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Abstract— Industrial manipulators do not collapse under
their own weight when powered off due to the friction in
their joints. Although these mechanism are effective for stiff
position control of pick-and-place, they are inappropriate for
legged robots that must rapidly regulate compliant interactions
with the environment. However, no metric exists to quantify
the robot’s performance degradation due to mechanical losses
in the actuators and transmissions. This paper provides a
fundamental formulation that uses the mechanical efficiency
of transmissions to quantify the effect of power losses in the
mechanical transmissions on the dynamics of a whole robotic
system. We quantitatively demonstrate the intuitive fact that
the apparent inertia of the robots increase in the presence
of joint friction. We also show that robots that employ high
gear ratio and low efficiency transmissions can statically sustain
more substantial external loads. We expect that the framework
presented here will provide the fundamental tools for designing
the next generation of legged robots that can effectively interact
with the world.

I. INTRODUCTION

The mechanical losses in the transmissions of individ-
ual joints govern the system-level dynamics of robots. For
instance, conventional industrial manipulators behave like
statues when they are powered off; in other words, they
are non-backdrivable. The characteristics that determine this
behavior are the low mechanical efficiency and high friction
in the gearboxes. Although these mechanical transmissions
have been successfully utilized in industrial manipulators for
stiff position control, they are not appropriate for compliant
force control due to their large mechanical impedance [1].
Therefore, to enable legged robots to control their contact
forces with the environment, one must analyze how the
power efficiency of the mechanical transmissions utilized in
robots governs the overall dynamics. Towards this goal, this
paper introduces a framework for studying how the energetic
losses at joint-level propagate to the dynamic behavior of the
robot at system-level.

No existing design metric can quantitatively describe the
performance degradation of a robotic system due to the
mechanical losses in actuators or transmissions. The absence
of such metric hinders the selection of an optimal mechanical
transmission for legged robots. For instance, no existing
design guideline provides a clear choice between a compact
and low efficiency strain wave gearbox and a bulkier, but
higher efficiency, planetary gearbox used in many legged
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Fig. 1. Energy flow diagram of a robotic system showing the dissipation of
energy in actuators and transmissions. The energy conversions are always
accompanied by energy losses such as Joule heating or friction.

robots [2], [3]. This unanswered question arose in the design
of the humanoid robot TELLO, shown in Fig. 1 and in the
video [4], and motivated this study.

Related work in the literature analysed the fundamental
behavior of mechanical transmission and their impact on
actuator backdrivability. Giberti provides the optimal choice
of an actuator-reducer pair of one-degree-of-freedom (DoF)
system, considering joint level efficiency [5]. Similarly,
Wang demonstrates that gearboxes present directional effi-
ciency, which means that the mechanical losses are different
if actuators operates within positive or negative work regimes
[6]. Wensing investigates how joint-level apparent inertia
decreases backdrivability, and thus, degrades the impact
mitigation capability of the whole system [1]. Singh studies
how the mass distribution of a robot’s leg influences the
propagation of impact from the ground to the torso [7].
Kim demonstrated a light-weighted robot arm of high back-
drivability with a novel tension-amplification transmission
[8]. However, the influence of the mechanical efficiency of
transmissions on the whole system still remains unstudied.

The main contribution of this paper is to provide a
fundamental formulation to quantify the effect of power
losses in the mechanical transmissions on the dynamics of the
whole robotic system. As a product of this formulation, we
propose an augmented equation of motion that embeds the
mechanical efficiency in the system’s inertia matrix and the
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Fig. 2. (a) A forward-driving scenario of a wedge-block model analogous to a geared transmission. (b) A backward-driving scenario (c) The forward-
and backward-driving scenarios of a rotor-manipulator model that represents a typical geared transmission (d) A dissipative force fd associated with the
slip ∆v at the contact point C of a typical geared transmission [9]

vectors of bias force, the sum of Coriolis and gravitational
force, and generalized forces. The system-level impact of
the individual efficiencies is demonstrated by computing
the (task-space) generalized inertia ellipsoid [10] and force
capability of the robot’s end-effector. Two core results are
obtained from this study. First, the perceived inertia of the
robot at the end-effector increases as the efficiency decreases.
Second, the capability of the robot to generate or resist force
depends on the direction of the energy flow in the system.

