û ′, we know

that s0<1, and since Û ′ is open and x′ /∈Û ′, we obtain γ(s0) /∈Û ′. For any s∈(s0, 1], we
have ϕ−1(γ(s))∈Û⊂N . So, by Lemma 8.9, and assuming that ηlin, δn, εcan and α were

chosen smaller than some universal constant, we obtain

ρ1(ϕ
−1(γ(s)))⩾C−1

SDρ1(γ(s))>C
−1
SD ·C−1

3 r.

Therefore, if

α⩽ 1
2C

−1
SDC

−1
2 C−1

3 ,

then

ρ(ϕ−1(γ(s)))> 2C2rcomp.

Using Lemma 8.4, Proposition A.10 and the uniform lower bounds on the scales of γ(s)

and ϕ−1(γ(s)), we obtain that z :=lims%s0 ϕ
−1(γ(s)) exists. It follows that

ρ(z)⩾ 2C2rcomp.

So, z∈Û and thus γ(s0)=ϕ(z)∈Û ′, contradicting the choice of s0.

This finishes the proof of the theorem if we allow εcan to depend on T . To see that

εcan can even be chosen independently of T , we revert back to the notation used in the
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theorem, and we construct ϕ̂ successively on time-intervals of the form [0, 1], [1, 2], etc.

More specifically, given E⩾E set εcan :=εcan(1, E) (i.e. the value in the weaker version of

the theorem for T=1). Now assume that δ>0 and T<∞ are given and assume without

loss of generality that T is an integer. Set inductively ε0 :=δ and

εi :=min{ε(εi−1, 1, E), εi−1, 1},

where ε( · , 1, E) is as in the statement of the weaker version of the theorem in the

T=1 case, as well as r0 :=r and ri :=εiri−1, for i=1, ..., T . Assume now that |Rm|⩾
(ε1 ... εT r)

−2=(εT rT−1)
−2 on M0\U (and possibly also on M′

0\U ′) and

|ϕ∗g′0−g0|⩽ εT ·r2ET (|Rm|+1)E .

We can then apply the weaker version of the theorem for r=rT−i and δ=εT−i to find a

sequence of subsets Ûi⊂M[i−1,i] and Û
′
i⊂M′

[i−1,i], and diffeomorphisms ϕ̂i: Ûi!Û
′
i such

that

|ϕ̂∗i g′−g|⩽ εT−i ·r2ET−i(|Rm|+1)E

and |Rm|⩾r−2
T−i on M[i−1,i] (and possibly also on M[i−1,i]\Û ′

i) for i=1, ..., T . Moreover,

ϕ̂i−1=ϕ̂i on Ûi−1∩Ûi⊂Mi. Then, ϕ̂ can be constructed by combining the diffeomor-

phisms ϕ̂1, ..., ϕ̂T on the open subset

(Û1∩M[0,1))∪(Û1∩Û2)∪(Û2∩M(1,2))∪(Û2∩Û3)∪...∪(ÛT ∩M(T−1,T ]).

This finishes the proof.

Proof of Theorem 1.3. The theorem is a consequence of Theorem 1.5. To see this,

assume δ⩽1, choose E :=E and consider the constants

εcan = εcan(E) and ε= ε

(
1

3E
δ, T, E

)
from Theorem 1.5. Set ε′ :=min{δ2Eε, δε, εcan} and r :=δ.

We claim that Theorem 1.3 holds for ε=ε′. By the assumption of this theorem, we

have

|ϕ∗g′0−g0|⩽ ε′⩽ ε·δ2E ⩽ ε·r2E(|Rm|+1)E .

We also have |Rm|⩾ε′ −2⩾(εr)−2 on M0\U . So, Theorem 1.5 can be applied and yields

the existence of a time-preserving diffeomorphism ϕ̂: Û!Û ′ such that ϕ̂=ϕ on U∩Û and

|ϕ̂∗g′−g|⩽ 1

3E
δ ·δ2E(|Rm|+1)E <δ, (13.1)

on Û∩{|Rm|<2δ−2} and |Rm|⩾δ−2 on M[0,T ]\Û . We can now replace Û by

Û∩{|Rm|< 2δ−2}

and then replace Û ′ by ϕ̂(Û). Then, (13.1) holds on all of Û and we still have |Rm|⩾δ−2

on M[0,T ]\Û .
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Proof of Addendum to Theorem 1.3. The bounds on the higher derivatives follow

from Lemma A.2, combined with Lemma 8.4 and Shi’s estimates, since ϕ̂∗g′−g satisfies

that Ricci–DeTurck equation.

We now apply the stability theorem, Theorem 1.5, to prove Theorem 1.1, which

asserts the uniqueness of the Ricci flow spacetimes with a given initial condition, under

completeness and canonical neighborhood assumptions.

The idea of the proof is as follows. We first apply Theorem 1.5 to produce a sequence

of maps ϕ̂i:Ui!M′
[0,T ] such that

⋃
i Ui=M[0,T ] and |ϕ̂∗i g′−g|⩽δi!0. We then show

that the ϕ̂is converge locally smoothly to the desired diffeomorphism ϕ̂. To do this, we

appeal to the drift bound in Proposition A.10 to propagate the region of convergence

over time, and we use uniqueness of isometries of Riemannian manifolds to propagate

the convergence within time-slices.

Proof of Theorem 1.1. We will prove the theorem in the case T<∞. The case T=∞
follows by letting T!∞. Choose E and εcan :=εcan(E) according to Theorem 1.5. Also,

by parabolic rescaling, we may assume without loss of generality that r=1.

By Theorem 1.5, we can find a sequence of open subsets U1⊂U2⊂...⊂M[0,T ] such

that
∞⋃
i=1

Ui=M[0,T ]

and a sequence of time-preserving diffeomorphisms onto their images ϕ̂i:Ui!M′
[0,T ] that

satisfy the harmonic map heat flow equation, such that

ϕ̂i|Ui∩M0
=ϕ|Ui∩M0

, t′�ϕ̂i= t

and

|ϕ̂∗i g′−g|⩽ δi! 0. (13.2)

Let Y be the set of points x∈M[0,T ] such that the pointwise limit

ϕ∞(x) := lim
i!∞

ϕ̂i(x)

exists. Let

X = {x∈M[0,T ] :B(x, r)⊂Y for some r > 0},

so X is the set of points x∈M[0,T ] that belong to relative interior of Y ∩Mt(x) in Mt(x).

Recall that Xt=X∩Mt for t⩾0. Our main goal is to show that X=M[0,T ] and that

the pointwise limit ϕ̂∞ is smooth, preserves the metric, and time vector field. Obviously,

X0=Y0=M0, since ϕ̂i=ϕ on Ui∩M0.
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Claim 13.3. For every t∈[0, T ], the following statements hold :

(a) ϕ̂∞ |Xt
!Mt is a smooth isometric immersion.

(b) Xt is a union of connected components of Mt.

(c) For all x∈Xt, ρ(ϕ̂∞(x))=ρ(x).

Proof. Suppose that t∈[0, T ] and z is in the closure of Xt. Choose r0>0 such

that B(z, 6r0) is compact, and pick x∈B(z, r0)∩Xt. Hence, we have that B(x, 5r0)

is compact and z∈B(x, r0). There is a sequence Li!1 such that for large i we have

B(x, 5r0)⊂Ui, and L−1
i g⩽ϕ̂∗i g

′⩽Lig on B(x, 5r0). An elementary Riemannian geometry

argument gives, for large i, that ϕ̂i(B(x, 5r0))⊃B(ϕ̂i(x), 4r0) and the restriction of ϕ̂i to

B(x, r0) is Li-bilipschitz with respect to the Riemannian distance functions on Mt and

M′
t. Since ϕ̂i(x)!ϕ̂∞(x), for large i we have

ϕ̂i(B(x, r0))⊂B(ϕ̂i(x), 2r0)⊂B(ϕ̂∞(x), 3r0)⊂B(ϕ̂i(x), 4r0)⊂ ϕ̂i(B(x, 5r0)),

and therefore B(ϕ̂∞(x), 3r0) is compact.

Put B :=B(x, r0). Suppose that {ϕ̂i|B} does not converge pointwise. Then, by the

Arzela-Ascoli theorem, the sequence {ϕ̂i|B} has two distinct subsequential limits

ψ,ψ′:B−!M′
t,

and since Li!1, both maps preserve the distance functions on M and M′. Hence, ψ and

ψ′ are smooth Riemannian isometries. They agree on a neighborhood of x in Xt, because

x∈X, and since B is connected, they must coincide, contradicting ψ ̸=ψ′. Thus B⊂Xt,

and the pointwise limit ϕ̂∞ is a smooth Riemannian isometry on B. This shows that the

closure of Xt is open, which implies assertion (b). Our proof also implies assertion (a),

which implies assertion (c).

Claim 13.4. There is a universal constant c>0 such that, for every x∈Yt=Y ∩Mt

and τx :=cρ
2
1(x), the following holds for all t′∈[t−τx, t+τx]∩[0, T ]:

(a) x survives until t′, and x(t′)∈Y .

(b) ϕ̂∞(x) survives until t′, and (ϕ̂∞(x))(t′)=ϕ̂∞(x(t′)).

Proof. The claim follows from Proposition A.10 via a continuity argument. Let

x∈Xt, and set x′ :=ϕ̂∞(x).

Using Claim 13.3 (c) and Lemma 8.4, assuming that εcan is smaller than some univer-

sal constant, we can find a universal constant c>0 such that, for r0 :=c
1/2ρ1(x), the fol-

lowing holds: For all t0⩾0 with |t−t0|⩽r20 the parabolic neighborhoods P (x(t0), r0, 2r
2
0)

and P (x′(t0), 100r0, 2r
2
0) are unscathed and |Rm|⩽r−2

0 on both. By compactness, we

moreover find a constant 1⩽Ax<∞, which may depend on x, such that

|∇mRm|⩽Axr−2−m
0 for m=0, 1, ..., 3
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on both parabolic neighborhoods. Moreover, lengths of curves inside these parabolic

neighborhoods are distorted by at most a factor of 2 under the Ricci flow.

For each i choose t∗−,i minimal and t∗+,i maximal, with 0⩽t∗−,i⩽t⩽t
∗
+,i⩽T and

|t∗±,i−t|⩽ r20,

such that dt0(ϕ̂i(x(t0)), (ϕ̂i(x))(t0))<r0 for all t0∈(t∗−,i, t∗+,i). Since x∈Yt, we have

dt(ϕ̂i(x), x
′)<r0

for large i. So, by the length distortion bound on P (x′(t0), 100r0, 2r
2
0), we have

dt0((ϕ̂i(x(t
′)))(t0), x

′(t0))< 4r0

for all t0∈(t∗−,i, t] and t′∈[t0, t∗+,i) if i is large (we use the convention [t, t)=(t, t]={t}
here). By (13.2) and the distance distortion bounds on

P (x(t0), r0, 2r
2
0) and P (x′(t0), 100r0, 2r

2
0),

we therefore obtain that, for large i and t0∈(t∗−,i, t],

ϕ̂i(P (x(t0), r0, t
∗
+,i−t0))⊂P (x′(t0), 100r0, 2r

2
0).

