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We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite horizon 𝑇

with fixed and known cost matrices 𝑄, 𝑅, but unknown and non-stationary dynamics {𝐴𝑡 , 𝐵𝑡 }. The sequence
of dynamics matrices can be arbitrary, but with a total variation, 𝑉𝑇 , assumed to be 𝑜 (𝑇 ) and unknown to

the controller. Under the assumption that a sequence of stabilizing, but potentially sub-optimal controllers is

available for all 𝑡 , we present an algorithm that achieves the optimal dynamic regret of Õ
(
𝑉

2/5
𝑇

𝑇 3/5
)
. With

piecewise constant dynamics, our algorithm achieves the optimal regret of Õ(
√
𝑆𝑇 ) where 𝑆 is the number of

switches. The crux of our algorithm is an adaptive non-stationarity detection strategy, which builds on an

approach recently developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive

forgetting (e.g., restarting or using sliding window learning with a static window size) may not be regret

optimal for the LQR problem, even when the window size is optimally tuned with the knowledge of 𝑉𝑇 . The

main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares (OLS)

estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis also highlights

that the key motif driving the regret is that the LQR problem is in spirit a bandit problem with linear feedback

and locally quadratic cost. This motif is more universal than the LQR problem itself, and therefore we believe

our results should find wider application.
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1 INTRODUCTION

We look at the control of a Linear Quadratic Regulator (LQR) system with unknown and time-

varying linear dynamics:

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 +𝑤𝑡 ,
with state 𝑥𝑡 ∈ R𝑛 and control 𝑢𝑡 ∈ R𝑑 , stochastic i.i.d. sub-Gaussian noise process {𝑤𝑡 }, and a

time-invariant known quadratic cost function 𝑐 (𝑥,𝑢) = 𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢 over a horizon of 𝑇 periods.
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LQR systems are perhaps the simplest Markov Decision Processes (MDPs) and one of the most

fundamental problems studied in control theory. To quote [37, Chapter 8], “one of the most powerful

applications of time-varying LQR involves linearizing around a nominal trajectory of a nonlinear

system and using LQR to provide a trajectory controller.” More precisely, given a desired trajectory

𝑥0

𝑡 , 𝑢
0

𝑡 that one desires to track for a system with non-linear dynamics:

E[𝑥𝑡+1 | 𝑥𝑡 , 𝑢𝑡 ] = 𝑥𝑡 + 𝑓 (𝑥𝑡 , 𝑢𝑡 ),

we define the centered trajectories 𝑥𝑡 = 𝑥𝑡 − 𝑥0

𝑡 , 𝑢𝑡 = 𝑢𝑡 − 𝑢0

𝑡 , so that:

E[𝑥𝑡+1 | 𝑥𝑡 , 𝑢𝑡 ] = 𝑥𝑡 + 𝑓 (𝑥𝑡 , 𝑢𝑡 ) − 𝑓 (𝑥0

𝑡 , 𝑢
0

𝑡 )

≈ 𝑥𝑡 +
𝜕𝑓 (𝑥0

𝑡 , 𝑢
0

𝑡 )
𝜕𝑥0

𝑡

(𝑥𝑡 − 𝑥0

𝑡 ) +
𝜕𝑓 (𝑥0

𝑡 , 𝑢
0

𝑡 )
𝜕𝑢0

𝑡

(𝑢𝑡 − 𝑢0

𝑡 ) =: 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 .

See also [3] for a tutorial treatment of use of LQR in engineering design. LQR systems, and

linear dynamical systems more broadly, have been used to model diverse applications, such as

controlling robots [30], cooling data centers [12], control of brand dynamics in marketing [32], and

macroeconomic policy [11] to name a few. As a result, LQR systems have also been the subject of a

lot of research on reinforcement learning: from model-free vs. model-based approaches in episodic

learning setting, to learning and control under unknown stationary dynamics, to robust control in

the presence of an adversarial (non-stochastic) noise process. See related work in Section 2. The

ability to adapt to changing dynamics lends another, arguably stronger, robustness to the control

policy. However, to the best of our knowledge, the problem of learning non-stationary dynamics

while controlling an LQR system has not been studied yet. We take the first steps towards this

problem.

We quantify the non-stationarity of the sequence {Θ𝑡 = [𝐴𝑡 𝐵𝑡 ]} by the total variation 𝑉𝑇 =∑𝑇−1

𝑡=1
Δ𝑡 with Δ𝑡 := ∥Θ𝑡+1 − Θ𝑡 ∥𝐹 denoting the Frobenius norm of change of dynamics matrix 𝐴

and input matrix 𝐵 from time 𝑡 to 𝑡 + 1. In the case of piecewise constant dynamics, we measure

the non-stationarity by the number of pieces 𝑆𝑇 ≥ 1.

We measure the performance of a control (and learning) policy 𝜋 via dynamic regret metric:

R𝜋 (𝑇 ) =
𝑇∑
𝑡=1

𝑐 (𝑥𝑡 , 𝑢𝑡 ) − 𝐽 ∗𝑡 , (1)

where 𝑢𝑡 denotes the action taken by policy 𝜋 , and 𝐽 ∗𝑡 denotes the optimal average steady-state cost

of the stationary LQR system with dynamics fixed as Θ𝑡 . We also show that

∑
𝑡 𝐽
∗
𝑡 is at most O(𝑉𝑇 )

larger than the expected cost of the dynamic optimal policy. A fundamental result in the theory of

LQR systems states that the optimal policy for an LQR system is a linear feedback control policy

𝑢𝑡 = 𝐾𝑡𝑥𝑡 for some sequence of matrices 𝐾𝑡 (see, e.g., [4]). If the LQR system is stationary, then the

infinite horizon optimal policy satisfies 𝐾𝑡 = 𝐾
∗
. Our central result states that, given access to a

nominal sequence of controllers that are potentially sub-optimal but are guaranteed to stabilize the

non-stationary LQR dynamics, the proposed algorithm Dyn-LQR guarantees:

E
[
RDyn-LQR (𝑇 )

]
= Õ

(
𝑉

2/5
𝑇
𝑇 3/5

)
,

without the knowledge of 𝑉𝑇 upfront. We also demonstrate an instance showing that this regret

rate is tight for any online learner/controller. The same algorithm guarantees E
[
RDyn-LQR (𝑇 )

]
=

Õ
(√
𝑆𝑇

)
when the dynamics are piece-wise constant with at most 𝑆 switches. The dependence of
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the regret on the dimensions 𝑛,𝑑 for our algorithm and analysis is 𝑛2𝑑2
, but we believe this can be

improved with a better choice of the tuning parameters in our algorithm.
1

The design philosophy behind our algorithm Dyn-LQR is of using certainty equivalent controllers,

that is, using the controller based on a point estimate of the model parameter (as opposed to

confidence ellipsoids, for example). At a typical time 𝑡 , Dyn-LQR employs a linear feedback control

𝐾𝑡 based on an estimate Θ̂𝑡 of the current dynamics, with some extra exploration noise: 𝑢𝑡 =

𝐾𝑡𝑥𝑡 + 𝜎𝑡[𝑡 . Here [𝑡 ∼ N(0, 𝐼𝑑 ), and 𝜎𝑡 denotes the “exploration energy.” A fairly simple regret

decomposition lemma shows that if the policies 𝐾𝑡 do not change very often, then the regret is

dominated by (i) the total exploration energy

∑
𝑡 𝜎

2

𝑡 , and (ii)

∑
𝑡 𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡 , where 𝐽𝑡 (𝐾𝑡 ) denotes

the average steady-state cost of the stationary LQR system with time-invariant dynamics Θ𝑡 and

control 𝐾𝑡 . A result of [35] shows that 𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡 ⪅ 𝐶 ·
Θ̂𝑡 − Θ𝑡2

𝐹
, if the estimation error is small

enough. Thus, if we strip away the complexity introduced due to the dynamics itself, the essence of

the non-stationary LQR problem is that of tracking Θ𝑡 , which boils down to a bandit problem with

linear feedback and a locally quadratic loss function. In Section 9 we give an example of a queueing

system which also exhibits this motif, and for which we believe a similar algorithm as Dyn-LQR

can give optimal dynamic regret.

Under non-stationary dynamics, it is important to forget the distant history when constructing

an estimate of the current dynamics. Our approach for doing so is to adaptively restart the learning

problem when “sufficient” change in the dynamics has accumulated, using a scheme motivated by

the algorithm of Chen et al. [8] developed for contextual multi-armed bandits. The algorithm of

Chen et al. [8] runs multiple tests in parallel, each tailored to detect changes of a different scale,

by replaying (with carefully tailored probabilities) an older strategy and then comparing the new

estimated reward distribution with the older reward distribution. As a result, Chen et al. [8] were

the first to obtain the optimal dynamic regret for contextual bandit problems as a function of the

total variation of the reward distribution without the knowledge of the variation budget. For the

LQR problem, we modify this procedure in at least two directions. First, we keep using the current

controller but inject a higher exploration noise. This change is critical for our regret analysis at two

places: our current analysis includes a term involving the number of policy switches and minimizing

the number of policy switches impacts the regret guarantee; and, we mention below, our analysis

of the estimation error of dynamics crucially relies on the linear feedback control matrix being

fixed throughout the interval of estimation. Second, the probabilities with which the exploration

is carried out are different for the LQR problem owing to the quadratic cost. More recently, the

authors in [39] outline that for many classes of episodic reinforcement learning problems, a similar

strategy can be used to convert any Upper Confidence Bound (UCB) type stationary reinforcement

learning algorithm to a dynamic regret minimizing algorithm. There are quite a few differences

between [39] and our work: the LQR problem is not covered by the classes of MDPs they consider,

we look at a non-episodic version of the LQR problem, and our algorithm is certainty equivalent

controller-based and not a UCB-type.

Technical challenges and novelty: We next point out three areas where the analysis in the current

paper contributes to the existing literature on online learning and control.

(1) Ordinary Least Squares (OLS) under non-stationarity: The biggest challenge we overcome is

to prove a bound on the error of the estimated parameters Θ̂𝑡 . In particular, based on the

1
For stationary LQR, [35] prove that the optimal dependence is 𝑑

√
𝑛, we leave the task of achieving the same dependence in

non-stationary LQR as a question for subsequent research.
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observations in some interval I, the OLS estimate Θ̂I of the dynamics is given by:

Θ̂I = argmin

Θ

∑
𝑡 ∈I

𝑥𝑡+1 − Θ(𝑥⊤𝑡 𝑢⊤𝑡 )⊤2

= argmin

Θ

∑
𝑡 ∈I

(Θ𝑡 − Θ) · (𝑥⊤𝑡 𝑢⊤𝑡 )⊤ +𝑤𝑡2

.

A linear feedback controller𝑢𝑡 = 𝐾I𝑥𝑡 , with𝐾I fixed during the interval I, allows estimating

the component of Θ𝑡 parallel to the 𝑛-dimensional column space of [𝑥⊤𝑡 𝑢⊤𝑡 ] = [𝐼𝑛 𝐾⊤I ]
⊤𝑥𝑡 ,

but not in the orthogonal subspace. This problem shows up even in stationary LQR, and

is the reason we use the exploration noise 𝜎𝑡[𝑡 in 𝑢𝑡 . However, for stationary LQR, this is

only a mild problem – the estimate is unbiased by default and the condition number of the

(ill-conditioned) Hessian is sufficient to bound the variance of the OLS estimator. Under

non-stationary Θ𝑡 , even proving that the OLS estimate Θ̂I is “unbiased,” i.e., close to Θ𝑡 for
𝑡 ∈ I even when all the Θ𝑡 in I are close to each other, is not trivial. Naively using the

condition number of the Hessian would require a larger 𝜎𝑡 , and, thus, result in a suboptimal

regret. A major chunk of the technical analysis is to show that a small exploration cost is

sufficient to guarantee that Θ̂I has small bias. This requires quite a delicate analysis of the

geometry of the Hessian, as well as an interplay with the algorithm itself where we need

to keep the policy 𝐾I fixed so that the column space of [𝐼𝑛 𝐾⊤I ]
⊤
is fixed. This is where we

crucially take advantage of the fact that instead of replaying an old policy as in [8] to detect

non-stationarity, we continue playing the same linear feedback controller and only increase

the exploration noise.

(2) Continuous and unbounded state space: The second challenge comes from the fact that the

LQR system has unbounded state space. A particular complication this creates is that the

certainty equivalent controller need not stabilize the dynamics under non-stationarity, and

therefore the norm of the state can blow up. Algorithmically, we solve this problem by falling

back on the nominal sequence of controllers when the norm of the state crosses a threshold,

and until it falls below another threshold. Analytically, this requires some careful analysis to

bound the total cost incurred during such phases.

(3) An impossibility result for non-adaptive restart algorithms:We prove a novel regret lower bound

that outlines a shortcoming of a popular strategy for non-stationary bandits/reinforcement

learning. As we mentioned earlier, to forget distant history for non-stationary bandits and

episodic reinforcement learning, almost all existing algorithms restart learning at a fixed

schedule, or use sliding window based estimators with a fixed window size. For all the flavors

of non-stationary bandit or reinforcement learning problems studied in the literature, this

strategy yields the optimal regret if the window size is tuned optimally with the knowledge

of the variation budget, or using a bandit-on-bandit technique. In Theorem 8.3 we prove that

for the non-stationary LQR problem, for a wide class of fixed window size based algorithms,

this approach can not give the optimal regret rate even with the knowledge of 𝑉𝑇 . This

crucially uses the fact that the LQR problem behaves like a bandit problem with non-linear

(in particular quadratic) loss function. We believe that the same lower bound should extend

to non-linear bandit problems more generally.

Paper Outline: We survey some of the relevant literature in Section 2. In Section 3, we first present

some classical results on control of stationary LQR and recent results on learning and control.

Then in Section 4 we present the model assumptions for the non-stationary LQR problem that is

the subject of our study. In Section 5, we present our proposed algorithm Dyn-LQR. We devote

Section 6 to highlighting the technical challenge in studying the error of the OLS estimator for

non-stationary LQR. In Section 7 we present the regret upper bound for Dyn-LQR, and in Section 8

we present two lower bound results.
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Notation: All vectors are column vectors. For a matrix 𝐴, we use ∥𝐴∥ = sup∥𝑥 ∥=1
∥𝐴𝑥 ∥ to denote

the operator norm and ∥𝐴∥𝐹 =

√∑
𝑖, 𝑗 𝑎

2

𝑖 𝑗
to denote the Frobenius norm. For two square matrices

𝐴, 𝐵, we use 𝐴 ≼ 𝐵 to denote that the matrix 𝐵 −𝐴 is positive semidefinite. The O() notation will

used to suppress problem dependent constants, including the dimensions 𝑑, 𝑛; the Õ() notation
further suppresses polylog𝑇 factors.

2 RELATEDWORK

Our work touches on many themes in online learning and control. For each, we mention only a

few papers relevant to the present work and make no attempt to present an exhaustive survey.

Learning and control of stationary LQR:. The study of learning and control of LQRs was initiated

in Abbasi-Yadkori and Szepesvári [2], who presented an O(
√
𝑇 ) regret algorithm based on the

Optimism in the Face of Uncertainty (OFU) principle, but with an exponential dependence on the

dimensionality of the problem. Ibrahimi et al. [27] improved dependence on the dimensionality to

polynomial. Cohen et al. [13] was the first paper that provided a computationally efficient algorithm

withO(
√
𝑇 ) regret for the stationary LQR problem by solving for the optimal steady-state covariance

of [𝑥⊤𝑡 𝑢⊤𝑡 ] via a semi-definite program and extracting a controller from this covariance. Faradonbeh

et al. [17] and Mania et al. [31] proved that the certainty equivalent controller is efficient and

yields O(
√
𝑇 ) regret. Simchowitz and Foster [35] proved a matching upper and lower bound on

the regret of the stationary LQR problem of Θ̃(
√
𝑛𝑑2𝑇 ), settling the open question of whether

logarithmic regret may be possible for LQR (due to the strongly convex loss function). Notably, the

upper bound in Simchowitz and Foster [35] was achieved by a variant of the certainty equivalent

controller. Cassel et al. [7] proved an Ω(
√
𝑇 ) lower bound and showed that naive exploration based

algorithms can indeed attain logarithmic regret when the problem is sufficiently non-degenerate.

[28] developed a certainty equivalent controller based strategy for stationary LQR, but allow the

controller to change arbitrarily quickly, rather than according to a fixed doubling schedule as in

prior work.

Dynamic regret minimization for experts and bandits: Due to the weakness of static regret as a

metric for environments with non-stationary or adversarial losses/rewards, numerous stronger

notions of regret have been proposed and studied. One of the first such results was in the seminal

paper of Zinkevich [42], where a regret parameterized by the total variation of the comparator

sequence of actions was proved. Herbster and Warmuth [26] proposed the FixedShare algorithm

for prediction with expert advice problem, where the best expert may switch during the time horizon.

Hazan and Seshadhri [25] looked at online convex optimization with changing loss functions, and

proposed a metric for adaptive regret, defined to be the maximum over all windows of the regret of

the algorithm on that window compared to the best fixed action for that window. Daniely et al.

[14] introduced a metric of strongly adaptive regret and proved that no algorithm can be strongly

adaptive in the bandit feedback setting. For the bandit setting, the most common approach towards

dynamic regret is to assume that the non-stationary sequence has bounded total variation, and

providing min-max regret guarantees as a function of the variation, e.g., Besbes et al. [5]. The

common design technique is to use periodic restarts or discounting with the knowledge of the

variation of rewards, e.g., [20, 34], or a bandit-on-bandit technique to learn the optimal window

size as in Cheung et al. [9], but with a suboptimal regret guarantee. A recent breakthrough was

achieved by the algorithm of Chen et al. [8], which performs a very delicate exploration and uses

an adaptive restart argument to attain the optimal regret rate for contextual multi-armed bandits

without any prior knowledge of the variation.
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Reinforcement learning for non-stationary MDPs: While there is some literature on regret mini-

mization for MDPs with fixed transition kernel, but a changing sequence of cost functions [33, 40],

the work on unknown non-stationary dynamics is much more recent [10, 19]. The main idea is

to use sliding window based estimators of the transition kernel and design a policy based on an

optimistic model of the transition dynamics within the confidence set. As we mentioned earlier,

sliding window based algorithms are provably regret-suboptimal for the LQR problem due to the

quadratic cost function. In parallel with this work, [39] proposed an adaptive restart approach for

non-stationary reinforcement learning that uses any UCB-type algorithm for stationary reinforce-

ment learning as a black box. The authors show that for many tabular or linear MDP settings, their

approach gives the state-of-the-art regret without knowledge of variation of the input instance.

While the LQR problem is neither tabular nor linear, our approach is similar in its spirit to [39] –

however, we use point estimates and explicit exploration instead of using a UCB-like approach.

Robust control of LQR under adversarial noise: While we consider the robust control of LQR

systems from the perspective of changing transition dynamics, there have been some recent results

on robust control of LQRwhen the noise𝑤𝑡 is adversarial. Hazan et al. [24] considered a “stationary”

LQR system with known 𝐴, 𝐵, but with adversarial noise, and proposed an algorithm with O(𝑇 2/3)
regret against the best linear controller in hindsight. Simchowitz et al. [36] looked at the same

problem when the 𝐴, 𝐵 matrices may or may not be known, and proposed a Disturbance Feedback

Control based online control policy with sublinear regret against all stabilizing policies. Finally,

Goel and Hassibi [21], Gradu et al. [22] looked at non-stationary LQR problems with adversarial

noise. Goel and Hassibi [21] assumed that the sequence 𝐴𝑡 , 𝐵𝑡 is known upfront and proposed a

controller with optimal dependence of regret on the total noise. Gradu et al. [22] assumed that

the dynamics matrices 𝐴𝑡 , 𝐵𝑡 are observed after the action 𝑢𝑡 is taken and proposed a policy with

strongly adaptive regret guarantee. Finally, we would like to point to [6] as a recent example of a

work on learning and control of non-stationary non-linear dynamical systems, although in this

work the non-stationary dynamics are linearly parameterized by a known non-stationary sequence

of basis matrices and an unknown stationary parameter.

3 PRELIMINARIES – STATIONARY LQR

In this section, we give a brief summary of the classical theory of stationary LQR systems and some

recent work on learning and control for stationary LQR systems that lays the groundwork for our

work on non-stationary LQR. The stationary dynamics, parameterized by Θ = [𝐴 𝐵], are given by:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡 , 𝑡 ∈ [𝑇 ],
and the cost function by:

𝑐 (𝑥𝑡 , 𝑢𝑡 ) = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ,
where 𝑥𝑡 ∈ R𝑛 denotes the state, 𝑢𝑡 ∈ R𝑑 the control (or input), 𝑤𝑡 are i.i.d. stochastic noise

(disturbance) with covariance matrix𝑊 , and 𝑄, 𝑅 are positive-definite matrices.

A classical result in the theory of LQR problems is that the value function of the LQR problem is

a quadratic function of the state. This is true even for non-stationary dynamics and can be most

easily seen by solving for the optimal control for a finite horizon problem via backward Dynamic

Programming. As a consequence, the optimal controller turns out to be a linear feedback controller

𝑢𝑡 = 𝐾𝑡𝑥𝑡 , for some sequence of control matrices {𝐾𝑡 }. In the special case of infinite horizon average
cost minimization, the control is stationary with𝐾𝑡 = 𝐾

∗
. For an arbitrary linear feedback controller

𝐾 that is stabilizing, i.e., the spectral radius of 𝐴 + 𝐵𝐾 is upper bounded away from 1, we denote by

𝐽 (Θ, 𝐾) the infinite horizon average cost and by the symmetric positive definite matrix 𝑃 (Θ, 𝐾) we
denote the quadratic relative value function (also called the bias function) for the infinite horizon
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average cost problem, satisfying the following Bellman equation:

𝑥⊤𝑃 (Θ, 𝐾)𝑥 = 𝑐 (𝑥, 𝐾𝑥) − 𝐽 (Θ, 𝐾) + E
[
𝑥⊤

1
𝑃 (Θ, 𝐾)𝑥1 |𝑥0 = 𝑥

]
= 𝑥⊤ (𝑄 + 𝐾⊤𝑅𝐾)𝑥 − 𝐽 (Θ, 𝐾) + 𝑥⊤ (𝐴 + 𝐵𝐾)⊤𝑃 (Θ, 𝐾) (𝐴 + 𝐵𝐾)𝑥 + E

[
𝑤⊤𝑃 (Θ, 𝐾)𝑤

]
.

Matching the quadratic and the constant terms, we get that 𝑃 (Θ, 𝐾) solves the following equation

𝑃 = 𝑄 + 𝐾⊤𝑅𝐾 + (𝐴 + 𝐵𝐾)⊤𝑃 (𝐴 + 𝐵𝐾)
and 𝐽 (Θ, 𝐾) = Tr(𝑃 (Θ, 𝐾)𝑊 ). Let the optimal bias function be denoted by 𝑃∗ (Θ) and the optimal

linear feedback controller by 𝐾∗ (Θ). Given 𝑃∗ (Θ) = 𝑃∗, the optimal linear feedback controller

𝐾∗ = 𝐾∗ (Θ) can be obtained by solving for the cost minimizing action in the Bellman equation:

𝐾∗ = −(𝑅 + 𝐵⊤𝑃∗𝐵)−1𝐵⊤𝑃∗𝐴. (2)

Plugging the above in the equation for 𝑃 (Θ, 𝐾) gives a fixed point equation (called the Discrete

Algebraic Ricatti Equation) for 𝑃∗ (Θ):
𝑃∗ = 𝑄 +𝐴⊤𝑃∗𝐴 −𝐴⊤𝑃∗𝐵(𝑅 + 𝐵⊤𝑃∗𝐵)𝐵⊤𝑃∗𝐴. (3)

While the explicit forms of 𝐾∗ (Θ), 𝑃∗ (Θ) are not essential for following the results in the paper, we

would like to point out that neither of them depend on the covariance of the noise process, even

though the optimal cost 𝐽 ∗ (Θ) does.
Finally, consider the policy 𝑢𝑡 = 𝐾𝑥𝑡 + 𝜎[𝑡 , where [𝑡 are i.i.d. with covariance 𝐼𝑑 and 𝜎 > 0.

Denote the average cost for this policy by 𝐽 (Θ, 𝐾, 𝜎) and the relative value function by 𝑃 (Θ, 𝐾, 𝜎).
Then,

𝑃 (Θ, 𝐾, 𝜎) = 𝑃 (Θ, 𝐾),
𝐽 (Θ, 𝐾, 𝜎) = 𝐽 (Θ, 𝐾) + 𝜎2

Tr

(
𝑅 + 𝐵⊤𝑃 (Θ, 𝐾)𝐵

)
. (4)

That is, the effect of additive noise in the controller completely decouples from the cost of the

noiseless control 𝐾𝑥𝑡 .

Cost of model estimation error: The following lemma from [35] will be central for the intuition

and analysis behind learning and control of LQR.

Lemma 3.1 (Simchowitz and Foster [35, Theorem 5]). Let Θ = [𝐴 𝐵] be a stabilizable system
and Θ̂ = [𝐴 𝐵] be an estimate of Θ. Then there exist constants 𝐶1,𝐶2, depending on 𝑅,𝑄,𝑊 , such that

if max

{𝐴 −𝐴 , 𝐵 − 𝐵} ≤ 𝐶1 ∥𝑃∗ (Θ)∥−5

, then

𝐽 ∗ (Θ) − 𝐽 (Θ, 𝐾∗ (Θ̂)) ≤ 𝐶2 ∥𝑃∗ (Θ)∥8
Θ − Θ̂2

𝐹
.

The lemma implies that the certainty equivalent controller 𝐾∗ (Θ̂) based on the estimate Θ̂ with

sufficiently small error 𝜖 leads to a suboptimality of at most a problem-dependent constant times 𝜖2
.

Note that the closer the spectral norm of the closed loop 𝐴 + 𝐵𝐾∗ (Θ) is to 1, the larger is ∥𝑃∗ (Θ)∥,
and the harder it is to satisfy the condition in Lemma 3.1.

A naive exploration algorithm: To get some intuition on the fundamental exploration-exploitation

trade-off for the LQR problem, we describe a bare bones version of the algorithm from [35] for the

stationary setting. The authors assume (as is common in the literature) access to a stabilizing, but

suboptimal controller 𝐾0. The algorithm begins by playing 𝑢𝑡 = 𝐾0𝑥𝑡 + 𝜎0[𝑡 with [𝑡
𝑖 .𝑖 .𝑑.∼ N(0, 𝐼𝑑 )

and 𝜎2

0
= 1 for a sufficiently long warm-up period 𝐿. Based on this warm-up period, an initial

estimate Θ̂1 is constructed using the ordinary least squares (OLS) estimator. The quantity 𝜎2

0

denotes the exploration noise/energy. Even though the LQR dynamics adds i.i.d. noise 𝑤𝑡 to the
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state, the exploration noise 𝜎2

0
[𝑡 is necessary because the vector [𝑥⊤𝑡 𝑢⊤𝑡 ]⊤ = [𝐼𝑛 𝐾⊤0 ]⊤𝑥𝑡 lives in

an 𝑛-dimensional subspace instead of the full (𝑛 + 𝑑)-dimensional subspace. The algorithm then

proceeds in blocks of doubling length, indexed by 𝑖 = 1, 2, . . .. Block 𝑖 is of length 𝜏𝑖 = 𝐿 · 2𝑖 . In block

1, the control is chosen as 𝑢𝑡 = 𝐾1𝑥𝑡 + 𝜎1[𝑡 where 𝐾1 = 𝐾
∗ (Θ̂1) and 𝜎2

1
= 1/√𝜏1. The observations

from block 1 are used to construct an estimate Θ̂2 and the control in block 2 is 𝑢𝑡 = 𝐾2𝑥𝑡 + 𝜎2[2

with 𝐾2 = 𝐾∗ (Θ̂2) and 𝜎2

2
= 1/√𝜏2. More generally, observations from block (𝑖 − 1) are used to

create an estimate Θ̂𝑖 and controller 𝐾𝑖 = 𝐾
∗ (Θ̂𝑖 ). The control in block 𝑖 is 𝑢𝑡 = 𝐾𝑖𝑥𝑡 + 𝜎𝑖[𝑡 , with

exploration noise 𝜎2

𝑖 = 1/√𝜏𝑖 . The intuition behind the choice of exploration noise is the following.

The total exploration energy invested in block 𝑖 is 𝜏𝑖𝜎
2

𝑖 , which, by (4), increases the cost by an

order 𝜏𝑖𝜎
2

𝑖 . Furthermore, the variance of the OLS estimator Θ̂𝑖+1 is inversely proportional to the

exploration noise, and is therefore O(1/𝜏𝑖𝜎2

𝑖 ). Lemma 3.1 then says that the per step exploitation

cost from using controller 𝐾𝑖+1 based on Θ̂𝑖+1 is of the order 1/𝜏𝑖𝜎2

𝑖 . Therefore, the total regret is of

order 1/𝜎2

𝑖 during block (𝑖 + 1). Balancing the exploration cost 𝜏𝑖𝜎
2

𝑖 during block 𝑖 and the total

exploitation cost 1/𝜎2

𝑖 during block 𝑖 + 1 gives the choice 𝜎2

𝑖 ≈ 𝜏
−1/2
𝑖

.

4 MODEL AND PRELIMINARIES – NON-STATIONARY LQR

The non-stationary LQR problem has dynamics:

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 +𝑤𝑡 , 𝑡 ∈ [𝑇 ],

and time-invariant cost function:

𝑐 (𝑥𝑡 , 𝑢𝑡 ) = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ,

where 𝑥𝑡 ∈ R𝑛 denotes the state, 𝑢𝑡 ∈ R𝑑 the control (or input), 𝑤𝑡
𝑖 .𝑖 .𝑑.∼ N(0,𝑊 ) denotes the

stochastic noise (disturbance) with covariance matrix𝑊 = 𝜓 2𝐼𝑛 (the assumption on 𝑤𝑡 is for

exposition purposes; our results readily extend to sub-Gaussian 𝑤𝑡 with 𝜓
2𝐼𝑛 ≼ 𝑊 ≼ Ψ2𝐼𝑛 for

0 < 𝜓 < Ψ < ∞). We use {F𝑡 }𝑡 ∈[𝑇 ] to denote the filtration generated by {𝑤1, . . . ,𝑤𝑇 }. We will use

Θ𝑡 = [𝐴𝑡 𝐵𝑡 ] to succinctly denote the dynamics of the LQR at time period 𝑡 . Cost matrices 𝑄, 𝑅 are

assumed to be symmetric positive definite with 𝑟min𝐼𝑑 ≼ 𝑅 ≼ 𝑟max𝐼𝑑 , 𝑞min𝐼𝑛 ≼ 𝑄 ≼ 𝑞max𝐼𝑛 .

The learner/controller knows the cost matrices 𝑄, 𝑅, but not the dynamics {Θ𝑡 }𝑡 ∈[𝑇 ] . For any
interval I = [𝑠, 𝑒], we define the total variation of the model parameter within the interval as

ΔI = Δ [𝑠,𝑒 ] :=

𝑒−1∑
𝑡=𝑠

Δ𝑠 =
𝑒−1∑
𝑡=𝑠

∥Θ𝑠 − Θ𝑠+1∥𝐹 ,

so that the total variation 𝑉𝑇 = Δ [1,𝑇 ] . In the case of piecewise constant dynamics, we use 𝑆I ≥ 1

to denote the number of such constant dynamics pieces in interval I.
A common assumption in the literature on online learning and control of stationary LQR systems

is the availability of a baseline controller 𝐾0 that may be suboptimal, but stabilizes the system. Such

a controller can be played in an initial warm-up phase until a good initial estimate of the dynamics

can be learned. This assumption allows one to focus on the algorithmic challenge of minimizing

regret and not worry about the stability of the system. From the point of view of applications,

often there are default actions which guarantee this condition (e.g., shutting a data center will

prevent over-heating of servers), or crude forecasts of the dynamics may be enough to derive such

controls. Theoretically, a stabilizing controller can be found by following the strategy proposed in

[16]. Similarly, we also assume that our algorithm is given a sequence of controllers {𝐾 stab

𝑡 } that
stabilizes the dynamics given by {Θ𝑡 }. More formally, Assumption 4.2 states that the exogenous

sequence of controllers satisfies a property called sequentially strong stability.
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Definition 4.1 (Sequentially Strong Stability [12]). For the non-stationary LQR problem with

parameters {Θ𝑡 } = {[𝐴𝑡 𝐵𝑡 ]}, a sequence of controllers {𝐾1, . . . , 𝐾𝑇 } is called (^,𝛾) sequentially
strongly-stabilizing (for ^ ≥ 1 and 0 < 𝛾 ≤ 1) if there exist matrices 𝐻1, 𝐻2, . . . , 𝐻𝑇 ≻ 0 and

𝐿1, 𝐿2, . . . , 𝐿𝑇 such that 𝐴𝑡 + 𝐵𝑡𝐾𝑡 = 𝐻𝑡𝐿𝑡𝐻−1

𝑡 for all 𝑡 ∈ [𝑇 ], and the following properties hold:

(i) ∥𝐿𝑡 ∥ ≤ 1 − 𝛾 and ∥𝐾𝑡 ∥ ≤ ^ for 𝑡 ∈ [𝑇 ];
(ii) ∥𝐻𝑡 ∥ ≤ 𝐵0 and

𝐻−1

𝑡

 ≤ 1/𝑏0 with ^ = 𝐵0/𝑏0 for 𝑡 ∈ [𝑇 ];
(iii)

𝐻−1

𝑡+1𝐻𝑡
 ≤ 1 + 𝛾/2 for 𝑡 ∈ [𝑇 − 1].