This paper is organized as follows. First, we study a
simple representative example to understand how transmis-
sion efficiency affects the dynamics of a one-DoF system
in forward-driving (FWD) and backward-driving (BWD)
scenarios. Next, the kinematic structure and constraints of
rigid body system are highlighted to trace the energy loss
inherent to the mechanical transmission. In Section IV, the
generalized dynamics of a rigid-body system with mechan-
ical power losses in kinematic structure is obtained. The
proposed equation of motion enables the re-derivation of a
conventional design criteria, such as the generalized inertia
tensor and the force capability. Finally, a case study of a
2-DoF leg qualitatively validates the proposed formulation.

II. A SIMPLE MODEL OF DISSIPATIVE DYNAMICS

This section investigates how the power efficiency of a
mechanical transmission is embedded into the equation of
motion using a simple wedge-block model shown in Fig.
2(a) and (b). This model extracts the essential behavior of
the complex sliding and pushing dynamics of the gear teeth
meshing in the rotor-manipulator model in Fig. 2(c) and (d).
The wedge-block model is designed to inherit mechanical
characteristics of rotor-manipulator model; (i) frictional loss
is dictated by the geometry of meshing between two bodies,
and (ii) the dynamics is different depending on the direction
of energy flow. This flow falls into two categories:
• FWD (Fig. 2(a)) occurs when pushing the wedge m

with a force fu and, consequently, moving the block
M . This is equivalent to commanding a motor torque
τθ to drive the link of a manipulator.

• BWD (Fig. 2(b)) occurs when energy flows in the
opposite direction by pushing the block M with a
force fx to drive the wedge m. This is equivalent

to an external force applied to the manipulator’s end-
effector to backdrive the rotor through the mechanical
transmission.

The analogy between the wedge-block and rotor-
manipulator models is described here. First, the displace-
ments of the block x and the wedge u are coupled by the
slope with incline α. In this case, 1

cosα is the mechanical ad-
vantage that increases with the slope angle. This is expressed
by the constraint

g(x, u) = −x+ (cosα)u (α ∈ [0, π2 ))

Similarly, the angular displacements of the rotor φ and the
manipulator joint ψ are kinematically coupled by gear ratio
N which is the ratio of input velocity to output velocity.

g(ψ, φ) = −ψ + 1
N φ (N ≥ 1).

Second, we study the dynamics of different energy flow
scenarios, where the normal force λ and sliding friction fd
maintain their orientation and magnitude. However, the sign
of the friction flips according to the movement of wedge,
which contributes to the asymmetric dynamic behavior in
FWD and BWD cases. As a consequence, the example
renders different mechanical efficiencies in the FWD and
BWD scenarios, similarly to geared transmissions [6]. The
power loss inherent to the gear meshing mechanics largely
contributes to the asymmetry of the dynamics. This means
that the power loss, mechanical efficiency, apparent inertia,
and input power distribution are different if the motors are
driving the manipulator or if an external force is back-driving
the actuators. The rest of this section derives and discuss the
dynamics of forward and back-driving cases of the wedge-
block model in Fig. 2.

A. Meshing forces

Let the redundant coordinates be s = [x u]>. The
dynamic equations of motion of the wedge-block model in
Fig. 2(a) and (b) follows

Hss̈−A>λ = f + fd,

from standard Lagrangian formulation, with

Hs=

[
M 0
0 m

]
, A>=

[
−1
cosα

]
, f=

[
fx
fu

]
, fd=

[
0

±µ sinαλ

]
,



where fd is the dissipative force and A = ∂g
∂s is the

constraint Jacobian that represents the mechanical advantage
that distributes the constraint force. We introduce the concept
of meshing forces r, which are the sum of dissipative forces
fd and the constraint forces A>λ.

r :=
(
A>λ+ fd

)
= Hss̈− f .