We can therefore apply Proposition A.10 for

M =B(x(t0), r0), M ′ =B(x′(t0), 100r0), r= r0 and A=Ax,

along with (13.2) to find that there is a sequence εi!0 such that, for large i, we have

dt0((ϕ̂i(x(t
′)))(t0), (ϕ̂i(x))(t0))⩽ εir0

for all t0∈(t∗−,i, t] and t′∈[t, t∗+,i). By the distance distortion bound on

P (x′(t0), 100r0, 2r
2
0)

this implies that

dt′(ϕ̂i(x(t
′)), (ϕ̂i(x))(t

′))⩽ 2εir0 (13.3)

for all such t0 and t′. The bound (13.3) implies that for large i we have t∗−,i=t−r20 or

t∗−,i=0 and t∗+,i=t+r
2
0 or t∗+,i=T , due to their minimal and maximal choice. So, (13.3)

implies assertions (a) and (b).
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Claim 13.5. (a) X is (relatively) open and closed in M[0,T ].

(b) ϕ̂∞ is smooth, and (ϕ̂∞)∗(∂t)=∂t′ .

(c) X=M[0,T ].

Proof. Suppose z∈Mt and z belongs to the closure of X. For r>0 sufficiently

small, by Claim 13.3 (b), there exists t′∈[t−r2, t+r2]∩[0, T ] such that (B(z, r))(t′) is

contained in X. Shrinking r if necessary, we may assume that, for all x∈(B(z, r))(t′),

we have τx⩾2r2, where τx is as in Claim 13.4. Thus, by Claim 13.4 (a), we conclude

that (B(x, r))(t̄)⊂X for all t̄∈[t−r2, t+r2]∩[0, T ]. This implies that the closure of X in

M[0,T ] is open, which implies assertion (a).

By Claim 13.4 (b), it follows that ϕ̂∞ locally commutes with the flows of the time

vector fields ∂t and ∂t′ on M and M′, respectively. Combining this with assertion (a)

of Claim 13.3, we obtain assertion (b). By assertion (a), it follows that X is a union of

connected components of M[0,T ]. Assertion (c) now follows from Lemma 13.2, assuming

that εcan is smaller than some universal constant, and the fact that M0⊂X.

By Claim 13.5, we have constructed a smooth map ϕ̂∞:M[0,T ]!M′
[0,T ] such that

ϕ̂∗∞g
′ = g, ϕ̂∞|M0

=ϕ, (ϕ̂∞)∗∂t = ∂t′ and t′�ϕ̂∞ = t. (13.4)

We now claim that the map ϕ̂∞ is uniquely characterized by (13.4). To see this,

consider two such maps ϕ̂∞ and ϕ̂′∞. As both maps satisfy the harmonic map heat

flow equation, we can apply the conclusions of our proof to up to this point to the

sequences Ui=M[0,T ], ϕ̂2i−1=ϕ̂∞ and ϕ̂2i=ϕ̂
′
∞. It follows that ϕ̂i converges pointwise,

and therefore we must have ϕ̂∞=ϕ̂′∞ as asserted.

It remains to show that ϕ̂∞ is bijective. To see this, we can interchange the roles of

M and M′, and apply our discussion to obtain a map ψ̂∞:M′
[0,T ]!M[0,T ] such that

ψ̂∗
∞g= g′, ψ̂∞|M′

0
=ψ: =ϕ−1, (ψ̂∞)∗∂t′ = ∂t and t�ψ̂∞ = t′.

Now consider the composition α:=ψ̂∞�ϕ̂∞ such that

α∗g= g, α|M0
= idM0

, α∗∂t = ∂t and t�α= t,

By the uniqueness property, as discussed in the previous paragraph (for M=M′), we

obtain that ψ̂∞�ϕ̂∞=α=idM[0,T ]
. Similarly, we obtain that ϕ̂∞�ψ̂∞=idM′

[0,T ]
. This

shows that ϕ̂∞ is bijective, finishing the proof.
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Appendix A. Ricci–DeTurck flow and harmonic map heat flow

In this section we discuss the main estimates for harmonic map heat flow and Ricci–

DeTurck flow that will be needed in the paper. While the general methodology is fairly

standard, we were unable to find suitable references in the general PDE literature for

these results.

A.1. The main equations

In this subsection we derive the general equations for harmonic map heat flow with time

dependent metrics on the source and target, and the associated Ricci–DeTurck flow.

Most of the ideas presented in this subsection go back to DeTurck [DT] and Hamilton

[Ha4].

Consider two n-dimensional manifoldsM andM ′, each equipped with a smooth fam-

ily of Riemannian metrics (gt)t∈[0,T ] and (g′t)t∈[0,T ]. Let moreover (χt)t∈[0,T ], χt:M
′!M

be a smooth family of maps.

Definition A.1. We say that the family (χt)t∈[0,T ] moves by harmonic map heat flow

between (M ′, g′t) and (M, gt) if the family satisfies the following evolution equation:

∂tχt=∆g′t,gt
χt=

n∑
i=1

(∇gt
dχt(ei)

dχt(ei)−dχt(∇
g′t
eiei)), (A.1)

where {ei}ni=1 is a local frame field on M ′ that is orthonormal with respect to g′t.

Assume now for the remainder of this subsection that all the maps χt are diffeomor-

phisms and consider their inverses χ−1
t . Let

ht := (χ−1
t )∗g′t−gt (A.2)

be the associated perturbation. The pullback (χ−1
t )∗g′t=gt+ht evolves by the following

equation

∂t((χ
−1
t )∗g′t)= (χ−1

t )∗∂tg
′
t−L∂tχt�χ

−1
t
((χ−1

t )∗g′t)

= (χ−1
t )∗(∂tg

′
t+2Ric(g′t))−2(χ−1

t )∗ Ric(g′t)−L∂tχt�χ
−1
t
((χ−1

t )∗g′t)

= (χ−1
t )∗(∂tg

′
t+2Ric(g′t))−2Ric(gt+ht)−L∂tχt�χ

−1
t
(gt+ht)

= (χ−1
t )∗(∂tg

′
t+2Ric(g′t))−2Ric(gt)+Xt,

(A.3)

where Xt can be expressed as follows (in the following identity, covariant derivatives and

curvature quantities are taken with respect to gt and the time-index t is suppressed)

Xij =(g+h)pq(∇2
pqhij+R

u
pij huq+R

u
pji huq−R u

ipq huj−R u
jpq hiu)

− 1
2 (g+h)

pq(g+h)uv(−∇ihpu∇jhqv−2∇uhip∇qhjv

+2∇uhip∇vhjq+2∇phiv∇jhqu+2∇ihpu∇qhjv).
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We will now use (A.3) to derive an evolution equation for ht. First observe that

∂tht= ∂t((χ
−1
t )∗g′t)−∂tgt.

Similarly as in Uhlenbeck’s trick, we define (we will suppress the time-index again wher-

ever it interferes with the index notation)

(∇∂tht)ij =(∂tht)ij− 1
2g
pq(hpj∂tgqi+hip∂tgqj).

Then,

(∇∂tht)ij =((χ−1
t )∗(∂tg

′
t+2Ric(g′t)))ij−(∂tgt+2Ric(gt))ij

− 1
2g
pq(hpj∂tgqi+hip∂tgqj)+Xij

=((χ−1
t )∗(∂tg

′
t+2Ric(g′t)))ij−(∂tgt+2Ric(gt))ij

− 1
2g
pq(∂tgt+2Ric(gt))pihqj− 1

2g
pq(∂tgt+2Ric(gt))pjhiq+Yij ,

(A.4)

where

Yij =Xij+gpq Ricip hqj+gpq Ricjp hqi

=(g+h)pq(∇2
pqhij+R

u
pij huq+R

u
pji huq)

+(gpq−(g+h)pq)(R u
ipq huj+R

u
jpq hiu)

− 1
2 (g+h)

pq(g+h)uv(−∇ihpu∇jhqv−2∇uhip∇qhjv

+2∇uhip∇vhjq+2∇phiv∇jhqu+2∇ihpu∇qhjv).

In the following, we will focus on the case in which ht is small and in which the

families of metrics (gt)t∈[0,T ] and (g′t)t∈[0,T ] almost satisfy the Ricci flow equation in the

following sense. For parameters 0<η<0.1 and δ>0 we assume that, for all t∈[0, T ],

−ηgt⩽ht⩽ ηgt

and

−δg′t⩽ ∂tg′t+2Ric(g′t)⩽ δg
′
t and −δgt⩽ ∂tgt+2Ric(gt)⩽ δgt. (A.5)

If we now multiply (A.4) by 2giugjvhuv, then we obtain that, for some dimensional

constant C0<∞,

∂t|h|2⩽ (g+h)ij∇2
ij |h|2−2(g+h)ijgpqguv∇ihpu∇jhqv

+C0δ ·|h|+C0|Rmg|·|h|2+C0|h|·|∇h|2.
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We will later consider the case η<min{0.1, C−1
0 }. Note that then

∂t|h|2⩽ (g+h)ij∇2
ij |h|2+C0δ ·|h|+C0|Rmg|·|h|2. (A.6)

Next, let us consider the case in which (gt)t∈[0,T ] and (g′t)t∈[0,T ] both satisfy the

(exact) Ricci flow equation. Then, (A.3) implies the Ricci–DeTurck equation for the

pullback metric gt+ht=(χ−1
t )∗g′t:

∂t(gt+ht)=−2Ric(gt+ht)−LXgt (gt+ht)(gt+ht),

where the vector field Xgt(gt+ht) is defined by

Xg(g
∗) :=∆g∗,g idM =

n∑
i=1

(∇g
eiei−∇g∗

ei ei), (A.7)

for a local frame {ei}ni=1 that is orthonormal with respect to g∗. Note that

Xgt(gt+ht)= ∂tχt�χ
−1
t . (A.8)

From an analytical point of view, (A.4) implies that the Ricci–DeTurck equation

can be expressed as follows in terms of the perturbations ht (also referred to as the

Ricci–DeTurck perturbation equation here):

∇∂tht=∆gtht+2Rmgt(ht)+Qgt [ht]. (A.9)

Here the expression on the left-hand side now denotes the conventional Uhlenbeck trick:

(∇∂tht)ij =(∂tht)ij+g
pq
t ((ht)pj Ricqi+(ht)ipRicqj).