Assumption 4.2. The online algorithm has access to a sequence of (^,𝛾) sequentially strongly-

stabilizing controllers {𝐾 stab

1
, 𝐾 stab

2
, . . . , 𝐾 stab

𝑇
}, for constants ^ ≥ 1 and 0 < 𝛾 ≤ 1.

A (^ ′, 𝛾 ′) sequentially strongly stabilizing sequence of controllers is also (^,𝛾) strongly stabilizing
for^ ≥ ^ ′ and𝛾 ≤ 𝛾 ′. Therefore, we take^ ≥ 1 as a convenient convention. An intuitive explanation

for this assumption is the following. Denote

Φ𝑡 := 𝐴𝑡 + 𝐵𝑡𝐾 stab

𝑡 and Φ𝑏:𝑎 := Φ𝑏Φ𝑏−1 · · ·Φ𝑎, for 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇 .
Then

∥Φ𝑏:𝑎 ∥ =
𝐻𝑏𝐿𝑏 (𝐻−1

𝑏
𝐻𝑏−1)𝐿𝑏−1 · · · (𝐻−1

𝑎+1𝐻𝑎)𝐿𝑎𝐻−1

𝑎


≤ ∥𝐻𝑏 ∥ · ∥𝐿𝑏 ∥ ·

𝐻−1

𝑏
𝐻𝑏−1

 · ∥𝐿𝑏−1∥ · · ·
𝐻−1

𝑎+1𝐻𝑎
 · ∥𝐿𝑎 ∥ · 𝐻−1

𝑎


≤ ^

(
1 + 𝛾

2

)𝑏−𝑎
(1 − 𝛾)𝑏−𝑎+1 ≤ ^

(
1 − 𝛾

2

)𝑏−𝑎
. (5)

As a consequence of (5) and noting that

𝑥𝑏 = Φ𝑏−1:𝑎𝑥𝑎 + Φ𝑏−1:𝑎+1𝑤𝑎 + Φ𝑏−1:𝑎+2𝑤𝑎+1 + · · · + Φ𝑏−1:𝑏−1𝑤𝑏−2 +𝑤𝑏−1,

we can bound the norm of the state under the stabilizing controllers as:

∥𝑥𝑏 ∥ ≤ ^𝑒−𝛾 (𝑏−𝑎)/2 ∥𝑥𝑎 ∥ +
2^

𝛾
max

𝑎≤𝑡 ≤𝑏−1

∥𝑤𝑡 ∥ ,

and,

E
[
∥𝑥𝑏 ∥2

]
= ∥Φ𝑏−1:𝑎𝑥𝑎 ∥2 + E

[
∥Φ𝑏−1:𝑎+1𝑤𝑎 ∥2

]
+ · · · + E

[
∥Φ𝑏−1:𝑏−1𝑤𝑏−2∥2

]
+ E

[
∥𝑤𝑏−1∥2

]
≤ ^2𝑒−𝛾 (𝑏−𝑎) ∥𝑥𝑎 ∥2 +

2^2

𝛾
E
[
∥𝑤 ∥2

]
. (6)

While assuming ∥Φ𝑡 ∥ < 1 − 𝛾/2 also ensures (5), it is a much more restrictive condition. A weaker

condition is that the spectral radius is bounded: 𝜌 (Φ𝑡 ) ≤ 1 − 𝛾/2, but the spectral radius is not
submultiplicative and does not imply (5).

A second assumption we will make is on the stability of the controller derived from an accurate

estimate of the true dynamics.

Assumption 4.3. For any 𝑡 ∈ [𝑇 ], let Θ𝑡 be the true dynamics, Θ̂𝑡 be an estimate of the true

dynamics, and 𝐾 = 𝐾∗ (Θ̂𝑡 ) be the optimal closed-loop controller for the estimated dynamics. Then,

there exist constants 𝐶3,𝐶4 such that

Θ̂𝑡 − Θ𝑡2

𝐹
≤ 𝐶3 implies 𝐽 ∗ (Θ𝑡 ) − 𝐽 (Θ𝑡 , 𝐾) ≤ 𝐶4

Θ𝑡 − Θ̂𝑡2

𝐹
.

For convenience, we assume 𝐶3 ≤ 1, since the assumption continues to hold if we choose a smaller

value of 𝐶3 than sufficient.

Assumption 4.3 is without loss of generality due to Lemma 3.1. As mentioned earlier, the constants

𝐶3,𝐶4 depend on the maximum operator norm of 𝑃∗𝑡 , which we assume to be bounded independent

of 𝑇 and 𝑉𝑇 . The constants 𝐶3,𝐶4 are only used in the analysis, not as a part of the algorithm.
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Just like Assumption 4.2, under non-stationary dynamics, we need a stronger sequential sta-

bility property for controllers 𝐾∗ (Θ̂𝑡 ) than in Assumption 4.3. Towards that end, we introduce a

strengthening of the (^,𝛾) sequential strong stability criterion. The main difference is that condi-

tion (iii) involves the variation ∥Θ𝑡+1 − Θ𝑡 ∥ and hence allows us to prove exponential stability for

non-stationary dynamics with small total variation.

Definition 4.4 ((^,𝛾, a)-Sequentially Strong Stability). For the non-stationary LQR problem and

an interval [𝑎, 𝑏], a sequence of controllers {𝐾𝑎, . . . , 𝐾𝑏} is called (^,𝛾, a)-sequentially strongly-

stabilizing (for ^ ≥ 1 and 0 < 𝛾 ≤ 1) if there exist matrices 𝐻𝑎, 𝐻𝑎+1, . . . , 𝐻𝑏 ≻ 0 and 𝐿𝑎, 𝐿𝑎+1, . . . , 𝐿𝑏
such that 𝐴𝑡 + 𝐵𝑡𝐾𝑡 = 𝐻𝑡𝐿𝑡𝐻−1

𝑡 for all 𝑡 ∈ [𝑎, 𝑏], and the following properties hold:

(i) ∥𝐿𝑡 ∥ ≤ 1 − 𝛾 and ∥𝐾𝑡 ∥ ≤ ^ for 𝑡 ∈ [𝑎, 𝑏];
(ii) ∥𝐻𝑡 ∥ ≤ 𝐵0 and

𝐻−1

𝑡

 ≤ 1/𝑏0 with ^ = 𝐵0/𝑏0 for 𝑡 ∈ [𝑎, 𝑏];
(iii)

𝐻−1

𝑡+1𝐻𝑡
 ≤ 1 + a · ∥Θ𝑡+1 − Θ𝑡 ∥ for 𝑡 ∈ [𝑎, 𝑏 − 1].

The next lemma states that if the provided estimate Θ̂ satisfies ∥Θ̂ − Θ𝑡 ∥2𝐹 ≤ 𝐶3 for all 𝑡 in an

interval I, then the controller 𝐾 = 𝐾 (Θ̂) is (^,𝛾, a)-sequentially strongly stable for the dynamics

in I.

Lemma 4.5. For an interval I, let Θ̂ be an estimate of the dynamics such that ∥Θ̂ − Θ𝑡 ∥2𝐹 ≤ 𝐶3

for all 𝑡 ∈ I. Let 𝐾 = 𝐾∗ (Θ̂) be the optimal linear feedback controller with respect to the estimate Θ̂.
Define

a =
2(1 − 𝛾)2

1 − (1 − 𝛾)2 ((1 − 𝛾) + (^ + 1)) .

Then 𝐾 is a (^,𝛾, a)-sequentially strongly stable control sequence for interval I with the following

setting of parameters: 𝐻𝑡 = 𝑃
1/2
𝑡 and 𝐿𝑡 = 𝑃

−1/2
𝑡

(
𝐴𝑡 + 𝐵𝑡𝐾

)
𝑃

1/2
𝑡 , where 𝑃𝑡 := 𝑃 (Θ𝑡 , 𝐾), ^ =

√
�̃� ∗I

𝜓 2𝑟min

,

𝛾 =
𝑞min𝜓

2

2𝐽 ∗I
, 𝐽 ∗I = max𝑡 ∈I 𝐽

∗ (Θ𝑡 ), and �̃� ∗I = 𝐽 ∗I +𝐶3𝐶4.

As a corollary, similar to the calculations in (6), the following lemma bounds the norm of 𝑥𝑡 .

Lemma 4.6. Let the controller 𝐾 and interval I = [𝑠I, 𝑒I] satisfy the conditions in Lemma 4.5.

Then for an action sequence 𝑢𝑡 = 𝐾𝑥𝑡 + 𝜎𝑡[𝑡 , 𝑡 ∈ I, there exists a constant 𝐶𝑠𝑠 such that

∥𝑥𝑡 ∥ ≤ ^𝑒−𝛾 (𝑡−1)+𝐶𝑠𝑠𝑉[1,𝑡−1] ∥𝑥1∥ +
^𝑒−𝛾 (𝑡−𝑠)+𝐶𝑠𝑠𝑉[𝑠,𝑡−1]

𝛾
max

1<𝑠<𝑡
∥𝑤𝑠 + 𝜎𝑠𝐵𝑠[𝑠 ∥ , 𝑡 ∈ I .

Later we will see that the controllers used in our proposed Algorithm 1 satisfy the conditions of

Lemmas 4.5 and 4.6, and hence stabilize the dynamics and the state has bounded norm with high

probability.

Finally, we introduce some constants that we will use as a parameterization of the input instance.

We assume that they are known to the learner/controller.

Additional Constants: Let the norm upper bounds for the parameters of the instance be given by:

𝐴𝑢 = max𝑡 ∈[𝑇 ] ∥𝐴𝑡 ∥, 𝐵𝑢 = max𝑡 ∈[𝑇 ] ∥𝐵𝑡 ∥, Θ𝑢 = max𝑡 ∈[𝑇 ] ∥Θ𝑡 ∥, and 𝑃𝑢 = max𝑡 ∈[𝑇 ]
𝑃∗𝑡 . Define

𝛽 := max

{
𝜓,max

𝑖,𝑡
𝛽𝑖,𝑡

}
,
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where 𝛽𝑖,𝑡 are singular values of 𝐵𝑡 . Define 𝐾𝑢 as:

𝐾𝑢 = max

𝑡


𝐾 stab

𝑡

 , max

Θ̂:

Θ̂−Θ𝑡

2

𝐹
≤𝐶3

𝐾∗ (Θ̂) .
Finally, define 𝜌0 = 1 − 𝛾min/2 and ^ = ^max, where 𝛾min is the smaller of 𝛾 values from Assump-

tions 4.2 and Lemma 4.5, and similarly ^max is the larger of the ^ values.

5 ALGORITHM DYN-LQR

xℓ

xu

Epoch i
begins

Nonstationarity detected;
Epoch (i+ 1) begins

Instability detected;
Stabilization epoch begins

Epoch (i+ 2)
begins

Bi,0 Bi,1 Bi,2 Bi,j Bi+1,0 Bi+1,1 Bi+1,2 Bi+1,3 Bi+1,0 Bi+2,1Block:

Linear feedback
control matrix:

Kstab
t Ki,1 Kstab

t Kstab
t Kstab

tKi,2 Ki,j Ki+1,1 Ki+1,2 Ki+1,3 Ki+2,1

Fig. 1. Illustration of Regular epochs, blocks, and stabilization epochs for Algorithm Dyn-LQR. Epoch 𝑖 ends

in block B𝑖, 𝑗 when an EndOfExplorationTest fails. Epoch 𝑖 + 1 ends because ∥𝑥𝑡 ∥ exceeds the threshold 𝑥𝑢 ,
indicating that the current controller 𝐾𝑖+1,3 is potentially unstable. This triggers a stabilization epoch which

ends the first time ∥𝑥𝑡 ∥ falls below 𝑥ℓ , and starts epoch 𝑖 + 2.

Our algorithm Dyn-LQR is presented as Algorithm 1. At a high level, the algorithm divides the

time horizon into epochs {E1, E2, . . .} where the squared total variation Δ2

E𝑖 within epoch E𝑖 is
of the order

√
1/|E𝑖 |. This should be reminiscent of the trade-off described in the last paragraph

of Section 3 where the variance of the OLS estimator for a block was proportional to the inverse

square root of the length of the block. The end of an epoch signals that a sufficient change in Θ𝑡 has
accumulated and the algorithm starts a new epoch, whereby it forgets the past history and restarts

the procedure to estimate the dynamics Θ𝑡 . Since the length of an epoch is unknown to the online

controller a priori, within each epoch we follow a doubling strategy (again similar to the naive

algorithm in Section 3) by further splitting it into non-overlapping blocks (indexed by 𝑗 = 0, 1, . . .)

of geometrically increasing duration. We denote the 𝑗-th block of epoch 𝑖 as B𝑖, 𝑗 . During block 0,

or the warm-up block, the algorithm plays an action 𝑢𝑡 = 𝐾
stab

𝑡 𝑥𝑡 + a0[𝑡 where [𝑡 ∼ N(0, 𝐼𝑑 ) are
i.i.d. Gaussian random vectors, and a0 = 1 is the added exploration noise. We denote by {G𝑡 }𝑡 ∈[𝑇 ]
the filtration generated by {[1, . . . , [𝑇 }. The duration of the warm-up blocks is 𝐿 = O((𝑛+𝑑) log

3𝑇 ).
The O(1) exploration noise reduces the estimation error of the OLS estimate computed at the

end of the block. Observations from block 𝑗 are used to create an estimate Θ̂𝑖, 𝑗 of the dynamics,

which in turn gives the linear feedback controller for block 𝑗 + 1 as 𝐾𝑖, 𝑗+1 := 𝐾∗ (Θ̂𝑖, 𝑗 ), and action

𝑢𝑡 = 𝐾𝑖, 𝑗+1𝑥𝑡 + a 𝑗+1[𝑡 . For a block B𝑖, 𝑗 with 𝑗 ≥ 1, we choose a2

𝑗 ≈ 1√
|B𝑖,𝑗 |

as the exploration noise

similar to the stationary LQR case. If the estimate based on a block B𝑖, 𝑗 “differs statistically” from
the estimate from the previous block B𝑖, 𝑗−1 (Algorithm 3), epoch E𝑖 is ended and E𝑖+1 started.

Figure 1 gives an illustration of epochs and blocks.
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Algorithm 1: Dyn-LQR
Input: Horizon 𝑇 , stabilizing controllers {𝐾stab

𝑡 }, input instance parameters 𝜌0,𝜓, ^, 𝛽

1 Definition: a0 = 1; a2

𝑗
=

√
𝐶0

2
𝑗𝐿

for 𝑗 ≥ 1 where 𝐶0 = 4 log𝑇 , 𝐿 =
16(𝑛+𝑑) log

3𝑇
1−𝜌0

;

2 B𝑖, 𝑗 = [𝜏𝑖 + 2
𝑗−1𝐿, 𝜏𝑖 + 2

𝑗𝐿 − 1], where 𝜏𝑖 is the start of exploration epoch E𝑖 ;

3 Bounds on ∥𝑥𝑡 ∥ for stabilization epochs: 𝑥𝑢 = 2^𝑒𝐶𝑠𝑠

(√
8(𝑛+𝑑)𝛽√

1−𝜌0

√
log𝑇 + (𝑛+𝑑)𝐵

1−𝜌0

)
, 𝑥ℓ =

2𝜓^
√
𝑛

1−𝜌0

;

4 [𝑡
𝑖 .𝑖 .𝑑.∼ N(0, 𝐼𝑛);

5 Initialize: 𝑡 = 1, 𝑖 = 1;

6 𝜏𝑖 ← 𝑡 ; /* Start of exploration epoch E𝑖 */

7 for 𝑡 = 𝜏𝑖 , . . . , 𝜏𝑖 + 𝐿 − 1 do /* Block 0 (warm-up) */

8 Play 𝑢𝑡 = 𝐾
stab

𝑡 𝑥𝑡 + a0[𝑡 ;

9 end
10 for 𝑗 = 1, 2, . . . do
11 Let Θ̂𝑖, 𝑗−1 be the OLS estimator based on B𝑖, 𝑗−1, and define 𝐾𝑖, 𝑗 = 𝐾

∗ (Θ̂𝑖, 𝑗−1);
12 M ← ∅ ; /* Initialize the set of exploration phases */

13 while 𝑡 ≤ 𝜏𝑖 + 2
𝑗𝐿 − 1 do

14 𝐸 ∼ Ber

(
1

𝐿
2
−𝑗/2 ∑𝑗−1

𝑚=0
2
−𝑚/2

)
; /* Sample exploration indicator */

15 if 𝐸 = 1 then
16 Sample exploration scale index𝑚 ∈ {0, 1, 2, . . . , 𝑗 − 1} with probability Pr(𝑚 = 𝑏) ∝ 2

−𝑏/2
;

17 M ←M ∪ {(𝑚, 𝑡)};
18 end
19 Let𝑀𝑡 = {(𝑚, 𝑠) ∈ M | 𝑠 ≤ 𝑡 ≤ 𝑠 + 2

𝑚𝐿 − 1} ; /* Active exploration phases */

20 if 𝑀𝑡 ≠ ∅ then
21 Set𝑚𝑡 = min{𝑚 | ∃(𝑚, 𝑠) ∈ 𝑀𝑡 };
22 Play 𝑢𝑡 = 𝐾𝑖, 𝑗𝑥𝑡 + a𝑚𝑡

[𝑡 ;

23 else
24 Play 𝑢𝑡 = 𝐾𝑖, 𝑗𝑥𝑡 + a 𝑗[𝑡 ;
25 end
26 Observe 𝑥𝑡+1;
27 for (𝑚, 𝑠) ∈ M with 𝑡 = 𝑠 + 2

𝑚𝐿 − 1 do
28 if EndOfExplorationTest(𝑖, 𝑗,𝑚, 𝑠) = Fail then
29 𝑡 ← 𝑡 + 1, 𝑖 ← 𝑖 + 1 ; Go to line 6 ; /* Start a new epoch */

30 end
31 end
32 if 𝑡 = 𝜏𝑖 + 2

𝑗𝐿 − 1 and EndOfBlockTest(𝑖, 𝑗) = Fail then
33 𝑡 ← 𝑡 + 1, 𝑖 ← 𝑖 + 1 ; Go to line 6 ; /* Start a new epoch */

34 end
35 𝑡 ← 𝑡 + 1;

36 if ∥𝑥𝑡 ∥ ≥ 𝑥𝑢 then /* Instability detected */
37 while ∥𝑥𝑡 ∥ ≥ 𝑥ℓ do
38 Play 𝑢𝑡 = 𝐾

stab

𝑡 𝑥𝑡 , observe 𝑥𝑡+1;
39 𝑡 ← 𝑡 + 1;

40 end
41 𝑖 ← 𝑖 + 1 ; Go to line 6 ; /* Start a new epoch */

42 end
43 end
44 end
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Algorithm 2: EndOfExplorationTest(𝑖, 𝑗,𝑚, 𝑠)

Construct OLS estimator Θ̂𝑖, 𝑗,(𝑚,𝑠) ;

Θ̂𝑖, 𝑗,(𝑚,𝑠) = argminΘ
∑𝑠+2𝑚𝐿−1

𝑡=𝑠

𝑥𝑡+1 − Θ[𝑥⊤𝑡 𝑢⊤𝑡 ]⊤2

𝐹
;

if
Θ̂𝑖, 𝑗−1 − Θ̂𝑖, 𝑗,(𝑚,𝑠)

2

𝐹
≥ (1 +𝐶bias + 2𝐶var)2 (2𝑚𝐿)−1/2 then /* See (7) */

Return Fail;

end
Return Pass;

Algorithm 3: EndOfBlockTest(𝑖, 𝑗 )

Construct OLS estimator Θ̂𝑖, 𝑗 ;

Θ̂𝑖, 𝑗 = argminΘ
∑
𝑡 ∈B𝑖,𝑗

𝑥𝑡+1 − Θ[𝑥⊤𝑡 𝑢⊤𝑡 ]⊤2

𝐹
;

if
Θ̂𝑖, 𝑗−1 − Θ̂𝑖, 𝑗

2

𝐹
≥ (1 +𝐶bias + 2𝐶var)2 (2𝑗−1𝐿)−1/2 then /* See (7) */

Return Fail;

else
Return Pass;

end

The vanilla policy mentioned above suffers from the problem that we could potentially commit

to a controller for a long block – and hence fail to detect a large change, which could in turn

potentially lead to O(𝑇 ) regret. This is where the crucial novelty of the scheme of [8] (designed for

contextual multi-armed bandits) comes into play: to detect non-stationarity, which may happen at

different scales (few large or many small changes), at each time within the block B𝑖, 𝑗 , the authors’
algorithm enters a replay phase where the policy from an earlier block in the same epoch (together

with the larger exploration noise) is played. If at the end of some replay phase, the estimate of

reward differs significantly from the history, the current epoch is ended. The algorithm could

potentially be in multiple replay phases simultaneously, in which case the policy to replay is picked

uniformly at random from active replays. Replay phases with different indexes are intended to

detect changes of different magnitudes.

To adapt to the LQR setting, we simplify the above strategy. In particular, at any time 𝑡 in a

block B𝑖, 𝑗 , we enter an exploration phase with probability proportional to 1/
√
|B𝑖, 𝑗 | and given this

event happens, the ‘scale’ of the exploration phase is chosen to be𝑚 with probability proportional

to 1/
√

2
𝑚
. A scale𝑚 exploration phase lasts for 2

𝑚𝐿 time steps, during which we play the action

𝑢𝑡 = 𝐾𝑖, 𝑗𝑥𝑡 +𝜎𝑡[𝑡 . That is, we keep playing the same linear feedback controller, but with exploration

noise increased to 𝜎2

𝑡 ≈ 1√
2
𝑚
. Therefore, a scale𝑚 exploration phase allows us to detect variation

in Θ𝑡 of size
4

√
1/2𝑚 . There can be multiple exploration phases active at any time 𝑡 . We denote

them by𝑀𝑡 = {(𝑚1, 𝑡1), (𝑚2, 𝑡2), . . .} where𝑚𝑘 denotes the scale and 𝑡𝑘 denotes the starting time

of the 𝑘-th active exploration phase. In this case, we play the most aggressive (i.e., the smallest

𝑚) exploration phase, with the feedback used by all active exploration phases to improve their

estimates. At the end of the exploration phase (𝑚, 𝑠), we first compute the OLS estimator Θ𝑖, 𝑗,(𝑚,𝑠) ,

and declare non-stationarity and end the epoch if

Θ̂𝑖, 𝑗−1 − Θ̂𝑖, 𝑗,(𝑚,𝑠)
2

⪆ 1√
2
𝑚
(Algorithm 2).

One crucial difference between LQR and the contextual bandit setting off [8] is that LQR has a

quadratic cost, while contextual bandit is a special case of a linear bandit problem, which affects

the choice of 𝜎𝑡 . Yet another crucial difference from the contextual bandit setting is that since
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the LQR system has a state, the system could potentially become unstable through an inaccurate

estimate before the non-stationarity is detected. We thus create a third criterion for ending an

epoch: whenever ∥𝑥𝑡 ∥ ≥ 𝑥𝑢 = O
(√
(𝑛+𝑑) log𝑇

1−𝜌0

)
, we end the current epoch and enter a stabilization

epoch. In a stabilization epoch we keep playing the stabilizing controllers without any exploration

noise until ∥𝑥𝑡 ∥ drops below 𝑥ℓ = O
(

𝑛
1−𝜌0

)
. At this point, we begin a regular exploration epoch.

6 ESTIMATION ERROR FOR OLS WITH NON-STATIONARY Θ𝑡

A central ingredient of our algorithm is the ordinary least squares estimator used to learn the

approximate dynamics. While the study of the variance of the OLS estimator is a well-understood

topic, when the parameter sequence is non-stationary, the OLS estimator can be biased. Studying

this bias is quite non-trivial, especially for the LQR problem.

We state our results on the estimation error of the OLS estimator for non-stationary LQR at the

end of this section and devote Appendix C to the formal proofs of the results. However, we will

highlight in brief the reason that these results are challenging and non-trivial. For intuition, the

reader should keep the trade-off we pointed to at the end of Section 3 in mind: during an interval I
of length |I |, to balance the exploration-exploitation trade-off we would like to create an estimator

that has error of order |I |−1/4
. With a non-stationary parameter sequence, this error comes from

both the variance of the estimator as well as the bias. Therefore, if the variation in Θ𝑡 during this
interval, ΔI , is of smaller order than |I |−1/4

, then we would like the bias of our estimator to be

O(ΔI).

Failure of a naive proof-strategy. We first show that an obvious first line of attack to bound the

estimation error of OLS does not work. Define 𝑧𝑡 = [𝑥⊤𝑡 , 𝑢⊤𝑡 ]⊤ and ΥI B
∑
𝑡 ∈I 𝑧𝑡𝑧

⊤
𝑡 for an interval

I = [𝑠, 𝑒]. Then we can write the error in the OLS estimator compared to a ‘representative’ Θ̄ (e.g.,

Θ̄ = Θ𝑒 ) as:

Θ̂I − Θ̄ =

(∑
𝑡 ∈I

(
Θ𝑡 − Θ̄

)
𝑧𝑡𝑧
⊤
𝑡

)
Υ−1

I︸                         ︷︷                         ︸
“bias”

+
(∑
𝑡 ∈I

𝑤𝑡𝑧
⊤
𝑡

)
Υ−1

I︸             ︷︷             ︸
“variance”

.

The above shows that if Θ𝑡 is constant in I, then the estimator is unbiased. Lacking that, we may

try to bound the first term as follows (this proof strategy was followed in [9]). Let Θ̄ = Θ𝑒 , then
(∑
𝑡 ∈I
(Θ𝑡 − Θ𝑒 ) 𝑧𝑡𝑧⊤𝑡

)
Υ−1

I


𝐹

=


(∑
𝑡 ∈I

𝑒−1∑
𝑝=𝑡

(
Θ𝑝 − Θ𝑝+1

)
𝑧𝑡𝑧
⊤
𝑡

)
Υ−1

I


𝐹

=

𝑒−1∑
𝑝=𝑠

(
Θ𝑝 − Θ𝑝+1

) (
𝑝−1∑
𝑡=𝑠

𝑧𝑠𝑧
⊤
𝑠

)
Υ−1

I


𝐹

≤
𝑒−1∑
𝑝=𝑠

(Θ𝑝 − Θ𝑝+1)𝐹 _max

((
𝑝−1∑
𝑡=𝑠

𝑧𝑠𝑧
⊤
𝑠

)
Υ−1

I

)
.

If _max

((∑𝑝−1

𝑡=𝑠 𝑧𝑠𝑧
⊤
𝑠

)
Υ−1

I

)
≤ 1, then the analysis above would bound the bias by ΔI . While this

may seem intuitive (e.g., it is true if 𝑧𝑠 are scalars), this was shown to be false for an arbitrary {𝑧𝑠 }
sequence even for the case of 𝑧𝑠 ∈ R2

by [41].

An illustrative example. To further highlight why a technically challenging analysis is necessary

for the study of OLS with a non-stationary parameter sequence, we consider a simple example of

OLS estimation without noise. Consider a 2-dimensional example with two data points:

\1 = [1 1], \2 = [1 − 𝜖 1]; 𝑧1 = [cos𝛼 sin𝛼], 𝑧2 = [1 0] .
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θ1

z1

z2

θ2

θ̂

ǫ

α

α

Fig. 2. Illustration for the large bias of OLS estimator with non-stationary parameters.

Figure 2 shows the geometric intuition behind the OLS estimator. In this specific example, the

estimate is given by the intersection of two (for 𝑡 = 1, 2) lines: perpendicular to 𝑧𝑡 and passing

through \𝑡 . The bias of the OLS estimate \̂ in this noiseless case is given as |\̂ − \2 | = 𝜖/tan𝛼 . With

𝛼 ≈ 𝜖 ≪ 1, the bias approaches 1 even though \1, \2 are 𝜖-close to each other. The matrix Υ for this

case is

Υ =

[
1 + cos

2 𝛼 cos𝛼 · sin𝛼

cos𝛼 · sin𝛼 sin
2 𝛼

]
,

which is ill-conditioned when 𝛼 ≪ 1. In particular, _max (Υ)/_min (Υ) ≈ 1/2𝛼2
. It might seem that

such an ill-conditioned Υ is an extreme case that is unlikely to bother our study. However, with

the exploration noise chosen in Algorithm 1, we give evidence in Lemma C.8 that the condition

number of ΥI for intervals I of interest is concentrated around O(
√
|I |), while we are trying to

get unbiased estimates when the variation of Θ𝑡 in interval I is ΔI = O(|I|−1/4). This precisely
corresponds to the problematic setting 𝛼 ∼ 𝜖 ≪ 1 in our toy example above.

Our proof approach. We begin by decomposing the problem into bounding the estimation error

for each row of the estimate Θ̂I . For a given row, \̂I , the key obstacle in the analysis of the

estimation error

\̂I − ¯\

2

is that while 𝑧𝑡 lives in R
𝑛+𝑑

, most of its variance is in the 𝑛-dimensional

column space of [𝐼𝑛 𝐾⊤I ]
⊤
, where 𝐾I is the fixed linear feedback controller used during interval I.

This is because the LQR dynamics naturally adds the noise𝑤𝑡−1 to arrive at the state 𝑥𝑡 allowing

efficient exploration/estimation of the component of
¯\ lying in the column space of [𝐼𝑛 𝐾⊤I ]

⊤
. In

particular, the total energy in this column space is O(|I|) through 𝑤𝑡 , while the energy in the

orthogonal subspace through the exploration noise b𝑡 = 𝜎𝑡[𝑡 is
∑
𝑡 ∈I 𝜎

2

𝑡 = O(
√
|I |). Therefore, as

our toy example points out, a naive analysis based on a lower bound on the eigenvalues of the

matrix

∑
𝑡 ∈I 𝑧𝑡𝑧

⊤
𝑡 fails, because it does not exploit the statistical independence between b𝑡 and 𝑥𝑡 .

Our approach is to instead to look at one-dimensional OLS problems parameterized by directions

𝑣 ∈ S𝑛+𝑑 := {𝑣 ∈ R𝑛+𝑑 , ∥𝑣 ∥ = 1}:
_𝑣 = argmin

_

L( ¯\ + _ · 𝑣),

where L is the quadratic loss function for OLS. We argue that |_𝑣 | are small for ‘enough’ directions

𝑣 . That is, in enough directions, the minimizer

(
¯\ + _𝑣 · 𝑣

)
of the 1-dimensional quadratic defined

above is close to the candidate
¯\ . Furthermore, since the loss function looks very different for 𝑣

lying close to the column space of [𝐼𝑛 𝐾⊤]⊤ versus 𝑣 lying close to its orthogonal subspace, we

consider two cases: 𝑣 lying only in the column space or lying only in its orthogonal subspace, and
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prove that the geometry of Hessian implies that it is sufficient to look at these two cases. The

complete proof is presented in Appendix C.