This rearrangement groups the contact forces that transmits
power between bodies. Writing the x and u components of
the meshing force r, it becomes clear that the dry friction
±µ sinαλ contributes to the asymmetricity of the dynamics:[

rx
ru

]
=

[
−1

cosα(1± µ sinα)

]
λ =

[
Mẍ− fx
mü− fu

]
. (1)

With (1), the mechanical efficiency η, the ratio of output
power (x̂) to input power (û), is described,

η = −rxdx
rudu

=

{
1
ηb

= 1 + µ tanα (BWD),

ηf = 1− µ tanα (FWD).
(2)

This result aligns with the standard description of the bidi-
rectional efficiency of geared transmissions that is a function
of the friction coefficient, contact geometry, and the direction
of energy flow [11].

B. Model Reduction and Efficiency-Null

First, since coordinates x and u in (1) are related by the
constraint g, the redundant coordinates s are projected onto
a minimal coordinate x using the constraint nullspace matrix
K = [1 secα]> such that AK = 0,

ds = Kdx.

Next, the Lagrangian multiplier λ is cancelled out from (1).
Conservative formulations assume that constraints do not
dissipate power because the constraint force and its tangent
motion are orthogonal [12], [13]. For dissipative systems,
we find an alternative nullity by rearranging (2) and using
an efficiency matrix Er :=diag (1, η),

rxdx+ ηrudu =

[
dx
du

]>[
1 0
0 η

]
︸ ︷︷ ︸
=Er

[
rx
ru

]
= dxK>Err = 0. (3)

We formalize this nullity as efficiency-null (δZ = 0) which
defines the orthogonality between the meshing force and its
tangent motion,

δZ := K>Err = 0. (4)

C. Asymmetric Dynamics and Mechanical Impedance

Finally, by multiplying K>Er on both sides of (1) and
applying s̈ = Kẍ, the meshing force or the Lagrangian
multiplier is cancelled out. As a result, we obtain the
dynamics of an 1-DoF model:

K>Err = K>Er(HsKẍ− f) = 0,

FWD:
(
M + ηf

m

cos2 α

)
ẍ = fx − ηf f̂u, (5)

BWD:
(
M +

1

ηb

m

cos2 α

)
ẍ = fx −

1

ηb
f̂u, (6)

where f̂u is the force on u−direction, fu, projected onto
the x̂ coordinate frame, f̂u = fu

cosα . We utilize the Laplace
transform to obtain the mechanical impedance X(s) in the
frequency domain s. We assume that f̂u is the only force
applied in the FWD case and fx is the only force exerted in
the BWD case.

FWD: Xf (s) =
f̂u(s)

ẋ(s)
=

(
1

ηf
M +

m

cos2 α

)
s, (7)

BWD: Xb(s) =
fx(s)

ẋ(s)
=

(
M +

1

ηb

m

cos2 α

)
s. (8)

D. Discussion

The results from the wedge-block model highlights the
fundamental asymmetry of dissipative dynamics; FWD and
BWD dynamics are differently affected by friction µ and gear
ratio 1

cosα . The unique properties of the dissipative dynamics
of the wedge-block model are summarized as follows:
• Efficiency: The backward efficiency ηb is always smaller

than forward efficiency ηf . And both are negatively
affected by larger gear ratio and friction.

• Non-backdrivability: There is a limiting case where the
system becomes non-backdrivable, µ tanα=1 (ηb=0).

• Apparent inertia: Both the large gear ratio and the low
backward efficiency increases apparent inertia in the
BWD case.

• Impedance: For both the FWD and BWD cases, the
impedance of the system increases with the degradation
of mechanical efficiency.