Moreover,

(Rmgt(ht))ij = gpqR u
pij hqu

and Qgt [ht]=Q(1)
gt [ht], where

(Q(α)
gt [ht])ij =((g+αh)pq−gpq)(∇2

pqhij+R
u

pij huq+R
u

pji huq)

+(gpq−(g+αh)pq)(R u
ipq huj+R

u
jpq hiu)

− 1
2α(g+αh)

pq(g+αh)uv(−∇ihpu∇jhqv−2∇uhip∇qhjv

+2∇uhip∇vhjq+2∇phiv∇jhqu+2∇ihpu∇qhjv).

(A.10)

In this paper, we also consider the rescaled Ricci–DeTurck equation for perturbations of

the form h̃t :=α
−1ht (we will be interested in the case α⩽1 mostly):

∇∂t h̃t=∆gt h̃t+2Rmgt(h̃t)+Q(α)
gt [h̃t]. (A.11)

Note that Q(0)[ht]=0. So, for α!0, the equation (A.11) converges to the linearized

Ricci–DeTurck equation

∇∂t h̃t=∆gt h̃t+2Rmgt(h̃t). (A.12)
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A.2. Local derivative estimates

In the following, we will derive local bounds on derivatives of the Ricci–DeTurck equation

and the harmonic map heat flow equation. Let us first consider the Ricci–DeTurck

perturbation equation. We obtain the following local derivative bounds.

Lemma A.2. (Local derivative estimates for Ricci–DeTurck flow) For any m,n⩾1

there are constants ηm=ηm(n)>0 and Cm=Cm(n)<∞ such that the following holds.

Consider a Ricci flow (gt)t∈[0,r2] on an n-dimensional manifold M . Let p∈M be

a point, r>0 and assume that the time-zero ball B(p, 0, r)⊂M is relatively compact and

that |∇m′
Rm|⩽r−2−m′

on B(p, 0, r)×[0, r2] for all m′=0, ...,m+2.

Consider a solution (ht)t∈[0,r2] on (M, (gt)t∈[0,r2]) to the Ricci-DeTurck perturbation

equation (A.9). Then, the following holds :

(a) If

H := sup
B(x,0,r)×[0,r2]

|ht|gt ⩽ ηm,

then

|∇m′
ht|gt ⩽CmHt−m

′/2

on B
(
p, 0, 12r

)
×(0, r2] for all m′=1, ...,m.

(b) If

H0 := sup
B(x,0,r)×[0,r2]

|ht|gt+ max
0⩽m′⩽m+1

sup
B(x,0,r)

rm
′
|∇m′

ht|gt ⩽ ηm,

then

|∇m′
ht|gt ⩽CmH0r

−m′

on B
(
p, 0, 12r

)
×[0, r2] for all m′=1, ...,m.

Proof. This follows directly from [Ba1, Proposition 2.5], [Ap1, Lemma 4.4] and

(A.9).

Next, we discuss similar local derivative bounds for the harmonic map heat flow.

To this end, consider families of metrics (gt)[0,T ] on M and (g′t)[0,T ] on M ′ and a so-

lution (χt:M
′!M)t∈[0,T ] to the harmonic map heat flow equation (A.1) between M ′

and M . Choose local coordinates (x1, ..., xn) on U⊂M and (y1, ..., yn) on V ⊂M ′ such

that χt(V )⊂U for all t∈[0, T ]. Express the families of metric (gt)t∈[0,T ] on U and (g′t)[0,T ]

on V as

gt= gt,ij dx
idxj and g′t= g′t,ij dy

idyj .

The maps χt can be expressed on V as an n-tuple of functions

(χ1
t (y

1, ..., yn), ..., χnt (y
1, ..., yn))
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and the harmonic map heat flow equation takes the form (we again suppress the t-index)

∂tχ
k = g′ ij

∂2χk

∂yi∂yj
−g′ ijg′uv

(
2
∂g′iu
∂yj

−
∂g′ij
∂yu

)
∂χk

∂yv

+g′ ijgkl(χ1, ..., χn)
∂χu

∂yi
∂χv

∂yj

(
2
∂gul
∂xv

− ∂guv
∂xl

)
Using this notation, we can now state the following local regularity result.

Lemma A.3. (Local gradient bounds for harmonic map heat flow) For any m,n⩾1

and A<∞ there are constants αm=αm(A,n) and Cm=Cm(A,n)<∞ such that the fol-

lowing holds.

Choose r>0 such that r2⩽T and p∈V . Assume that the Euclidean ball B(q, r)⊂V
is relatively compact and that, on U×[0, r2] and V ×[0, r2], we have

|∂m1∂m2
t (gij−δij)|⩽αmr−m1−2m2 and |∂m1∂m2

t (g′ij−δij)|⩽αmr−m1−2m2

for all 0⩽m1+2m2⩽m+1 (here ∂m1 denotes spatial derivatives). Assume moreover

that there is a p∈U such that χt(B(q, r))⊂B(p,Ar) for all t∈[0, r2].
Then, the following holds :

(a) We have

|∂m1∂m2
t χk|⩽Cmt−(m1+2m2−1)/2. (A.13)

on B
(
q, 12r

)
×(0, r2] for all 0<m1+2m2⩽m.

(b) If moreover for all 0<m1⩽m+1 we have

|∂m1χk|⩽Ar1−m1 on B(p, r)×{0}

(for t=0), then we even have

|∂m1∂m2
t χk|⩽Cmr−(m1+2m2−1)

on B
(
q, 12r

)
×[0, r2] for all 0<m1+2m2⩽m.

Proof. Without loss of generality, we may assume via parabolic rescaling and trans-

lating that r=1 and p=q=0. The constant αm will be chosen in the course of this proof.

We will always assume that αm<0.1.

Let β>0 be a constant whose value we determine in the course of this proof. Set

χ̃kt :=β ·χkt . Then, χ̃ satisfies an equation of the form

∂tχ̃= g′ ij∂2ijχ̃+f1(x
1, ..., xn, t)∗∂χ̃+αmβ−1 ·f2(x1, ..., xn, β−1χ̃1, ..., β−1χ̃n, t)∗∂χ̃∗∂χ̃,
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where f1 and f2 are functions with

|∂m1∂m2
t fi|⩽C(m,n) (A.14)

on B(p, 0, 1)×[0, 1] for all 0⩽m1+2m2⩽m (note that f2 has 2n spatial components).

Assume for the remainder of the proof that αm⩽βm+1. Then,

f3(x
1, ..., xn, z1, ..., zn, t) :=αmβ

−1f2(x
1, ..., xn, β−1z1, ..., β−1zn, t)

also satisfies a bound of the form (A.14).

Next, note that

|χ̃|⩽βA on B(p, 0, 1)×[0, t0].

So, if β is chosen small, depending on A, m and n, then we can again use [Ba1, Propo-

sition 2.5] in assertion (a) to derive bounds for |∂m1∂m2
t χ̃kij | on B

(
p, 0, 12

)
×(0, 1] that

depend only on A, m and n. These bounds imply (A.13). For assertion (b) we can use

[Ap1, Lemma 4.4].

Using this local gradient estimate, we can now prove the following drift bound.

Lemma A.4. (Drift bound in local coordinates) For every n⩾1 and A<∞ there are

constants τ=τ(A,n), α=α(A,n)>0 and C=C(A,n)<∞ such that the following holds.

Let r>0 and let (gt)t∈[0,T ] and (g′t)t∈[0,r2] be smooth families of Riemannian metrics

on n-dimensional manifolds M and M ′. Assume that (χt)t∈[0,r2] is a solution to the

harmonic map heat flow equation (A.1) with the property that χt is A-Lipschitz for all

t∈[0, r2].
Let q∈M ′ and p:=χ0(q)∈M . Assume that we have the bounds

|∇mRm(gt)|, |∇mRm(g′t)|⩽αr−2−m for m=0, ..., 3

and

|∇m∂tgt|, |∇m∂tg
′
t|⩽αr−2−m for m=0, 1

on B(p, 0, r)×[0, r2] and B(q, 0, r)×[0, r2]. Assume also that B(p, 0, r) and B(q, 0, r)

are relatively compact in M and M ′, respectively.

Then, d0(χt(q), p)⩽Ct1/2 for all t∈[0, τr2].

Proof. Without loss of generality, we may assume that r=1. Choose t∗∈[0, 1] max-

imal with the property that d0(χt(q), p)⩽ 1
10 for all t∈[0, t∗]. Obviously, t∗>0. In the

following we will find a lower bound on t∗ in terms of A and n.

Assuming α to be sufficiently small, we can use the A-Lipschitz bound on χt to

conclude that we have, for all t∈[0, t∗],

χt(B(q, 0, (2A)−1))⊂B(p, 0, 1)⊂U.
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We will now apply Lemma A.3 for r=r∗ := 1
2 (2A)

−1. To do this, consider the expo-

nential map

expq,g′0 :TqM
′ ⊃B(0, r∗)−!B(q, 0, r∗)⊂M ′

based at q with respect to the metric g′0. Then, the family of pullback metrics (expq,g′0)
∗g′t

on B(0, r∗) satisfies a bound of the form (A.13), for r=r∗ and α replaced by C(A,n)α.

A similar bound holds for the family of pullback (expp,g0)
∗gt on B(0, 1). The family of

maps

χt�expq,g′0 :B(0, r∗)−!B(p, 0, 1)

can be lifted to a family of maps

χ̃t:B(0, r∗)−!B(0, 1)

with χt�expq,g′0=expp,g0 χ̃t and χ̃0(0)=0.

We can now apply Lemma A.3 for χ̃t and assuming that α is sufficiently small, and

obtain that

|∂tχ̃t|⩽C ′t−1/2

for some C ′=C ′(A,n)<∞. Integrating this bound yields

d0(χt(q), p))⩽ d0(χ̃t(0), 0)⩽Ct
1/2

for all t∈[0, t∗], where C=C(A,n)<∞.

Set τ :=min{(100C)−2, 1}. If t∗<τ , then d0(χt(q), p))<
1
10 for all t∈[0, t∗], in con-

tradiction to the maximal choice of t∗. So, t∗⩾τ , which finishes the proof.

A.3. Short-time existence

In this subsection, we prove our main short-time existence result, Proposition A.9, for

the harmonic map heat flow. The main technical challenges come from the fact that we

will work in the non-compact setting and that the background metrics on domain and

target are time-dependent and may not strictly satisfy the Ricci flow equation.

We first derive the following bound for solutions of the harmonic map heat flow,

which is a consequence of (A.6).