Results. We state our lemmas for the estimation error for the OLS estimators used in Algorithm 1.

Lemma 6.1 states it for intervals within exploration blocks B𝑖, 𝑗 , while Lemma 6.2 states it for

warm-up blocks B𝑖,0. The reason for the two separate results is that within a warm-up block,

the controller 𝐾 stab

𝑡 is changing, which does not allow a subspace decomposition we mentioned

earlier, but the O(1) exploration noise still allows us to bound the estimation error. Within an

exploration block B𝑖, 𝑗 , the exploration noise is of a much smaller magnitude (to control regret due

to exploration), but the controller 𝐾𝑡 is fixed, which allows the decomposition.

Lemma 6.1. Consider an interval I in block B𝑖, 𝑗 for some epoch E𝑖 in Algorithm 1, such that |I | ≥ 𝐿
and max𝑡 ∈I ∥𝑥𝑡 ∥ ≤ 𝑥𝑢 . Let Θ̂I be the corresponding OLS estimate from observations in I and Θ̄ = Θ𝑡
for some 𝑡 ∈ I. Then, there exists a 𝑇0, such that for 𝑇 ≥ 𝑇0, with probability at least 1 − Y:Θ̂I − Θ̄

𝐹
≤ 𝐶1ΔI +𝐶2 |I |−

1

4 ,

where

𝐶1 = 𝐶bias

√
ln

1

Y
+ ln𝑇 and 𝐶2 = 𝐶var

(
√

ln𝑇 +
√

ln

1

Y

)
,

for problem dependent constants 𝐶bias,𝐶var (precise expressions are shown in (43)).

Lemma 6.2. Consider a warm-up block B𝑖,0 in Algorithm 1 and let Θ̄ = Θ𝑡 for some 𝑡 ∈ B𝑖,0. There
exists a𝑇0, such that for𝑇 ≥ 𝑇0 and the choice of 𝐿 in Algorithm 1, the OLS estimate Θ̂B𝑖,0 of a warm-up

block B𝑖,0 satisfies Θ̂B𝑖,0 − Θ̄
𝐹
≤ 𝐶1,stabΔB𝑖,0 +𝐶2,stab |B𝑖,0 |−

1

4 ,

with probability at least 1 − Y where

𝐶1,stab = 𝐶bias,stab

√
ln𝑇 and 𝐶2,stab = 𝐶var,stab

√
ln

1

Y
+ ln ln𝑇,

for problem dependent constants 𝐶bias,stab,𝐶var,stab (precise expressions are shown in (49)).

Applying Lemma 6.1 and Lemma 6.2 with Y = 1/𝑇 3
to all the intervals (at most 𝑇 2

) that may be

considered during the execution of Algorithm 1 and a union bound immediately gives the following

result.

Lemma 6.3. Define Event 1 as the event that for each warm-up block B𝑖,0 in Algorithm 1 it holds

that Θ̂B𝑖,0 − Θ̄
𝐹
≤ 𝐶bias,stab

√
ln𝑇ΔB𝑖,0 + 3𝐶var,stab

√
ln𝑇 |B𝑖,0 |−

1

4 ,

and for each phase and non-warmup block, denoted by I = [𝑠, 𝑒], it holds thatΘ̂I − Θ̄
𝐹
≤ 3𝐶bias

√
ln𝑇ΔI + 3𝐶var

√
ln𝑇 |I |− 1

4 .

Then we have that Pr[Event 1] ≥ 1 − 1/𝑇 .

For succinctness, define

𝐶bias =
√

ln𝑇 max{3𝐶bias,𝐶bias,stab} and 𝐶var =
√

ln𝑇 max{3𝐶var, 3𝐶var,stab}. (7)
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7 REGRET UPPER BOUND FOR DYN-LQR

Our main regret upper bound for Dyn-LQR is shown below.

Theorem 7.1. Under Assumption 4.2, the expected regret of Dyn-LQR is upper bounded as:

E
[
RDyn-LQR (𝑇 )

]
= Õ

(
𝑉

2/5
𝑇
𝑇 3/5

)
.

If the dynamics {Θ𝑡 } are piecewise constant with at most 𝑆 switches, then the regret of Dyn-LQR is

upper bounded as:

E
[
RDyn-LQR (𝑇 )

]
= Õ

(√
𝑆𝑇

)
.

Our definition of RDyn-LQR (𝑇 ) in (1) measures the regret relative to the benchmark

∑𝑇
𝑡=1

𝐽 ∗𝑡 . In

the next proposition, we prove that this benchmark is at most Õ(𝑉𝑇 ) larger than the expected cost

of the dynamic optimal policy. This additive error is dominated by the regret Õ(𝑉 2/5
𝑇
𝑇 3/5) proved

in Theorem 7.1. Proposition 7.2 is proved in Appendix D.

Proposition 7.2. Let {𝑢𝑡 }𝑇𝑡=1
be an arbitrary non-anticipative policy for the non-stationary LQR

control problem. Then,

E

[
𝑇∑
𝑡=1

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

]
≥

𝑇∑
𝑡=1

𝐽 ∗𝑡 − O(𝑉𝑇 + log𝑇 ).

We will conduct our analysis under the assumption that Event 1 specified in Lemma 6.3 occurs.

Since Dyn-LQR uses 𝐾 stab

𝑡 whenever ∥𝑥𝑡 ∥ ≥ 𝑥𝑢 , outside this event, the total cost is bounded by

Õ(𝑇 ). Note that this happens with probability at most 1/𝑇 .

7.1 Regret Decomposition

We begin with an informal regret decomposition lemma which highlights the key exploration-

exploitation trade-off for non-stationary LQR.

Informal Lemma. The expected regret for a policy 𝜋 with 𝑢𝑡 = 𝐾𝑡𝑥𝑡 + 𝜎𝑡[𝑡 where 𝐾𝑡 , 𝜎𝑡 are
adapted to the filtration (F ,G) is given by:

E[R𝜋 (𝑇 )] = E

[
𝑇∑
𝑡=1

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽 ∗𝑡

]
=

𝑇∑
𝑡=1

E
[
𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡

]
︸                 ︷︷                 ︸
exploitation regret

+
𝑇∑
𝑡=1

E
[
𝜎2

𝑡 Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

) ]
︸                                  ︷︷                                  ︸

exploration regret

+
𝑇−1∑
𝑡=1

E
[
𝑥⊤𝑡+1 (𝑃𝑡+1 (𝐾𝑡+1) − 𝑃𝑡 (𝐾𝑡 )) 𝑥𝑡+1

]
︸                                            ︷︷                                            ︸

policy/parameter variation

+E
[
𝑥⊤

1
𝑃1 (𝐾1)𝑥1 − 𝑥⊤𝑇+1𝑃𝑇 (𝐾𝑇 )𝑥𝑇+1

]
. (8)

We term the lemma informal because it relies on 𝐽𝑡 (𝐾𝑡 ) and 𝑃𝑡 (𝐾𝑡 ) being defined for all 𝑡 . This

need not always be true for Dyn-LQR since 𝐾𝑡 is the certainty equivalent controller based on an

estimate of Θ𝑡 , and therefore the stationary system corresponding to Θ𝑡 and 𝐾𝑡 need not even be

stable, and 𝐽𝑡 (𝐾𝑡 ) could be unbounded. We shortly address how we handle such time periods, but

their contribution to regret will be asymptotically of a smaller order. The decomposition points

out that the dominant terms in the analysis will be the exploitation regret and the exploration
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regret. The policy/parameter variation depends on how much the pair (Θ𝑡 , 𝐾𝑡 ) changes during
non-warmup blocks of an exploration epoch. By design, the policies {𝐾𝑡 } are piece-wise constant
with at most log𝑇 changes per epoch, and we will prove that the number of epochs is O(𝑉 4/5

𝑇
𝑇 1/5).

Finally, for a fixed 𝐾 , ∥𝑃 (Θ𝑡 , 𝐾) − 𝑃 (Θ𝑡+1, 𝐾)∥ = O(∥Θ𝑡 − Θ𝑡+1∥), and hence this contributes at

most O(𝑉𝑇 ) to the regret across the entire horizon.

To refine the regret decomposition, we recapitulate Algorithm 1, and in particular the classifi-

cation of exploration epochs, stabilization epochs, blocks within exploration epochs, and another

concept we define for the purpose of analysis alone – bad intervals.

(i) Stabilization epochs – such epochs begin whenever ∥𝑥𝑡 ∥ exceeds the upper bound 𝑥𝑢 , indicating
the potential instability of the current controller. We use 𝜏 stab𝑖 to denote the start of the 𝑖-th

stabilization epoch. During a stabilization epoch, we use the controller 𝐾𝑡 = 𝐾 stab

𝑡 . The 𝑖-th

stabilization phase ends at \ stab𝑖 (inclusive) where

\ stab𝑖 = min{𝑡 ≥ 𝜏 stab𝑖 + 1 : ∥𝑥𝑡+1∥ ≤ 𝑥ℓ }.
We use S𝑖 to denote the interval [𝜏 stab𝑖 , \ stab𝑖 ] as well as the 𝑖-th stabilization epoch symbolically.

(ii) Exploration epochs – such epochs begin either at the end of a stabilization epoch, or at

the end of another exploration epoch if sufficient non-stationarity is detected through failure

of EndOfExplorationTest or EndOfBlockTest. We will denote the start and end of the 𝑖-th

exploration epoch by 𝜏𝑖 and \𝑖 respectively, and use E𝑖 to denote the interval [𝜏𝑖 , \𝑖 ] as well as the
epoch symbolically.

(iii) Blocks – The 𝑖-th exploration epoch E𝑖 is partitioned into non-overlapping blocks of geomet-

rically increasing duration. Block 0 (also called the warm-up block) is the interval [𝜏𝑖 , 𝜏𝑖 + 𝐿 − 1],
and the 𝑗-th block ( 𝑗 = 1, . . .) is the interval [𝜏𝑖 + 𝐿 · 2𝑗−1, 𝜏𝑖 + 𝐿 · 2𝑗 − 1] ∩ E𝑖 of maximum length

𝐿 · 2𝑗−1
. We denote by B𝑖, 𝑗 both the interval as well as the block symbolically. The controller used

at time 𝑡 ∈ B𝑖, 𝑗 ( 𝑗 ≥ 1) is given by 𝐾∗ (Θ̂𝑖, 𝑗−1), where Θ̂𝑖, 𝑗−1 is the OLS estimator based on the block

𝑗 − 1 of epoch E𝑖 . For succinctness, we use the notation
Θ̂𝑡 := Θ̂𝑖, 𝑗−1, for 𝑡 ∈ B𝑖, 𝑗 .

We will use 𝐵𝑖 to denote the number of blocks in epoch E𝑖 .
(iv) Bad/Good intervals – It can happen that for some time steps during an exploration epoch,

the controller is unstable and therefore 𝐽𝑡 (𝐾𝑡 ) is undefined, but the ∥𝑥𝑡 ∥ has not exceeded 𝑥𝑢 . To
study the regret due to such 𝑡 , we define the notion of bad intervals within epochs. The 𝑘-th bad

interval of an epoch 𝑖 begins at 𝜏bad
𝑖,𝑘

and ends at \bad
𝑖,𝑘

where these are defined recursively as:

𝜏bad𝑖,1 := min

{
𝑡 ∈ [𝜏𝑖 + 𝐿, \𝑖 ] :

Θ̂𝑡 − Θ𝑡2

𝐹
≥ 𝐶3

}
,

𝜏bad
𝑖,𝑘

:= min

{
𝑡 ∈ [\bad

𝑖,𝑘−1
, \𝑖 ] :

Θ̂𝑡 − Θ𝑡2

𝐹
≥ 𝐶3

}
,

\bad
𝑖,𝑘

:= min

{
𝑡 ∈ [𝜏bad

𝑖,𝑘
+ 1, \𝑖 ] :

Θ̂𝑡+1 − Θ𝑡+12

𝐹
≤ 𝐶3

2

}
,

with the constant 𝐶3 defined in Assumption 4.3. Note that we do not create bad intervals during

the block B𝑖,0, which is analyzed separately. We denote the 𝑘-th bad interval of an epoch 𝑖 as Ibad
𝑖,𝑘

.

By Ibad𝑖 , we denote the union of all bad intervals in E𝑖 , and by Ibad, the union of all bad intervals.

All time periods that not in bad intervals, i.e., they are in E𝑖 \ {B𝑖,0 ∪ Ibad𝑖 }, will be called good and

split into good intervals. For analysis purposes, we further split the good time periods based on

the blocks. That is, a good interval can end at time 𝑡 if (i) either a bad interval begins at time 𝑡 + 1,

or (ii) a block ends at time 𝑡 in which case another good interval can begin at time 𝑡 + 1. Using a
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similar notation Igood
𝑖, 𝑗,𝑘

denotes the 𝑘-th good interval of a block B𝑖, 𝑗 (which must lie entirely inside

[𝜏𝑖 +𝐿 · 2𝑗−1, 𝜏𝑖 +𝐿 · 2𝑗 − 1]. We will use 𝑁 bad

𝑖 to denote the total number of bad intervals in an epoch

𝑖 and 𝑁
good

𝑖, 𝑗
to denote the number of good intervals in a block B𝑖, 𝑗 . The advantage of defining the

good intervals to lie within a block is that for the purposes of analysis, the good intervals within a

block B𝑖, 𝑗 are completely defined based on history before the start of the block B𝑖, 𝑗 .
We will use 𝐸 to denote the total number of exploration epochs and 𝐸𝑆 to denote the total number

of stabilization epochs. Finally, we come to the regret decomposition that we use in the subsequent

section:

RDyn-LQR (𝑇 ) =
𝑇∑
𝑡=1

𝑐𝑡 − 𝐽 ∗𝑡

≤
𝐸𝑆∑
𝑖=1

∑
𝑡 ∈S𝑖

𝑐𝑡︸     ︷︷     ︸
𝑇1: Stabilization

epochs

+
𝐸∑
𝑖=1

∑
𝑡 ∈B𝑖,0

𝑐𝑡︸       ︷︷       ︸
𝑇2: Warm-up

blocks

+
𝐸∑
𝑖=1

𝑁 bad

𝑖∑
𝑘=1

∑
𝑡 ∈Ibad

𝑖,𝑘

𝑐𝑡︸             ︷︷             ︸
𝑇3: Bad

intervals

+
𝐸∑
𝑖=1

𝐵𝑖∑
𝑗=1

𝑁
good

𝑖,𝑗∑
𝑘=1

∑
𝑡 ∈Igood

𝑖,𝑗,𝑘

(
𝑐𝑡 − 𝐽 ∗𝑡

)
︸                              ︷︷                              ︸

𝑇4: Good

intervals

. (9)

7.2 Regret analysis for Dyn-LQR

The main result of this section is the following lemma, which provides an intermediate characteri-

zation of E
[
RDyn-LQR (𝑇 )

]
based on (9). In particular, the characterization highlights that to bound

the regret, it is sufficient to bound (i) the number 𝐸 of exploration epochs (Section 7.3) and (ii) the

total squared norm of the estimation error of dynamics Θ𝑡 for the good periods (Section 7.4).

Lemma 7.3. The expected regret for Dyn-LQR is bounded as follows:

E
[
RDyn-LQR (𝑇 )

]
≤ Õ ©«E


𝐸∑
𝑖=1

𝐵𝑖∑
𝑗=1

∑
𝑡 ∈B𝑖,𝑗

min

{Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
,𝐶3

}
+

√
|B𝑖, 𝑗 |

ª®¬ + Õ(𝐸 +𝑉𝑇 ),
≤ Õ ©«E


𝐸∑
𝑖=1

𝐵𝑖∑
𝑗=1

∑
𝑡 ∈B𝑖,𝑗

min

{Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
,𝐶3

}ª®¬ + Õ(
√
𝐸 ·𝑇 +𝑉𝑇 ). (10)

Proof. We proceed by bounding the terms in (9).

Upper bound for Term 1. Since the controllers {𝐾 stab

𝑡 } used in a stabilization epoch satisfy

sequentially strong stability (Assumption 4.2), in Lemma 7.4 we prove that the expected total cost

per stabilization epoch is Õ(1). Since the number of stabilization epochs is bounded by the number

of exploration epochs 𝐸, the total contribution of Term 1 in (9) is Õ(𝐸).

Lemma 7.4. Let [𝜏 stab, \ stab] be a stabilization epoch. The expected total cost during the stabilization
epoch is bounded by

E

\ stab∑
𝑡=𝜏 stab

𝑐𝑡

������F𝜏 stab−1
,G𝜏 stab−1

 = O
(
^2𝑥2

𝑢

1 − 𝜌0

)
= O

(
^2𝛽2 (𝑛 + 𝑑 + log𝑇 )

(1 − 𝜌0)2

)
.

Upper bound for Term 2. Similar to Lemma 7.4, the use of 𝐾 stab

𝑡 during warm-up blocks gives

a bound of Õ(1) per epoch in Lemma 7.5, which gives a Õ(𝐸) contribution due to Term 2.
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Lemma 7.5. Let [𝜏𝑖 , 𝜏𝑖 + 𝐿 − 1] denote the warm-up block B𝑖,0 of an exploration epoch E𝑖 . The
expected total cost during B𝑖,0, for any 𝑖 , is bounded by

E

[
𝜏𝑖+𝐿−1∑
𝑡=𝜏𝑖

𝑐𝑡

�����F𝜏𝑖−1,G𝜏𝑖−1

]
= O

(
^2𝛽2 (𝑛 + 𝑑) log

3𝑇

(1 − 𝜌0)2

)
.

Upper bound for Term 3. Since ∥𝑥𝑡 ∥ is bounded by 𝑥𝑢 = Õ(1) for any time period in a bad

interval by definition, the cost is bounded by Õ(1) per time step. We can bound the number of bad

time periods within an arbitrary interval I noting that for 𝑡 ∈ Ibad,
Θ̂𝑡 − Θ𝑡2

𝐹
≥ 𝐶3/2 and thus:

��Ibad ∩ I�� = ∑
𝑡 ∈Ibad∩I

1 ≤ 2

𝐶3

∑
𝑡 ∈I

min

{Θ̂𝑡 − Θ𝑡2

𝐹
,𝐶3

}
. (11)

Then the total contribution of Term 3 is O
(
E
[∑𝐸

𝑖=1

∑𝐵𝑖
𝑗=1

∑
𝑡 ∈B𝑖,𝑗 min

{Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
,𝐶3

}])
.

Upper bound for Term 4.

Lemma 7.6. For some epoch E𝑖 , a block B𝑖, 𝑗 in epoch E𝑖 , and a good interval Igood𝑖, 𝑗,𝑘
= [𝜏, \ ] in block

B𝑖, 𝑗 , the expected regret is bounded as follows:

E
[
R𝜋 (Igood

𝑖, 𝑗,𝑘
) | F𝜏−1,G𝜏−1

]
≤

\∑
𝑡=𝜏

(
𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡

)
+

���Igood
𝑖, 𝑗,𝑘

��� 𝐶1/2
0

𝐿3/2 ·
𝑗
√

2
𝑗
+ O

(
𝑛 + 𝑑 + log𝑇

1 − 𝜌0

(
1 + ΔI𝑖,𝑗,𝑘

))
≤

\∑
𝑡=𝜏

𝐶4

Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
+

���Igood
𝑖, 𝑗,𝑘

��� 𝐶1/2
0
𝐶7

𝐿3/2 ·
𝑗
√

2
𝑗
+ O

(
𝑛 + 𝑑 + log𝑇

1 − 𝜌0

(
1 + ΔI𝑖,𝑗,𝑘

))
,

where the constant 𝐶7 := max𝑡 sup

{
Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

)
| 𝐾𝑡 = 𝐾∗ (Θ̂),

Θ̂ − Θ𝑡2

𝐹
≤ 𝐶3

}
.

Combining the results above, we can bound the first term in (10) immediately from Term 3 and the

first summand in Lemma 7.6 for Term 4. Summing the second term in Lemma 7.6 over all the good

intervals within a block B𝑖, 𝑗 (which is of length at most 2
𝑗
) contributes Õ(

√
|B𝑖, 𝑗 |). Since the blocks

within an epoch are doubling in length,

∑
𝑗

√
|B𝑖, 𝑗 | ≤ 8

√
|E𝑖 | and

∑
𝑖

√
|E𝑖 | ≤ 𝐸

√
𝑇 /𝐸 =

√
𝐸 ·𝑇 . The

contribution of the third term in Lemma 7.6 is proportional to the number of good intervals, which

is bounded by 𝑉𝑡/
√
𝐶3/2 + 𝐸 log𝑇 . To see this, note that without any bad intervals, there would be

one good interval per block and there are at most log𝑇 blocks per epoch. For a good interval to

begin due to a bad interval ending, the bad interval must ‘eat up’

√
𝐶3/2 of the variation due to the

criterion chosen for the end of a bad interval. Hence, there can be at most𝑉𝑇 /
√
𝐶3/2 good intervals

created because of the bad intervals. The last term in Lemma 7.6 contributes Õ(𝑉𝑇 ) to (10). □

7.3 Bounding the Number of Epochs

There are two ways of generating epochs in Algorithm 1: (1) epochs end due to the detection of

non-stationarity (lines 29 and 33), and (2) epochs end due to the detection of instability (line 41).

This section is devoted to bounding the number of epochs from these two sources separately.
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Bounding the number of epochs generated by non-stationarity tests. In the subsequent analysis,

we will bound the number of epochs terminated due to the detection of non-stationarity in Θ𝑡 by

O(𝑇 1/5𝑉 4/5
𝑇
), which dominates O(𝑉𝑇 ). Recall that an epoch ends if the non-stationarity tests in

Algorithms 2 or 3 fail, which happens if the distance between the new OLS estimate and the estimate

based on the previous block exceeds some threshold. The thresholds there are carefully designed

according to the concentration results proved in Section 6, which allow us to prove the following

lemma characterizing the variation budget needed for an epoch to fail the tests in Algorithms 2

and 3.

Lemma 7.7. Assume Event 1 holds. Let E𝑖 be an epoch with total variation Δ [𝜏𝑖 ,𝑡 ] ≤ (𝑡 −𝜏𝑖 + 1)−1/4
,

then the epoch does not end because of nonstationarity detection.

The following corollary bounds the number of restarts due to detection of non-stationarity.

Corollary 7.8. Assume Event 1 holds. The number of epochs that end due to detection of non-

stationarity is bounded by O(𝐶−2/5
0

𝑇 1/5𝑉 4/5
𝑇
).

Bounding the number of epochs generated by instability tests. Lemma 7.9 characterizes the

variation budget needed to trigger the end of an epoch due to instability detection, which leads to

Corollary 7.10 bounding the number of epochs ended due to instability.

Lemma 7.9. Let E𝑖 be an epoch with total variation ΔE𝑖 ≤
(√

𝐶3

4
−𝐶var𝐿

−1/4
)
/𝐶𝑏𝑖𝑎𝑠 . Then under

Event 1, with probability at least 1 − O(1/𝑇 3), the epoch does not end because of instability detection.

Corollary 7.10. The expected number of epochs that end due to the instability test is bounded by

O(𝑉𝑇
√

ln𝑇 ).

Combining the two bounds, we get 𝐸 = O(𝑇 1/5𝑉 4/5
𝑇
). Therefore, we can bound the Õ(

√
𝐸 ·𝑇 )

term in (10) by Õ(𝑇 3/5𝑉 2/5
𝑇
).

7.4 Bounding the Total Square Norm of the Estimation Error

In this section, we analyse the regret due to the estimation error, i.e., the first term in (10). For

succinctness, define the following loss function for an arbitrary interval I:

L(𝐼 ) :=
∑
𝑡 ∈I

min

{
𝐶4

Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
,𝐶3

}
. (12)

In the sequel, we first focus on an exploration epoch E𝑖 and bound L(E𝑖 ). We then combine the

regret of epochs to get the requisite regret bound of Theorem 7.1.

Our proof decomposes into three parts. First, we focus on one block, say block 𝑗 , of epoch 𝑖 ,

and prove a lemma that provides an upper bound for L(I) for any interval I ⊆ B𝑖, 𝑗 . Second, we
partition a block into intervals with small total variation within each interval. We use the just

mentioned bound to bound L(B𝑖, 𝑗 ) of each block 𝑗 in an exploration epoch 𝑖 in terms of the length

of the block and the total variation within the block. Finally, we upper bound the total number of

blocks within an epoch 𝑖 and sum up the bound on L(B𝑖, 𝑗 ) for all the blocks in an epoch E𝑖 to
obtain a bound on L(E𝑖 ).

Lemma 7.11. For an arbitrary interval I = [𝑠, 𝑒] that lies in block B𝑖, 𝑗 , define YI B
Θ̂𝑖, 𝑗−1 − Θ𝑠

2

𝐹

and 𝛼I B
log |I |√
I

. Then, L(I) can be bounded as

L(I) = O
(
|I |𝛼I + |I|Δ2

I + |I|YI1{YI ≥ 𝛼I}
)
.
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To get a bound for the regret for a block, we need to partition B𝑖 𝑗 into intervals with small

variation. Specifically, we have the following lemma adapted from [8].

Lemma 7.12. There is a way to partition any block B into I1 ∪ I2 ∪ · · · ∪ IΓ such that

Δ2

I𝑘 ≤
log

2
𝑇√
|𝐼𝑘 |

= 𝛼𝐼𝑘 , 𝑘 ∈ [Γ],

and the number of blocks Γ satisfies Γ = O
(
min

{
𝑆B, (log |B|)−

2

5 Δ
4

5

B |B|
1

5 + 1

})
.

The partition in Lemma 7.12 is for the analysis only. The intuition for this partition is to create

small enough intervals so that their regret can be shown to be small, while at the same time not

creating too many intervals. Applying Lemma 7.11 to each interval of the partition of block J :

L(B) ≤ Õ
( Γ−1∑
𝑘=1

|I𝑘 |𝛼I𝑘 +
Γ−1∑
𝑘=1

|I𝑘 |YI𝑘1{YI𝑘 ≥ 𝛼I𝑘 }
)
+ L(IΓ). (13)

Plugging in the definition of 𝛼I𝑘 , we get |I𝑘 |𝛼I𝑘 =
√
I𝑘 log |I𝑘 |. Then by the Cauchy-Schwartz

inequality and the upper bound for Γ from Lemma 7.12, we have

Γ−1∑
𝑘=1

√
|I𝑘 | log |I𝑘 | ≤

√√√
(Γ − 1)

Γ−1∑
𝑘=1

|I𝑘 | log
2 |I𝑘 | = Õ

©«
√√√
(Γ − 1)

Γ−1∑
𝑘=1

|I𝑘 |
ª®¬ = Õ

(
|B| 35 Δ

2

5

B

)
.

We defer the bound for the remaining terms of (13) to Appendix E.3. The following lemma presents

the resulting upper bound for the loss function of a block B.

Lemma 7.13. Let B = B𝑖, 𝑗 be a block of some epoch 𝑖 with 𝑗 > 0. It holds with high probability that

Dyn-LQR guarantees

L(B) ≤ Õ
(
|B| 35 Δ

2

5

𝐵
+

√
|B|

)
.

From the geometrically increasing size of B𝑖 𝑗 , we get
∑
𝑗

√
|B𝑖 𝑗 | = O(|E𝑖 |). From the Hölder’s

inequality, we get ∑
𝑗

|B𝑖 𝑗 |
3

5 Δ
2

5

𝐵𝑖,𝑗
≤

(∑
𝑗

|B𝑖 𝑗 |
) 3

5

(∑
𝑗

Δ𝐵𝑖,𝑗

) 2

5

= |E𝑖 |
3

5 Δ
2

5

E𝑖 ;

so that L(E𝑖 ) = Õ(|E𝑖 |3/5Δ2/5
E𝑖 +
√
E𝑖 ). One more application of the Hölder’s inequality gives the

bound of Õ(𝑇 3

5𝑉
2

5

𝑇
), proving Theorem 7.1.

8 REGRET LOWER BOUNDS

In this section, we prove two lower bounds for the regret of the non-stationary LQR problem. First,

in Theorem 8.1 we prove that for any given𝑉𝑇 = 𝑜 (𝑇 ), no learning algorithm can guarantee a regret

𝑜 (𝑉 3/5
𝑇
𝑇 2/5), showing that the regret of Dyn-LQR is minimax optimal as a function of 𝑉𝑇 . Next, in

Theorem 8.3 we prove that a broad class of static-window based online learning algorithms are

regret suboptimal for non-stationary LQR – even if the algorithm has the knowledge of the variation

𝑉𝑇 . This rules out several popular approaches that have been used in the literature for learning

under non-stationary such as UCB with static restart schedule or bandit-on-bandit approaches to

optimize the window size.
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Theorem 8.1. There exists a 𝑇0 such that for any 𝑇 ≥ 𝑇0, and a total variation 𝑉𝑇 of dynamics, for

any randomized online algorithm Alg (which knows𝑇,𝑉𝑇 ), there exists a non-stationary LQR instance

with regret lower bounded as

E
[
RAlg (𝑇 )

]
= Ω

(
𝑉

3/5
𝑇
𝑇 2/5

)
.

Under switching dynamics with 𝑆 switches, for any randomized algorithm Alg (which knows 𝑇, 𝑆),

there exists an instance with regret lower bounded as

E
[
RAlg (𝑇 )

]
= Ω

(√
𝑆𝑇

)
.

Proof. We build on the lower bound instance from [7]. Consider a randomly generated one

dimensional LQR problem instance with dynamics and cost:

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑢𝑡 +𝑤𝑡 ,
𝑐𝑡 = 𝑥

2

𝑡 + 𝑢2

𝑡 , (14)

where𝑤𝑡 ∼ N(0, 1). The dynamics are given by 𝑎 = 1/
√

5 and 𝑏 = 𝜒
√
𝜖 , with 𝜒 being a Rademacher

random variable that takes values ±1 with equal probability. Standard results show that the optimal

linear feedback controller for the above LQR system is:

𝑘∗ = − 𝑎𝑏𝑝∗

1 + 𝑏2𝑝∗
(15)

where 𝑝∗ solves

𝑝∗ = 1 + 𝑎2𝑝∗

1 + 𝑏2𝑝∗
. (16)

In Cassel et al. [7], the authors prove the following lower bound on the regret of any algorithm.

Theorem 8.2 (Cassel et al. [7, Theorem 13]). For 𝑇 ≥ 12000 and 𝜖 =
√
𝑇 /4, the expected regret

of any deterministic learning algorithm for system (14) satisfies

E[R(𝑇 )] ≥
√
𝑇

3100

− 4.

By Yao’s theorem, the above implies that for any randomized learning algorithm, there is an

LQR instance with expected regret Ω(
√
𝑇 ).

We create a lower bound instance for a non-stationary LQR problem with the total variation

𝑉𝑇 by pasting a sequence of these one-dimensional instances. In particular, we concatenate ⌊ 𝑉𝑇
2

√
𝜖
⌋

instances of (14) with horizon ⌊ 1

4𝜖2
⌋ each, where 𝜖 satisfies 𝑉𝑇

2

√
𝜖
= 𝑇 ·4𝜖2

, or equivalently 𝜖 =

(
𝑉𝑇
8𝑇

)
2/5

.

That is, we re-randomize 𝜒 for every sub-instance. To demonstrate a lower bound, we further allow

the learner the knowledge of the time instants at which a new sub-instance begins, and the duration

of the sub-instance. Theorem 8.2 implies that the regret of the learner for each sub-instance is

Ω
(

1

2𝜖

)
, for a total regret over the entire time horizon of Ω

(
𝑉𝑇
𝜖3/2

)
= Ω

(
𝑉

2/5
𝑇
𝑇 3/5

)
.