The results demonstrate that the overall BWD dynamics are
more negatively affected by low efficiency. This occurs be-
cause, first, the apparent inertia of the wedge is proportional
to the inverse of the backward efficiency. Second, the right
hand side of (6) illustrates that any unmodeled friction in
the transmission, such as stiction, is amplified by the gear
ratio and the inverse of the backward efficiency to resist
external forces, which degrades the backdrivability of the
mechanism. We note that these properties are also observed
in the geared transmissions as reported in [11], [14], [15].
Extending the discussion to the rotor-manipulator model, the
negative impact of low transmission efficiency is more likely
to affect robots with light-weight links and high gear ratios.

III. GENERALIZATION OF THE DISSIPATIVE DYNAMICS

This section introduces mathematical terms and a graph-
ical tool that are useful to generalize a multi-DoF robotic
system with transmissions. First, the angles of rotor, motor,
and joint are defined in addition to the mappings between
them. Next, we conceptualize transmissions by formulating
kinematic constraints that determine the mechanical connec-
tivity between rigid bodies. Finally, we trace the frictional
losses in the transmissions and discuss the topological prop-
agation of power.



A. Kinematic Topology and Constraints

This section provides the mathematical definitions for
two core concepts: the speed reduction and the actuation
topology. Speed reduction is often realized by employing
pairs of meshed gears or belt-driven pulleys with different
diameters. The actuation topology describes the topology of
the mechanism that distributes power from the motors to
the joints. The actuation topology, or the kinematic struc-
ture [16], is used to classify robots as, for example, serial
or parallel mechanisms. We define these two concepts as
transformations between coordinate angles. For that, three
sequential states (angular positions) are introduced:
• Rotor angle φ is the angular position of the motor rotor

before a gearbox or a reduction mechanism;
• Motor angle ψ is the angular position of the output of

the actuator after a reduction mechanism; and
• Joint angle q is the angle between the structural links

of the robotic system.
The mappings between the states are defined as:
• Reduction R is the generalization of the speed reduc-

tion, which maps the displacement of the rotor angle φ
to the motor angle ψ; and

• Actuation topology D represents the kinematic topology
of a transmission, which maps the motor angle ψ to the
joint angle q.

Fig. 3(a) and (b) illustrates an actuation topology of a
typical 2-DoF parallelogram mechanism in which the speed
reduction is represented by a single-stage gearbox. Similar
mechanisms have been used in the legged robots ATRIAS
[17] and Minitaur [18]. The two motors are fixed to the
base and drive the links S1 and P1 of the parallelogram
mechanism. As a consequence, the input power propagates
to the end-effector via links P2 and S2. Each motor has a
gearbox that reduces the rotation of the rotor to motor angle
ψi=

φi

Ni
for i∈{1, 2}, where Ni are gear ratios. The first joint

is driven by the first actuator (q1=ψ1), while the second joint
angle is controlled by both motors (q2=ψ2−ψ1). Following
our previous definitions, the reduction and actuation topology
of this manipulator are given by:

Rpar =

[ 1
N1

0

0 1
N2

]
, Dpar =

[
1 0
−1 1

]
.

If the actuation topology represented a serial mechanism in
which the motors are directly mounted on the joints, the
matrix Dser would be 2 × 2 identity matrix, while the re-
duction matrix would remain unchanged, Rser =Rpar. Next,
the kinematic constraints in actuators and transmissions,
are represented with the reduction and actuation topology
matrices:

g(q, φ) = q −DRφ.

Finally, we include the task-space coordinate of the end-
effector x and its Jacobian J to obtain the sequential trans-
formations of generalized coordinates,

dφ
R−−→ dψ

D−−→ dq
J−−→ dx. (9)
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(a) A single stage gearbox in an actuator (b) A 2-DoF robotic arm using
parallelogram (c) The kinematic tree outlines the topology of a transmission
and the kinematic constraints associated with power losses.