Lemma A.5. For every n⩾1 there exists a constant η̄n>0 such that, for any 0<η0<

η1<η̄n and 0<δ,C<∞, there is a constant τ=τ(η0, η1, δ, C, n)>0 such that the following

holds.

Consider smooth families of metrics (gt)t∈[0,T ] and (g′t)t∈[0,T ] on n-dimensional

manifolds M and M ′ such that (A.5) holds. Assume moreover that (M, gt) and (M ′, g′t)
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are complete and |Rm(gt)|, |Rm(g′t)|⩽C for all t∈[0, T ] and that |∇gt∂tgt| is uniformly

bounded on M×[0, T ] (by some constant that may be independent of C).

Let (χt)t∈[0,T ] be a smooth family of diffeomorphisms between M ′ and M moving

by harmonic map heat flow (A.1) and set ht :=(χ−1
t )∗g′t−gt. Assume that |h0|⩽η0 and

that |∂tht|<C ′t−1/2 on M×(0, T ] for some finite constant C ′.

Then, for all t∈[0,min{τ, T}], we have |ht|⩽η1.

Note that in this lemma the constants η0, η1 and δ can be chosen independently

of C.

Proof. By (A.6) we have

∂t|h|2⩽ (g+h)ij∇2
ij |h|2+C2

0δ
2+|h|2+C0C ·|h|2,

as long as |h|⩽η̄n for some universal η̄n>0. So, by the weak maximum principle applied

to (A.6), we obtain

|ht|2⩽ η20e(C0C+1)t+
C2

0δ
2

C0C+1
(e(C0C+1)t−1).

Note that for the application of the weak maximum principle we need to use the fact that

∂tgt and |∇gt∂tgt| are uniformly bounded on M×[0, T ]. The bound on the first quantity

follows from (A.5) and the curvature bound and the second quantity is bounded by

assumption.

The lemma now follows immediately by a continuity argument. Observe here that

the condition |ht|⩽η̄n always holds on a slightly larger time-interval than the condition

|ht|⩽η1, due to the bound on |∂tht| and the fact that C ′t−1/2 is integrable.

We first discuss the existence theory of the harmonic map heat flow in the case

in which the domain M ′ is compact and we will derive a lower bound on the time of

existence.

Lemma A.6. (Short-time existence of harmonic map heat flow, compact case) For

every n⩾1 and C<∞ there are constants τ=τ(C, n)>0 and C∗=C∗(C, n)<∞ such

that the following holds.

Let (gt)t∈[0,T ] and (g′t)t∈[0,T ] be two smooth families of Riemannian metrics on n-

dimensional manifolds M and M ′ and �χ:M ′!M a smooth map such that

(i) (M, g0) is complete and M ′ is compact.

(ii) We have |∇m
gt Rm(gt)|, |∇m

g′t
Rm(g′t)|, |∇m

gt∂tgt|, |∇
m
g′t
∂tg

′
t|⩽C on M and M ′ for

all t∈[0, T ] and m=0, ..., 3.

(iii) �χ is C-Lipschitz.
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Then, the harmonic map heat flow equation

∂tχt=∆g′t,gt
χt, χ0 = �χ, (A.15)

has a smooth solution on the time-interval [0,min{τ, T}) and χt is C
∗-Lipschitz for all

t∈[0,min{τ, T}].

Proof. By standard parabolic theory, we find that (A.15) has a solution (χt)t∈[0,T∗)

for some maximal 0<T ∗⩽T . If T ∗<T , then this solution does not extend smoothly

until time T . It remains to deduce a lower bound on T ∗ and a Lipschitz bound that only

depend on C, n.

As explained in [BB], the norm of the differential

dχt ∈C∞(M ′;T ∗M ′⊗χ∗
tTM)

satisfies an evolution inequality of the form

∂t|dχt|2⩽∆g′t
|dχt|2+∂tg′t∗dχt∗dχt+Ric(g′t)∗dχt∗dχt

+∂tgt∗dχt∗dχt+Rm(gt)∗dχt∗dχt∗dχt∗dχt.

So, for some C ′=C ′(C, n)<∞ we have

∂t|dχt|2⩽∆g′t
|dχt|2+C ′|dχt|2+C ′|dχt|4.

So, using assumption (iii) and the weak maximum principle, we can find constants

τ=τ(C, n)>0 and C ′′=C ′′(C, n)<∞ such that |dχt|2⩽C ′′ for all t∈[0,min{τ, T ∗}). So,
χt remains C∗-Lipschitz for all t∈[0,min{τ, T ∗}) for some C∗=C∗(C, n)<∞.

We can now use Lemma A.4, followed by Lemma A.3, to derive bounds on higher

derivative of χt that are independent of t. This shows that χt extends smoothly to time

min{τ, T ∗}. We therefore obtain a contradiction to the maximality of T ∗ in the case in

which T ∗<min{τ, T}.

Next, we remove the compactness assumption onM ′, but assume that the injectivity

radius of M ′ is positive.

Lemma A.7. (Short-time existence of harmonic map heat flow, non-compact case,

positive injectivity radius) Lemma A.6 continues to hold if we modify the assumptions

by replacing (i) and (ii) by the following conditions :

(i′) (M, g0) and (M ′, g′0) are complete,

(ii′) |∇m
gt Rm(gt)|, |∇m

g′t
Rm(g′t)|, |∇m

gt∂tgt|, |∇
m
g′t
∂tg

′
t|⩽C on M and M ′ for all t∈

[0, T ] and m=0, ..., 7,
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and if we assume in addition that

(iv′) The injectivity radius of (M, g0) and (M ′, g′0) is uniformly bounded from below

by a positive constant.

Proof. We will reduce the non-compact case to the compact case via a standard

doubling construction. By [CG] we can find a sequence N (1)⋐N (2)⋐...⋐M ′ of domains

with smooth boundary such that
⋃∞
i=1 IntN

(i)=M ′ and such that the second funda-

mental form of ∂N (i) is bounded by some constant C ′=C ′(C, n)<∞. Let M ′ (i) be the

manifold that arises by identifying two copies of N (i) along their boundary and define

�χ(i):M ′ (i)!M to be equal to �χ|N(i) on each copy of N (i). By a smoothing construction,

and using assumption (iv ′), we can find families of metrics (g
′ (i)
t )t∈[0,T ] on M ′ (i) that

agree with g(i) away from a 1-tubular neighborhood of ∂N (i) and such that the bounds

in assumption (ii ′) continue to hold for all m=0, ..., 3. Moreover, by modifying �χ(i) in a

1-tubular neighborhood of ∂N (i), we can construct maps �χ′ (i):M ′ (i)!M that are C ′′-

Lipschitz, for some C ′′<∞ that is independent of i. Note that C ′′ may, however, depend

on the injectivity radius bound in assumption (iv′).

Using Lemma A.6, we can evolve �χ′ (i) by the harmonic map heat flow to some family

(χ
′ (i)
t )t∈[0,T∗] for some T ∗>0 that is independent of i, but may depend on the injectivity

radius bound in assumption (iv′). Moreover, the maps χ
′ (i)
t are C ′ ∗-Lipschitz for some

uniform C ′ ∗<∞.

Using Lemmas A.4 and A.3, we obtain uniform local derivative bounds on the fami-

lies (χ
′ (i)
t )t∈[0,T∗]. So, after passing to a subsequence, these families converge to a solution

χt :M
′!M of the harmonic map heat flow on the time-interval [0, T ∗].

By the same maximum principle argument as used in the proof of Lemma A.6, we

obtain a Lipschitz bound on χt of the form C∗(C, n) that holds up to time min{τ, T},
where τ=τ(C, n)>0 is a constant that does not depend on the injectivity radius bound in

(iv′). Assume now that T ∗<T is chosen maximal with the property that the harmonic

map heat flow exists on [0, T ∗). If T ∗<min{τ, T}, then we can argue as in the proof

of Lemma A.6 that the flow extends smoothly to time T ∗ and then restart the flow at

time T ∗. This would contradict the maximal choice of T ∗. Therefore, T ∗⩾min{τ, T}.

Using a similar construction, we can remove the assumption on the positivity of the

injectivity radius.

Lemma A.8. Lemma A.7 continues to hold if we remove assumption (iv ′) and re-

place assumption (ii′) by

(ii′′) |∇m
gt Rm(gt)|, |∇m

g′t
Rm(g′t)|, |∇m

gt∂tgt|, |∇
m
g′t
∂tg

′
t|⩽C on M and M ′ for all t in

the interval [0, T ] and all m=0, ..., 10.

Proof. The solution (χt) arises again via a limit argument, by Lemma A.7. For
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this purpose we represent (M, g0) and (M ′, g′0) as a limit of Riemannian manifolds with

positive injectivity radius. The method used here can also be found in [CZ].

Choose p′∈M ′ and p:=�χ(p′)∈M , and denote by r :=d0(p, ·) and r′ :=d0(p
′, ·) the

distance functions to the respective basepoints. Due to assumptions (i′) and (ii′), we

have InjRad>ce−C
′
1r on M and M ′ for some c=c(C)>0 and C ′

1=C
′
1(C)<∞.

Let i⩾1. By mollification of the functions

ζ∗i :=max{0, r−i−1} and ζ ′ ∗i :=max{0, Cr′−i−1}

(for example by application of the heat flow for some uniform time and composition with

a cutoff function), we obtain approximations ζi∈C∞(M) and ζ ′i∈C∞(M ′) such that

(i) ζi≡0 on B(p, 0, i) and ζ ′i≡0 on B(p′, 0, C−1i).

(ii) ζi>r−i and ζ ′i>Cr′−i.
(iii) ζi� �χ<ζ

′
i+10.

(iv) |∇mζi|, |∇mζ ′i|<C ′ for all m=1, ..., 9, for some C ′
2=C

′
2(C)<∞.

Set g
(i)
t :=exp(2C ′

1ζi)gt and g
′ (i)
t :=exp(2C ′

1ζ
′
i)g

′
t. By property (4), assumption (ii ′)

of Lemma A.7 holds for gt and g′t replaced by g
(i)
t and g

′ (i)
t , and C replaced by some

constant C ′
3=C

′
3(C)<∞. Moreover, the injectivity radius on (M, g

(i)
0 ) and (M ′, g

′ (i)
0 ) is

uniformly bounded from below, by a constant that may depend on i. By property (3),

the map �χ is moreover C ′
4-Lipschitz for some C ′

4(C)<∞.

We can now use Lemma A.7 to solve the harmonic map heat flow starting from �χ

with the background metrics (g
′ (i)
t )t∈[0,T ] and (g

(i)
t )t∈[0,T ], on a time-interval of the form

[0,min{τ, T}] for some τ=τ(C, n)>0. Similarly as in the proof of Lemma A.7, these

solutions then subsequentially converge to the desired solution of the harmonic map heat

flow with background metrics (g′t)t∈[0,T ] and (gt)t∈[0,T ].