If, instead of bounded total variation, the non-stationary LQR instance has a piecewise constant

dynamics with 𝑆 switches, we create a lower bound instance similarly with 𝑆 sub-instances of

horizon ⌊𝑇 /𝑆⌋ each, and 𝜖 =
√
𝑇 /𝑆
4

. The regret per sub-instance for any learner is Ω(
√
𝑇 /𝑆) for a

total regret lower bound of Ω(
√
𝑆𝑇 ). □
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Necessity of Adaptive Restarts. A common technique to handle non-stationary learning envi-

ronments is to use random restarts or sliding window algorithms to forget the distant history. In

learning problems where the rewards are linear in the unknown parameters (e.g., in multi-armed

bandit problems), this gives the optimal regret rate in terms of the total variation of the instance

if the window size is chosen optimally – in the lower bound instance, the adversary changes the

instance by O
(
𝑉

1/3
𝑇
𝑇 −1/3

)
at regularly spaced times. In the LQR problem, we instead have that

the per-step regret 𝐽 ∗ (Θ) − 𝐽 (Θ, 𝐾∗ (Θ̂)) is quadratic in
Θ − Θ̂

𝐹
. Intuitively, the adversary can

maximally penalize a non-adaptive restart based algorithm by changing the instance by as much

as Θ(1) at regularly spaced, but randomly chosen times. This strategy fails against an adaptive

restart algorithm such as Dyn-LQR because big changes are easy to detect with less exploration

effort. To give a little more formal intuition, we consider the one-dimensional LQR problem (14)

from [7], but with non-stationary 𝑏𝑡 , and a fairly general static window based algorithm for this

non-stationary LQR instance. We prove that even with optimal tuning of the window size and an

arbitrary exploration strategy, it can incur a regret as large as Ω(𝑉 1/3
𝑇
𝑇 2/3).

We first describe the one-dimensional instance and the family of sliding window algorithms we

consider. Instance: The cost function is 𝑥2

𝑡 + 𝑢2

𝑡 and the dynamics are given by:

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑡𝑢𝑡 +𝑤𝑡 ,

with 𝑥1 = 0 and𝑤𝑡
𝑖 .𝑖 .𝑑.∼ N(0, 1). The dynamics parameter is time-invariant 𝑎 = 1/

√
5 and known

to the algorithm (therefore, there is no learning needed for 𝑎). The sequence {𝑏𝑡 } is random and

generated as follows. Let 𝜖 = 0.05 · (𝑉𝑇 /𝑇 )1/6. We choose 𝑏1 = 𝜖 . For each subsequent 𝑡 , with

probability
𝑉𝑇
2𝑇
, 𝑏𝑡 is chosen to be ±0.05 with equal probability, or, with probability (𝑉𝑇 /4𝑇 )5/6, 𝑏𝑡

is chosen to be ±𝜖 with equal probability, otherwise 𝑏𝑡 = 𝑏𝑡−1. The key feature of the instance is

that while most of the time 𝑏𝑡 is small of size 𝜖 and most of the changes in 𝑏𝑡 are of order 𝜖 as

well, there are much rarer changes in 𝑏𝑡 of O(1) size. These two scales of changes make any fixed

window size suboptimal for the regret.

Non-adaptiveRestartwith Exploration (RestartLQR(𝑊 )) Algorithm.We consider a family

of algorithms parametrized by awindow size𝑊 . Let[𝑡
𝑖 .𝑖 .𝑑.∼ N(0, 1). The algorithm splits the horizon

𝑇 into non-overlapping phases of duration𝑊 each, and for time 𝑡 in phase 𝑖 , the algorithm plays

𝑢𝑡 = �̂� (𝑖)𝑥𝑡 + 𝜎𝑡[𝑡 , where �̂� (𝑖) is a linear feedback controller estimated by the algorithm based only

on the trajectory observed in phase (𝑖 − 1), and 𝜎𝑡 is an arbitrary adapted sequence of exploration

noise (energy) injected by the algorithm. To emphasize, the algorithm is restricted in two senses.

First, it is restricted to playing a fixed linear feedback controller within each phase with Gaussian

exploration noise. Second, at the beginning of each phase, the algorithm forgets the entire history

and restarts the estimation of the dynamics.

Theorem 8.3. The expected regret of RestartLQR under optimally tuned window size 𝑊 and

exploration strategy is at least Ω
(
𝑉

1/3
𝑇
𝑇 2/3

)
.

9 CONCLUDING THOUGHTS

In this paper, we have tried to fill an obvious gap in the literature – the absence of any low dynamic

regret algorithm for the control of a non-stationary LQR system under stochastic noise. We discuss

the possibility of wider applicability of our results and some open questions.

A Queueing Application. While in the paper we focused on the LQR problem, the key motif of the

LQR problem that drove our results was that (i) given the state and action, the feedback we receive

was a linear function (i.e., linear feedback); and (ii) given an 𝜖 error in the parameter estimates, the
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optimal controller for the estimated parameters has an O(𝜖2) additive suboptimality (i.e., quadratic

cost). Similar motif shows up in numerous other applications where we believe a similar regret

trade-off would show up. Here we mention a queueing example. Consider the following discrete

time queueing system with a configurable server: the arrivals per period are i.i.d. Bernoulli with a

known mean _ < 1. The server has two resources (say CPU and memory) and the operator can

choose a configuration (𝑥,𝑦) ∈ {𝑥2+𝑦2 ≤ 1;𝑥,𝑦 ≥ 0} of the two resources. Given the configuration,

the number of departures per period is also a Bernoulli random variable with mean,

`𝑡 = 𝛼𝑡𝑥 + 𝛽𝑡𝑦,
where 𝛼𝑡 , 𝛽𝑡 ≥ 0, _ < 𝛼2

𝑡 +𝛽2

𝑡 ≤ 1 represent the resource requirements of the jobs, are non-stationary,

and unknown to the operator. Assume a job that arrives in time step 𝑡 can not be served before

time step 𝑡 + 1. The cost at time step 𝑡 is 𝑁𝑡 , the number of jobs in the system. This system fits the

motif of linear feedback and quadratic cost. The linear feedback can be seen by noting that the

feedback at time step 𝑡 is the Bernoulli random variable for the number of departures, which can

be written as 𝛼𝑡𝑥𝑡 + 𝛽𝑡𝑦𝑡 + [𝑡 , where [𝑡 is a mean 0 bounded random variable (independent across

time periods). To see the quadratic cost part, consider the steady-state problem with stationary

(𝛼, 𝛽), and a stationary action (𝑥,𝑦) giving `𝑡 = ` = 𝛼𝑥 + 𝛽𝑦. The steady-state average cost would
be 𝑁 (`, _) = _ (1−_)

`−_ . In this case, the optimal action is to choose (𝑥𝑡 , 𝑦𝑡 ) in the direction (𝛼, 𝛽)
under which `∗ = 𝛼2 + 𝛽2

with optimal cost 𝑁 ∗ = 𝑁`∗,_ . Consider an estimate (𝛼, 𝛽) such that

|𝛼 − 𝛼 | + |𝛽 − 𝛽 | = 𝜖 . If _ ≤ 𝛼2 + 𝛽2 − 1

100
, then the controller based on the estimated 𝛼, 𝛽 gives cost

𝑁 ∗ + Θ(𝜖2), which is what we mean by a quadratic cost. We therefore expect that our results for

the LQR problem would extend to the control of such queueing systems.

Open Questions. We believe both our algorithm and the regret analysis can be tightened, e.g.,

using sequential hypothesis testing to detect instability instead of our current threshold based

approach, and made parameter free. An algorithm with a bound on regret of the following flavor

would be desirable: There exist constant 𝜖0,𝑇0 such that for a non-stationary LQR problem with

variation 𝑉𝑇 = 𝜖𝑇 , where 𝜖 ≤ 𝜖0 and 𝑇 ≥ 𝑇0, the regret attained is at most 𝜖2/5𝑇 + 𝑜 (𝑇 ). It is also
desirable to develop a notion of instance-optimal regret – instead of using the summary 𝑉𝑇 and

presenting minimax optimal guarantees.

Yet another challenging direction is that there seem to be two prevalent approaches to studying

robustness for online control of LQR systems – one with non-stochastic/adversarial noise and

another with unknown non-stationary dynamics. This leaves an open problem of finding a controller

which achieves both types of robustness simultaneously or proving the impossibility of doing so.

A second open problem is to consider more general convex cost functions. Many of the elegant

results in LQR theory, and indeed the regret bounds in our paper, depend on the quadratic objective

function. A starting point would be to study a bandit problem with linear feedback, but a general

convex cost function. Finally, a notoriously hard problem is to study the robust control where the

action set may depend on the state, which touches upon the theme of safe exploration. Doing so in

the context of LQR could be fruitful.
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A BASIC LEMMAS

Lemma A.1 (Laurent-Massart Bound [29]). Let 𝑎1, . . . , 𝑎𝑛 be non-negative, and 𝑋1, . . . , 𝑋𝑛 be

i.i.d. 𝜒2
random variables. Let

|𝑎 |∞ := max

𝑖∈[𝑛]
𝑎𝑖 and |𝑎 |2

2
:=

∑
𝑖∈[𝑛]

𝑎2

𝑖 .

Then,

Pr

∑
𝑖∈[𝑛]

𝑎𝑖 (𝑋𝑖 − 1) ≥ 2|𝑎 |2
√
𝑥 + 2|𝑎 |∞𝑥

 ≤ 𝑒−𝑥 ,
Pr


∑
𝑖∈[𝑛]

𝑎𝑖 (𝑋𝑖 − 1) ≤ −2|𝑎 |2
√
𝑥

 ≤ 𝑒−𝑥 .
Lemma A.2. Let 𝑌1, . . . , 𝑌𝑇 be i.i.d. 𝜒2

𝑘
random variables. Then,

E
[
max

𝑡 ∈𝑇
𝑌𝑡

]
≤ 𝑘 +max{12𝑘, 3 ln𝑇 } + 3,

E
[
max

𝑡 ∈𝑇

√
𝑌𝑡

]
≤
√
𝑘 +
√

8 ln𝑇 +
√
𝜋

2

.

Proof. By Laurent-Massart bound (Lemma A.1),

Pr
[
𝑌𝑡 ≥ 𝑘 + 2

√
𝑘𝑥 + 2𝑥

]
≤ 𝑒−𝑥 .

For 𝑦 ≥ 12𝑘 , we have the following sequence of implications

Pr[𝑌𝑡 ≥ 𝑘 + 𝑦] ≤ 𝑒−
𝑦

3 ,

=⇒ Pr[𝑌𝑡 ≤ 𝑘 + 𝑦] ≥ 1 − 𝑒−
𝑦

3

=⇒ Pr
[
max

𝑡 ∈[𝑇 ]
𝑌𝑡 ≤ 𝑘 + 𝑦

]
≥

(
1 − 𝑒−

𝑦

3

)𝑇
=⇒ Pr

[
max

𝑡 ∈[𝑇 ]
𝑌𝑡 ≥ 𝑘 + 𝑦

]
≤ 1 −

(
1 − 𝑒−

𝑦

3

)𝑇
.

Let 𝑦 = max{12𝑘, 3 ln𝑇 } + 𝑧 for 𝑧 ≥ 0. Then,

Pr
[
max

𝑡 ∈[𝑇 ]
𝑌𝑡 ≥ 𝑘 + 𝑦

]
≤ 1 −

(
1 − 𝑒−

max{12𝑘,3 ln𝑇 }+𝑧
3

)𝑇
≤ 1 −

(
1 − 1

𝑇
𝑒−

𝑧
3

)𝑇
≤ 𝑒− 𝑧

3 .

From the above,

E
[
max

𝑡 ∈𝑇
𝑌𝑡

]
≤ 𝑘 +max{12𝑘, 3 ln𝑇 } +

∫ ∞

𝑧=0

𝑒
𝑧
3𝑑𝑧 ≤ 𝑘 +max{12𝑘, 3 ln𝑇 } + 3.

For the second part, we again begin from the Laurent-Massart bound. For any 𝑥 ≥ 0,

Pr
[√
𝑌𝑡 ≥

√
𝑘 +
√

2𝑥

]
≤ 𝑒−𝑥 ,
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which in turn implies for 𝑦 ≥ 0,

Pr
[√
𝑌𝑡 ≥

√
𝑘 +
√

2 ln𝑇 + 𝑦
]
≤ 𝑒−

𝑦2+2𝑦
√

2 ln𝑇

2 ≤ 𝑒−
𝑦2

2 .

Further substituting 𝑦 =
√

2 ln𝑇 + 𝑧 for 𝑧 ≥ 0,

Pr
[
max

𝑡

√
𝑌𝑡 ≥

√
𝑘 + 2

√
2 ln𝑇 + 𝑧

]
≤ 1 −

(
1 − 1

𝑇
𝑒−

𝑧2+2𝑧
√

2 ln𝑇
2

)𝑇
≤ 𝑒− 𝑧2

2 .

Finally,

E
[
max

𝑡

√
𝑌𝑡

]
≤
√
𝑘 +
√

8 ln𝑇 +
∫ ∞

0

𝑒−
𝑧2

2 𝑑𝑧

=
√
𝑘 +
√

8 ln𝑇 +
√
𝜋

2

.

□

The following lemma is adapted from [23], but we prove it here for completeness.

Lemma A.3. Let𝑊1,𝑊2, . . . be a non-negative stochastic process, and (W𝑡 )𝑡 ∈N be the induced

filtration. Let𝑌0, 𝑌1, . . . be a non-negative stochastic process adapted toW𝑡 such that for some 0 < 𝜌 < 1,

for all 𝑡 ≥ 0,

𝑌𝑡+1 ≤ 𝜌𝑌𝑡 +𝑊𝑡+1, almost surely.

Let 𝑎 ≥ 0 and 𝜌 ≤ 𝜌 < 1 be such that for all 𝑡 ≥ 1,

E
[
𝜌 +𝑊𝑡+1

𝑎

���� W𝑡

]
≤ 𝜌.

Define the 𝑎-hitting time of process {𝑌𝑡 } as:
𝜏𝑎 = min

𝑘≥1

{𝑌𝑘 ≤ 𝑎} .

Then,

(1) Pr[𝜏𝑎 ≥ 𝑘 | W0] ≤ 𝑌0

𝑎
𝜌𝑡 ,

(2) E
[∑𝜏𝑎

𝑘=0
𝑌 2

𝑘
| W0

]
≤ 𝑌 2

0

1−𝜌2
≤ 𝑌 2

0

1−𝜌 .

Proof. Conditioning on the event {𝑌𝑡 ≥ 𝑎} and using the definition of 𝜌 above,

E[𝑌𝑡+1 | W𝑡 , 𝑌𝑡 ≥ 𝑎] ≤ E[𝜌𝑌𝑡 +𝑊𝑡+1 | W𝑡 , 𝑌𝑡 ≥ 𝑎]

= E
[
𝑌𝑡

(
𝜌 +𝑊𝑡+1

𝑌𝑡

) ���� W𝑡 , 𝑌𝑡 ≥ 𝑎
]

≤ 𝜌 · 𝑌𝑡 .

Therefore, the stopped process 𝑌𝑡∧𝜏𝑎/𝜌𝑡∧𝜏𝑎 is a non-negative supermartingale, and hence

𝑌0 ≥ E
[
𝑌𝑘∧𝜏𝑎
𝜌𝑘∧𝜏𝑎

���� W0

]
≥ E

[
𝑌𝑘∧𝜏𝑎
𝜌𝑘∧𝜏𝑎

1{𝜏𝑎 ≥ 𝑘}
���� W0

]
≥ 𝑎

𝜌𝑘
Pr[𝜏𝑎 ≥ 𝑘 | W0] .

That is, Pr[𝜏𝑎 ≥ 𝑘 | W0] ≤ 𝑌0

𝑎
𝜌𝑘 , proving the first part of the lemma. For the second part,

𝜏𝑎∑
𝑘=0

𝑌 2

𝑘
=

∞∑
𝑘=0

𝑌 2

𝑘
· 1{𝜏𝑎 ≥ 𝑘}.
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Taking the expectation and using the supermartingale result from above,

E

[
𝜏𝑎∑
𝑘=0

𝑌 2

𝑘
| W0

]
=

∞∑
𝑘=0

E
[
𝑌 2

𝑘
· 1{𝜏𝑎 ≥ 𝑘} | W0

]
≤

∞∑
𝑘=0

𝑌 2

0
𝜌2𝑘 =

𝑌 2

0

1 − 𝜌2
.

□

The following lemma on hitting times of exponentially ergodic random walks will be helpful for

bounding the number of epochs that end because of instability detection through ∥𝑥𝑡 ∥ becoming

large.

Lemma A.4. Let 𝑌0, 𝑌1, . . . be a non-negative stochastic process satisfying

𝑌𝑡+1 ≤ 𝜌𝑌𝑡 +
𝑚∑
𝑖=1

𝛽𝑖,𝑡+1 |𝑊𝑖,𝑡+1 |

where 𝜌 < 1, and 𝑊𝑖,𝑡 are i.i.d N(0, 1) random variables. Furthermore, let max𝑖,𝑡 𝛽𝑖,𝑡 ≤ 𝐵, and

𝑎 =

(√
8𝑚𝐵√
1−𝜌

√
log𝑇 + 𝑚𝐵

1−𝜌

)
. Then,

Pr
[
max

𝑡 ∈[𝑇 ]
𝑌𝑡 ≥ 𝑌0 + 𝑎

]
≤ 1

𝑇 3
.

Proof. Extending the sequence of random variables for 𝑡 ≤ 0, we get the following upper bound

on 𝑌𝑡 :

𝑌𝑡 ≤ 𝜌𝑡𝑌0 +
∞∑
𝑘=0

𝜌𝑘𝐵

𝑚∑
𝑖=1

|𝑊𝑖,𝑡−𝑘 |.

Let

𝑆𝑡 :=

∞∑
𝑘=0

𝜌𝑘𝐵

𝑚∑
𝑖=1

|𝑊𝑖,𝑡−𝑘 |.

Therefore, for 𝑎 ≥ 0,

Pr[𝑌𝑡 ≥ 𝑌0 + 𝑎] ≤ Pr
[
𝜌𝑡𝑌0 + 𝑆𝑡 ≤ 𝑌0 + 𝑎

]
≤ Pr[𝑆𝑡 ≤ 𝑎] .

Furthermore,

𝑆2

𝑡 = 𝐵
2 ©«
∞∑
𝑘=0

𝑚∑
𝑖=1

𝜌2𝑘𝑊 2

𝑖,𝑡−𝑘 +
∑

(𝑘1,𝑖1)≠(𝑘2,𝑖2)
𝜌𝑘1+𝑘2 |𝑊𝑖1,𝑡−𝑘1

| · |𝑊𝑖2,𝑡−𝑘2
|ª®¬

≤ 𝐵2 ©«
∞∑
𝑘=0

𝑚∑
𝑖=1

𝜌2𝑘𝑊 2

𝑖,𝑡−𝑘 +
1

2

∑
(𝑘1,𝑖1)≠(𝑘2,𝑖2)

𝜌𝑘1+𝑘2

(
𝑊 2

𝑖1,𝑡−𝑘1

+𝑊 2

𝑖2,𝑡−𝑘2

)ª®¬
=𝑚𝐵2

∞∑
𝑘=0

𝑚∑
𝑖=1

𝜌𝑘

1 − 𝜌𝑊
2

𝑖,𝑘
.

Applying Laurent-Massart bound from Lemma A.1,

Pr

[
𝑆2

𝑡 ≥
𝑚2𝐵2

(1 − 𝜌)2 +
2𝑚3/2𝐵2

(1 − 𝜌)
√

1 − 𝜌2

√
𝑥 + 2𝑚𝐵2

1 − 𝜌 𝑥
]
≤ 𝑒−𝑥 .

A simple upper bound on the right hand side within Pr[·] gives,

Pr
[
𝑆𝑡 ≥

𝑚𝐵

1 − 𝜌 +
√

2𝑚𝐵
√

1 − 𝜌
√
𝑥

]
≤ 𝑒−𝑥 . (17)
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Substituting 𝑥 = 4 ln𝑇 ,

Pr
[
𝑌𝑡 ≥ 𝑌0 +

𝑚𝐵

1 − 𝜌 +
√

8𝑚𝐵
√

1 − 𝜌
√

ln𝑇

]
≤ 1

𝑇 4
.

A union bound completes the final argument. □

For reference, we note some basic matrix norm inequalities:

(1)
1

2

Θ − Θ̂ ≤ max

{𝐴 −𝐴 , 𝐵 − 𝐵} ≤ Θ − Θ̂;
(2)

1√
𝑛

Θ − Θ̂
𝐹
≤

Θ − Θ̂ ≤ Θ − Θ̂
𝐹
.

Lemma 3.1 states that

Θ − Θ̂
𝐹
≤ 𝐶3 implies 𝐽 ∗ (Θ) − 𝐽 (Θ, 𝐾∗ (Θ̂)) ≤ 𝐶4

Θ − Θ̂2

𝐹
.

B PROOF OF SEQUENTIAL STRONG STABILITY

Lemma B.1 ([18]). Let 𝑋 be the solution to the Lyapunov equation

𝑋 − 𝐹⊤𝑋𝐹 = 𝑀.

Let 𝑋 + Δ𝑋 be the solution to the perturbed problem

𝑍 − (𝐹 + Δ𝐹 )⊤𝑍 (𝐹 + Δ𝐹 ) = 𝑀.
Then the following inequality holds for the spectral norm:

∥Δ𝑋 ∥
∥𝑋 + Δ𝑋 ∥ ≤ 2

 +∞∑
𝑘=0

(
𝐹⊤

)𝑘
𝐹𝑘

 · (2∥𝐹 ∥ + ∥Δ𝐹 ∥) · ∥Δ𝐹 ∥ .
Proof of Lemma 4.5. Let 𝑃𝑡 := 𝑃 (Θ𝑡 , 𝐾) and 𝑃𝑡+1 := 𝑃 (Θ𝑡+1, 𝐾) be the solutions to the following

Lyapunov equations, respectively:

𝑃𝑡 = 𝑄 + 𝐾⊤𝑅𝐾 + (𝐴𝑡 + 𝐵𝑡𝐾)⊤𝑃𝑡 (𝐴𝑡 + 𝐵𝑡𝐾),

𝑃𝑡+1 = 𝑄 + 𝐾⊤𝑅𝐾 + (𝐴𝑡+1 + 𝐵𝑡+1𝐾)⊤𝑃𝑡+1 (𝐴𝑡+1 + 𝐵𝑡+1𝐾).

Taking 𝑋 = 𝑃𝑡 , 𝑋 + Δ𝑋 = 𝑃𝑡+1, 𝐹 = 𝐴𝑡 + 𝐵𝑡𝐾 , 𝐹 + Δ𝐹 = 𝐴𝑡+1 + 𝐵𝑡+1𝐾 , and applying Lemma B.1, we

get the following Lemma as a corollary.

Lemma B.2. It holds that

𝑃𝑡 ⪯ 𝑃𝑡+1 ·
(
1 + 2(1 − 𝛾)2

1 − (1 − 𝛾)2 (2(1 − 𝛾) + (^ + 1)∥Θ𝑡+1 − Θ𝑡 ∥)
)
∥Θ𝑡+1 − Θ𝑡 ∥ .

Proof. Applying Lemma B.1 with𝑋 = 𝑃𝑡 ,𝑋 +Δ𝑋 = 𝑃𝑡+1, 𝐹 = 𝐴𝑡 +𝐵𝑡𝐾 , and Δ𝐹 = 𝐴𝑡+1 +𝐵𝑡+1𝐾 −
(𝐴𝑡 + 𝐵𝑡𝐾) = (𝐴𝑡+1 −𝐴𝑡 ) + (𝐵𝑡+1 − 𝐵𝑡 )𝐾 , we have

∥𝑃𝑡+1 − 𝑃𝑡 ∥
∥𝑃𝑡+1∥

≤ 2

 +∞∑
𝑘=0

(
(𝐴𝑡 + 𝐵𝑡𝐾)⊤

)𝑘
(𝐴𝑡 + 𝐵𝑡𝐾)𝑘


· (2∥(𝐴𝑡 + 𝐵𝑡𝐾)∥ + ∥(𝐴𝑡+1 −𝐴𝑡 ) + (𝐵𝑡+1 − 𝐵𝑡 )𝐾 ∥) · ∥(𝐴𝑡+1 −𝐴𝑡 ) + (𝐵𝑡+1 − 𝐵𝑡 )𝐾 ∥

≤ 2(1 − 𝛾)2
1 − (1 − 𝛾)2 · (2(1 − 𝛾) + (1 + ^)∥Θ𝑡+1 − Θ𝑡 ∥)∥Θ𝑡+1 − Θ𝑡 ∥,

where in the last inequality we use ∥𝐴𝑡 + 𝐵𝑡𝐾 ∥ ≤ 1 − 𝛾 and ∥𝐾 ∥ ≤ ^ . Then by direct computation,

we have

∥𝑃𝑡 ∥ ≤ ∥𝑃𝑡+1∥ + ∥𝑃𝑡+1 − 𝑃𝑡 ∥
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≤ ∥𝑃𝑡+1∥ ·
(
1 + 2(1 − 𝛾)2

1 − (1 − 𝛾)2 (2(1 − 𝛾) + (^ + 1)∥Θ𝑡+1 − Θ𝑡 ∥)∥Θ𝑡+1 − Θ𝑡 ∥
)
.

□

In the sequel, we first prove that 𝐾 is (^,𝛾)-strongly stable for 𝐴𝑡 + 𝐵𝑡𝐾 = 𝐻𝑡𝐿𝑡𝐻
−1

𝑡 . Note that

by our assumption,

𝐽 ∗ (Θ𝑡 , 𝐾) ≤ 𝐽 ∗ (Θ𝑡 ) +𝐶4

Θ𝑡 − Θ̂2

𝐹
≤ 𝐽 ∗ (Θ𝑡 ) +𝐶4𝐶3 ≤ 𝐽 ∗I +𝐶4𝐶3 B �̃� ∗I .

We have _max (𝑃𝑡 ) ≤ �̃� ∗I/𝜓
2
and ∥𝐻𝑡 ∥ ≤

√
�̃� ∗I/𝜓 C 𝐵0. By definition, we have

𝑃𝑡 = 𝑄 + 𝐾⊤𝑅𝐾 + (𝐴𝑡 + 𝐵𝑡𝐾)⊤𝑃𝑡 (𝐴𝑡 + 𝐵𝑡𝐾)
⪰ 𝑞min𝐼 + 𝑟min𝐾

⊤𝐾 + (𝐴𝑡 + 𝐵𝑡𝐾)⊤𝑃𝑡 (𝐴𝑡 + 𝐵𝑡𝐾)
⪰ 𝑞min𝐼 + (𝐴𝑡 + 𝐵𝑡𝐾)⊤𝑃𝑡 (𝐴𝑡 + 𝐵𝑡𝐾).

Specifically, we have 𝑃𝑡 ⪰ 𝑞min𝐼 . Hence ∥𝐻−1

𝑡 ∥ ≤ 𝑞
−1/2
min
C 1/𝑏0. Then setting ^ = 𝐵0/𝑏0 =

√
�̃� ∗I

𝜓 2𝑞min

will suffice. By 𝑃𝑡 ⪰ 𝑟min𝐾
⊤𝐾 , we have

∥𝐾 ∥ ≤

√
∥𝑃𝑡 ∥
𝑟min

≤

√
�̃� ∗I

𝜓 2𝑟min

C ^.

Moreover,

𝐿⊤𝑡 𝐿𝑡 = 𝑃
−1/2
𝑡 (𝐴𝑡 + 𝐵𝑡𝐾)⊤ 𝑃𝑡 (𝐴𝑡 + 𝐵𝑡𝐾) 𝑃−1/2

𝑡

⪯ 𝑃−1/2
𝑡 (𝑃𝑡 − 𝑞min𝐼 ) 𝑃−1/2

𝑡

⪯ 𝐼 − 𝑞min𝑃
−1

𝑡 .

Then

∥𝐿𝑡 ∥2 ≤ 1 − 𝑞min𝜓
2

�̃� ∗I
and

∥𝐿𝑡 ∥ ≤

√
1 − 𝑞min𝜓

2

𝐽 ∗
≤ 1 − 𝑞min𝜓

2

2 �̃� ∗I
.

In the sequel, we prove the (^,𝛾)-sequentially strongly stability. By direct computation, we have

∥𝐻−1

𝑡+1𝐻𝑡 ∥2 = ∥𝑃
−1/2
𝑡+1 𝑃

1/2
𝑡 ∥2

= ∥𝑃−1/2
𝑡+1 𝑃𝑡𝑃

−1/2
𝑡+1 ∥

≤
(
1 + 2(1 − 𝛾)2

1 − (1 − 𝛾)2 (2(1 − 𝛾) + (^ + 1)∥Θ𝑡+1 − Θ𝑡 ∥)∥Θ𝑡+1 − Θ𝑡 ∥
)
,

where in the inequality we apply Lemma B.2. By the fact that

√
1 + 𝑥 ≤ 1 + 1

2
𝑥 for 𝑥 ≥ 0, we have

∥𝐻−1

𝑡+1𝐻𝑡 ∥ ≤ 1 + (1 − 𝛾)2
1 − (1 − 𝛾)2 (2(1 − 𝛾) + (^ + 1)∥Θ𝑡+1 − Θ𝑡 ∥) ∥Θ𝑡+1 − Θ𝑡 ∥

≤ 1 + 2(1 − 𝛾)2
1 − (1 − 𝛾)2 ((1 − 𝛾) + (^ + 1)) ∥Θ𝑡+1 − Θ𝑡 ∥,
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where in the last step we use that ∥Θ𝑡+1 − Θ𝑡 ∥ ≤ 2

√
𝐶3 ≤ 2 by our assumption that 𝐶3 ≤ 1.

Proof of Lemma 4.6. Without loss of generality, we let 𝑠I = 1. Since 𝑥𝑡+1 = (𝐴𝑡 + 𝐵𝑡𝐾) 𝑥𝑡 +
𝜎𝑡𝐵𝑡[𝑡 +𝑤𝑡 , we have

𝑥𝑡 = 𝑀1𝑥1 +
𝑡−1∑
𝑠=1

𝑀𝑠+1 (𝜎𝑠𝐵𝑠[𝑠 +𝑤𝑠 ),

where we define𝑀𝑡 = 𝐼 and𝑀𝑠 =
∏𝑡−1

𝑗=𝑠

(
𝐴 𝑗 + 𝐵 𝑗𝐾 𝑗

)
. Moreover,

∥𝑀𝑠 ∥ =
 𝑡−1∏
𝑗=𝑠

𝐻 𝑗𝐿
⊤
𝑗 𝐻
−1

𝑗


≤ ∥𝐻𝑡−1∥

(
𝑡−1∏
𝑗=𝑠

𝐿 𝑗) (
𝑡−2∏
𝑗=𝑠

𝐻−1

𝑗+1𝐻 𝑗
) 𝐻−1

𝑠


≤ 𝐵0 (1 − 𝛾)𝑡−𝑠

(
𝑡−2∏
𝑗=𝑠

𝐻−1

𝑗+1𝐻 𝑗
) (1/𝑏0)

≤ ^ (1 − 𝛾)𝑡−𝑠
(
𝑡−2∏
𝑗=𝑠

𝐻−1

𝑗+1𝐻 𝑗
) .

Using the fact that 1 + 𝑥 ≤ 𝑒𝑥 , we have
𝑡−2∏
𝑗=𝑠

𝐻−1

𝑗+1𝐻 𝑗
 ≤ 𝑒∑𝑡−2

𝑗=𝑠
2(1−𝛾 )2

1−(1−𝛾 )2 ( (1−𝛾 )+(^+1)) ∥Θ𝑡+1−Θ𝑡 ∥

≤ 𝑒𝐶𝑠𝑠𝑉[𝑠,𝑡−1]

for some constant 𝐶𝑠𝑠 . Then it holds that

∥𝑀𝑠 ∥ ≤ ^ (1 − 𝛾)𝑡−𝑠𝑒𝐶𝑠𝑠𝑉[𝑠,𝑡−1]

≤ ^𝑒−𝛾 (𝑡−𝑠)𝑒𝐶𝑠𝑠𝑉[𝑠,𝑡−1] .