To simplify the discussion, it is assumed that the matrices R
and D are dimensionless and invertible. Readers can refer to
[16], [19], [20] for the analysis of nonlinear constraints.

B. Rigid Body Systems and Kinematic Tree

We employ the kinematic tree of a rigid body system
[21] to trace the energy losses associated with the kine-
matic constraints in a transmission mechanism. Mechanical
connections between rigid bodies are categorized into two
types: (i) free joints, which define the parent-child relations
and (ii) dissipative couplings, which represent a kinematic
constraint that bears power loss. For example, Fig. 3(c) is
the kinematic tree of a parallelogram mechanism, showing
energy transfer from rotors (R1, R2) to structural bodies
(S1, S2). The dissipative couplings are represented by dashed
arrows to clearly illustrate that the power losses depend on
the direction of power delivery. In order to avoid kinematic
loops that would complicate the analysis of the dynamics,
we assume that some components, such as P1 and P2, in a
transmission are massless.

IV. THE DYNAMICS OF DISSIPATIVE RIGID-BODY
SYSTEMS

The dissipative dynamics of a general robotic system is
obtained similarly to the solution for the simple example
using the definitions from section III. The goals are to
(i) create a kinematic tree of rigid-bodies with redundant
states, (ii) define kinematic couplings between rigid-bodies
written as constraints, (iii) collect meshing forces given by
dissipative forces and constraint forces, and (iv) reduce the
model by projecting its dynamics onto the tangent space to
eliminate the meshing forces.

The general model of a legged robot is comprised of a
b-DoF floating-base (the torso) and a serial chain of m-links
(the limbs) [22]. The limbs are driven by m-rotors through
mechanical transmissions as defined by a reduction matrix
Rm and an actuator topology matrix Dm. We define qb ∈
Rb as the b-DoF coordinates for the free floating-base, and
φm, qm ∈ Rm as the rotor angles and joint angles. Next, the
constraint in the transmission is denoted as

g(qm,φm) = qm −DmRmφm. (10)



The generalized coordinates of the redundant model and
the reduced-order model are s = [q>b , q

>
m,φ

>
m]> and q =

[q>b , q
>
m]>. The constraint Jacobian A and its nullspace

matrix K such that ds=Kdq and that AK=0 are written

A =
∂g

∂s
=
[
0m×b 1m −DmRm

]
∈ Rm×(b+2m),

K =

 1b 0
0 1m
0 (DmRm)−1

 ∈ R(b+2m)×(b+m),

where 1n is the n× n identity for any n ∈ N. The equation
of motion of the redundant system is given as

Hss̈+ cs −A>λm = τs + τd, (11)

where Hs and cs are inertia matrix and bias force, λm∈Rm
are the Lagrange multipliers, τs are the generalized forces,
and τd = [0,· · ·, 0, τd,1,· · ·, τd,m]> ∈ Rb+2m are generalized
dissipative forces in the transmission. The forces due to the
constraints are combined as meshing forces

r = A>λm + τd = Hss̈+ cs − τs. (12)

We assume that for all m-kinematic couplings of power
efficiencies η1, · · · , ηm, their associated efficiency-nulls
δZ1, · · · , δZm are all equal to zero. By stacking efficiency-
nulls, we obtain an orthogonality between the meshing force
and its tangent motion at system-level,

K>Esr = 0, (13)

where Es :=diag (1,· · ·, 1, η1,· · ·, ηm)∈R(b+2m)×(b+2m).
The equation of the motion of the redundant system (11) is

reduced to (b +m)-dimensional system by left multiplying
K>Es to the meshing force r, and projecting s̈ onto the
reduced coordinates q̈ with s̈ = Kq̈. This procedure yields
a dissipative equation of motion of a robotic system,

K>EsHsKq̈ +K>Escs = J>fext +

[
0b×m
BmEm

]
τφ, (14)

where J∈Rn×(b+m) is the contact Jacobian of an external
force at end-effector fext ∈ Rn , Bm :=

(
DmRm

)−>
is a

distribution matrix, Em :=diag (η1,· · ·, ηm) is the efficiency
matrix, and τφ ∈Rm are torques applied to the rotors. We
assume that there are no forces applied to the floating-base
and that each end-effector contacts the environment at a
single point. The result takes the form of the conventional
manipulator equations of motion [23], with the transmission
efficiencies embedded into the inertia and Coriolis matrices,
and generalized forces term.