Using Lemmas A.5 and A.8, we can finally prove the main short-time existence result

that is used in §12.

Proposition A.9. (Short-time existence of harmonic map heat flow, general form)

For every n⩾1 there exists a constant η̄n>0 such that, for any 0<η0<η1<η̄n and any

0<δ,C<∞, there is a constant τ=τ(η0, η1, δ, C, n)>0 such that the following holds.

Let (gt)t∈[0,T ] and (g′t)t∈[0,T ] be smooth families of Riemannian metrics on n-dim-

ensional manifolds M and M ′, and consider a smooth map �χ:M ′!M such that the

following holds for some C ′<∞.

(i) (M, g0) and (M, g′0) are complete.

(ii) |Rm(gt)|, |Rm(g′t)|⩽C on M and M ′ for all t∈[0, T ].
(iii) |∇m

gt Rm(gt)|, |∇m
g′t
Rm(g′t)|, |∇gt∂tgt|, |∇m

g′t
∂tg

′
t|⩽C ′t−m/2 on M and M ′ for all

t∈(0, T ] and all m=0, ..., 10.
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(iv) −δgt⩽∂tgt+2Ric(gt)⩽δgt for all t∈[0, T ].
(v) −δg′t⩽∂tg′t+2Ric(g′t)⩽δg

′
t for all t∈[0, T ].

(vi′′) �χ is a diffeomorphism and

|(�χ−1)∗g′0−g0|⩽ η0.

Then, the harmonic map heat flow equation

∂tχt=∆g′t,gt
χt, χ0 = �χ

has a smooth solution on the time-interval [0, T ∗] for some min{τ, T}⩽T ∗⩽T and for

ht :=(χ−1
t )∗g′t−gt we have |ht|⩽η1 for all t∈[0, T ∗]. For all t∈[0, T ∗], the map χt is a

diffeomorphism. Moreover, if |hT∗ |⩽η′<η1, then T ∗=T .

Proof. Fix some sequence θi!0. By assumptions (iii) and (vi′′), we can find a

sequence η
(i)
0 !η0 such that

|(�χ−1)∗g′θi−gθi |⩽ η
(i)
0 .

Let τ=τ
(
1
2 (η0+η1), η1, δ, C, n

)
be the constant from Lemma A.5. Fix some large i and

assume that η
(i)
0 ⩽

1
2 (η0+η1). By Lemma A.8 and assumptions (i)–(iii) and (vi′′), we can

solve the harmonic map heat flow equation

∂tχ
(i)
t =∆g′t,gt

χ
(i)
t , χ

(i)
θi

= �χ. (A.16)

on a time-interval of the form [θi, Ti], where θi<Ti⩽T . Assume Ti⩽T is chosen maxi-

mally with the property that (A.16) has a solution on [θi, Ti) and that, for

h
(i)
t := (χ−1

t )∗g′t−gt,

we have |ht|⩽η1 for all t∈[θi, Ti). By Lemmas A.5 and A.8 we find that

Ti⩾min{θi+τ, T}.

Note that Lemma A.5 requires a bound on |∂tht|, which we can obtain from assumption

(iii) and Lemmas A.4 and A.3. The same bound combined with assumption (vi′′) also

allows us to argue that χ
(i)
t is a diffeomorphism for all t∈[θi, Ti).

We now show that we have smooth convergence of the (χ
(i)
t ) to a harmonic map

heat flow (χt) on [0,min{τ, T}), after passing to a subsequence. Consider some point

q∈M ′ and set p:=�χ(q). By smoothness of (gt) and (g′t), we can find some constant

rq>0 such that Lemmas A.4 and A.3 are applicable at scale rq near q and p and at
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time θi, for all i. So, after passing to a subsequence, χit converges locally in the C10-

sense in the neighborhood of every point (q, 0)∈M ′×{0}. Moreover, by assumption

(iii), for any t0>0, Lemma A.4 is applicable at any point of M×[t0, Ti] and M
′×[t0, Ti]

at some uniform scale r0=r0(t0, C
′, n)>0, which is independent of i. Iterating this

fact, and using Lemma A.3, yields local bounds on χ
(i)
t for any t∈[0, τ). So, after

passing to a subsequence, the families of maps (χ
(i)
t ) indeed converge to a solution of the

harmonic map heat flow (χt) on [0,min{τ, T}), in the C10-sense. Repeated application of

Lemma A.3 yields higher-derivative bounds and implies that the convergence is smooth,

after passing to another subsequence. The bounds in part (b) of Lemma A.3 imply that

χ0=�χ. The fact that χt is a diffeomorphism for all t∈[0,min{τ, T}) follows from the fact

that it is a limit of diffeomorphisms χ
(i)
t that are uniformly bilipschitz.

It remains to show the last assertion. So, assume by contradiction that |hT∗ |⩽η′<η1,
but T ∗<T . Then, by Lemma A.8 we can extend the flow past time T ∗, and by Lemma A.5

with η0=η
′ we have |ht|⩽η1 for t close to T ∗, contradicting our choice of T ∗.

A.4. Further results

In the following, we will prove several analytical results that are needed in §12. The

results will mostly build on the computations of §A.1.

The following proposition provides a bound on the drift of a solution to the harmonic

map heat flow, whenever the associated perturbation h is small.

Proposition A.10. (Drift control) For any n⩾1, δ>0 and A<∞ there is a con-

stant η=η(δ, A, n)>0 such that the following holds.

Let r>0 and T⩽Ar2 and consider Ricci flows (gt)t∈[0,T ] and (g′t)t∈[0,T ] on n-

dimensional manifolds M and M ′. Let (ϕt)t∈[0,T ], ϕt:M!M
′, be a smooth family of

diffeomorphisms onto their images whose inverses ϕ−1
t :ϕt(M)!M ′ satisfy the harmonic

map heat flow equation

∂tϕ
−1
t =∆g′t,gt

ϕ−1
t .

Let x∈M and assume that for x′ :=ϕ0(x), the following statements hold :

(i) B(x, 0, r) is relatively compact in M .

(ii) |∇mRm|⩽Ar−2−m on B(x, 0, r)×[0, T ] for all m=0, 1, 2, 3.

(iii) |Rm|⩽Ar−2 on B(x′, 0, r)×[0, T ].

(iv) −ηg′t⩽ht=ϕ∗t gt−g′t⩽ηg′t for all t∈[0, T ].
Then, for all t∈[0, T ],

d0(ϕt(x), ϕ0(x))<δr.
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We note that this proposition is similar to Lemma A.4. In fact, this lemma could be

used in lieu of Proposition A.10. Nevertheless, we have included this proposition since

its proof is somewhat shorter and does not use local coordinates.

Proof. By parabolic rescaling, we may assume without loss of generality that r=1.

Using Lemma A.2, we obtain that if η is sufficiently small depending on A and n,

then for all t∈[0, T ] we have

|∇ht|(x)⩽C1ηt
−1/2,

where C1=C1(A,n)<∞. So, by (A.8) and (A.7), we obtain

|∂tϕ−1
t (ϕt(x))|= |Xgt(gt+ht)|⩽C2ηt

−1/2,

where C2=C2(A,n)<∞. As ∂tϕt=−dϕt(∂tϕ−1
t �ϕt), we obtain that

|∂tϕt(x)|⩽C3ηt
−1/2,

where C3=C3(A,n)<∞. Integrating this bound, and taking into account the distance

distortion in M ′ via assumption (iii), we obtain that

d0(ϕt(x), ϕ0(x))<C4ηt
1/2

for some C4=C4(A,n)<∞, as long as C4ηt
1/2<1. So, the proposition follows if η⩽

C−1
4 min{δ, (2A)−1/2}.

Next, we derive short-time bounds for solutions to the Ricci–DeTurck equation. To

do this, we first establish the following barrier-type estimate.

Lemma A.11. For any n⩾1 and A<∞ there is a constant C=C(A,n)<∞ such

that the following holds.

Let r>0. Consider smooth families of metrics (gt)t∈[0,r2] and (gt+ht)t∈[0,r2] on an

n-dimensional manifold M , a point x∈M and a smooth function u∈C∞(B(x, r)×[0, r2])

such that

(i) B(x, 0, r) is relatively compact in M .

(ii) 1
2gt⩽ht⩽2gt on B(x, 0, r) for all t∈[0, r2].

(iii) u satisfies the inequality

∂tu⩽ (gt+ht)
ij∇2,gt

ij u. (A.17)

(iv) |Rm(gt)|gt , |∂tgt|gt⩽Ar−2 on B(x, 0, r) for all t∈[0, r2].
(v) |∇gt∂tgt|gt⩽Ar−2t−1/2 on B(x, 0, r) for all t∈[0, r2].
(vi) |u|⩽1 on B(x, 0, r)×[0, r2].
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Then, for all t∈[0, r2] we have

u(x, t)⩽Ctr−2+ sup
B(x,0,r)

u0. (A.18)

Proof. Without loss of generality we may assume that r=1. Fix a function

f : [0, 1]−! [0,∞)

such that f≡0 on [0, 14 ] and f
(
1
2

)
>1 and f ′⩾0 everywhere. Set w(y):=f(d0(x, y)) for

all y∈B(x, 0, 1). By Hessian comparison and assumptions (i) and (ii), there is a constant

C ′
1=C

′
1(n,A)<∞ such that ∇2,g0w⩽C ′

1g0 on B(x, 0, 1) in the barrier sense. By a local

smoothing procedure (see for example [GW]) we can construct a smooth, non-negative

w′∈C∞(B(x, 0, 1)) such that, for some C ′
2=C

′
2(n,A)<∞, we have

|∇g0w′|⩽C ′
2, ∇2,g0w′⩽C ′

2g0 and w′ ≡ 0

on B
(
x, 0, 12

)
and w′>1 on B(x, 0, 1)\B

(
x, 0, 12

)
.

For any vector v∈TyM , y∈B(x, 0, 1), we have, by assumptions (ii) and (iii),∣∣∣∣ ddt∇2,gt
v,v w

′
∣∣∣∣= ∣∣∣∣dw′

((
d

dt
∇gt

)
(v, v)

)∣∣∣∣
= |dw′|gt

∣∣∣∣g−1
t ((∇gt

v ∂tgt)(v, ·)−
1

2
(∇gt

· ∂tgt)(v, v))

∣∣∣∣
gt

⩽C ′
3t

−1/2

for some C ′
3=C

′
3(n,A)<∞. Integrating this bound over t and tracing in v, we conclude,

using assumption (ii), that there is a constant C ′
4=C

′
4(n,A)<∞ such that

(gt+ht)
ij∇2,gt

ij w′<C ′
4 on B(x, 0, 1) for all t∈ [0, 1]. (A.19)

We now show that for any ε>0 we have

ut<w
′+C ′

4t+ sup
B(x,0,1)

u0+ε (A.20)

on B(x, 0, 1) for all t∈[0, 1]. Evaluating this bound at x and letting ε!0 will then imply

(A.18).