Then we can bound the norm of 𝑥𝑡 as

∥𝑥𝑡 ∥ ≤ ∥𝑀1∥ ∥𝑥1∥ +
𝑡−1∑
𝑠=1

∥𝑀𝑠+1∥ ∥𝜎𝑠𝐵𝑠[𝑠 +𝑤𝑠 ∥

≤ ^𝑒−𝛾 (𝑡−1)𝑒𝐶𝑠𝑠𝑉[1,𝑡−1] ∥𝑥1∥ + ^𝑒−𝛾 (𝑡−𝑠)𝑒𝐶𝑠𝑠𝑉[𝑠,𝑡−1]
𝑡−1∑
𝑠=1

(1 − 𝛾)𝑡−𝑠−1 ∥𝜎𝑠𝐵𝑠[𝑠 +𝑤𝑠 ∥

≤ ^𝑒−𝛾 (𝑡−1)𝑒𝐶𝑠𝑠𝑉[1,𝑡−1] ∥𝑥1∥ + ^𝑒−𝛾 (𝑡−𝑠)𝑒𝐶𝑠𝑠𝑉[𝑠,𝑡−1]
max

1<𝑠<𝑡
∥𝜎𝑠𝐵𝑠[𝑠 +𝑤𝑠 ∥

∞∑
𝑡=1

(1 − 𝛾)𝑡

= ^𝑒−𝛾 (𝑡−1)+𝐶𝑠𝑠𝑉[1,𝑡−1] ∥𝑥1∥ +
^𝑒−𝛾 (𝑡−𝑠)+𝐶𝑠𝑠𝑉[𝑠,𝑡−1]

𝛾
max

1<𝑠<𝑡
∥𝜎𝑠𝐵𝑠[𝑠 +𝑤𝑠 ∥ .

C ESTIMATION ERROR BOUNDS FOR OLS WITH NON-STATIONARY DYNAMICS

C.1 Proof of error bound for I ⊆ B𝑖 𝑗 (Lemma 6.1)

Given the OLS estimator for interval I = [𝑠, 𝑒],
Θ̂I = argmin

Θ

∑
𝑡 ∈I

𝑥𝑡+1 − Θ[𝑥⊤𝑡 𝑢⊤𝑡 ]⊤2

𝐹
,
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our goal is to bound the estimation error

Θ̂I − Θ̄
𝐹
where Θ̄ is a ‘representative’ Θ for {Θ𝑡 }𝑡 ∈I ,

for exampleΘ𝑒 . We will assume that during the entire interval I, the controller𝐾𝑡 = 𝐾 is stationary.

Let𝑀 B

[
𝐼𝑛
𝐾

]
. We will use the notation

𝑦𝑡 = 𝑀𝑥𝑡 and b𝑡 = 𝜎𝑡 [̃𝑡 = 𝜎𝑡

[
0

𝐼𝑑

]
[𝑡 , so that: 𝑧𝑡 =

[
𝑥𝑡
𝑢𝑡

]
= 𝑦𝑡 + b𝑡 and 𝑥𝑡+1 = Θ𝑡𝑧𝑡 +𝑤𝑡 .

By our choice of 𝜎𝑡 , we have 𝜎
2

𝐿
:= a1 =

√
𝐶0

𝐿
≥ 𝜎2

𝑡 ≥ 𝜎2

I :=

√
𝐶0

|I | for all 𝑡 ∈ I. With these notations,

we can write the OLS loss function and estimator as:

Θ̂I = argmin

Θ
L(Θ), where L(Θ) =

∑
𝑡 ∈I
∥𝑥𝑡+1 − Θ𝑧𝑡 ∥2𝐹 =

∑
𝑡 ∈I
∥Θ𝑡𝑧𝑡 +𝑤𝑡 − Θ𝑧𝑡 ∥2𝐹 .

Due to the OLS objective function, we can decompose this problem and estimate each row of

Θ̂I separately. Towards that end, let us fix a row 𝑖 . With abuse of notation, denote the 𝑖th rows

of Θ𝑡 ,Θ, Θ̂𝐼 , Θ̄ by \𝑡 , \, \̂ , ¯\ , respectively. Let us also use 𝜔𝑡 to denote the 𝑖th entry of𝑤𝑡 . The OLS

estimation problem for the row 𝑖 becomes:

\̂ = argmin

\

L(\ ), where, L(\ ) =
∑
𝑡 ∈I
(⟨\𝑡 , 𝑧𝑡 ⟩ + 𝜔𝑡 − ⟨\, 𝑧𝑡 ⟩)2 .

The solution for this OLS estimation problem is given by the solution of the following linear system:

\̂

(∑
𝑡 ∈I

𝑧𝑡𝑧
⊤
𝑡

)
=

(∑
𝑡 ∈I

\𝑡𝑧𝑡𝑧
⊤
𝑡

)
+

∑
𝑡 ∈I

𝜔𝑡𝑧
⊤
𝑡 ,

or

\̂ =

(∑
𝑡 ∈I

\𝑡𝑧𝑡𝑧
⊤
𝑡

) (∑
𝑡 ∈I

𝑧𝑡𝑧
⊤
𝑡

)−1

+
(∑
𝑡 ∈I

𝜔𝑡𝑧
⊤
𝑡

) (∑
𝑡 ∈I

𝑧𝑡𝑧
⊤
𝑡

)−1

.

The second term above is a martingale sum, since 𝜔𝑡 is zero mean and independent of 𝑧𝑡 , and

contributes to the variance of the estimator. However, the first term which contributes to the ‘bias’

is non-trivial. In the stationary case, \𝑡 = \ and the first term becomes \ , which implies that the

OLS estimator is unbiased. However, in the non-stationary case, the first term can be far from
¯\

even when all the \𝑡 are close to each other. This necessitates a fresh analysis of the OLS estimator

in the non-stationary setting.

The key obstacle in the analysis of the estimation error

\̂ − ¯\

2

, is that while 𝑧𝑡 lives in R
𝑛+𝑑

,

most of its variance is in the 𝑛-dimensional column space of [𝐼𝑛 𝐾⊤]⊤. This is because the LQR
dynamics naturally adds the noise𝑤𝑡−1 to arrive at the state 𝑥𝑡 . In fact, this is precisely the reason we

add the exploration noise b𝑡 : to be able to distinguish changes in Θ𝑡 = [𝐴𝑡 𝐵𝑡 ] that are orthogonal
to the column space of [𝐼𝑛 𝐾⊤]⊤. However, this also means that we can not use a naive analysis

based on a lower bound on the eigenvalues of the matrix

∑
𝑡 ∈I 𝑧𝑡𝑧

⊤
𝑡 .

Our approach to bounding the estimation error of the OLS estimator is to begin by looking at

the one dimensional OLS problems parametrized by 𝑣 ∈ S𝑛+𝑑 := {𝑣 ∈ R𝑛+𝑑 , ∥𝑣 ∥ = 1}:
_𝑣 = argmin

_

L( ¯\ + _ · 𝑣),

and argue that |_𝑣 | are small for ‘enough’ directions 𝑣 . That is, in enough directions, the minimizer

of the 1-dimensional quadratic defined above is close to the candidate
¯\ . Finally, we will show via

an 𝜖-net argument that this implies that the true OLS estimator \̂ is also close to
¯\ .
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Step 1: Decomposing the problem into orthogonal subspaces. Fixing a direction 𝑣 , the first
order conditions for the minimizer _𝑣 of L( ¯\ + _ · 𝑣) gives:

_𝑣

∑
𝑡

⟨𝑣, 𝑧𝑡 ⟩2 =
∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
· ⟨𝑣, 𝑧𝑡 ⟩ +

∑
𝑡

𝜔𝑡 ⟨𝑣, 𝑧𝑡 ⟩ . (18)

For a vector 𝑢 ∈ R𝑛+𝑑 , let 𝑢 ∥ and 𝑢⊥ denote the projections onto the column space of [𝐼𝑛 𝐾⊤]⊤ and

its orthogonal space, respectively. That is,

𝑢 ∥ =

[
𝐼𝑛
𝐾

]
(𝐼 + 𝐾⊤𝐾)−1

[
𝐼𝑛
𝐾

]⊤
𝑢 and 𝑢⊥ = 𝑢 − 𝑢 ∥ .

Similarly, let 𝑢 ∥ and 𝑢⊥ denote the unit vectors in the direction 𝑢 ∥ and 𝑢⊥, respectively.
For analysis, it will be convenient to generalize the one dimensional problem of finding the

minimizer on the line
¯\ + _ · 𝑣 to instead finding the minimizer in the plane

¯\ + _ ∥ �̂� ∥ + _⊥�̂�⊥, where
we seek the optimal values of _ ∥ and _⊥. From (18), denoting 𝑉 :=

∑
𝑡 𝑧𝑡𝑧

⊤
𝑡 , the Hessian of the

corresponding quadratic loss function is given by

𝐻�̂�∥ ,�̂�⊥ =

[ (̂
𝑣 ∥

)⊤
𝑉 �̂� ∥

(̂
𝑣 ∥

)⊤
𝑉 �̂�⊥

(�̂�⊥)⊤𝑉 �̂� ∥ (�̂�⊥)⊤𝑉 �̂�⊥
]
=


∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2 ∑

𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉 〈
�̂�⊥, b⊥𝑡

〉∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉 〈
�̂�⊥, b⊥𝑡

〉 ∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

 . (19)

A careful analysis on 𝐻�̂�∥ ,�̂�⊥ later yields the following lemma that indicates it suffices to consider

the following two simpler cases: 𝑣 = �̂� ∥ and 𝑣 = �̂�⊥.

Lemma C.1. Let _�̂�∥ = argmin_ L( ¯\ + _ · �̂� ∥) and _�̂�⊥ = argmin_ L( ¯\ + _ · �̂�⊥). It holds with
probability at least 1 − 11𝛿 that

_2

𝑣 ≤ 2_2

�̂�∥
+ 2_2

�̂�⊥ .

Proof. Combining Lemma C.2 and Lemma C.3, it suffices to prove that

max


∑
𝑡

���〈�̂� ∥, 𝑧 ∥𝑡 〉 〈
�̂�⊥, b⊥𝑡

〉���∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

,

∑
𝑡

���〈�̂� ∥, 𝑧 ∥𝑡 〉 〈
�̂�⊥, b⊥𝑡

〉���∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

 ≤
1

33

holds with probability at least 1 − 11𝛿 .

Note that 𝑧𝑡 = 𝑦𝑡 + b𝑡 = 𝑀𝑥𝑡−1 + b𝑡 = 𝑀Θ𝑡−1𝑧𝑡−1 +𝑀𝑤𝑡−1 + b𝑡 . We have

𝑧
∥
𝑡 = 𝑀Θ𝑡−1𝑧𝑡−1 +𝑀𝑤𝑡−1 + b ∥𝑡 , 𝑧⊥𝑡 = b⊥𝑡 .

Step 0: Bound on
∑
𝑡 ∈I ∥𝑧𝑡 ∥2. We begin with the following corollary of Lemma C.6: For |I | ≥

16 ln
1

𝛿
, conditioned on max𝑡 ∈I ∥𝑥𝑡 ∥ ≤ 𝑥𝑢 , it holds with probability at least 1 − 𝛿 that∑

𝑡 ∈I
∥𝑧𝑡 ∥2 ≤ 2|I |

(
(1 + 𝐾2

𝑢 )𝑥2

𝑢 + 2𝜎2

𝐿

)
=: |I |𝑧2

𝑢 .

Step 1: Upper bound on the numerator. Recall b𝑡 = 𝜎𝑡 [̃𝑡 and 𝜎𝑡 ≤ a1 =: 𝜎𝐿 . Let

𝜎2

�̂�⊥ = E
[
(�̂�⊥)⊤

(
0𝑛

[𝑡

) (
0𝑛

[𝑡

)⊤
�̂�⊥

]
denote the variance of

〈
�̂�⊥, [̃⊥𝑡

〉
. Write �̂�⊥ as �̂�⊥ = [(�̂�⊥

1
)⊤ (�̂�⊥

2
)⊤]⊤, where �̂�⊥

1
∈ R𝑛, �̂�⊥

2
∈ R𝑑 , and̂𝑣⊥

1

 + ̂𝑣⊥
2

 = 1. Since �̂�⊥ is a unit vector in the orthogonal space of the columns space of [𝐼𝑛 𝐾⊤]⊤,
we must have �̂�⊥

1
+ 𝐾⊤�̂�⊥

2
= 0. Then

̂𝑣⊥
1

 =
−𝐾⊤�̂�⊥

2

 ≤ ∥𝐾 ∥ ̂𝑣⊥
2


and hence

̂𝑣⊥
2

 ≥ 1

1+∥𝐾 ∥ . We

have 𝜎2

�̂�⊥
= E

[
(�̂�⊥

2
)⊤[𝑡[⊤𝑡 �̂�⊥2

]
= (�̂�⊥

2
)⊤𝐼𝑑 �̂�⊥2 =

̂𝑣⊥
2

2 ≥ 1

(1+∥𝐾 ∥)2 . Also, 𝜎
2

�̂�⊥
≤ 1.
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Applying a supermartingale argument, we get

Pr

[�����∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉 〈
�̂�⊥, b⊥𝑡

〉����� ≥ 𝜎�̂�⊥𝜎𝐿
√

2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

]
≤ 2𝛿. (20)

Next, we lower bound the denominator.

Step 2: Lower bound for
∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

. By direct computation,∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

=

〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1 +𝑀𝑤𝑡−1 + b ∥𝑡

〉
2

≥
∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
2

+ 2

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
+ 2

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, b ∥𝑡

〉
+ 2

〈
�̂� ∥, b ∥𝑡

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
.

Let 𝜎2

1
= (�̂� ∥)⊤𝑀𝑊𝑀⊤�̂� ∥ denote the variance of

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
. Write �̂� ∥ = 𝑀𝑥𝑣 , where 1 =

̂𝑣 ∥2

=[𝑥⊤𝑣 𝑥⊤𝑣 𝐾⊤]2

= ∥𝑥𝑣 ∥2 + ∥𝐾𝑥𝑣 ∥2. Recalling that𝑊 ≽ 𝜓 2𝐼𝑛 , we have

𝜎2

1
= (�̂� ∥)⊤𝑀𝑊𝑀⊤�̂� ∥ ≥ 𝜓 2 · 𝑥⊤𝑣 𝑀⊤𝑀𝑀⊤𝑀𝑥𝑣

= 𝜓 2 · 𝑥⊤𝑣 (𝐼 + 𝐾⊤𝐾) (𝐼 + 𝐾⊤𝐾)𝑥𝑣
= 𝜓 2

(
𝑥⊤𝑣 𝑥𝑣 + 2𝑥⊤𝑣 𝐾

⊤𝐾𝑥𝑣 + 𝑥⊤𝑣 𝐾⊤𝐾𝐾⊤𝐾𝑥𝑣
)

= 𝜓 2

(
∥𝑥𝑣 ∥2 + 2 ∥𝐾𝑥𝑣 ∥2 +

𝐾⊤𝐾𝑥𝑣2

)
≥ 𝜓 2 (∥𝑥𝑣 ∥2 + ∥𝐾𝑥𝑣 ∥2)
= 𝜓 2.

We also have𝑊 ≼ Ψ2𝐼𝑛 . Then

𝜎2

1
= (�̂� ∥)⊤𝑀𝑊𝑀⊤�̂� ∥ ≤ Ψ2 · 𝑥⊤𝑣 𝑀⊤𝑀𝑀⊤𝑀𝑥𝑣

= Ψ2 · 𝑥⊤𝑣 (𝐼 + 𝐾⊤𝐾) (𝐼 + 𝐾⊤𝐾)𝑥𝑣
= Ψ2

(
𝑥⊤𝑣 𝑥𝑣 + 2𝑥⊤𝑣 𝐾

⊤𝐾𝑥𝑣 + 𝑥⊤𝑣 𝐾⊤𝐾𝐾⊤𝐾𝑥𝑣
)

= Ψ2

(
∥𝑥𝑣 ∥2 + 2 ∥𝐾𝑥𝑣 ∥2 +

𝐾⊤𝐾𝑥𝑣2

)
≤ Ψ2

(
∥𝑥𝑣 ∥2 + ∥𝐾𝑥𝑣 ∥2 + ∥𝐾 ∥2 ∥𝑥𝑣 ∥2 +

𝐾⊤2 ∥𝐾𝑥𝑣 ∥2
)

≤ Ψ2 (1 + ∥𝐾 ∥2).
By standard Laurent-Massart bounds, we get

Pr

[∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
2

≥ Ψ2 (1 + ∥𝐾 ∥2)
(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)]
≤ 𝛿, (21)

Pr

[∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
2

≤ 𝜓 2

(
|I | − 2

√
|I | ln( 1

𝛿
)
)]
≤ 𝛿. (22)

Note that

𝜎2

𝐿

∑
𝑡

〈
�̂� ∥, [̃ ∥𝑡

〉
2

≥
∑
𝑡

〈
�̂� ∥, b ∥𝑡

〉
2

=
∑
𝑡

𝜎2

𝑡

〈
�̂� ∥, [̃ ∥𝑡

〉
2

≥ 𝜎2

I

∑
𝑡

〈
�̂� ∥, [̃ ∥𝑡

〉
2

.
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Let 𝜎2

�̂�∥
= E

[
(�̂� ∥)⊤

(
0𝑛

[𝑡

) (
0𝑛

[𝑡

)⊤
�̂� ∥

]
denote the variance of

〈
�̂� ∥, [̃⊥𝑡

〉
. Write �̂� ∥ = [�̂� ∥

1
�̂�
∥
2
], where

�̂�
∥
1
∈ R𝑛, �̂� ∥

2
∈ R𝑑 and

̂𝑣 ∥
1

 , ̂𝑣 ∥
2

 ≤ 1. We have 𝜎2

�̂�∥
= E

[
(�̂� ∥

2
)⊤[𝑡[⊤𝑡 �̂�

∥
2

]
= (�̂� ∥

2
)⊤𝐼𝑑 (�̂� ∥2 ) =

̂𝑣 ∥
2

2

≤ 1.

Again, by standard Laurent-Massart bounds, we have

Pr

[∑
𝑡

〈
�̂� ∥, b ∥𝑡

〉
2

≥ 𝜎2

𝐿

] (
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)
≤ 𝛿,

Pr

[∑
𝑡

〈
�̂� ∥, b ∥𝑡

〉
2

≤ 𝜎2

I𝜎
2

�̂�∥

(
|I | − 2

√
|I | ln( 1

𝛿
)
)]
≤ 𝛿.

Applying a supermartingale argument, we get

Pr

[�����∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉����� ≥ Ψ(1 + ∥𝐾 ∥2) 1

2

√
2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
2

]
≤ 2𝛿, (23)

Pr

[�����∑
𝑡

〈
�̂� ∥, b ∥𝑡

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉����� ≥ 𝜎𝐿
√

2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
2

]
≤ 2𝛿, (24)

Pr

[�����∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, b ∥𝑡

〉����� ≥ 𝜎𝐿
√

2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
2

]
≤ 2𝛿. (25)

Combining (21) and (25), we have

Pr

�����∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, b ∥𝑡

〉����� ≥ 𝜎𝐿Ψ(1 + ∥𝐾 ∥2) 1

2

√√√
2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
) ≤ 3𝛿.

Combining the inequalities above, it holds with probability at least 1 − 8𝛿 that∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

≥
∑
𝑡

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉
2

+ 2

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
+ 2

〈
�̂� ∥, 𝑀𝑤𝑡−1

〉 〈
�̂� ∥, b ∥𝑡

〉
+ 2

〈
�̂� ∥, b ∥𝑡

〉 〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
≥ 𝜓 2

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2Ψ(1 + ∥𝐾 ∥2) 1

2

√
2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
2

− 2𝜎𝐿

√
2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑀Θ𝑡−1𝑧𝑡−1

〉
2

− 2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)
1

2

√√√
2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)

≥ 𝜓 2

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2Ψ(1 + ∥𝐾 ∥2) 1

2 ∥𝑀 ∥ Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿

− 2𝜎𝐿 ∥𝑀 ∥ Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
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− 2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)
1

2

√√√
2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)

≥ 𝜓 2

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2Ψ(1 + ∥𝐾 ∥2) 1

2 ∥𝑀 ∥ Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿

− 2𝜎𝐿 ∥𝑀 ∥ Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
− 2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)

1

2

√
2 ln

1

𝛿
2𝐼

= 𝜓 2 |I | −
√

2|I | ln 1

𝛿

(
2𝜓 2 + 2Ψ(1 + ∥𝐾 ∥2) 1

2 ∥𝑀 ∥ Θ𝑢𝑧𝑢
)

+2𝜎𝐿 ∥𝑀 ∥ Θ𝑢𝑧𝑢 + 2

√
2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)

1

2

)
C Λ1. (26)

In arriving at (26) we have used the assumption |I | ≥ 16 ln
1

𝛿
, which implies

2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)
≤ 2|I |.

To get a further cleaner expression, we further assume

|I | ≥ 32𝜓−4
ln

1

𝛿

(
𝜓 2 + Ψ(1 + ∥𝐾 ∥2) 1

2 ∥𝑀 ∥ Θ𝑢𝑧𝑢 + 𝜎𝐿 ∥𝑀 ∥ Θ𝑢𝑧𝑢 +
√

2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)
1

2

)
2

, (27)

which in turn implies |I | ≥ 16 ln
1

𝛿
, under which the bound simplifies to

Λ1 ≥
𝜓 2

2

|I |. (28)

Combining (20) and (26), it holds with probability at least 1 − 10𝛿 that∑
𝑡

���〈�̂� ∥, 𝑧 ∥𝑡 〉 〈
�̂�⊥, b⊥𝑡

〉���∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

≤
𝜎�̂�⊥𝜎𝐿

√
2 ln

1

𝛿√∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

≤ 𝜎𝐿2

√
ln

1

𝛿
𝜓−1 |I |− 1

2 ≤ 1

33

, (29)

provided that

|I | ≥ 4 · 33
2𝜎2

𝐿 ln

1

𝛿
𝜓−2 . (30)

Step 3: Lower bound on
∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2. Recall that b𝑡 = 𝜎𝑡 [̃𝑡 and 𝜎𝑡 ≤ 𝜎𝐿 . Let

𝜎2

�̂�⊥ = E
[
(�̂�⊥)⊤

(
0𝑛

[𝑡

) (
0𝑛

[𝑡

)⊤
�̂�⊥

]
denote the variance of

〈
�̂�⊥, [̃⊥𝑡

〉
. Write �̂�⊥ as �̂�⊥ = [(�̂�⊥

1
)⊤ (�̂�⊥

2
)⊤]⊤, where �̂�⊥

1
∈ R𝑛, �̂�⊥

2
∈ R𝑑 and̂𝑣⊥

1

 + ̂𝑣⊥
2

 = 1. Since �̂�⊥ is a unit vector in the orthogonal space of the columns space of [𝐼𝑛 𝐾⊤]⊤,
we must have �̂�⊥

1
+ 𝐾⊤�̂�⊥

2
= 0. Then

̂𝑣⊥
1

 =
−𝐾⊤�̂�⊥

2

 ≤ ∥𝐾 ∥ ̂𝑣⊥
2


and hence

̂𝑣⊥
2

 ≥ 1

1+∥𝐾 ∥ . We

have 𝜎2

�̂�⊥
= E

[
(�̂�⊥

2
)⊤[𝑡[⊤𝑡 �̂�⊥2

]
= (�̂�⊥

2
)⊤𝐼𝑑 �̂�⊥2 =

̂𝑣⊥
2

2 ≥ 1

(1+∥𝐾 ∥)2 . Also, 𝜎
2

�̂�⊥
≤ 1.

By standard Laurent-Massart bounds, the denominator can be bounded from below by

Pr

[∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2 ≤

𝜎2

I
(1 + ∥𝐾 ∥)2

(
|I | − 2

√
|I | ln( 1

𝛿
)
)]
≤ 𝛿.
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Plugging in our choice of 𝜎2

I , with probability at least 1 − 2𝛿 we have∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2 ≥ 1

(1 + ∥𝐾 ∥)2

√
𝐶0

|I |

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
=

1

(1 + ∥𝐾 ∥)2𝐶
1

2

0
( |I| 12 − 2

√
ln

1

𝛿
) C Λ2 .

Under the assumption that |I | ≥ 16 ln
1

𝛿
, we get:

Λ2 ≥
1

2

|𝐼 | 12 1

(1 + ∥𝐾 ∥)2𝐶
1

2

0
. (31)

Combining with (20), it holds with probability at least 1 − 4𝛿 that∑
𝑡

���〈�̂� ∥, 𝑧 ∥𝑡 〉 〈
�̂�⊥, b⊥𝑡

〉���∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

≤
𝜎�̂�⊥𝜎𝐿

√
2 ln

1

𝛿

∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

≤
𝜎�̂�⊥𝜎𝐿

√
2 ln

1

𝛿

∑
𝑡

𝑧 ∥𝑡 2

∑
𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

≤
𝜎𝐿

√
2 ln

1

𝛿
|I | 12 𝑧𝑢∑

𝑡

〈
�̂�⊥, b⊥𝑡

〉
2

≤
𝜎𝐿

√
2 ln

1

𝛿
|I | 12 𝑧𝑢

1

2
|I | 12 1

(1+∥𝐾 ∥)2𝐶
1

2

0

= 2

√
2

√
ln

1

𝛿
𝜎𝐿𝑧𝑢 (1 + ∥𝐾 ∥)2𝐶

− 1

2

0

= 2

√
2

√
ln

1

𝛿
𝑧𝑢 (1 + ∥𝐾 ∥)2𝐿−

1

2

≤ 1

33

,

provided 𝐿 satisfies:

𝐿 ≥ 66
2 · 2 · ln 1

𝛿
· 𝑧2

𝑢 (1 + ∥𝐾 ∥)4. (32)

□

Step 2: Bounding _𝑣 when 𝑣 = �̂� ∥ . Noting that 𝑧 ∥𝑡 = 𝑦𝑡 + b ∥𝑡 , we can rewrite the left hand side

of (18) in this case as _�̂�∥
∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

, and the right hand side of (18) as∑
𝑡

𝜔𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
+

∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, 𝑧
∥
𝑡

〉
.

Therefore,

|_�̂�∥ | ≤

���∑𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, 𝑧
∥
𝑡

〉���∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

+

���∑𝑡 𝜔𝑡

〈
𝑣, 𝑧
∥
𝑡

〉���∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2
. (33)
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By (26) and (28) it holds with probability at least 1 − 8𝛿 that∑
𝑡

〈
�̂� ∥, 𝑧 ∥𝑡

〉
2

≥ Λ1 ≥
𝜓 2

2

|I |,

if we have

|I | ≥ 32𝜓−4
ln

1

𝛿

(
𝜓 2 + Ψ(1 + ∥𝐾 ∥2) 1

2 ∥𝑀 ∥ Θ𝑢𝑧𝑢 + 𝜎𝐿 ∥𝑀 ∥ Θ𝑢𝑧𝑢 +
√

2𝜎𝐿Ψ(1 + ∥𝐾 ∥2)
1

2

)
2

.

It remains to upper bound the numerators of the two terms in (33). For the first term, Cauchy-

Schwartz inequality gives:�����∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, 𝑧
∥
𝑡

〉����� ≤ √∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
2

√∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ max

𝑡

��\𝑡 − ¯\
�� ·√∑

𝑡

∥𝑧𝑡 ∥2
√∑

𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ ΔI

√
𝑧2

𝑢 |I |
√∑

𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ ΔI𝑧𝑢 |I |
1

2

√∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

. (34)

Plugging this into (33) gives���∑𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, 𝑧
∥
𝑡

〉���∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ ΔI𝑧𝑢 |I |
1

2√∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ ΔI𝑧𝑢 |I |
1

2 Λ
− 1

2

1
. (35)

For the second term, let 𝜔𝑡
𝑑
= N(0,𝜓 2

𝑖 ). Note that assuming𝑤𝑡 (𝑖) is𝜓 2

𝑖 sub-Gaussian suffices. By

the assumption on𝑤𝑡 , a standard supermartingale argument implies that

Pr

[�����∑
𝑡

𝜔𝑡

〈
𝑣, 𝑧
∥
𝑡

〉����� ≥ 𝜓𝑖
√

2 ln

1

𝛿

∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

]
≤ 2𝛿.

Plugging this into (33) gives���∑𝑡 𝜔𝑡

〈
𝑣, 𝑧
∥
𝑡

〉���∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2
≤

𝜓𝑖

√
2 ln

1

𝛿√∑
𝑡

〈
𝑣, 𝑧
∥
𝑡

〉
2

≤ 𝜓𝑖
√

2 ln

1

𝛿
Λ
− 1

2

1
. (36)

Finally, we conclude it holds with probability at least 1 − 10𝛿 that

|_�̂�∥ | ≤ ΔI𝑧𝑢 |I |
1

2 Λ
− 1

2

1
+𝜓𝑖

√
2 ln

1

𝛿
Λ
− 1

2

1

≤
√

2𝜓−1ΔI𝑧𝑢 + 2𝜓−1𝜓𝑖

√
ln

1

𝛿
|I |− 1

2 . (37)
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Step 3: Bounding _𝑣 when 𝑣 = �̂�⊥. Noting that 𝑧⊥𝑡 = b⊥𝑡 , we can rewrite the left hand side of

(18) as _�̂�⊥
∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

, and the right hand side of (18) as∑
𝑡

𝜔𝑡
〈
𝑣, b⊥𝑡

〉
+

∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉
.

Therefore,

|_�̂�⊥ | ≤
��∑

𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

+
��∑

𝑡 𝜔𝑡
〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2
. (38)

For the first term, we observe that b⊥𝑡 is normally distributed and is independent of 𝑧𝑡 . Applying

a supermartingale argument, we get

Pr

[�����∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉����� ≥ 𝜎𝐿
√

2 ln

1

𝛿

∑
𝑡

⟨\𝑡 − \, 𝑧𝑡 ⟩2
]
≤ 2𝛿,

and hence

Pr

[�����∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉����� ≥ 𝜎𝐿ΔI𝑧𝑢 |I | 12
√

2 ln

1

𝛿

]
≤ 3𝛿.

Then the first term is upper bounded as��∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

≤

√∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
2

√∑
𝑡

〈
𝑣, b⊥𝑡

〉
2∑

𝑡

〈
𝑣, b⊥𝑡

〉
2

≤ 𝜎𝐿ΔI𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
Λ−1

2
.

For the second term, a supermartingale argument implies that

Pr

[�����∑
𝑡

𝜔𝑡
〈
𝑣, b⊥𝑡

〉����� ≥ 𝜓𝑖
√

2 ln

1

𝛿

∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

]
≤ 2𝛿.

Then ��∑
𝑡 𝜔𝑡

〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2
≤
𝜓𝑖

√
2 ln

1

𝛿

∑
𝑡

〈
𝑣, b⊥𝑡

〉
2∑

𝑡

〈
𝑣, b⊥𝑡

〉
2

≤ 𝜓𝑖
√

2 ln

1

𝛿
Λ
− 1

2

2
.

Finally, we conclude it holds with probability at least 1 − 6𝛿 that

|_�̂�⊥ | ≤
��∑

𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
·
〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

+
��∑

𝑡 𝜔𝑡
〈
𝑣, b⊥𝑡

〉��∑
𝑡

〈
𝑣, b⊥𝑡

〉
2

≤ 𝜎𝐿ΔI𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
Λ−1

2
+𝜓𝑖

√
2 ln

1

𝛿
Λ
− 1

2

2
.

Assuming |I | ≥ 16 ln
1

𝛿
and using the bound on Λ2 from (31), we have

|_�̂�⊥ | ≤ 2𝜎𝐿ΔI𝑧𝑢

√
2 ln

1

𝛿
(1 + ∥𝐾 ∥)2𝐶−

1

2

0
+ 2𝜓𝑖

√
ln

1

𝛿
(1 + ∥𝐾 ∥)𝐶−

1

4

0
|I |− 1

4 . (39)

Combining Lemma C.1, (37) and (39), we have that

_2

𝑣 ≤ 2_2

�̂�∥
+ 2_2

�̂�⊥

≤ 4Δ2

I𝑧
2

𝑢 |I |Λ−1

1
+ 8𝜓 2

𝑖 ln

1

𝛿
Λ−1

1
+ 8𝜎2

𝐿Δ
2

I (1 + ∥𝐾 ∥)
2𝑥2

𝑢 ln

1

𝛿
|I |Λ−2

2
+ 8𝜓 2

𝑖 ln

1

𝛿
Λ−1

2
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= 4Δ2

I𝑧
2

𝑢

(
|I |Λ−1

1
+ 2𝐶

1

2

0
ln

1

𝛿
|I | 12 Λ−2

2

)
+ 8𝜓 2

𝑖 ln

1

𝛿

(
Λ−1

1
+ Λ−1

2

)
= 4Δ2

I𝑧
2

𝑢 |I |
(
Λ−1

1
+ 2𝜎2

𝐿 ln

1

𝛿
Λ−2

2

)
+ 8𝜓 2

𝑖 ln

1

𝛿

(
Λ−1

1
+ Λ−1

2

)
≤ 8𝜓−2Δ2

I𝑧
2

𝑢 + 16𝜓−2𝜓 2

𝑖 ln

1

𝛿
|I |−1 + 32𝜎2

𝐿Δ
2

I𝑧
2

𝑢 ln

1

𝛿
(1 + ∥𝐾 ∥)4𝐶−1

0
+ 16𝜓 2

𝑖 ln

1

𝛿
(1 + ∥𝐾 ∥)2𝐶−

1

2

0
|I |− 1

2

= 8Δ2

I𝑧
2

𝑢

(
𝜓−2 + 4𝜎2

𝐿 ln

1

𝛿
(1 + ∥𝐾 ∥)4𝐶−1

0

)
+ 16𝜓 2

𝑖 ln

1

𝛿

(
𝜓−2 |I |−1 + (1 + ∥𝐾 ∥)2𝐶−

1

2

0
|I |− 1

2

)
holds with probability at least 1 − 27𝛿 .