A. Application of the formulation

In contrast with the conservative formulation, the dissipa-
tive equation of motion makes evident the concept of energy
flow in the system. There are different expressions if the
actuators are driving the robot with torques τφ (FWD) or
if the limbs are being accelerated by external forces fext
(BWD). This concept of asymmetric transmission dynamics
leads to separate design criteria if the robot actuators are
expected to perform positive or negative work, and hence,

conventional metrics can be re-derived [24], [25]. We il-
lustrate this characteristic by analyzing the design of a 2-
DoF leg and compute its generalized inertia ellipsoid [10],
its force capability or tip force bounds [23], and its ability to
mitigate shock loads due to impacts between the foot and the
ground. The latter is defined by the Impact Mitigation Factor
(IMF) [1], which ranges from zero to one and quantifies the
inertial backdrivability of the mechanism.

1) Generalized Inertia Tensor: The generalized inertia
tensor (GIT) or the generalized inertia ellipsoid describes
the inertia felt at the end-effector frame of a robot. We
propose that the generalized inertia tensor of a dissipative
system depends on the efficiency of transmissions and the
direction of energy flow. Due to the dependency of the
transmission dynamics on the direction of energy flow, the
end-effector inertia perceived by the motors will be different
than the inertia perceived by an external force back-driving
the robot. The calculation of Backward-GIT is identical to
the conventional GIT, since the external force is not distorted
by transmission efficiency. However, the propagation of the
actuation torque is different in the case of Forward-GIT. To
accelerate the end-effector, the actuators exert a virtual task-
space force f̂task given by

τφ = B−1m J>f̂task. (15)

For the above equation to hold in the forward-driving cases,
it is assumed that the system is fully-actuated or fixed-based
(b = 0). Equation (14) provides and (15) the Forward-GIT.

Backward-GIT :=
(
JH−1J>

)−1
,

Forward-GIT :=
(
JH−1BmEmB−1m J>

)−1
,

where H = K>EsHsK. Analogous to the forward and
backward impedance described in equations (7) and (8), the
Forward- and Backward-GIT are larger in respect to the GIT
due to the lower efficiency of transmission.

2) Task-Space Force Capability: The task-space force
capability (FC) estimates the maximum contact force that
the robot can produce at the end-effector. Conventionally,
this concept shows that this force is limited by the maximum
torque that the actuators can generate. However, we propose
that FC also depends on the mechanical efficiency of the
robot’s transmission. To better understand this concept, as-
sume that a legged robot semi-statically interacts with the
ground to support it’s own body weight. In the forward-
driving case, the leg motors must overcome the forces due to
the robot mass plus the dissipative forces in the transmission.
Hence, the lower the efficiency of the transmission, the
higher the motor input effort must be to lift the robot.
However, in the BWD case, the gravitational torques due
to the robot weight must drive the motors through the trans-
mission. Interestingly, in this scenario, the lower efficiency
(due to high friction) helps the robot to passively support
its own body. Thus, legged robots or industrial manipulators
which employ highly geared and low efficiency actuators do
not collapse under their own body weight when powered
off. This phenomena is captured by Asymmetric-FC that



combines Forward-FC and Backward-FC . The Asymmetric-
FC estimates the robot’s ability to quasi-statically support or
resist external forces,

Asymmetric-FC = J−>m BmEm convhull(τφ), (16)

where we assume that the torque on rotors τφ is bounded
and its feasible region is represented by a convex-hull. The
Asymmetric-FC only employs the limb’s contact Jacobian
Jm ∈ R3×m, and not that of the whole system. If a robot has
redundant actuators or is in a singular pose, the Asymmetric-
FC can be obtained by linear programming [26].