Note that (A.20) trivially holds for t=0 and for t>0 it can only fail on B(x, 0, 12 ) due

to assumption (vi), since w′>1 on B(x, 0, 1)\B
(
x, 0, 12

)
. Assume by contradiction that

(A.20) fails for some t∈[0, 1]. As B
(
x, 0, 12

)
is relatively compact in M , we may assume

that t is chosen minimal with this property. Then, t>0 and there is a point y∈B(x, 0, 12 )

at which equality holds in (A.20). It follows that at y we have, using (A.19),

∂tut−(gt+ht)
ij∇2,gt

ij ut⩾C
′
4−(gt+ht)

ij∇2,gt
ij w′> 0.

This, however, contradicts (A.17).

Therefore, (A.20) holds on B(x, 0, 1) for all t∈[0, 1] and all ε>0, which finishes the

proof.
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Using Lemma A.11, we can prove the following short-time bounds for the Ricci–

DeTurck flow.

Proposition A.12. (Short-time bounds for Ricci–DeTurck flow) For any n⩾1 there

is a constant η0=η0(n)>0 and for any A<∞ there is a constant C=C(A,n)<∞ such

that the following holds.

Let (gt)t∈[0,r2], r>0, be a Ricci flow on an n-dimensional manifold M and let

(ht)t∈[0,r2] be a Ricci–DeTurck flow with background metric (gt)t∈[0,r2]. Let x∈M be

a point and assume that

(i) B(x, 0, r) is relatively compact in M .

(ii) |Rm(gt)|⩽Ar−2 on B(x, 0, r) for all t∈[0, r2].
(iii) |ht|⩽η⩽η0 on B(x, 0, r) for all t∈[0, r2].
Then, for all t∈[0, r2] we have

|h(x, t)|2⩽Cη2tr−2+ sup
B(x,0,r)

|h0|2.

Proof. By (A.6), if η is smaller than some dimensional constant, then

∂t|ht|2⩽ (gt+ht)
ij∇2

ij |ht|2+C ′
1|ht|2

for some constant C ′
1=C

′
1(A,n)<∞. So, the proposition follows from Lemma A.11 by

setting ut :=η
−2e−C

′
1t|ht|2. Note that assumption (ii) in Lemma A.11 is guaranteed if we

choose η0 sufficiently small and assumption (v) follows using Shi’s estimates.

Lastly, we prove that solutions to the Ricci–DeTurck perturbation equation remain

small in a parabolic neighborhood if they are small on a larger ball at time zero. The

following proposition also holds for perturbations that arise from almost Ricci flows, as

discussed in §A.1.

Proposition A.13. (Smallness of h at time zero implies smallness of h at later

times) For any n⩾1 there is a constant η=η(n)>0 such that, for any ε>0 and A<∞,

there is a constant 0<δ=δ(ε,A, n)<1 such that the following holds.

Let r>0. Consider smooth families of metrics (gt)t∈[0,r2] and (g′t)t∈[0,r2] on n-

dimensional manifolds M and M ′, respectively, as well as a smooth family of diffeo-

morphisms (χt)t∈[0,r2] between M ′ and M that satisfies the harmonic map heat flow

equation

∂tχt=∆g′t,gt
χt.

Set ht :=(χ−1
t )∗g′t−gt as in (A.2), and assume that, for some x∈M , the following bounds

hold on B(x, 0, δ−1r) for all t∈[0, r2]:
(i) B(x, 0, δ−1r) is relatively compact in M .
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(ii) |Rm(gt)|⩽Ar−2.

(iii) |∇gt∂tgt|⩽Ar−1.

(iv) −δgt⩽∂tgt+2Ric(gt)⩽δgt.

(v) −δg′t⩽∂tg′t+2Ric(g′t)⩽δg
′
t.

(vi) |ht|⩽η.
(vii) |h0|⩽δ.
Then, |h(x, t)|<ε for all t∈[0, r2].

Proof. By parabolic rescaling, we may assume r=1. The constant δ will be chosen

in the course of the proof. In the following, we will always assume that δ⩽1.

By assumptions (ii), (iv)–(vi) and (A.6), and assuming that η is smaller than some

dimensional constant, we can find a constant C1=C1(A,n)<∞ such that ht satisfies the

evolution inequality

∂t|ht|2⩽ (gt+ht)
ij∇2

ij |ht|2+C1δ+C1|ht|2

on B(x, 0, δ−1)×[0, 1]. So,

ut := e−C1t(|ht|2+δ) (A.21)

satisfies the evolution inequality

∂tut⩽ (gt+ht)
ij∇2

iju.

We will now derive a bound on u by an argument that is analogous to the proof

of Lemma A.11. Fix a non-decreasing function f : [0, 1]![0,∞) such that f≡0 on
[
0, 14

]
and f

(
1
2

)
>1. Set w(y):=f(δ ·d(x, y)). By Hessian comparison and assumption (ii), we

obtain that at any y∈B(x, 0, δ−1) in the barrier sense, for d:=d0(x, y),

∇2,g0w⩽C3

(
δ2f ′′(δ ·d)+C2

cosh(C2d)

sinh(C2d)
·δf ′(δ ·d)

)
g0⩽C4 ·δ,

where Ci=Ci(A,n)<∞ for i=2, 3, 4.

As |∇g0w|⩽C5δ for some C5=C5(A,n)<∞, we can argue similarly as in the proof

of Lemma A.11, using assumption (iii), that there is a smoothing w′∈C∞(B(x, 0, δ−1))

of w such that w′>1 on B(x, 0, δ−1)\B
(
x, 0, 12δ

−1
)
and

(gt+ht)
ij∇2,gt

ij w′<C6 ·δ on B(x, 0, δ−1) for all t∈ [0, 1],

where C6=C6(A,n)<∞. Compare this inequality with (A.19). We can now argue simi-

larly as for (A.20) to show that, for all ε′>0 and t∈[0, 1],

ut<w
′+C6δ ·t+ sup

B(x,0,δ−1)

u0+ε
′.

So, by assumption (vii) and letting ε′!0, we obtain that, for all t∈[0, 1]

u(x, t)⩽C5δ+δ+C1δ⩽C6δ.

The proposition now follows using (A.21) if δ is chosen small depending on A and n.
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Appendix B. Properties of Bryant solitons

In this appendix we discuss properties of the (normalized) Bryant soliton (MBry, gBry)

that are needed in this paper. In the following, we denote by xBry∈MBry the tip of the

Bryant soliton, i.e. the center of rotational symmetry, and denote by σ :=dgBry
( · , xBry)

the distance function from the tip.

Lemma B.1. (Properties of the Bryant soliton) There is a rotationally symmetric

potential function f∈C∞(MBry) such that

Ric+∇2f ≡ 0, (B.1)

R+|∇f |2 ≡R(xBry), (B.2)

dR=2Ric(∇f, ·). (B.3)

Moreover, there is a constant CB<∞ such that the following holds : If σ>CB , then

C−1
B σ−1<R<CBσ

−1, (B.4)

Ric>C−1
B σ−2gBry, as quadratic forms, (B.5)

−∂σR>C−1
B σ−2, (B.6)

|∇f |<CB , (B.7)

|∇R|, |∇2 Rm |, |∇3 Rm |<CB . (B.8)

The metric gBry is a warped product of the form gBry=dσ
2+w2(σ)gS2 such that, for

σ>CB ,

C−1
B

√
σ <w(σ)<CB

√
σ. (B.9)

Moreover, for any σ0>CB , if we consider the normalized function and parameter

	w :=
w

w(σ0)
and σ̄ :=

σ−σ0
w(σ0)

,

and if we express 	w in terms of σ̄, then, for all σ̄∈[−1, 1],

|	w(σ̄)−1|,
∣∣∣∣d	wdσ̄

∣∣∣∣, ∣∣∣∣d2	wdσ̄2

∣∣∣∣<CBσ−1/2
0 . (B.10)

In other words, w−2(σ0)gBry is geometrically C2-close to a piece of a round cylinder on

MBry(σ0−w(σ0), σ0+w(σ0)).
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Proof. Identities (B.2) and (B.3) are standard bounds for a complete gradient steady

soliton with bounded curvature, where f satisfies the steady gradient soliton potential

equation (B.1). For (B.2) observe that the left-hand side is constant and |∇f |=0 at xBry.

Identity (B.7) is a direct consequence of (B.2).

By [Bry, Theorem 1] we know that w∼c1
√
σ for large σ and that the radial and

orbital sectional curvatures, KR and KO, behave like

KR∼ c2σ
−2 and KO ∼ c3σ

−1.

Here c1, c2 and c3 are positive constants that depend on the normalization of gBry. The

bounds (B.4), (B.9) and (B.5) follow immediately. It also follows that R decays to zero

at infinity and, therefore, by (B.2), we have |∇f |2!R(xBry) at infinity. Combining this

with (B.3) yields (B.6). The bound (B.8) follows by Shi’s estimates.

Lastly, by the Jacobi equation, we obtain

w′′ =−KRw∼−c1c3σ−3/2.

Integrating this bound and using (B.9), we obtain that w′∼2c1c3σ
−1/2. Rescaling both

bounds by w(σ0) implies the bounds on the second and third term in (B.10). The first

bound follows by integration over [−1, 1] and observing that 	w(0)=1.

Appendix C. Properties of κ-solutions

In this section we discuss properties of κ-solutions (Definition 5.4) that are needed in

the paper. We remind the reader that we are using the curvature scale function ρ from

Definition 6.1.

Lemma C.1. 3-dimensional κ-solutions have the following properties :

(a) There is a κ0>0 such that every 3-dimensional κ-solution (M3, (gt)t∈(−∞,0]) is

either a κ0-solution or a shrinking round spherical space form.

(b) (Compactness) For any κ>0, the collection of pointed κ-solutions

(M3, (gt)t∈(−∞,0], x),

with κ⩾κ and R(x, 0)=1, is compact in the pointed smooth topology.

(c) For every A<∞ there is a constant C=C(A)<∞ such that, for any point (x, t)

in a κ-solution (M3, (gt)t∈(−∞,0]), we have

C−1ρ(x, t)⩽ ρ⩽Cρ(x, t)
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on the parabolic neighborhood P (x, t, Aρ(x, t)).