Hence, we conclude that

|_𝑣 | ≤ 2

√
2ΔI𝑧𝑢

√
𝜓−2 + 4𝜎2

𝐿
ln

1

𝛿
(1 + ∥𝐾 ∥)4𝐶−1

0
+ 4𝜓𝑖

√
ln

1

𝛿

√
𝜓−2 |I |−1 + (1 + ∥𝐾 ∥)2𝐶−

1

2

0
|I |− 1

2

≤ 2

√
2ΔI𝑧𝑢

√
𝜓−2 + 4𝜎2

𝐿
ln

1

𝛿
(1 + ∥𝐾 ∥)4𝐶−1

0
+ 4𝜓𝑖

√
ln

1

𝛿

√
𝜓−2 + (1 + ∥𝐾 ∥)2𝐶−

1

2

0
|I |− 1

4

C 𝐶1ΔI +𝐶2 |I |−
1

4 , (40)

holds with probability at least 1 − 27𝛿 , where we define

𝐶1 = 2

√
2𝑧𝑢

√
𝜓−2 + 4𝜎2

𝐿
ln

1

𝛿
(1 + ∥𝐾 ∥)4𝐶−1

0
,

𝐶2 = 4𝜓𝑖

√
ln

1

𝛿

√
𝜓−2 + (1 + ∥𝐾 ∥)2𝐶−

1

2

0
. (41)

Step 4: An 𝜖-net argument. To summarize, thus far we have shown that for any fixed direction

𝑣 ∈ R𝑛+𝑑 , and for any row \𝑖 of the parameter matrix Θ, the minimizer of the one-dimensional

quadratic loss function satisfies (40). We next invoke Lemma C.5, which implies that if this statement

holds for all 𝑣 in an 𝜖-net of the (𝑛 +𝑑)-dimensional unit sphere (where 𝜖 depends on the condition

number ^𝑢 of the Hessian

∑
𝑡 𝑧𝑡𝑧

⊤
𝑡 as 𝜖 ≤ 1

5(1+^𝑢 ) ), then the Frobenius norm of the OLS estimator \̂𝑖

and
¯\𝑖 is upper bounded by

5

3

¯_. The bound on the condition number ^𝑢 of the Hessian is proved in

Lemma C.8. We make this more formal next.

We fix Y as the confidence level. First, substituting𝛿 = Y/6 in LemmaC.8 gives that with probability

at least 1−Y/6, the condition number of the Hessian is bounded from above as^I ≤ 𝐶9

√
|I | provided

Y ≤ 18/100 and

|I | ≥ 2000

9

©«2(𝑛 + 𝑑) log

6

Y
+ (𝑛 + 𝑑) log

𝑥2 (1 + ∥𝐾 ∥2) + 𝜎2

𝐿

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} ª®®¬ . (42)

We will thus choose 𝜖 = (5(1 +𝐶9

√
𝐼 ))−1

in the 𝜖-net result of Lemma C.5 and Lemma C.4. This

gives an upper bound on the cardinality of the 𝜖-net of
(
1 + 4

𝜖

)𝑛+𝑑 ≤ (10(1 +𝐶9

√
|I |))𝑛+𝑑 .

Applying (40) by substituting 𝛿 = Y

54𝑛 (10(1+𝐶9

√
|I |))𝑛+𝑑

, it holds with probability at least 1 − Y that
for every row of Θ we have\̂I − ¯\


𝐹
=

\̂I − ¯\

 ≤ 5

3

(
𝐶1ΔI +𝐶2 |I |−

1

4

)
.
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Combining 𝑛 rows, we have Θ̂I − Θ̄
𝐹
≤ 5

√
𝑛

3

(
𝐶1ΔI +𝐶2 |I |−

1

4

)
≤ 𝐶1ΔI +𝐶2 |I |−

1

4 ,

where

𝐶1 = 5𝑧𝑢
√
𝑛

(
𝜓−1 +

√
4𝜎2

𝐿
(1 + ∥𝐾 ∥)4𝐶−1

0

√
ln

1

Y
+ ln 54𝑛 + (𝑛 + 𝑑) ln

(
10(1 +𝐶9

√
|I |)

))
,

𝐶2 = 7𝜓𝑖
√
𝑛

√
𝜓−2 + (1 + ∥𝐾 ∥)2𝐶−

1

2

0

√
ln

1

Y
+ ln 54𝑛 + (𝑛 + 𝑑) ln

(
10(1 +𝐶9

√
|I |)

)
. (43)

Under our choice of 𝐶0 = O(log𝑇 ), 𝐿 = O(log
3𝑇 ), 𝜎2

𝐿
=

√
𝐶0/𝐿, Y = O(𝑇 −3), and assuming that 𝑇

is large enough so that 𝐿 satisfies conditions (27), (30), (32), and (42), both 𝐶1,𝐶2 are O(
√

log𝑇 ).

C.2 Proof of OLS Concentration for B𝑖,0 (Lemma 6.2)

To bound the estimation error of the OLS estimator of the warm-up block I = B𝑖,0, we look at the

one dimensional problem (18) again:

_𝑣

∑
𝑡

⟨𝑣, 𝑧𝑡 ⟩2 =
∑
𝑡

𝜔𝑡 ⟨𝑣, 𝑧𝑡 ⟩ +
∑
𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
· ⟨𝑣, 𝑧𝑡 ⟩ .

Since we are using a sequence of sequentially strongly stable policies {𝐾 stab

𝑡 } instead of a fixed

policy, we do not have a fixed column space anymore. Nevertheless, the 𝑂 (1) exploration noise

b𝑡 = a0[̃𝑡 enables us to bound the error similar to the case 𝑣 = 𝑣 ∥ . Recall that we set a0 = 1 in

Algorithm 1.

Let𝑀𝑡 B

[
𝐼𝑛
𝐾 stab

𝑡

]
. Note that∑

𝑡

⟨𝑣, 𝑧𝑡 ⟩2 = ⟨𝑣,𝑀𝑡Θ𝑡−1𝑧𝑡−1 +𝑀𝑡𝑤𝑡−1 + b𝑡 ⟩2

≥
∑
𝑡

⟨𝑣,𝑀𝑡𝑤𝑡−1 + b𝑡 ⟩2 + 2 ⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣,𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩

+ 2 ⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣, b𝑡 ⟩ + 2 ⟨𝑣, b𝑡 ⟩ ⟨𝑣,𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩ .

Let 𝑣 = 𝑣
∥
𝑡 + 𝑣⊥𝑡 , where 𝑣

∥
𝑡 is the projection of 𝑣 onto the column space generated by𝑀𝑡 . We have

⟨𝑣,𝑀𝑡𝑤𝑡−1 + b𝑡 ⟩2 ≥
〈
𝑣
∥
𝑡 , 𝑀𝑡𝑤𝑡−1

〉
2

+
〈
𝑣⊥𝑡 , [̃𝑡

〉
2

.

Let 𝜎2

1,𝑡 = (𝑣
∥
𝑡 )⊤𝑀𝑡𝑊𝑀⊤𝑡 𝑣

∥
𝑡 denote the variance of

〈
𝑣
∥
𝑡 , 𝑀𝑡𝑤𝑡−1

〉
. Write 𝑣

∥
𝑡 = 𝑀𝑡𝑥𝑣,𝑡 , where

𝑣 ∥𝑡 2

=[𝑥⊤𝑣,𝑡 𝑥⊤𝑣,𝑡𝐾⊤𝑡 ]2

=
𝑥𝑣,𝑡2 +

(𝐾 stab

𝑡 )𝑥𝑣,𝑡
2

. Recall that𝑊 ≽ 𝜓 2𝐼𝑛 . We have

𝜎2

1,𝑡 = (𝑣
∥
𝑡 )⊤𝑀𝑡𝑊𝑀⊤𝑡 𝑣

∥
𝑡

≥ 𝜓 2 · 𝑥⊤𝑣,𝑡𝑀⊤𝑡 𝑀𝑡𝑀
⊤
𝑡 𝑀𝑡𝑥𝑣,𝑡

= 𝜓 2 · 𝑥⊤𝑣,𝑡 (𝐼 + (𝐾 stab

𝑡 )⊤ (𝐾 stab

𝑡 )) (𝐼 + (𝐾 stab

𝑡 )⊤ (𝐾 stab

𝑡 ))𝑥𝑣,𝑡

= 𝜓 2

(
𝑥⊤𝑣,𝑡𝑥𝑣,𝑡 + 2𝑥⊤𝑣,𝑡 (𝐾 stab

𝑡 )⊤𝑡 (𝐾 stab

𝑡 )𝑥𝑣 + 𝑥⊤𝑣,𝑡 (𝐾 stab

𝑡 )⊤ (𝐾 stab

𝑡 ) (𝐾 stab

𝑡 )⊤ (𝐾 stab

𝑡 )𝑥𝑣,𝑡
)

= 𝜓 2

(𝑥𝑣,𝑡2 + 2

(𝐾 stab

𝑡 )𝑥𝑣,𝑡
2 +

(𝐾 stab

𝑡 )⊤ (𝐾 stab

𝑡 )𝑥𝑣,𝑡
2

)
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≥ 𝜓 2 (
𝑥𝑣,𝑡2 +

(𝐾 stab

𝑡 )𝑥𝑣,𝑡
2)

= 𝜓 2

𝑣 ∥𝑡 2

. (44)

Let 𝜎2

2,𝑡 denote the variance of

〈
𝑣⊥𝑡 , [̃𝑡

〉
. Write 𝑣⊥𝑡 as 𝑣⊥𝑡 = [(𝑣⊥𝑡,1)⊤ (𝑣⊥𝑡,2)⊤]⊤, where 𝑣⊥𝑡,1 ∈ R𝑛 ,

𝑣⊥𝑡,2 ∈ R𝑑 , and
𝑣⊥𝑡,1 + 𝑣⊥𝑡,2 =

𝑣⊥𝑡 
. Since �̂�⊥ is in the orthogonal space of the columns space

of [𝐼𝑛 𝐾⊤𝑡 ]⊤, we must have 𝑣⊥𝑡,1 + 𝐾⊤𝑡 𝑣⊥𝑡,2 = 0. Then

𝑣⊥𝑡,1 =
−𝐾⊤𝑣⊥𝑡,2 ≤ 𝐾 stab

𝑡

 𝑣⊥𝑡,2 and hence𝑣⊥𝑡,2 ≥ 1

1+∥𝐾 stab

𝑡 ∥ . We have

𝜎2

2,𝑡 = E
[
(𝑣⊥𝑡,2)⊤[𝑡[⊤𝑡 𝑣⊥𝑡,2

]
= (𝑣⊥𝑡,2)⊤𝐼𝑑𝑣⊥𝑡,2 =

𝑣⊥𝑡,22 ≥ 1

(1 +
𝐾 stab

𝑡

)2 𝑣⊥𝑡 2 ≥ 1

(1 + 𝐾𝑢)2
𝑣⊥𝑡 2

. (45)

Recall that

𝑣 ∥𝑡 2

+
𝑣⊥𝑡 2

= 1. Combing (44) and (45), we have

E
[
⟨𝑣, b𝑡 +𝑀𝑡𝑤𝑡−1⟩2

]
≥ E

[〈
𝑣
∥
𝑡 , 𝑀𝑡𝑤𝑡−1

〉
2

+
〈
𝑣⊥𝑡 , b𝑡

〉
2

]
≥ 𝜓 2

𝑣 ∥𝑡 2

+
a2

0

(1 + 𝐾𝑢)2
𝑣⊥𝑡 2

≥ min

{
𝜓 2,

a2

0

(1 + 𝐾𝑢)2

}
C 𝜎2

𝑣 .

Using the standard Laurent-Massart bound implies

Pr

[∑
𝑡

⟨𝑣, b𝑡 +𝑀𝑡𝑤𝑡−1⟩2 ≤ 𝜎2

𝑣

(
|I | − 2

√
|I | ln( 1

𝛿
)
)]
≤ 𝛿.

Let 𝑣 = [𝑣⊤
1
𝑣⊤

2
]⊤, where 𝑣1 ∈ R𝑛 and 𝑣2 ∈ R𝑑 . Then

E
[
⟨𝑣,𝑀𝑡𝑤𝑡−1⟩2

]
= E

[〈
𝑣1 + (𝐾 stab

𝑡 )⊤𝑣2,𝑤𝑡
〉

2

]
≤ E

[
2 ⟨𝑣1,𝑤𝑡 ⟩2 + 2

〈
(𝐾 stab

𝑡 )⊤𝑣2,𝑤𝑡
〉

2

]
≤ 2(∥𝑣1∥2 + 𝐾2

𝑢 ∥𝑣2∥2)E
[
∥𝑤𝑡 ∥2

]
≤ 2(1 + 𝐾2

𝑢 )E
[
∥𝑤𝑡 ∥2

]
C 𝜎2

stab
.

By the standard Laurent-Massart bound, we have

Pr

[∑
𝑡

⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩2 ≥ 𝜎2

stab

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)]
≤ 𝛿.

Applying a supermartingale argument, we get

Pr

[�����∑
𝑡

⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣, 𝑀Θ𝑡−1𝑧𝑡−1⟩
����� ≥ 𝜎stab

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣, 𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩2
]
≤ 2𝛿,

Pr

[�����∑
𝑡

⟨𝑣, b𝑡 ⟩ ⟨𝑣, 𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩
����� ≥ 𝜎𝑣a0

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣, 𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩2
]
≤ 2𝛿,
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Pr

[�����∑
𝑡

⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣, b𝑡 ⟩
����� ≥ 𝜎𝑣a0

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩2
]
≤ 2𝛿.

By direct computation, we have that∑
𝑡

⟨𝑣, 𝑧𝑡 ⟩2 ≥
∑
𝑡

〈
𝑣
∥
𝑡 , 𝑀𝑡𝑤𝑡−1

〉
2

+
∑
𝑡

〈
𝑣⊥𝑡 , b𝑡

〉
2 + 2 ⟨𝑣,𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣,𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩

+ 2 ⟨𝑣, 𝑀𝑡𝑤𝑡−1⟩ ⟨𝑣, b𝑡 ⟩ + 2 ⟨𝑣, b𝑡 ⟩ ⟨𝑣, 𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩

≥ 𝜎2

𝑣

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2𝜎stab

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣,𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩2

− 2𝜎𝑣a0

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣, 𝑀𝑡Θ𝑡−1𝑧𝑡−1⟩2

− 2𝜎𝑣a0

√√√
2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)

≥ 𝜎2

𝑣

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2𝜎stab𝑀𝑢Θ𝑢𝑧𝑢 |I |

1

2

√
2 ln

1

𝛿

− 2𝜎𝑣a0𝑀𝑢Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
− 2𝜎𝑣a0

√√√
2 ln

1

𝛿

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)

≥ 𝜎2

𝑣

(
|I | − 2

√
|I | ln( 1

𝛿
)
)
− 2𝜎stab𝑀𝑢Θ𝑢𝑧𝑢 |I |

1

2

√
2 ln

1

𝛿

− 2𝜎𝑣a0𝑀𝑢Θ𝑢𝑧𝑢 |I |
1

2

√
2 ln

1

𝛿
− 2𝜎𝑣a0

√
2 ln

1

𝛿
2|I |

= 𝜎2

𝑣 |I | − |I|
1

2

√
2 ln

1

𝛿

(√
2𝜎2

𝑣 + 2𝜎stab𝑀𝑢Θ𝑢𝑧𝑢 + 2𝜎𝑣a0𝑀𝑢Θ𝑢𝑧𝑢 + 2

√
2𝜎𝑣a0

)
C Λstab,

holds with probability at least 1 − 8𝛿 , where𝑀𝑢 := max𝑡 ∥𝑀𝑡 ∥. We can simplify the bound to

Λstab ≥
1

2

𝜎2

𝑣𝐿

given the warm-up block I is long enough:

|I | = 𝐿 ≥ 8𝜎−4

𝑣 ln

1

𝛿

(√
2𝜎2

𝑣 + 2𝜎stab𝑀𝑢Θ𝑢𝑧𝑢 + 2𝜎𝑣a0𝑀𝑢Θ𝑢𝑧𝑢 + 2

√
2𝜎𝑣a0

)
2

. (46)

Note that this condition is stricter than 𝐿 ≥ 16 ln
1

𝛿
.

By a supermartingale argument, we have

Pr

[�����∑
𝑡

𝜔𝑡 ⟨𝑣, 𝑧𝑡 ⟩
����� ≥ 𝜓𝑖

√
2 ln

1

𝛿

∑
𝑡

⟨𝑣, 𝑧𝑡 ⟩2
]
≤ 2𝛿. (47)

Hence, it holds with probability at least 1 − 9𝛿 that

|_𝑣 | ≤
��∑

𝑡

〈
\𝑡 − ¯\, 𝑧𝑡

〉
· ⟨𝑣, 𝑧𝑡 ⟩

��∑
𝑡 ⟨𝑣, 𝑧𝑡 ⟩2

+ |
∑
𝑡 𝜔𝑡 ⟨𝑣, 𝑧𝑡 ⟩|∑
𝑡 ⟨𝑣, 𝑧𝑡 ⟩2
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≤ ΔI𝑧𝑢 |I |
1

2 Λ
− 1

2

stab
+𝜓𝑖

√
2 ln

1

𝛿
Λ
− 1

2

stab

≤
√

2𝜎−1

𝑣 𝑧𝑢ΔI + 2𝜓𝑖𝜎
−1

𝑣

√
ln

1

𝛿
|I |− 1

2

C 𝐶1,stabΔI +𝐶2,stab |I |−
1

2 . (48)

Here we have used Cauchy-Schwartz inequality, (47), and the upper bounds |\𝑡 − ¯\ | ≤ ΔI ,
𝐾 stab

𝑡

 ≤
𝐾𝑢 and the definition of 𝑧𝑢 .

Finally, we combine (48) with an 𝜖-net argument as in the proof of Lemma 6.1. We let Y be the

confidence parameter. Choosing 𝛿 = Y
6
in Lemma C.8 we get an upper bound on the condition

number of the Hessian as ^0 = O(1). Setting 𝜖 = 5(1+^0), and applying (48) with 𝛿 = Y

18𝑛 (5(1+^0))𝑛+𝑑
,

it holds with probability at least 1 − Y that for every row we have,\̂ − ¯\


𝐹
=

\̂B𝑖,0 − ¯\

 ≤ 5

3

(
𝐶1,stabΔB𝑖,0 +𝐶2,stab |B𝑖,0 |−

1

4

)
.

Combining the 𝑛 rows, we haveΘ̂B𝑖,0 − Θ̄
𝐹
≤ 5

√
𝑛

3

(
𝐶1,stabΔB𝑖,0 +𝐶2,stab |B𝑖,0 |−

1

4

)
≤ 𝐶1,stabΔB𝑖,0 +𝐶2,stab |B𝑖,0 |−

1

4 ,

where

𝐶1,stab = 3

√
𝑛𝜎−1

𝑣 𝑧𝑢,

𝐶2,stab = 4𝜓𝑖𝜎
−1

𝑣

√
𝑛

√
ln

1

Y
+ ln 18𝑛 + (𝑛 + 𝑑) ln 5(1 + ^0). (49)

For our choice of 𝑥𝑢, a0, 𝐿, assuming that 𝑇 is large enough so that 𝐿 satisfies (46), and setting

Y = 𝑂 (𝑇 −3), both 𝐶1,stab,𝐶2,stab are O(
√

ln𝑇 ).

C.3 Lemmas on the geometry of the Hessian

The following lemma gives a sufficient condition under which to upper bound the distance of a point

𝑝 ′ = (𝑥 ′, 𝑦 ′) from the minimizer of a quadratic form 𝑓 (𝑥,𝑦), it suffices to upper bound the distance

of 𝑝 ′ from the minimizers of the one-dimensional functions ℎ(𝑥) = 𝑓 (𝑥,𝑦 ′) and 𝑔(𝑦) = 𝑓 (𝑥 ′, 𝑦).
In a nut shell, the lemma states that if the level sets of 𝑓 are “almost axis-parallel” (the precise

requirement being given by the condition number of the Hessian), then it suffices to obtain upper

bounds on the one-dimensional minimizers.

Lemma C.2. Let 𝑓 (𝑥,𝑦) be a quadratic form with Hessian 𝐻 =

[
𝐴2 𝐶

𝐶 𝐵2

]
≻ 0. Let the level sets

of 𝑓 (𝑥,𝑦) be given by ellipses that are clockwise rotation by an angle 𝛼 ∈
(
−𝜋

4
, 𝜋

4

)
of axis parallel

ellipses:
𝑥2

𝑎2
+ 𝑦2

𝑏2
= 𝑟 2

. Define 𝛾 such that tan𝛾 =
min{𝑎,𝑏 }
max{𝑎,𝑏 } ≤ 1.

For a given point 𝑝 ′ = (𝑥 ′, 𝑦 ′), define
𝑥 ′′ = argmin

𝑥

𝑓 (𝑥,𝑦 ′), 𝑦 ′′ = argmin

𝑥

𝑓 (𝑥 ′, 𝑦),

and _𝑥 = 𝑥 ′ − 𝑥 ′′, _𝑦 = 𝑦 ′ −𝑦 ′′. Let 𝑝∗ = (𝑥∗, 𝑦∗) = argmin(𝑥,𝑦) 𝑓 (𝑥,𝑦) be the true minimizer of 𝑓 (·).
If (i) tan𝛾 ≥ 5

8
, or (ii) | tan𝛼 | ≤ tan

2 𝛾

4
, then

_2

𝑥 + _2

𝑦 ≥
1

2

∥𝑝 ′ − 𝑝∗∥2 .
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a

b

α

γ

(a) A level set of 𝑓 (𝑥, 𝑦)

p
′ = (x′

, y
′)

p
∗

} λy

}λx

(b) Illustration of 1-d minimizers in

Lemma C.2

Fig. 3. Illustration of the setup for Lemma C.2. The figure on the left shows one level set of the quadratic

form 𝑓 (𝑥,𝑦); a 𝛼 rotation of an axis-parallel ellipse with principal axes of lengths 𝑎 and 𝑏. The figure on the

right is a visual illustration of _𝑥 , _𝑦 in the Lemma statement. For example, the blue ellipse denotes the level

set on which the minimizer (𝑥 ′′, 𝑦′) (blue dot) lies, giving _𝑥 = 𝑥 ′ − 𝑥 ′′.

Proof. We will assume that the true minimizer 𝑝∗ = 0 without loss of generality, so that we need

to prove that _2

𝑥 + _2

𝑦 ≥ 1

2
· (𝑥 ′2 + 𝑦 ′2). We will also assume without loss of generality that 𝑎 ≤ 𝑏.

Furthermore, in the proof we will focus on the case 𝛼 ∈ [0, 𝜋/4] and 𝑥 ′, 𝑦 ′ ≥ 0, as illustrated in

Figure 3(b). This is indeed the hardest case: if 𝑥 ′ ≤ 0, 𝑦 ′ ≥ 0, 0 ≤ 𝛼 ≤ 𝜋/4, then |_𝑦 | ≥ |𝑦 ′ |, |_𝑥 | ≥ 𝑥 ′
and the Lemma follows. The other cases are symmetric to one of the above.

We begin by finding an expression for 𝑦 ′′. Observe that at the point (𝑥 ′, 𝑦 ′′), the tangent to
the level set is parallel to the 𝑦-axis. If we now imagine rotating the level set, along with the

point (𝑥 ′, 𝑦 ′′) counter-clockwise by an angle 𝛼 , so that the level set becomes axis-parallel and the

point (𝑥 ′, 𝑦 ′′) moves to (𝑥,𝑦), then the tangent at (𝑥,𝑦) to this axis-parallel ellipse has a slope of

𝑚 = −1/tan𝛼 . We can now obtain one relationship between 𝑥,𝑦 by differentiating the equation for

the level set with respect to 𝑥 :

𝑑

𝑑𝑥

(
𝑥2

𝑎2
+ 𝑦

2

𝑏2

)����
(𝑥,𝑦)

= 0 =⇒ 𝑦 = 𝑥
𝑏2

𝑎2
tan𝛼.

Let tan 𝛽 := 𝑏2

𝑎2
tan𝛼 , so that 𝑦 = 𝑥 tan 𝛽 . Since (𝑥 ′, 𝑦 ′′) is obtained by clockwise rotation of (𝑥,𝑦)

by 𝛼 , we have

𝑦 ′′ = 𝑥 ′ tan(𝛽 − 𝛼) = 𝑥 ′ tan 𝛽 − tan𝛼

1 + tan 𝛽 tan𝛼
.

Substituting tan 𝛽 = 𝑏2

𝑎2
tan𝛼 = tan𝛼/tan

2 𝛾 :

𝑦 ′′ = 𝑥 ′ tan𝛼
1 − tan

2 𝛾

tan
2 𝛾 + tan

2 𝛼
. (50)
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A similar analysis gives,

𝑥 ′′ = 𝑦 ′ tan𝛼
1 − tan

2 𝛾

1 + tan
2 𝛾 tan

2 𝛼
. (51)

Writing (𝑥 ′, 𝑦 ′) in polar coordinates (𝑟, \ ), we get

_𝑥 = 𝑥 ′ − 𝑥 ′′ = 𝑟
(
cos\ − sin\ · tan𝛼

1 − tan
2 𝛾

1 + tan
2 𝛾 tan

2 𝛼

)
, (52)

_𝑦 = 𝑦 ′ − 𝑦 ′′ = 𝑟
(
sin\ − cos\ · tan𝛼

1 − tan
2 𝛾

tan
2 𝛾 + tan

2 𝛼

)
. (53)

By our assumptions, tan𝛼 ≥ 0 and 0 ≤ tan𝛾 ≤ 1. One can further verify that under the condition

tan𝛼 ≤ tan
2 𝛾

4
, we have

0 ≤ tan𝛼
1 − tan

2 𝛾

1 + tan
2 𝛾 tan

2 𝛼
≤ 1/4,

and

0 ≤ tan𝛼
1 − tan

2 𝛾

tan
2 𝛾 + tan

2 𝛼
≤ 1/4.

To see why, the above inequalities can be rearranged into the following quadratic inequalities in

tan𝛼 for any fixed value tan𝛾 :(
tan

2 𝛾

1 − tan
2 𝛾

)
tan

2 𝛼 − 4 tan𝛼 + 1

1 − tan
2 𝛾
≥ 0,(

1

1 − tan
2 𝛾

)
tan

2 𝛼 − 4 tan𝛼 + tan
2 𝛾

1 − tan
2 𝛾
≥ 0.

It can then be shown that
tan

2 𝛾

4
is a lower bound on the smaller roots of the quadratic expressions on

the left hand side above. In fact, the second condition above is stricter than the first (when tan𝛾 ≤ 1),

and
tan

2 𝛾

4
is a linear approximation to the smaller root (= 2(1 − tan

2 𝛾) −
√

4 tan
2 𝛾 − 9 tan𝛾 + 4)

in the vicinity of tan
2 𝛾 = 0 for the second inequality above. In fact, if tan𝛾 ≥ 5

8
, then the two

inequalities are always true.

Finally,

_2

𝑥 + _2

𝑦 = (𝑥 ′ − 𝑥 ′′)2 + (𝑦 ′ − 𝑦 ′′)2

≥ 𝑟 2

[
sin

2 \ + cos
2 \ − 2 sin\ cos\ tan𝛼

(
1 − tan

2 𝛾

1 + tan
2 𝛾 tan

2 𝛼
+ 1 − tan

2 𝛾

tan
2 𝛾 + tan

2 𝛼

)]
≥ 𝑟 2

(
1 − 1

2

sin 2\

)
≥ 𝑟 2

2

.

□

The Hessian for the quadratic described in Lemma C.2 is given by:

𝐻 =

[
𝐴2 𝐶

𝐶 𝐵2

]
=


cos

2 𝛼
𝑎2
+ sin

2 𝛼
𝑏2

sin𝛼 cos𝛼

(
1

𝑏2
− 1

𝑎2

)
sin𝛼 cos𝛼

(
1

𝑏2
− 1

𝑎2

)
sin

2 𝛼
𝑎2
+ cos

2 𝛼
𝑏2

 . (54)

Lemma C.3. The Hessian in (54) satisfies the conditions of Lemma C.2 if
|𝐶 |

min{𝐴2,𝐵2 } ≤
1

33
.
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Proof. Without loss of generality, assume 𝑎 ≤ 𝑏, so that with 𝛼 ∈ [−𝜋/4, 𝜋/4], we have 𝐵2 ≤ 𝐴2
.

To neaten the exposition, we will further focus on 𝛼 ∈ [0, 𝜋/4], since only | sin𝛼 | and | cos𝛼 | are
involved in verifying the condition.

It suffices to prove that

𝐶

𝐵2
=

1

2

· sin 2𝛼

𝑎2/𝑏2
·

1 − 𝑎2

𝑏2

1 +
(
𝑏2

𝑎2
− 1

)
sin

2 𝛼

≤ 1

33

(55)

implies tan𝛼 ≤ 𝑎2

4𝑏2
, under the assumption that

𝑎2

𝑏2
≤ 25/64, since otherwise tan𝛾 ≥ 5/8 and the first

condition in Lemma C.2 is satisfied. Since under this assumption 1 − 𝑎2

𝑏2
≥ 39

64
, (55) implies

sin 2𝛼

𝑎2/𝑏2
· 1

1 +
(
𝑏2

𝑎2
− 1

)
sin

2 𝛼

≤ 128

39 · 33

≤ 1

10

.

Rearranging,

𝑏2

𝑎2
≤ 1 − sin

2 𝛼

10 sin 2𝛼 − sin
2 𝛼
≤ 1 − sin

2 𝛼

10

√
2 sin𝛼 − sin

2 𝛼
, (56)

since in the interval 𝛼 ∈ [0, 𝜋/4] we have sin 2𝛼 ≥
√

2 sin𝛼 . Since 𝑏
2

𝑎2
≥ 64

25
≥ 2, we get the quadratic

inequality

sin
2 𝛼 − 20

√
2 sin𝛼 + 1 ≥ 0,

which implies sin𝛼 ≤ 0.04 and therefore tan𝛼 = sin𝛼
cos𝛼
≤ 1.01 sin𝛼 .

Starting from (56) again, (
𝑏2

𝑎2
− 1

)
sin

2 𝛼 − 10

√
2

𝑏2

𝑎2
sin𝛼 + 1 ≥ 0,

which has roots

10

√
2𝑏2/𝑎2±

√
200𝑏4/𝑎4−4𝑏2/𝑎4+4

2(𝑏2/𝑎2−1) . Since 𝑏2/𝑎2 ≥ 64/25, we observe that the larger root is

greater than 5

√
2, and hence the smaller root is bounded above by

1

5

√
2

· 1

𝑏2

𝑎2
−1

≤ 64/39

5

√
2

· 𝑎2

𝑏2
, which

is also an upper bound on sin𝛼 . In the last inequality we have again used 𝑏2/𝑎2 ≥ 64/25. Finally,

tan𝛼 ≤ 1.01 sin𝛼 ≤ 1.01 · 64/39

5

√
2

· 𝑎2

𝑏2
≤ 𝑎2

4𝑏2
as needed. □

The following lemma adapted from the volume argument of 𝜖-net w.r.t. Euclidean norm [38]

gives an upper bound for the covering numbers of the sphere using 𝜖-net w.r.t. tan.