B. Effect of dissipative dynamics

We present two analysis of the design of a 2-DoF planar
leg composed of a serial actuation mechanism. First, we
investigate the effect of transmission efficiencies on the task-
space (foot) inertia matrix using the Forward- and Backward-
GIT, and the force capability using the Asymmetric-FC.
Next, the Asymmetric-FC and the IMF in the vertical ẑ
direction is computed to analyze the dynamic response of
the leg to external contact forces. The Asymmetric-FC is
normalized by the conventional FC to measure the relative
difference due to the internal friction in the transmissions.

The leg, shown in Fig. 4(a), is equipped with two identical
motors that can exert up to 20 N ·m after identical speed
reduction of 20 : 1. Motors are attached to the hip (q1) and
the knee (q2) joint. The thigh and the shin have the identical
mass m=2 kg and length L=0.4 m. Their center of mass
are located at the links’ midpoint. The base is modeled as a
uniform planar square of dimensions Lb = 0.5 m and mass
mb=15 kg. The base and the motors are initially at rest, with
joint angles, q1= q2= π

3 . The reflected inertia of a rotor is
set identical to the inertia of a connected link at its center of
mass. We assume a typical forward efficiency of single-stage
gearboxes of 0.8 and 0.7 for the hip and knee transmission.
The backward efficiency is a function of forward efficiency
ηf as displayed in Fig. 5(a) and calculated by the equation
(38) of [11]. We note that the backward efficiency is always
smaller than the forward efficiency, and converges to zero
when ηf −→ 0.499.

We observe the behavior of the asymmetric transmission
dynamics in Fig. 4. First, both ellipsoids of Forward- and
Backward-GIT in Fig. 4(b) are always larger than that of
GIT. Intuitively, driving forces need to inject more energy
into the system to compensate for the frictional losses in the
transmissions, which renders larger inertia. In contrast, the
Forward- and the Backward-FC in Fig. 4(c) show opposite
tendencies. As the transmission efficiency decreases, the
Forward-FC linearly decreases while Backward-FC diverges
to infinity when ηf −→ 0.499. Consequently, the leg can
quasi-statically withstand more substantial load.

Finally, Fig. 5 shows the FC, Forward- and Backward-FC,
and IMF of the foot in the vertical ẑ direction. The result con-
veys the trade-off between the Backward-FC and the IMF.
As the actuators’ efficiency decrease, the ẑ−Backward-FC
in Fig. 5(b) increases, while ẑ−IMF in Fig. 5(c) decreases.
In other words, large mechanical losses in the transmissions
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Fig. 5. (a) The relation between forward and backward efficiencies. The
backward efficiency converges to zero at ηf = 0.499. (b) The ẑ-directional
forward and backward force capabilities normalized by force capability. (c)
The ẑ-directional IMF of 2-DoF Leg

allow the robot to sustain more substantial static forces, but
also degrade the machine’s ability to mitigate shock loads
from impacts with the ground.

V. CONCLUSION

This paper investigates how the dissipative forces in actua-
tors and transmissions propagate to the dynamics of a whole
robot. We present a framework that uses the mechanical effi-
ciency to augment the inertia, Coriolis, and generalized force
terms in the equation of motion. We show how the individual
efficiency of transmission influences not only the inertia
felt at the end-effector, but also its capability of applying
forces to and resisting disturbances from the environment.
We expect that roboticists will use this formulation to add a
tunable variable, the mechanical efficiency, to optimize the
design of multi-body systems. For instance, designers may
exploit the beneficial effects of low efficiency to gain more
static load-bearing capability, or to minimize the negative
effects of friction for dynamic tasks with impacts.
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