(d) For every k, l, A<∞ there is a constant C=C(A, k, l)<∞ such that for any

point (x, t) in a κ-solution (M3, (gt)t∈(−∞,0]) we have

|∂kt∇l Rm |⩽Ck,lρ−2−2k−l(x, t)

on the parabolic neighborhood P (x, t, Aρ(x, t)).

(e) We have ∂tR⩾0 and −C⩽∂tR−1⩽0 on every κ-solution for some universal

constant C<∞.

(f) The shrinking round cylinder is the only 3-dimensional κ-solution with more

than one end.

Proof. For assertions (a), (b), (f), and the first part of (e), see [P1, §11] or [KL1,

§§38–51]. Assertions (c) and (d), and the second part of (e) follow immediately from the

compactness assertion (b).

The following lemma is a variation on the geometric definition of canonical neigh-

borhoods used by Perelman in [P2, §1.5, §4.1].

Lemma C.2. For every δ>0 there is a constant C0=C0(δ)<∞ such that the fol-

lowing holds.

If (M, (gt)t∈(−∞,0]) is a 3-dimensional κ-solution and (x, t)∈M×(−∞, 0], then one

of the following holds :

(a) The point (x, t) is the center of a δ-neck at scale ρ(x, t).

(b) There is a compact, connected domain V ⊂M with connected (possibly empty)

boundary such that the following holds :

(1) B(x, t, δ−1ρ(x))⊂V .

(2) ρ(y1, t)<C0ρ(y2, t) for all y1, y2∈V .

(3) diamt V <C0ρ(x, t).

(4) If ∂V ̸=∅, then

(i) ∂V is a central 2-sphere of a δ-neck at time t.

(ii) Either V is a 3-disk and (M, gt) has strictly positive sectional cur-

vature, or V is diffeomorphic to a twisted interval bundle over RP 2 and

(M, gt) is a Z2-quotient of the shrinking round cylinder.

(iii) Any two points z1, z2∈∂V can be connected by a continuous path inside

∂V whose length is less than

min{dt(z1, x), dt(x, z2)}−110ρ(x, t).
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Proof. Suppose the lemma were false for some δ>0. Then, there exists a sequence

(Mk, (gk,t)t∈(−∞,0], xk) of pointed κk-solutions and a sequence Ck!∞ such the conclu-

sion of the lemma fails at time zero for all k, where C0 is replaced by Ck. Without loss of

generality, we may assume that ρ(xk, 0)=1 for all k. Since the conclusion holds for shrink-

ing round spherical space forms when Ck is sufficiently large, we may assume by assertion

(a) of Lemma C.1 that κk⩾κ0>0 for large k. So, by assertion (b) of Lemma C.1, we

may assume that, after passing to a subsequence, the sequence {(Mk, (gk,t)t∈(−∞,0], xk)}
converges to a pointed κ-solution (M∞, (g∞,t)t∈(−∞,0], x∞) in the pointed smooth topol-

ogy. Note that M∞ must non-compact, and (M∞, (gt)t∈(−∞,0]) cannot be a shrinking

round cylinder, since otherwise assertion (a) or (b) will hold for large k, contradicting

our assumptions. Now, by [KL1, Lemma 59.1], its proof, and the discussing preceding

the statement of that lemma, there is a compact manifold with boundary V∞⊂M∞ such

that B(x∞, 0, 2δ
−1ρ(x∞, 0))⊂V∞, the boundary ∂V∞ is the central 2-sphere of a 1

2δ-neck

at time t, and either V∞ is diffeomorphic to a 3-disk and (M∞, (gt)t∈(−∞,0]) has strictly

positive sectional curvature, or V∞ is diffeomorphic to a twisted interval bundle over RP 2

and (M∞, (gt)t∈(−∞,0]) is isometric to a Z2-quotient of a shrinking round cylinder. Now,

for large k, the domain V∞ yields a compact domain with boundary satisfying assertions

(i)-(iii). This is a contradiction.

Proposition C.3. Let (M, (gt)t∈(−∞,0]) be a 3-dimensional κ-solution. If

∂tR(p, 0)=0 for some p∈M,

then, modulo parabolic rescaling, there is a pointed isometry of Ricci flows

(M, (gt)t∈(−∞,0], p)−! (MBry, (gBry,t)t∈(−∞,0], xBry).

Proof. The fact that (M, (gt)t∈(−∞,0]) is a steady gradient soliton was shown by

Hamilton in [Ha3], where he analyzed the equality case of his matrix Harnack inequality

for the Ricci flow (see [Ha2]). Below we have included an alternate proof of this that

incorporates several simplifications. Brendle showed that up to homothety the Bryant

soliton is the only κ-solution that is a gradient steady soliton (see [Bre2]). Finally, for

gradient steady solitons, we have

∂tR= dR(∇f)= 2Ric(∇f,∇f),

where f is the soliton potential. Since Ric>0 on the Bryant soliton, we have ∇f(p)=0.

Because xBry is the unique critical point of the soliton potential of gBry, this forces the

homothety (M, g0)!(MBry, gBry) to map p to xBry.
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In the remainder of this appendix, we will give a simplified proof of the first part

of Proposition C.3, which was shown by Hamilton in [Ha3]. The proof is based on

his matrix Harnack inequality (see [Ha2]) and Brendle’s strong maximum principle in

vector bundles (see [BS, §2]). The reader may also consult a more general treatment of

Hamilton’s Harnack inequality due to Brendle (see [Bre1]), as we will mainly rely on the

terminology developed in this work. As a preparation, we briefly recall the main ideas

of Hamilton’s proof. The bound ∂tR⩾0 follows from the following theorem after passing

to the limit T!∞.

Theorem C.4. Let (M, (gt)t∈(−T,0]) be a 3-dimensional Ricci flow with complete

time-slices and bounded, non-negative sectional curvature. Then,

∂tR⩾− R

T+t
. (C.1)

The proof of this bound follows from the following matrix Harnack estimate: Con-

sider the bundle E=TM⊕Λ2TM over M . We introduce the following (time-dependent)

generalized curvature quantity S∈Sym2E
∗:

St((x, u1∧u2), (y, v1∧v2))=W (x, y)+P (u1∧u2, y)+P (v1∧v2, x)+R(u1, u2, v2, v1),

where

W (x, y)= (∆Ric)(x, y)− 1

2
∇2
x,yR+2

3∑
i,j=1

R(x, ei, ej , y)Ric(ei, ej)

−
3∑
i=1

Ric(x, ei)Ric(ei, y).

and

P (u1, u2, y)= (∇u1
Ric)(u2, y)−(∇u2

Ric)(u1, y).

Hamilton (see also [Bre1] for the terminology used here) observed that this generalized

curvature quantity satisfies an evolution equation that is similar to the evolution equation

for the curvature tensor:

D̃∂tS=∆̃S+Q(S).

Here ∆̃=
∑3
i=1 ∇̃ei∇̃ei is the connection Laplacian on Sym2E

∗ with respect to the con-

nection ∇̃ that is induced by the following connection on E:

∇̃z(X,α)= (∇zX,∇zα+Ric(z)∧X)
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and

D̃∂t(X,U1∧U2)=
(
∂tX+Ric(X)− 1

2 (U1∧U2)(∇R, ·),

∂t(U1∧U2)+Ric(U1)∧U2+U1∧Ric(U2)
)
.

(X, U1, U2 and α denote time-dependent local sections of TM and Λ2TM , respectively.)

The quadratic part Q(S) is non-negative definite, whenever S is non-negative definite.

By a more general approach, which takes into account the case in which S is indefinite,

but bounded from below, Hamilton deduces the following lower bound for the quadratic

form S: For all (x, α)∈E we have

S((x, α), (x, α))⩾− 1

2(T−t)
Ric(x, x). (C.2)

This implies that

W (x, x)⩾− 1

2(T−t)
Ric(x, x).

Tracing this equation in x yields

1

2
∂tR=∆R− 1

2
∆R+|Ric|2 =trW ⩾− 1

2(T−t)
R, (C.3)

which implies (C.1).

We can now present the proof of Proposition C.3.

Proof of Proposition C.3. It remains to consider the case in which ∂tR(p, 0)=0 for

some p∈M . We first argue that the all sectional curvatures on M×(−∞, 0] are positive.

If not, then by a standard strong maximum principle argument, this implies that the flow

locally splits off an R-factor. It follows that the universal covering flow is homothetic to

the round shrinking cylinder, in contradiction to ∂tR(p, 0)=0.

Letting T!∞ in (C.2) we obtain that S, and hence W are non-negative definite

everywhere on M×(−∞, 0]. As ∂tR(p, 0)=0, we obtain from (C.3) that W (p, 0)=0. So,

S(p, 0) has nullity of at least 3. On the other hand, S(p, 0) restricted to 0⊕Λ2TM is

strictly positive definite, as the sectional curvatures at (p, 0) are positive.

So, the nullity of S(p, 0) is equal to 3. We can now apply the strong maximum

principle due to Brendle (see [BS, §2]) and conclude that, for all (q, t)∈M×(−∞, 0], the

nullity of S(q, t) is 3 and the nullspace Nq,t of S(q, t) forms a time-dependent sub-bundle

in E that is invariant under parallel transport with respect to ∇̃ (in space) and D̃∂t (in

time).

Next, observe that since all sectional curvatures on M×(−∞, 0] are positive, the

sub-bundle 0⊕Λ2TM⊂M intersects N only in the origin over every (q, t)∈M×(−∞, 0].
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So, at every time t⩽0, the vector bundle E is the direct sum of the subbundles N·,0 and

0⊕Λ2TM . It follows that there is a smooth, time-dependent, section (Ft)t∈(−∞,0] of the

endomorphism bundle End(TM,Λ2TM) such that, for all t⩽0,

N·,t= {(x, Ft(x)) :x∈TM}.

Let us now express the fact that N is parallel with respect to ∇̃ in terms of F , at some

fixed time t⩽0. To do this, let q∈M and w∈TqM , and consider a locally defined vector

field X such that, at q,

0= ∇̃z(X,F (X))= (∇zX, (∇zF )(X)+F (∇zX)+Ric(z)∧X).

It follows that ∇zX=0 and

(∇zF )(X)+Ric(z)∧X =0. (C.4)

Let A:=tr12 F be the trace of the first two factors of F viewed as a section of

T ∗M⊗TM⊗TM.

Tracing (C.4) yields

∇zA−2Ric(z)=∇zA+
3∑
i=1

(⟨Ric(z), ei⟩ei−⟨ei, ei⟩Ric(z))= 0.

So

(LAg)(x, y)= ⟨∇xA, y⟩+⟨x,∇yA⟩=4Ric(x, y),

which implies that (M, gt) is a steady soliton. As

⟨∇xA, y⟩=2Ric(x, y)

is symmetric in x and y, the vector field A is a gradient vector field if M is simply

connected.