Lemma C.4. Let 𝑁 (𝜖, S𝑛−1) be the minimal cardinality of an 𝜖-net of S𝑛−1
such that for every unit

vector 𝑣 ∈ S𝑛−1
, there exists a 𝑣𝜖 ∈ S𝜖 such that the tan of the angle between 𝑣 and 𝑣𝜖 is in [−𝜖, 𝜖]. If

𝜖 ≤ 1

5
, we have that

𝑁 (𝜖, S𝑛−1) ≤
(
1 + 4

𝜖

)𝑛
.

Proof. Choose N𝜖 to be the maximal subset of S𝑛−1
such that the tan of the angle between two

arbitrary vectors 𝑣1, 𝑣2 is larger than 𝜖 . By the maximality property,N𝜖 is an 𝜖-net. Moreover, using

the fact that 𝑥 ≥ 1

2
tan(𝑥) if 𝑥 ≤ 1

5
, the balls of radii

𝜖
4
centered at the points in N𝜖 are disjoint. Let

B𝑛,2 denote the unit Euclidean ball in R𝑛 centered at the origin. By comparing the volumes, it holds

that

𝑁 (𝜖, S𝑛−1) ·
(𝜖
4

)𝑛
𝑣𝑜𝑙 (B𝑛) = 𝑁 (𝜖, S𝑛−1) · 𝑣𝑜𝑙

(𝜖
4

B𝑛
)
≤ 𝑣𝑜𝑙

((
1 + 𝜖

4

)
B𝑛

)
=

(
1 + 𝜖

4

)𝑛
· 𝑣𝑜𝑙 (B𝑛).
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Hence we conclude

𝑁 (𝜖, S𝑛−1) ≤
(1 + 𝜖

4
)𝑛

𝜖
4

𝑛 =

(
1 + 4

𝜖

)𝑛
.

□

Lemma C.5. Let L(\ ) : R𝑛 → R be a quadratic form loss function with positive definite Hessian

𝐻 and minimizer \ ∗. Let ^ ≥ 1, the condition number, denote the ratio of the largest to the smallest

eigenvalue of 𝐻 . Let S𝜖 ⊂ S𝑛−1
be an ‘𝜖-net’ of the 𝑛-dimensional unit sphere so that for every unit

vector 𝑣 ∈ S𝑛−1
, there exists a 𝑣𝜖 ∈ S𝜖 such that the tan of the angle between 𝑣 and 𝑣𝜖 is in [−𝜖, 𝜖]

and 𝜖 ≤ 1

5+2^ . Let
¯\ be an approximate minimizer of L, and let _𝑣 denote the minimizer of the scalar

quadratic function L𝑣 (_) = L( ¯\ + _𝑣). If for all 𝑣𝜖 ∈ S𝜖 , |_𝑣𝜖 | ≤ _, then | ¯\ − \ ∗ | ≤
¯_

1−2(1+^)𝜖 .

Proof. Let 𝑣 = (𝑣𝑥 , 𝑣𝑦) denote the unit vector in the direction
¯\ − \ ∗, and let 𝑢 = (𝑢𝑥 , 𝑢𝑦) ∈ S𝜖

satisfy the condition in the Lemma statement with respect to 𝑣 . That is, if𝑚𝑣 =
𝑣𝑦

𝑣𝑥
= tan𝛼 and

𝑚𝑢 =
𝑢𝑦

𝑢𝑥
= tan 𝛽 , then tan(𝛽 − 𝛼) = 𝜖 ′ with 𝜖 ′ ∈ [−𝜖, 𝜖]. Let 𝑃 denote the point

¯\ + _𝑢𝑢. The points
¯\, \ ∗, 𝑃 define a plane and the subsequent analysis will be restricted to this plane. Without loss of

generality, let us translate and rotate our co-ordinate system so that \ ∗ is at the origin, the level

sets of the loss function L restricted to the plane of interest have the form
𝑥2

𝑎2
+ 𝑦2

𝑏2
= 𝑟 2

(with

1

^
≤ 𝑎2

𝑏2
≤ ^), and ¯\ = ( ¯\𝑥 , ¯\𝑦) = 𝑟 ¯\ · 𝑣 lie in the positive quadrant.

Using the fact that the point 𝑃 = ¯\ + _𝑢𝑢 is tangent to the level set, we get

−_𝑢 =
¯\𝑥𝑏

2 + ¯\𝑦𝑚𝑢𝑎
2

𝑎2𝑚2

𝑢 + 𝑏2

·
√

1 +𝑚2

𝑢 = 𝑟 ¯\ .
𝑣𝑥𝑏

2 + 𝑣𝑦𝑚𝑢𝑎2

𝑎2𝑚2

𝑢 + 𝑏2

·
√

1 +𝑚2

𝑢 .

Since𝑚𝑢 = tan 𝛽 = tan𝛼+𝜖′
1−𝜖′ tan𝛼

=
𝑚𝑣+𝜖′
1−𝜖′𝑚𝑣

, some calculations give,

|_𝑢 | = 𝑟 ¯\ .
𝑣𝑥𝑏

2 + 𝑣𝑦𝑚𝑢𝑎2

𝑎2𝑚2

𝑢 + 𝑏2

·
√

1 +𝑚2

𝑢

= 𝑟 ¯\

√
1 + 𝜖 ′2


1 − 𝜖 ′ (𝑚𝑣 + 𝜖 ′)𝑎2 −𝑚𝑣 (1 −𝑚𝑣𝜖

′)𝑏2

(𝑚𝑣 + 𝜖 ′)2𝑎2 + (1 − `𝜖 ′)2𝑏2︸                                  ︷︷                                  ︸
𝐷


.

We can bound 𝐷 as:

𝐷 ≤ (𝑚𝑣 + 𝜖 ′)𝑎2

(𝑚𝑣 + 𝜖 ′)2𝑎2 + (1 − `𝜖 ′)2𝑏2︸                              ︷︷                              ︸
𝐷1

+ 𝑚𝑣 |1 −𝑚𝑣𝜖
′ |𝑏2

(𝑚𝑣 + 𝜖 ′)2𝑎2 + (1 − `𝜖 ′)2𝑏2︸                              ︷︷                              ︸
𝐷2

.

Assuming |𝜖 ′ | ≤ 𝜖 ≤ 1/5, if𝑚𝑣 ≥ 1, then 𝐷1 ≤ 1 and 𝐷2 ≤ 2𝑏2

𝑎2
≤ 2^ . If𝑚𝑣 ≤ 1, then 𝐷1 ≤ 2𝑎2

𝑏2
≤ 2^

and 𝐷2 ≤ 2. Therefore, 𝐷 ≤ 2(1 + ^), finally giving:

| ¯\ − \ ∗ | = 𝑟 ¯\ ≤
|_𝑢 |√
1 + 𝜖 ′2

· 1

1 − 2(1 + ^)𝜖 ′ ≤
¯_

1 − 2(1 + ^)𝜖 .

□
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C.4 Bound on

∑
𝑡 ∈I ∥𝑧𝑡 ∥2

Lemma C.6. For a 𝛿 ∈ (0, 1) and an interval I lying within some block B𝑖 𝑗 with 𝑗 ≥ 1 and

|I | ≥ 16 ln
1

𝛿
, it holds with probability at least 1 − 𝛿 that∑

𝑡 ∈I
∥𝑧𝑡 ∥2 ≤ |I|

(
2

(
(1 + 𝐾2

𝑢 )max

𝑡 ∈I
∥𝑥𝑡 ∥2 + 2𝜎2

𝐿

))
.

In particular, for any 𝑥 ≥ 0, conditioned on max𝑡 ∈I ∥𝑥𝑡 ∥ ≤ 𝑥 , we have
∑
𝑡 ∈I ∥𝑧𝑡 ∥2 ≤ |I|𝑧, where

𝑧 :=

√
2

(
(1 + 𝐾2

𝑢 )𝑥2 + 2𝜎2

𝐿

)
. Here 𝜎2

𝐿
:= a2

1
=

√
𝐶0/2𝐿.

Proof. Recall that 𝑧𝑡 = 𝑦𝑡 + b𝑡 and ∥𝐾𝑡 ∥ ,
𝐾 stab

𝑡

 ≤ 𝐾𝑢 . We have∑
𝑡 ∈I
∥𝑧𝑡 ∥2 =

∑
𝑡 ∈I
∥𝑦𝑡 + b𝑡 ∥2

≤ 2

∑
𝑡 ∈I
∥𝑦𝑡 ∥2 + 2

∑
𝑡 ∈I
∥b𝑡 ∥2

≤ 2(1 + 𝐾2

𝑢 ) |I|max

𝑡 ∈I
∥𝑥𝑡 ∥2 + 2

∑
𝑡 ∈I
∥b𝑡 ∥2 .

By a standard Laurent-Massart bound, we have:

Pr

∑
𝑡 ∈I
∥b𝑡 ∥2 ≥ 𝜎2

𝐿

©«|I | + 2

√
|I | ln

(
1

𝛿

)
+ 2 ln

(
1

𝛿

)ª®¬
 ≤ 𝛿.

Using the fact that

(
|I | + 2

√
|I | ln( 1

𝛿
) + 2 ln( 1

𝛿
)
)
≤ 2|I | when |I | ≥ 16 ln

1

𝛿
, plugging the above

in the bound derived above for

∑
𝑡 ∥𝑧𝑡 ∥2 indicates that∑

𝑡 ∈I
∥𝑧𝑡 ∥2 ≤ 2

(
(1 + 𝐾2

𝑢 )max

𝑡 ∈I
∥𝑥𝑡 ∥2 + 2𝜎2

𝐿

)
|I |

holds with probability at least 1 − 𝛿 . The right hand side of the bound given above is a random

variable since it involves max𝑡 ∈I ∥𝑥𝑡 ∥, and can instead be interpreted as saying that for any 𝑥 ,

conditioned on the event max𝑡 ∈I ∥𝑥𝑡 ∥ ≤ 𝑥 ,
∑
𝑡 ∈I ∥𝑧𝑡 ∥2 ≤ 2

(
(1 + 𝐾2

𝑢 )𝑥2 + 2𝜎2

𝐿

)
|I | =: |I |𝑧. □

Definition C.7. Define 𝑧𝑢 :=

√
2

(
(1 + 𝐾2

𝑢 )𝑥2

𝑢 + 2𝜎2

𝐿

)
, where 𝑥𝑢 is defined in Algorithm 1.

C.5 Bound on the condition number of

∑
𝑡 ∈I 𝑧𝑡𝑧

⊤
𝑡

Lemma C.8. For an arbitrary interval I, denote design matrix ΥI =
∑
𝑡 ∈I 𝑧𝑡𝑧

⊤
𝑡 and its condition

number ^ = _𝑚𝑎𝑥 (ΥI)/_𝑚𝑖𝑛 (ΥI).
(i) Let I be an interval within a block B𝑖, 𝑗 in Algorithm 1. Define 𝑥 = max𝑡 ∈I ∥𝑥𝑡 ∥, and 𝑧 as in

Lemma C.6. If we have

|I | ≥ 2000

9

©«2(𝑛 + 𝑑) log

1

𝛿
+ (𝑛 + 𝑑) log

𝑥2 (1 + ∥𝐾 ∥2) + 𝜎2

𝐿

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} ª®®¬ ,
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then for 𝛿 ≤ 3/100, it holds with probability at least 1− 3𝛿 that the condition number is upper bounded

as

^ ≤ 𝑧2 |I |
9 |I |
1600

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} =
1600𝑧2

9𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} .
Define ^I be the bound above when 𝑥 = 𝑥𝑢 :

^I B
1600𝑧2

𝑢

9𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} ,
whence it follows that ^I ≤ 𝐶9

√
|I | for some problem-dependent constant (independent of 𝑇 ) 𝐶9.

(ii) For any warm-up block B𝑖,0 in in Algorithm 1, with sequentially strongly stablizing policies

{𝐾 stab
𝑡 } such that

𝐾 stab
𝑡

 ≤ 𝐾𝑢 , if
|B𝑖,0 | ≥

2000

9

©«
2(𝑛 + 𝑑) log

1

𝛿
+ (𝑛 + 𝑑) log

𝑥2 (1 + 𝐾2

𝑢 ) + 𝜎2

0

𝜎2

0
min

{
1

2
,

𝜓 2

𝜎2

0
+2(𝐾 stab

𝑙
)2

} ª®®®®¬
,

we have for 𝛿 ≤ 3/100,

^ ≤ 𝑧2 |B𝑖,0 |
9 |B𝑖,0 |
1600

𝜎2

0
min

{
1

2
,

𝜓 2

a2

0
+2∥𝐾 ∥2

} =
1600𝑧2

9a2

0
min

{
1

2
,

𝜓 2

a2

0
+2∥𝐾 ∥2

} .
Define ^0 to be the bound above when 𝑥 = 𝑥𝑢 :

^0 B
1600𝑧2

𝑢

9a2

0
min

{
1

2
,

𝜓 2

a2

0
+2∥𝐾 ∥2

} ,
from where it follows that ^0 ≤ 𝐶10 ln𝑇 for some problem dependent constant 𝐶10.

Proof. Weneed to bound _min (ΥI) and _max (ΥI) separately. By direct computation and LemmaC.6,

it holds with probability at least 1 − 𝛿 that

_max (ΥI) ≤ Tr(ΥI) =
∑
𝑡 ∈I

𝑧𝑡𝑧
⊤
𝑡 =

∑
𝑡 ∈I
∥𝑧𝑡 ∥2 ≤ 𝑧2 |I |.

In the sequel, we bound _min (ΥI) from below by specifying the choice of Υ0 such that Υ0 ⪯ ΥI
with high probability using Lemma C.9. Note that 𝑧𝑡 | F𝑡−1 ∼ N (𝑧𝑡 , Σ𝑡 ), where 𝑧𝑡 and Σ𝑡 are
measurable and

Σ𝑡 ⪰
[
𝜓 2𝐼𝑛 𝜓 2𝐼𝑛𝐾

⊤

𝜓 2𝐾𝐼𝑛 𝜓 2𝐾𝐼𝑑𝐾
⊤ + 𝜎2

𝑡 𝐼𝑑

]
.

By Dean et al. [15, Lemma F. 6], we have

_min (Σ𝑡 ) ≥ 𝜎2

𝑡 min

{
1

2

,
𝜓 2

𝜎2

𝑡 + 2 ∥𝐾 ∥2

}
≥ 𝜎2

I min

{
1

2

,
𝜓 2

𝜎2

𝐿
+ 2 ∥𝐾 ∥2

}
.

Moreover, we have

Tr (E[ΥI]) = E

[∑
𝑡 ∈I
∥𝑥𝑡 ∥2 + ∥𝑢𝑡 ∥2

]
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≤ E

[∑
𝑡 ∈I
∥𝑥𝑡 ∥2 + ∥𝐾𝑡 ∥2 ∥𝑥𝑡 ∥2 + 𝜎2

𝐿

]
≤ |I|

(
𝑥2 (1 + ∥𝐾 ∥2) + 𝜎2

𝐿

)
.

Setting E = Ω (the probability space) and

Υ0 =
9|I |
1600

𝜎2

I min

{
1

2

,
𝜓 2

𝜎2

𝐿
+ 2 ∥𝐾 ∥2

}
𝐼𝑑+𝑛,

Lemma C.9 implies if

|I | ≥ 2000

9

©«2(𝑛 + 𝑑) log

100

3

+ (𝑛 + 𝑑) log

𝑥2 (1 + ∥𝐾 ∥2) + 𝜎2

𝐿

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} ª®®¬ (57)

≥ 2000

9

©«2(𝑛 + 𝑑) log

1

𝛿
+ (𝑛 + 𝑑) log

𝑥2 (1 + ∥𝐾 ∥2) + 𝜎2

𝐿

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} ª®®¬ (58)

with 𝛿 ≤ 3/100, we have

P [Υ𝑇 ⪰̸ Υ0] ≤ 2 exp(− 9

2000((𝑛 + 𝑑) + 1) |I|)

≤ 2 exp

(
− 9

2000((𝑛 + 𝑑) + 1)
2000

9

(
2(𝑛 + 𝑑) log

1

𝛿

))
≤ 2 exp

(
− 9

2000((𝑛 + 𝑑) + 1)
2000

9

(
(𝑛 + 𝑑 + 1) log

1

𝛿

))
= 2𝛿.

Then it holds with probability at least 1 − 2𝛿 − 𝛿 = 1 − 3𝛿 that

^ ≤ 𝑧2 |I |
9 |I |
1600

𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} =
1600𝑧2

9𝜎2

I min

{
1

2
,

𝜓 2

𝜎2

𝐿
+2∥𝐾 ∥2

} . (59)

For a warm-up block B𝑖,0, note that the exploration noise is fixed at a2

0
= 1, and we have𝐾 stab

𝑡

 ≤ 𝐾𝑢 . Plugging these parameters into (57) and (59) yields the corresponding results. □

C.6 Supporting Lemmas

Lemma C.9 (Lemma E.4 in [35]). Suppose 𝑧𝑡 | F𝑡−1 ∼ N (𝑧𝑡 , Σ𝑡 ), where 𝑧𝑡 ∈ R𝑑 and Σ𝑡 ∈ R𝑑×𝑑 are
F𝑡−1-measurable, and Σ𝑡 ⪰ Σ ≻ 0. Suppose E is an arbitrary event and suppose Tr (E[𝑉I1{E}]) ≤ Λ𝑇
for some constant Λ ≥ 0. Then for

𝑇 ≥ 2000

9

(2𝑑 log( 100

3

) + 𝑑 log

Λ

_min (Σ)
),

let 𝑉0 B
9𝑇

1600
Σ, it holds that

Pr[{𝑉𝑇 ⪰̸ 𝑉0} ∩ E] ≤ 2 exp

(
− 9

2000(𝑑 + 1)
𝑇

)
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 9. Publication date: March 2022.



9:54 Yuwei Luo, Varun Gupta, & Mladen Kolar

Lemma C.10 (Self-Normalized Tail Bound [1]). Let {[𝑡 }𝑡 ≥1 be a F𝑡 -adapted sequence such that

[𝑡 | F𝑡−1 is 𝜎
2
-sub-Gaussian. Define 𝑉𝑇 B

∑𝑇
𝑡=1

𝑧𝑡𝑧
⊤
𝑡 . Fix 𝑉0 ≻ 0, it holds with probability 1 − 𝛿 that 𝑇∑

𝑡=1

x𝑡[𝑡

2

(𝑉0+𝑉𝑇 )−1

≤ 2𝜎2
log

{
1

𝛿
det

(
𝑉
−1/2

0
(𝑉0 +𝑉𝑇 )𝑉 −1/2

0

)}
.

D PROOF OF PROPOSITION 7.2

Consider a non-stationary Markov decision process on state space S and action space A, with a

time-invariant cost function 𝑐 (·, ·) : S×A → R, and time-dependent transition kernel parametrized

by {Θ𝑡 }𝑡 ∈[𝑇 ] . Let 𝐽 ∗𝑡 denote the optimal (minimum) average cost of the MDP corresponding to Θ𝑡 ,
and let ℎ𝑡 (·) : S → R denote the relative value (bias) function. Then for an arbitrary state 𝑠𝑡 ∈ S
and action 𝑎𝑡 ∈ A, we have the inequality:

𝑐 (𝑠𝑡 , 𝑎𝑡 ) ≥ 𝐽 ∗𝑡 + ℎ𝑡 (𝑠𝑡 ) − EΘ𝑡
[ℎ(𝑠𝑡+1) | 𝑠𝑡 , 𝑎𝑡 ], (60)

where EΘ𝑡
[𝑋 ] denotes the expectation of random variable 𝑋 under transition kernel parametrized

by Θ𝑡 . Summing the above inequality from 𝑡 = 1 to 𝑇 :

𝑇∑
𝑡=1

𝑐 (𝑠𝑡 , 𝑎𝑡 ) ≥
𝑇∑
𝑡=1

𝐽 ∗𝑡 + ℎ𝑡 (𝑠𝑡 ) − EΘ𝑡
[ℎ(𝑠𝑡+1) | 𝑠𝑡 , 𝑎𝑡 ]

=

𝑇∑
𝑡=1

𝐽 ∗𝑡 + ℎ1 (𝑠1) − EΘ𝑇
[ℎ𝑇 (𝑠𝑇+1) | 𝑠𝑇 , 𝑎𝑇 ]

+
𝑇−1∑
𝑡=1

ℎ𝑡+1 (𝑠𝑡+1) − EΘ𝑡
[ℎ𝑡 (𝑠𝑡+1) | 𝑠𝑡 , 𝑎𝑡 ]

=

𝑇∑
𝑡=1

𝐽 ∗𝑡 + ℎ1 (𝑠1) − EΘ𝑇
[ℎ𝑇 (𝑠𝑇+1) | 𝑠𝑇 , 𝑎𝑇 ]

+
𝑇−1∑
𝑡=1

ℎ𝑡+1 (𝑠𝑡+1) − EΘ𝑡
[ℎ𝑡+1 (𝑠𝑡+1) | 𝑠𝑡 , 𝑎𝑡 ]

+
𝑇−1∑
𝑡=1

EΘ𝑡
[ℎ𝑡+1 (𝑠𝑡+1) − ℎ𝑡 (𝑠𝑡+1) | 𝑠𝑡 , 𝑎𝑡 ] .

Taking expectation with respect to the randomization of the policy and the evolution of the

non-stationary MDP,

E

[
𝑇∑
𝑡=1

𝑐 (𝑠𝑡 , 𝑎𝑡 )
]
−

𝑇∑
𝑡=1

𝐽 ∗𝑡 ≥ ℎ1 (𝑠1) − E[ℎ𝑇 (𝑠𝑇+1)] +
𝑇−1∑
𝑡=1

E[ℎ𝑡+1 (𝑠𝑡+1) − ℎ𝑡 (𝑠𝑡+1)]

or

𝑇∑
𝑡=1

𝐽 ∗𝑡 − E
[
𝑇∑
𝑡=1

𝑐 (𝑠𝑡 , 𝑎𝑡 )
]
≤ −ℎ1 (𝑠1) + E[ℎ𝑇 (𝑠𝑇+1)] +

𝑇−1∑
𝑡=1

E[ℎ𝑡 (𝑠𝑡+1) − ℎ𝑡+1 (𝑠𝑡+1)] .

Specializing to the non-stationary LQR setting, 𝑠𝑡 ≡ 𝑥𝑡 , 𝑎𝑡 ≡ 𝑢𝑡 , 𝑐 (𝑥𝑡 , 𝑢𝑡 ) = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ,
ℎ𝑡 (𝑠𝑡 ) ≡ 𝑥⊤𝑡 𝑃∗𝑡 𝑥𝑡 :

𝑇∑
𝑡=1

𝐽 ∗𝑡 − E
[
𝑇∑
𝑡=1

𝑐 (𝑥𝑡 , 𝑢𝑡 )
]
≤ E

[
𝑥⊤𝑇+1𝑃

∗
𝑇𝑥𝑇+1

]
+
𝑇−1∑
𝑡=1

E
[
𝑥⊤𝑡+1

(
𝑃∗𝑡 − 𝑃∗𝑡+1

)
𝑥𝑡+1

]
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≤ E
[
∥𝑥𝑇+1∥2

] 𝑃∗𝑇  + 𝑇−1∑
𝑡=1

E
[
∥𝑥𝑡+1∥2

] 𝑃∗𝑡 − 𝑃∗𝑡+1 .
In Lemma D.1, we prove that under the optimal dynamic policy, E

[
∥𝑥𝑡 ∥2

]
is bounded from above

by a constant depending only on the cost parameters and the sequential stability parameters ^,𝛾 .

The perturbation result for the solution of Discrete Algebraic Riccati equation gives

𝑃∗𝑡 − 𝑃∗𝑡+1 ≤
min{2𝐶4 ∥Θ𝑡 − Θ𝑡+1∥2 , 2𝑃𝑢} = O(Δ2

𝑡+1) [35, Theorem 5]. Lemma D.1 does not bound E
[
∥𝑥𝑇+1∥2

]
,

however, following a similar argument as in the Lemma, we can create another policy that has

logarithmic regret compared to the optimal policy and has bounded E
[
∥𝑥𝑇+1∥2

]
. Combining these,

we get the desired bound on the additional regret of O(𝑉𝑇 + log𝑇 ) with respect to the dynamic

optimal policy. □

Lemma D.1. Under the optimal dynamic policy for the non-stationary LQR problem,

𝑞minE
[
∥𝑥𝑡 ∥2

]
≤ 𝑀Γ

2^2

𝛾
𝑀𝑥 +𝑀𝑃

2^2

𝛾
+

(
^2𝑀𝑥 +

2^2𝑛𝜓 2

𝛾

) (
2^2

𝛾
𝑀Γ + ^2𝑀𝑃

)
,

where𝑀𝑥 :=

(
𝑀Γ
𝑞min

)
2^2𝑛𝜓 2

𝛾
,𝑀𝑃 := 2𝑛^2

𝛾
𝑀Γ , and𝑀Γ := max𝑠

𝑄 + (𝐾 stab
𝑠 )⊤𝑅𝐾 stab

𝑠

 ≤ 𝑞max + 𝑟max^
2
.

Proof. We prove this result by contradiction. We first establish some notation for the optimal

dynamic policy. A classical fact is that the optimal dynamic policy for non-stationary LQR is also a

linear state feedback policy, given via the following dynamic programming recursion:

𝑃𝑇+1 = 0,

𝐾𝑡 = −(𝑅 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡 )𝐵⊤𝑡 𝑃𝑡+1𝐴𝑡 ,
𝑃𝑡 = 𝑄 + 𝐾⊤𝑡 𝑅𝐾𝑡 + (𝐴𝑡 + 𝐵𝑡𝐾𝑡 )⊤𝑃𝑡+1 (𝐴𝑡 + 𝐵𝑡𝐾𝑡 ),
𝐽𝑡 = Tr(𝑊 · 𝑃𝑡+1) .

Let 𝑡 be some time such that under the optimal dynamic policy, E
[
∥𝑥𝑡 ∥2

]
is larger than the bound

in the Lemma statement. Define

𝜏 = max{𝑠 ≤ 𝑡 − 1 : E
[
∥𝑥𝑠 ∥2

]
≤ 𝑀𝑥 }

as the last time before 𝑡 when the expected squared norm of the state under the optimal policy is

smaller than𝑀𝑥 . Similarly, define

𝜏 ′ = min{𝑠 ≥ 𝑡 : ∥𝑃𝑠+1∥ ≤ 𝑀𝑃 }
as the first time including or after 𝑡 when the norm of 𝑃𝑠+1 is smaller than𝑀𝑃 . We will show that

by deviating to a policy where 𝐾 ′𝑠 = 𝐾
stab

𝑠 for 𝑠 ∈ {𝜏, . . . , 𝜏 ′} gives a policy with a smaller cost. Let

{𝑥 ′𝑠 } denote the state process for this new policy, {𝑃 ′𝑠 } the relative value function matrices, and

𝐽 ′𝑠 := Tr(𝑊 · 𝑃 ′𝑠 ).
By the definition of the new policy, we must have 𝑃 ′𝑠 = 𝑃𝑠 for 𝑠 ≥ 𝜏 ′ + 1. Recall the recursion for

the relative value function for LQR:

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 = 𝑥⊤𝑡 𝑃𝑡𝑥𝑡 + 𝐽𝑡 − E
[
𝑥𝑇𝑡+1𝑃𝑡+1𝑥𝑡+1

]
.

We will decompose the cost of the optimal policy into contributions due to the four intervals

{1, . . . , 𝜏 − 1}, {𝜏, . . . , 𝑡}, {𝑡 + 1, . . . , 𝜏 ′} and {𝜏 ′ + 1, . . . ,𝑇 }. Since both policies agree on the first

interval, the total cost is the same, and hence we do not consider it henceforth. For the interval

{𝜏, . . . , 𝑡} we lower bound the cost of the optimal policy as:

E

[
𝑡∑
𝑠=𝜏

𝑥⊤𝑠 𝑄𝑥𝑠 + 𝑢⊤𝑠 𝑅𝑢𝑠

]
≥

𝑡∑
𝑠=𝜏

𝑞minE
[
∥𝑥𝑠 ∥2

]
. (61)
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For the interval {𝑡 + 1 . . . , 𝜏 ′}:

E

[
𝜏 ′∑

𝑠=𝑡+1
𝑥⊤𝑠 𝑄𝑥𝑠 + 𝑢⊤𝑠 𝑅𝑢𝑠

]
= E

[
𝑥⊤𝑡+1𝑃𝑡+1𝑥𝑡+1

]
+

𝜏′∑
𝑠=𝑡+1

𝐽𝑠 − E
[
𝑥⊤𝜏 ′+1𝑃𝜏 ′+1𝑥𝜏′+1

]
≥

𝜏 ′+1∑
𝑠=𝑡+1

Tr(𝑊 · 𝑃𝑠 ) − E
[
𝑥⊤𝜏′+1𝑃𝜏 ′+1𝑥𝜏 ′+1

]
,

where we have used E
[
𝑥⊤𝑡+1𝑃𝑡+1𝑥𝑡+1

]
≥ E

[
𝑤⊤𝑡+1𝑃𝑡+1𝑤𝑡+1

]
= Tr(𝑊 ·𝑃𝑡+1). Finally, for the last interval,

E

[
𝑇∑

𝑠=𝜏′+1
𝑥⊤𝑠 𝑄𝑥𝑠 + 𝑢⊤𝑠 𝑅𝑢𝑠

]
= E

[
𝑥⊤𝜏 ′+1𝑃𝜏′+1𝑥𝜏′+1

]
+

𝑇∑
𝑠=𝜏′+1

𝐽𝑠 .

It will be convenient to combine the lower bound for the interval {𝑡 + 1, . . . ,𝑇 } as:

E

[
𝑇∑

𝑠=𝑡+1
𝑥⊤𝑠 𝑄𝑥𝑠 + 𝑢⊤𝑠 𝑅𝑢𝑠

]
≥

𝜏′∑
𝑠=𝑡+1

Tr(𝑊 · 𝑃𝑠 ) +
𝑇∑
𝑠=𝜏′

𝐽𝑠

≥
𝜏 ′∑

𝑡=𝑡+1
𝜓 2 ∥𝑃𝑠 ∥ +

𝑇∑
𝑠=𝜏′

𝐽𝑠 . (62)

We now proceed to upper bound the cost during these intervals for the modified policy {𝐾 ′𝑠 }.
Denote 𝑢 ′𝑠 = 𝐾

′
𝑠𝑥
′
𝑠 as the control at time step 𝑠 under the new policy. We first summarize the results

of Lemma D.2, which bounds E
[𝑥 ′𝑠2

]
and

𝑃 ′𝑠 for 𝑠 ∈ {𝜏 + 1, . . . , 𝜏 ′}:

E
[
∥𝑥𝑠 ∥2

]
≤ ^2

(
1 − 𝛾

2

)
2(𝑠−𝜏)

E
[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾
,𝑃 ′𝑠 ≤ ^2

(
1 − 𝛾

2

)
2(𝜏 ′−𝑠+1)

∥𝑃𝜏 ′+1∥ +
2^2

𝛾
𝑀Γ .