We can now apply Brendle’s result (see [Bre2]) and conclude that the universal cover

of (M, gt) is homothetic to (MBry, gBry) for all t⩽0. Since all isometries of MBry leave

xBry invariant, it follows that (M, gt) is homothetic to (MBry, gBry) for all t⩽0. So, by

uniqueness of Ricci flows with bounded curvature, the flow (M, (gt)t∈(−∞,0]) has to be

homothetic to the Bryant soliton.
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Appendix D. Smoothing maps

Lemma D.1. (Smoothing bilipschitz maps between cylinders) For every ε>0 there

is a constant δ>0 such that the following holds.

Let

ϕ:S2×(0, 3)−!S2×R

be a (1+δ)-bilipschitz map, where both cylinders are considered to be round and of the

same scale. Then, there is a (1+ε)-bilipschitz map

ϕ̃:S2×(0, 3)−!S2×R

such that ϕ̃=ϕ on S1×(0, 1) and such that ϕ̃|S2×(1,2) is an isometry.

Proof. Let α>0 be a small constant whose value we will determine in the course of

the proof, depending on ε. A limit argument implies that, if

δ⩽ δ̄(α), (D.1)

then there is an isometric embedding ψ:S2×(0.1, 2.9)!S2×R such that

d(ϕ(x), χ(x))<α for all x∈S2×(0.1, 2.9).

After replacing ϕ with �χ−1
�ϕ, where �χ:S2×R!S2×R is the isometric extension of χ,

we may assume without loss of generality that

d(ϕ(x), x)<α for all x∈S2×(0.1, 2.9). (D.2)

Next, we will carry out a mollification procedure on S2×(0, 3) producing a family

of bilipschitz maps ϕ′β :S
2×(0, 2.9)!S2×R such that ϕ′β=ϕ on S2×(0, 1) and such that

ϕ′β has improved regularity on S2×(1.5, 2.9). This would be a completely standard

mollification procedure, except for the fact that the scale of the mollification varies slowly.

For this purpose, we fix a smooth cutoff function ρ:S2×(0, 3)![0, 1], depending only on

the (0, 3)-factor, such that ρ≡0 on S2×(0, 1) and ρ≡1 on S2×(1.5, 3). Let moreover,

0<β<0.01 be a constant whose value we will fix in the course of the proof. The function

βρ will determine the scale at which we mollify ϕ.

Let

X :=S2×R⊂R3×R=R4

be the standard embedding. Our mollification construction is similar to that in [K].

However, in our case we can simplify the construction by using the embedding X⊂R4

and the nearest point projection

projX :R4\({(0, 0, 0)}×R)−!X.
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Let ψ: [0,∞)![0, 1] be a smooth cutoff function such that ψ≡1 on [0, 12 ] and ψ≡0 on

[1,∞). Set

a :=

∫
R3

ψ(|v|) dv.

Then, we can define ϕ′β :S
2×(0, 2.8)!S2×R as follows:

ϕ′β(x) :=projX

(∫
TxX

ϕ(expx(βρv))a
−1ψ(|v|) dv

)
. (D.3)

Claim. (a) ϕ′β is smooth.

(b) ϕ′β≡ϕ on {ρ=0} along with all higher derivatives.

(c) d(ϕ′β(x), x)<3(α+2β), for all x∈S2×(0.1, 2.9), assuming α, δ<0.01.

(d) For any ε′>0, the following holds if β⩽β̄(ε′), δ⩽δ̄(ε′) and α⩽ᾱ(ε′, β). The

map ϕ′β is (1+ε′)-bilipschitz and, for all x∈S2×(1.5, 2.8), we have

|(dϕ′β)x−(d idS2×R)x|<ε′.

Here, we compare both differentials within the ambient space R4.

Proof. Assertion (a) follows from the definition of ϕ′β and assertion (b) holds since

all derivatives of ρ vanish on {ρ=0}.
For assertion (c), observe that∫

TxX

ϕ(expx(βρv))a
−1ψ(|v|) dv

is the center of mass of a distribution that is supported on

ϕ(BX(x, β))⊂BR4(ϕ(x), 2β)⊂BR4(x, α+2β).

Due to the convexity of the latter ball, the center of mass must be contained in the same

ball, and hence the nearest point projection lies in BR4(x, 2(α+2β)). Since β<0.01, we

have

BR4(x, 2(α+2β))∩X ⊂BX(x, 3(α+2β)).

We now prove assertion (d) using a contradiction argument. Assume that assertion

(d) was false for some fixed ε′>0. Choose a sequence δi, αi, βi!0 such that αi/βi!0.

Then, we can find a sequence of (1+δi)-bilipschitz maps satisfying (D.2) for α=αi and

points xi∈S2×(0.1, 2.8) such that one of the following holds:

(A) We have ∣∣|(dϕ′i,βi
)xi

(vi)|−1
∣∣⩾ ε′ (D.4)

for some unit tangent vector vi at xi.

(B) We have xi∈S2×(1.5, 2.9) and

|(dϕ′i,βi
)xi

−(d idS2×R)xi
|⩾ ε′. (D.5)
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By assertion (b), we have ρ(xi)>0 for large i in case (A) and ρ(xi)=1 in the case

(B), by the definition of ρ. Moreover, by passing to a subsequence, we may assume that

one of the above cases holds for all i.

Consider the rescaled metric gi :=(βiρ(xi))
−2gS2×R. Then, the sequences of pointed

manifolds

{(S2×(0, 3), gi, xi)} and {(S2×(0, 3), gi, ϕi(xi))}

converge in the pointed smooth topology to pointed Euclidean space. Moreover, with

respect to the corresponding rescaling, the maps ϕi converge in the pointed topology

to maps ϕ∞:R3!R3, after passing to a subsequence. As the ϕi are (1+δi)-bilipschitz,

their limit ϕ∞ must be a Euclidean isometry. Furthermore, note that in case (B) we

have dgi(ϕi(y), y)⩽αi/βi!0, so in this case we even have ϕ∞=idR3 .

On the other hand, due to the mollification procedure (D.3), the maps ϕ′i,βi
converge

smoothly to a map ϕ′∞ with

ϕ′∞(x)=

∫
R3

a−1ψ(|v|)ϕ∞(x+v) dv.

This implies that ϕ′∞ is also a Euclidean isometry, and in case (B) we even have ϕ′∞=idR3 .

This, however, contradicts the smooth convergence and (D.4) or (D.5).

We now apply a standard gluing procedure on S2×(1.5, 2) to obtain a map

ϕ̃:S2×(0, 3)−!S2×R

that agrees with ϕ′β on S2×(0, 1.5) and with idS2×R on S2×(2, 3). In order to ensure

that this map is (1+ε)-Lipschitz, we use assertions (c) and (d) of the Claim and assume

that

α+2β⩽ c(ε) and ε′⩽ c(ε)

for some constant c(ε)>0. We now verify that we can choose α, β and δ such that these

bounds, the conditions of assertions (c) and (d) of the claim and (D.2) hold. Choose

ε′⩽c(ε) and then β⩽min
{
β̄(ε′), 14c

}
, where β̄(ε′) denotes the upper bound from assertion

(d) of the claim. Next, choose α⩽min
{
ᾱ(ε′, β), 14c

}
, where ᾱ(ε′, β) denotes the upper

bound from assertion (d) of the claim. Lastly, we choose δ⩽δ̄(ε′) according to assertion

(d) of the claim, and δ⩽δ̄(α) according to (D.1).



uniqueness and stability of ricci flow 213

References

[Al] Almgren, F. J., Jr., Some interior regularity theorems for minimal surfaces and an
extension of Bernstein’s theorem. Ann. of Math., 84 (1966), 277–292.

[AC] Anderson, G. & Chow, B., A pinching estimate for solutions of the linearized Ricci
flow system on 3-manifolds. Calc. Var. Partial Differential Equations, 23 (2005),
1–12.

[ACK] Angenent, S. B., Caputo, M.C. & Knopf, D., Minimally invasive surgery for Ricci
flow singularities. J. Reine Angew. Math., 672 (2012), 39–87.

[AIK] Angenent, S. B., Isenberg, J. & Knopf, D., Degenerate neckpinches in Ricci flow.
J. Reine Angew. Math., 709 (2015), 81–117.

[AK] Angenent, S. B. & Knopf, D., Precise asymptotics of the Ricci flow neckpinch.
Comm. Anal. Geom., 15 (2007), 773–844.

[Ap1] Appleton, A., Scalar curvature rigidity and Ricci DeTurck flow on perturbations
of Euclidean space. Calc. Var. Partial Differential Equations, 57 (2018), Paper
No. 132, 23 pp.

[Ap2] — A family of non-collapsed steady Ricci solitons in even dimensions greater or equal
to four. Preprint, 2017. arXiv:1708.00161[math.DG].

[Ba1] Bamler, R.H., Stability of hyperbolic manifolds with cusps under Ricci flow. Adv.
Math., 263 (2014), 412–467.

[Ba2] — Long-time behavior of 3-dimensional Ricci flow: introduction. Geom. Topol., 22
(2018), 757–774.

[Ba3] — Long-time behavior of 3-dimensional Ricci flow: A: Generalizations of Perelman’s
long-time estimates. Geom. Topol., 22 (2018), 775–844.

[Ba4] — Long-time behavior of 3-dimensional Ricci flow: B: Evolution of the minimal area
of simplicial complexes under Ricci flow. Geom. Topol., 22 (2018), 845–892.

[Ba5] — Long-time behavior of 3-dimensional Ricci flow: C: 3-manifold topology and combi-
natorics of simplicial complexes in 3-manifolds. Geom. Topol., 22 (2018), 893–948.

[Ba6] — Long-time behavior of 3-dimensional Ricci flow: D: Proof of the main results.
Geom. Topol., 22 (2018), 949–1068.

[BB] Bamler, R.H. & Brendle, S., A comparison principle for solutions to the Ricci
flow. Math. Res. Lett., 22 (2015), 983–988.

[BK1] Bamler, R.H. & Kleiner, B., Ricci flow and diffeomorphism groups of 3-manifolds.
To appear in J. Amer. Math. Soc.

[BK2] — Ricci flow and contractibility of spaces of metrics. Preprint, 2019.
arXiv:1909.08710[math.DG].

[BK3] — Diffeomorphism groups of prime 3-manifolds. Preprint, 2021.
arXiv:2108.03302[math.DG].

[BBM+] Bessières, L., Besson, G., Maillot, S., Boileau, M. & Porti, J., Geometrisation
of 3-Manifolds. EMS Tracts in Mathematics, 13. Eur. Math. Soc. (EMS), Zürich,
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