For the second interval, {𝜏, . . . , 𝑡}, we can upper bound the cost of the new policy by:

E

[
𝑡∑
𝑠=𝜏

𝑥 ′⊤𝑠 𝑄𝑥
′
𝑠 + 𝑢 ′

⊤
𝑠 𝑅𝑢

′
𝑠

]
= E

[
𝑡∑
𝑠=𝜏

𝑥 ′⊤𝑠 (𝑄 + 𝐾 ′
⊤
𝑠 𝑅𝐾

′
𝑠 )𝑥 ′𝑠

]
≤ 𝑀Γ

𝑡∑
𝑠=𝜏

E
[𝑥 ′𝑠2

]
≤ 𝑀Γ

(
(𝑡 − 𝜏) 2^

2𝑛𝜓 2

𝛾
+ 2^2

𝛾
E
[
∥𝑥𝜏 ∥2

] )
, (63)

where we have used the bound on E
[𝑥 ′𝑠2

]
from Lemma D.2. Next, we upper bound the cost for

interval {𝑡 + 1, . . . ,𝑇 }:

E

[
𝜏 ′∑

𝑠=𝑡+1
𝑥 ′⊤𝑠 𝑄𝑥

′
𝑠 + 𝑢 ′

⊤
𝑠 𝑅𝑢

′
𝑠

]
= E

[
𝑥 ′𝑡+1

⊤
𝑃 ′𝑡+1𝑥

′
𝑡+1

]
+

𝑇∑
𝑠=𝑡+1

𝐽 ′𝑠

= E
[
𝑥 ′𝑡+1

⊤
𝑃 ′𝑡+1𝑥

′
𝑡+1

]
+

𝜏 ′∑
𝑠=𝑡+2

Tr(𝑊 · 𝑃 ′𝑠 ) +
𝑇∑
𝑠=𝜏′

𝐽 ′𝑠

≤ E
[𝑥 ′𝑡+12

] 𝑃 ′𝑡+1 + 𝑛𝜓 2

𝜏′∑
𝑠=𝑡+2

𝑃 ′𝑠 + 𝑇∑
𝑠=𝜏 ′

𝐽𝑠 .
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Using Lemma D.2 we can bound:

𝜏 ′∑
𝑠=𝑡+2

𝑃 ′𝑠 ≤ 𝜏 ′∑
𝑠=𝑡+2

(
^2

(
1 − 𝛾

2

)
2(𝜏 ′−𝑠+1)

∥𝑃𝜏 ′+1∥ +
2^2

𝛾
𝑀Γ

)
≤ (𝜏 ′ − 𝑡 − 1) 2^

2

𝛾
𝑀Γ +

2^2

𝛾
∥𝑃𝜏′+1∥ .

Also, using Lemma D.2:

E
[𝑥 ′𝑡+12

] 𝑃 ′𝑡+1 ≤ (
^2E

[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾

) (
^2 ∥𝑃𝜏 ′+1∥ +

2^2

𝛾
𝑀Γ

)
.

Putting together,

E

[
𝜏 ′∑

𝑠=𝑡+1
𝑥 ′⊤𝑠 𝑄𝑥

′
𝑠 + 𝑢 ′

⊤
𝑠 𝑅𝑢

′
𝑠

]
≤

(
^2E

[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾

) (
^2 ∥𝑃𝜏 ′+1∥ +

2^2

𝛾
𝑀Γ

)
+ 𝑛𝜓 2

(
(𝜏 ′ − 𝑡) 2^

2

𝛾
𝑀Γ +

2^2

𝛾
∥𝑃𝜏 ′+1∥

)
+

𝑇∑
𝑠=𝜏′+1

𝐽𝑠 . (64)

Combining the lower bounds on the optimal policy cost from (61)-(62) and upper bound on the

cost of the modified policy from (63)-(64):

E

[
𝑇∑
𝑠=𝜏

𝑥⊤𝑠 𝑄𝑥𝑠 + 𝑢⊤𝑠 𝑅𝑢𝑠

]
− E

[
𝑇∑
𝑠=𝜏

𝑥 ′⊤𝑠 𝑄𝑥
′
𝑠 + 𝑢 ′

⊤
𝑠 𝑅𝑢

′
𝑠

]
≥

𝑡−1∑
𝑠=𝜏

(
𝑞minE

[
∥𝑥𝑡 ∥2

]
−𝑀Γ

2^2𝑛𝜓 2

𝛾

)
+𝜓 2

𝜏 ′∑
𝑠=𝑡+1

(
∥𝑃𝑠 ∥ −

2^2𝑛

𝛾
𝑀Γ

)
+ 𝑞minE

[
∥𝑥𝑡 ∥2

]
− 2^2

𝛾
∥𝑃𝜏′+1∥ −𝑀Γ

2^2

𝛾
E
[
∥𝑥𝜏 ∥2

]
−

(
^2E

[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾

) (
^2 ∥𝑃𝜏′+1∥ +

2^2

𝛾
𝑀Γ

)
.

Recall that we choose𝑀𝑥 :=

(
𝑀Γ
𝑞min

)
2^2𝑛𝜓 2

𝛾
as the threshold for E

[
∥𝑥𝜏 ∥2

]
, and𝑀𝑃 := 2𝑛^2

𝛾
𝑀Γ as the

threshold of ∥𝑃𝜏 ′+1∥. This ensures the first two terms above are non-negative. Therefore, if

𝑞minE
[
∥𝑥𝑡 ∥2

]
≥ 2^2

𝛾
∥𝑃𝜏′+1∥ +𝑀Γ

2^2

𝛾
E
[
∥𝑥𝜏 ∥2

]
+

(
^2E

[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾

) (
^2 ∥𝑃𝜏 ′+1∥ +

2^2

𝛾
𝑀Γ

)
≥ 2^2

𝛾
𝑀𝑃 +𝑀Γ

2^2

𝛾
𝑀𝑥 +

(
^2𝑀𝑥 +

2^2𝑛𝜓 2

𝛾

) (
^2𝑀𝑃 +

2^2

𝛾
𝑀Γ

)
,

we get that the cost of the optimal policy is larger than the modified policy, a contradiction. □

Lemma D.2. For the alternate policy which chooses 𝐾 ′𝑠 = 𝐾
stab
𝑠 for 𝑠 ∈ {𝜏, . . . , 𝑡, . . . , 𝜏 ′}, we have:

• E
[
∥𝑥𝑠 ∥2

]
≤ ^2

(
1 − 𝛾

2

)
2(𝑠−𝜏) E

[
∥𝑥𝜏 ∥2

]
+ 2^2𝑛𝜓 2

𝛾
,

•
𝑃 ′𝑠 ≤ ^2

(
1 − 𝛾

2

)
2(𝜏′−𝑠+1) ∥𝑃𝜏′+1∥ + 2^2

𝛾
𝑀Γ ,

where𝑀Γ := max𝑠

𝑄 + (𝐾 stab
𝑠 )⊤𝑅𝐾 stab

𝑠


, and {𝑥𝑠 }, {𝑃𝑠 } denote the optimal policy quantities.
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Proof. Recall our notation Φ𝑡 := 𝐴𝑡 + 𝐵𝑡𝐾 stab

𝑡 , Γ𝑡 = 𝑄 + (𝐾 stab

𝑡 )⊤𝑅𝐾 stab

𝑡 . Denote for 𝑎 ≤ 𝑏:

Φ𝑏:𝑎 = Φ𝑏Φ𝑏−1 · · ·Φ𝑎 .

We can write:

𝑥𝑠 = Φ𝑠−1𝑥𝑠−1 +𝑤𝑠−1

= Φ𝑠−1Φ𝑠−2𝑥𝑠−2 + Φ𝑠−1𝑤𝑠−2 +𝑤𝑠−1

= Φ𝑠−1:𝜏𝑥𝜏 +
𝑠−1∑
ℓ=𝜏

Φ𝑠−1:ℓ+1𝑤ℓ ,

which gives:

E
[
∥𝑥𝑠 ∥2

]
≤ ∥Φ𝑠−1:𝜏 ∥2 E

[
∥𝑥𝜏 ∥2

]
+
𝑠−1∑
ℓ=𝜏

∥Φ𝑠−1:ℓ+1∥2 E
[
∥𝑤ℓ ∥2

]
. (65)

By sequential strong stability:

∥Φ𝑠−1:ℓ ∥ =
𝐻𝑠−1𝐿𝑠−1𝐻

−1

𝑠−1
𝐻𝑠−2𝐿𝑠−2𝐻

−1

𝑠−2
· · ·𝐻ℓ𝐿ℓ𝐻−ℓ 1


≤ ∥𝐻𝑠−1∥ ∥𝐿𝑠−1∥

𝐻−1

𝑠−1
𝐻𝑠−2

 ∥𝐿𝑠−2∥ · · ·
𝐻−1

ℓ+1𝐻ℓ
 ∥𝐿ℓ ∥ 𝐻−ℓ 1


≤ ^ (1 − 𝛾)𝑠−ℓ (1 + 𝛾/2)𝑠−ℓ−1,

which using (1 − 𝛾) (1 + 𝛾/2) ≤ (1 − 𝛾/2) gives

≤ ^ (1 − 𝛾/2)𝑠−ℓ .

Substituting the above in (65) and using E
[
∥𝑤𝑠 ∥2

]
= 𝑛𝜓 2

:

E
[
∥𝑥𝑠 ∥2

]
≤ ^2 (1 − 𝛾/2)2(𝑠−𝜏)E

[
∥𝑥𝜏 ∥2

]
+ 𝑛𝜓 2^2

(
1 + (1 − 𝛾/2)2 + · · · + (1 − 𝛾/2)2(𝑠−𝜏−1)

)
≤ ^2 (1 − 𝛾/2)2(𝑠−𝜏)E

[
∥𝑥𝜏 ∥2

]
+ 𝑛𝜓 2^2

2

𝛾
.

This proves the first part. For the second part,

𝑃 ′𝑠 = 𝑄 + (𝐾 stab

𝑠 )⊤𝑅𝐾 stab

𝑠 + Φ⊤𝑠 𝑃 ′𝑠+1Φ𝑠
= Γ𝑠 + Φ⊤𝑠 𝑃 ′𝑠+1Φ𝑠
= Γ𝑠 + Φ⊤𝑠 Γ𝑠+1Φ𝑠 + Φ⊤𝑠 Φ⊤𝑠+1𝑃 ′𝑠+2Φ𝑠+1Φ𝑠

= Φ⊤𝜏 ′:𝑠𝑃𝜏 ′+1Φ𝜏 ′:𝑠 +
𝜏′∑
ℓ=𝑠

Φ⊤ℓ−1:𝑠ΓℓΦℓ−1:𝑠 .

Therefore,𝑃 ′𝑠 ≤  𝜏′∏
𝑚=𝑠

Φ𝜏′:𝑠

2

∥𝑃𝜏 ′+1∥ +
𝜏′∑
ℓ=𝑠

 ℓ−1∏
𝑚=𝑠

Φℓ−1:𝑠

2

∥Γℓ ∥

≤ ^2 (1 − 𝛾/2)2(𝜏′+1−𝑠) ∥𝑃𝜏′+1∥ +𝑀Γ^
2

(
1 + (1 − 𝛾/2)2 + · · · + (1 − 𝛾/2)2(𝜏 ′−𝑠)

)
≤ ^2 (1 − 𝛾/2)2(𝜏′+1−𝑠) ∥𝑃𝜏′+1∥ +𝑀Γ

2^2

𝛾
.

□
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E PROOF OF THEOREM 7.1

E.1 Proofs for Section 7.2

Proof of Lemma 7.4. Consider a stabilization epoch starting at time 𝜏 stab and ending at \ stab.

During the epoch, the dynamics of the state evolution is:

𝑥𝑠 = Φ𝑠−1𝑥𝑠−1 +𝑤𝑠−1,

where Φ𝑠 := 𝐴𝑠 + 𝐵𝑠𝐾 stab

𝑠 . Denote for 𝑎 ≤ 𝑏:

Φ𝑏:𝑎 = Φ𝑏Φ𝑏−1 · · ·Φ𝑎 .

Then,

∥𝑥𝑠 ∥ ≤
Φ𝑠−1:𝜏 stab

 𝑥𝜏 stab + Φ𝑠−1:𝜏 stab

 𝑤𝜏 stab + Φ𝑠−1:𝜏 stab+1
 𝑤𝜏 stab+1 + · · · + ∥Φ𝑠−1∥ ∥𝑤𝑠−1∥

≤ ^ (1 − 𝛾/2)𝑠−𝜏 stab
𝑥𝜏 stab + ^ (1 − 𝛾/2)𝑠−𝜏 stab 𝑤𝜏 stab + ^ (1 − 𝛾/2)𝑠−𝜏 stab−1

𝑤𝜏 stab+1
+ · · · + ^ (1 − 𝛾/2) ∥𝑤𝑠−1∥

=: ^𝑌𝑠−𝜏 stab ,

so that

𝑥𝑡+𝜏 stab ≤ ^𝑌𝑡 with 𝑌0 =
𝑥𝜏 stab,𝑊𝑡 =

𝑤𝑡+𝜏 stab and
𝑌𝑡+1 ≤ (1 − 𝛾/2)𝑌𝑡 +𝑊𝑡 .

Now applying Lemma A.3 with 𝜌 = 𝜌0 = (1 − 𝛾/2), and substituting 𝑎 =
2𝜓
√
𝑛

1−𝜌0

, we get

𝜌0 + (1 − 𝜌0)
E[∥𝑤𝑡 ∥]

2𝜓
√
𝑛
≤ 𝜌0 + (1 − 𝜌0)

𝜓
√
𝑛

2𝜓
√
𝑛
=

1 + 𝜌0

2

.

Therefore,

\ stab∑
𝑡=𝜏 stab

∥𝑥𝑡 ∥2 ≤ 2^2

𝑥𝜏 stab2

1 − 𝜌0

.

Since

E[𝑐𝑡 | F𝑡−1,G𝑡−1] = 𝑥⊤𝑡 𝑄𝑥𝑡 + [(𝐴𝑡 + 𝐵𝑡𝐾𝑡 )𝑥𝑡 ]⊤𝑅 [(𝐴𝑡 + 𝐵𝑡𝐾𝑡 )𝑥𝑡 ] + 𝜎2

𝑡 Tr(𝑅) = O(∥𝑥𝑡 ∥2 + 1),

the total cost during the stabilization epoch is bounded by O(
𝑥𝜏 stab2). We next show that this is

O(ln𝑇 ). Note that we have
𝑥𝜏 stab−1

 ≤ 𝑥𝑢 = 2^𝑒𝐶𝑠𝑠

(√
8(𝑛+𝑑)𝛽√

1−𝜌0

√
log𝑇 + (𝑛+𝑑)𝐵

1−𝜌0

)
. Therefore,

E
[𝑥𝜏 stab2

]
≤ E

 sup

𝑦1,...𝑦𝑇−1∈R𝑛 :

∥𝑦𝑡 ∥≤𝑥𝑢∀𝑡 ∈[𝑇−1]

max

𝑡
∥(𝐴𝑡 + 𝐵𝑡𝐾𝑡 )𝑦𝑡 + 𝐵𝑡𝜎𝑡[𝑡 +𝑤𝑡 ∥2

 .
Since max𝑡 max{∥𝐴𝑡 ∥ , ∥𝐵𝑡 ∥ , ∥𝐾𝑡 ∥} are bounded, for some problem dependent constant 𝐶13

E
[𝑥𝜏 stab2

]
≤ 𝐶13

(
E
[
max

𝑡
∥𝑤𝑡 ∥2 +max

𝑡
∥[𝑡 ∥2

]
+ 𝑥𝑢E

[
max

𝑡
∥𝑤𝑡 ∥ +max

𝑡
∥[𝑡 ∥

]
+E

[
max

𝑡
∥𝑤𝑡 ∥

]
· E

[
max

𝑡
∥[𝑡 ∥

] )
.

Using Lemma A.2, the expression above is O(𝑛 + 𝑑 + ln𝑇 ).
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Proof of Lemma 7.5. Since E𝑖 is an exploration epoch, we have

𝑥𝜏𝑖  ≤ 𝑥𝑢 . During B𝑖,0 the

dynamics are given by:

𝑥𝑡+1 = Φ𝑡𝑥𝑡 + a0Ξ𝑡[𝑡 +𝑤𝑡 ,
where Φ𝑡 := 𝐴𝑡 + 𝐵𝑡𝐾 stab

𝑡 and Ξ𝑡 := 𝐵𝑡𝐾
stab

𝑡 . Denote for 𝑎 ≤ 𝑏:

Φ𝑏:𝑎 = Φ𝑏Φ𝑏−1 · · ·Φ𝑎 .

By our assumption that [𝑡 and𝑤𝑡 are a sequence of independent mean 0 Gaussian random vectors:

E
[
∥𝑥𝑡 ∥2 | F𝜏𝑖−1,G𝜏𝑖−1

]
=

Φ𝑡 :𝜏𝑖𝑥𝜏𝑖 2 +
𝑡−1∑
𝑠=𝜏𝑖

a2

0
E
[
∥Φ𝑡 :𝑠+1Ξ𝑠[𝑠 ∥2 | F𝜏𝑖−1,G𝜏𝑖−1

]
+
𝑡−1∑
𝑠=𝜏𝑖

E
[
∥Φ𝑡 :𝑠+1𝑤𝑠 ∥2 | F𝜏𝑖−1,G𝜏𝑖−1

]
≤ ^2𝜌

2(𝑡−𝜏𝑖 )
0

𝑥𝜏𝑖 2 + ^2𝑛
a2

0
𝐶6 +𝜓 2

1 − 𝜌2

0

,

where 𝐶6 := max𝑡 ∈[𝑇 ]
𝐵𝑡𝐾 stab

𝑡

2

. This further gives the total during B𝑖,0

𝑎𝑠E

[
𝜏𝑖+𝐿−1∑
𝑡=𝜏𝑖

∥𝑥𝑡 ∥2 | F𝜏𝑖−1,G𝜏𝑖−1

]
≤ ^2

𝑥2

𝑢

1 − 𝜌2

0

+ 𝐿^2𝑛 ·
a2

0
𝐶6 +𝜓 2

1 − 𝜌2

0

.

Finally, again using the fact that E
[
𝑐𝑡 | F𝜏𝑖−1

]
= Õ(E

[
∥𝑥𝑡 ∥2 | F𝜏𝑖−1

]
+ 1), and the definition of

𝐿 :=
16(𝑛+𝑑) log

3𝑇

1−𝜌0

, the bound in the lemma statement follows.

Proof of Lemma 7.6. We first prove a lemma that gives a regret decomposition for good intervals.

Lemma E.1. For some epoch E𝑖 , a block B𝑖, 𝑗 in epoch E𝑖 , and a good interval Igood𝑖, 𝑗,𝑘
= [𝜏, \ ] in block

B𝑖, 𝑗 , the following identity holds:

R𝜋 (Igood
𝑖, 𝑗,𝑘
) :=

∑
𝑡 ∈Igood

𝑖,𝑗,𝑘

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽 ∗𝑡

=

\∑
𝑡=𝜏

𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡

+ 𝑥⊤𝜏 𝑃𝜏 (𝐾𝜏 )𝑥𝜏 − 𝑥⊤\+1𝑃\ (𝐾\ )𝑥\+1

+
\−1∑
𝑡=𝜏

𝑥⊤𝑡+1 (𝑃𝑡+1 (𝐾𝑡+1) − 𝑃𝑡 (𝐾𝑡 )) 𝑥𝑡+1

+
\∑
𝑡=𝜏

(
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 − E

[
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 | 𝑥𝑡 , 𝜎𝑡

] )
+

\∑
𝑡=𝜏

𝜎2

𝑡 Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

)
.

Proof. Note that for an interval lying within block B𝑖, 𝑗 , the policy 𝐾𝑡 = 𝐾∗ (Θ̂𝑖, 𝑗−1) is fixed,
however for generality, we use 𝐾𝑡 . For dynamics given by Θ𝑡 , and control policy 𝑢𝑡 = 𝐾𝑡𝑥𝑡 + 𝜎𝑡[𝑡
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with [𝑡 ∼ 𝑁 (0, 𝐼𝑛), we have the following Bellman recursion:

𝑥⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝑥𝑡 = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽𝑡 (𝐾𝑡 ) − 𝜎2

𝑡 Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

)
+ E

[
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 | 𝑥𝑡 , 𝜎𝑡

]
.

Rearranging terms, we get,

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽 ∗𝑡
= 𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡 + 𝑥⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝑥𝑡 − E

[
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 | 𝑥𝑡 , 𝜎𝑡

]
+ 𝜎2

𝑡 Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

)
= 𝐽𝑡 (𝐾𝑡 ) − 𝐽 ∗𝑡 +

(
𝑥⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝑥𝑡 − 𝑥⊤𝑡+1𝑃𝑡+1 (𝐾𝑡+1)𝑥𝑡+1

)
+

(
𝑥⊤𝑡+1𝑃𝑡+1 (𝐾𝑡+1)𝑥𝑡+1 − 𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1

)
+

(
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 − E

[
𝑥⊤𝑡+1𝑃𝑡 (𝐾𝑡 )𝑥𝑡+1 | 𝑥𝑡 , 𝜎𝑡

] )
+ 𝜎2

𝑡 Tr

(
𝑅 + 𝐵⊤𝑡 𝑃𝑡 (𝐾𝑡 )𝐵𝑡

)
Summing the above for the entire interval gives the identity in the lemma. □

With Lemma E.1, after taking expectation and using Lemma 3.1, we prove Lemma 7.6 below.

Proof. The second expression follows from the first by noting the definition of good intervals:

for all 𝑡 ∈ Igood
𝑖, 𝑗,𝑘

,

Θ̂𝑖, 𝑗−1 − Θ𝑡
 ≤ 𝐶3 and applying Lemma 3.1.

To arrive at the first expression, we go through the expression in Lemma E.1 line-by-line.

The expression in the second line is bounded by ∥𝑥𝜏 ∥2 ∥𝑃𝜏 (𝐾𝜏 )∥, which is Õ
(
𝑛+𝑑+log𝑇

1−𝜌0

)
. For the

expression in the third line, noting that 𝐾𝑡 = 𝐾𝑡+1, and that ∥𝑃𝑡 (𝐾) − 𝑃𝑡+1 (𝐾)∥ ≤ 𝐶12 ∥Θ𝑡 − Θ𝑡+1∥
for a stabilizing controller 𝐾 , and a constant𝐶12, the sum is bounded by𝐶12

∑\
𝑡=𝜏 ∥𝑥𝑡 ∥2 ∥Θ𝑡 − Θ𝑡+1∥,

which is Õ
(
𝑛+𝑑+log𝑇

1−𝜌0

Δ𝑖, 𝑗,𝑘
)
. The expression in the fourth line is a mean 0 random variable and

hence vanishes when we take the expectation. For the expression in the last line, note that in block

B𝑖, 𝑗 , for each𝑚 = 0, 1, . . . , 𝑗 − 1 we start an exploration phase of scale𝑚 (duration 𝐿 · 2𝑚) with
probability

1

𝐿
√

2
𝑗
√

2
𝑚
at each time 𝑡 , and during an exploration of phase𝑚, we choose 𝜎2

𝑡 =

√
𝐶0

𝐿2
𝑚 .

We will upper bound E
[∑

𝑡 ∈Igood
𝑖,𝑗,𝑘

𝜎2

𝑡

]
by allocating the entire exploration variance to the time 𝑡 at

which an exploration phase begins. For a given time 𝑡 , this gives the expected contribution due to

scale𝑚 as
1

𝐿
√

2
𝑗
√

2
𝑚
×

√
𝐶02

𝑚/𝐿 =
𝐶

1/2
0

𝐿3/2
√

2
𝑗
. Summing over𝑚 gives

𝑗𝐶
1/2
0

𝐿3/2
√

2
𝑗
, and multiplying by

���Igood
𝑖, 𝑗,𝑘

���
finally gives the expression in the Lemma. □

E.2 Proofs for Section 7.3

Proof of Lemma 7.7. Consider the blockB𝑖, 𝑗 = [𝑠𝑖, 𝑗 , 𝑠𝑖, 𝑗 +2
𝑗𝐿−1] in E𝑖 . We first show that no restart

is triggered by EndOfBlockTest(𝑖, 𝑗 ). Let 𝑡 = 𝜏𝑖 + 2
𝑗𝐿 − 1, then ΔB𝑖,𝑗 ≤ Δ [𝜏𝑖 ,𝑡 ] ≤ (𝑡 − 𝜏𝑖 + 1)−1/4 ≤

|B𝑖, 𝑗 |−1/4
. Conditioning on Event E, we haveΘ𝑠𝑖,𝑗 − Θ̂𝑖, 𝑗

𝐹
≤ 𝐶biasΔB𝑖,𝑗 +𝐶var |B𝑖, 𝑗 |−1/4.

Similarly, we also have Θ𝑠𝑖,𝑗−1
− Θ̂𝑖, 𝑗−1


𝐹
≤ 𝐶biasΔB𝑖,𝑗−1

+𝐶var |B𝑖, 𝑗−1 |−1/4

and Θ𝑠𝑖,𝑗−1
− Θ̂[𝜏𝑖 ,𝑡 ]


𝐹
≤ Δ [𝜏𝑖 ,𝑡 ] +𝐶1 |𝑡 − 𝜏𝑖 + 1|−1/4,Θ𝑠𝑖,𝑗 − Θ̂[𝜏𝑖 ,𝑡 ]

𝐹
≤ Δ [𝜏𝑖 ,𝑡 ] +𝐶1 |𝑡 − 𝜏𝑖 + 1|−1/4.
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Then Θ̂𝑖, 𝑗 − Θ̂𝑖, 𝑗−1


𝐹
≤

Θ𝑠𝑖,𝑗 − Θ̂𝑖, 𝑗
𝐹
+

Θ𝑠𝑖,𝑗 − Θ𝑠𝑖,𝑗−1


𝐹
+

Θ𝑠𝑖,𝑗−1
− Θ̂𝑖, 𝑗−1


𝐹

≤ 𝐶biasΔB𝑖,𝑗 +𝐶var |B𝑖, 𝑗 |−1/4 + Δ𝜏𝑖 ,𝑡 +𝐶biasΔB𝑖,𝑗−1
+𝐶var |B𝑖, 𝑗−1 |−1/4

≤ (1 +𝐶bias)Δ𝜏𝑖 ,𝑡 + 2𝐶var |B𝑖, 𝑗−1 |−1/4

≤ (1 +𝐶bias + 2𝐶var) |B𝑖, 𝑗−1 |−1/4.

As a result,

Θ̂𝑖, 𝑗 − Θ̂𝑖, 𝑗−1

2

𝐹
≤ (1 + 𝐶bias + 2𝐶var)2 |B𝑖, 𝑗−1 |−1/2

and EndOfBlockTest(𝑖, 𝑗) = 𝑃𝑎𝑠𝑠 .

Similarly, for any exploration interval I = [𝑠, 𝑒] ⊂ [𝜏𝑖 , 𝑡] with index 𝑚 ≤ 𝑗 − 1, note that

ΔI ≤ Δ [𝜏𝑖 ,𝑡 ] ≤ (𝑡 − 𝜏𝑖 + 1)−1/4 ≤ |I|−1/4
. ThenΘ̂𝑖, 𝑗,(𝑚,𝑠) − Θ̂𝑖, 𝑗−1


𝐹
≤

Θ̂𝑖, 𝑗,(𝑚,𝑠) − Θ𝑠
𝐹
+

Θ𝑠 − Θ𝑠𝑖,𝑗−1


𝐹
+

Θ𝑠𝑖,𝑗−1
− Θ̂𝑖, 𝑗−1


𝐹

≤ 𝐶biasΔI +𝐶var |I |−1/4 + Δ𝜏𝑖 ,𝑡 +𝐶biasΔB𝑖,𝑗−1
+𝐶var |B𝑖, 𝑗−1 |−1/4

≤ (1 +𝐶bias)Δ𝜏𝑖 ,𝑡 + 2𝐶var |I |−1/4

≤ (1 +𝐶bias + 2𝐶var) |I|−1/4.

Then

Θ̂𝑖, 𝑗,(𝑚,𝑠) − Θ̂𝑖, 𝑗−1

2

𝐹
≤ (1 +𝐶bias + 2𝐶var)2 |I |−1/2

and EndOfExplorationTest(𝑖, 𝑗,𝑚, 𝑠) =
𝑃𝑎𝑠𝑠 .

Proof of Corollary 7.8. By Lemma 7.7, to end an epoch E𝑖 due to detection of nonstationarity, we

need Δ [𝜏𝑖 ,𝑡 ] ≥
√

𝐶0

|E𝑖 |1/2
. Then

Δ𝑇 ≥
𝐸∑
𝑖=1

Δ [𝜏𝑖 ,𝑡 ] ≥
𝐸∑
𝑖=1

√
𝐶0

|E𝑖 |1/2

or

𝐸∑
𝑖=1

|E𝑖 |−
1

4 ≤ 𝐶−
1

2

0
Δ𝑇 .

By Hölder’s inequality,

𝐸 ≤
(
𝐸∑
𝑖=1

|E𝑖 |−
1

4

) 4

5

(
𝐸∑
𝑖=1

|E𝑖 |
) 1

5

≤
(
𝐶
− 1

2

0
Δ𝑇

) 4

5 (𝑇 )
1

5

= 𝐶
− 2

5

0
Δ

4

5

𝑇
𝑇

1

5 .

Proof of Lemma 7.9. By Assumption 4.3, a control based on an estimate Θ̂𝑡 of Θ𝑡 such thatΘ𝑡 − Θ̂𝑡
𝐹
≤ 𝐶3/2 guarantees that 𝐾∗ (Θ̂𝑡 ) is in fact (^,𝛾, a) sequentially strongly-stable for the

epoch E𝑖 and parameters ^,𝛾, a specified in Lemma 4.6. We first show that under the assumption

that {𝐾𝑡 } is a (^,𝛾, a) sequentially strongly-stable sequence of controllers for the non-stationary

dynamics in the interval [𝑠, 𝑒] (1 ≤ 𝑠 ≤ 𝑒 ≤ 𝑇 ), then Lemma A.4 implies that with high probability

max𝑡 ∈[𝑠,𝑒 ] ∥𝑥𝑡 ∥ ≤ 𝑥𝑢 .
The LQR dynamics are given by:

𝑥𝑡+1 = (𝐴𝑡 + 𝐵𝑡𝐾𝑡 )𝑥𝑡 + 𝜎𝑡𝐵𝑡[𝑡 +𝑤𝑡 .
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Under the independence assumptions on {[𝑡 }, {𝑤𝑡 }, we can use the analysis approach in Lemma 7.4

to show that ∥𝑥𝑡 ∥ ≤ ^𝑒𝐶𝑠𝑠𝑉[𝑠 :𝑡−1]𝑌𝑡 where 𝑌𝑡 obeys 𝑌𝑠−1 = ∥𝑥𝑠−1∥ and

𝑌𝑡+1 ≤ (1 − 𝛾)𝑌𝑡 +
𝑑∑
𝑖=1

𝛽𝑖,𝑡 |[̂𝑖,𝑡 | +𝜓
𝑛∑
𝑗=1

|𝑤𝑖,𝑡 |.

In the above, 𝛽𝑖,𝑡 are the singular values of 𝐵𝑡 , and [̂𝑖,𝑡 ,𝑤𝑖,𝑡 are independentN(0, 1) random variables.

We have used the fact that 𝜎𝑡 ≤ 1 for all 𝑡 . Denoting:

𝛽 = max

{
𝜓,max

𝑖,𝑡
𝛽𝑖,𝑡

}
and applying Lemma A.4,

Pr

[
max

𝑡 ∈[𝑠,𝑒 ]
𝑌𝑡 ≥ 𝑌𝑠−1 +

(√
8(𝑛 + 𝑑)𝛽
√

1 − 𝜌0

√
log𝑇 + (𝑛 + 𝑑)𝐵

1 − 𝜌0

)]
≤ |𝑒 − 𝑠 + 1|

𝑇 4
, (66)

or,

Pr

[
max

𝑡 ∈[𝑠,𝑒 ]
∥𝑥𝑡 ∥ 𝑒−𝐶𝑠𝑠𝑉[𝑠 :𝑒−1]/^ ≥ ∥𝑥𝑠−1∥ +

(√
8(𝑛 + 𝑑)𝛽
√

1 − 𝜌0

√
log𝑇 + (𝑛 + 𝑑)𝐵

1 − 𝜌0

)]
≤ |𝑒 − 𝑠 + 1|

𝑇 4
. (67)

Note that we start an epoch with

𝑥𝜏𝑖  ≤ 𝑥𝑢 , and then use stabilizing controls for 𝐿 time steps.

Using (A.4),

Pr

[𝑥𝜏𝑖+𝐿 ≥ ^2

(
𝜌𝐿

0
𝑥𝑢 +

(√
6(𝑛 + 𝑑)𝛽
√

1 − 𝜌0

√
log𝑇 + (𝑛 + 𝑑)𝐵

1 − 𝜌0

))]
≤ 1

𝑇 3
. (68)

With our choice of 𝐿, 𝜌𝐿
0
𝑥𝑢 = 𝑜 (1).

Lemma 6.2 and Lemma 6.1 prove that under Event 1 the OLS estimate Θ̂𝑖, 𝑗 based on block

𝑗 ≥ 0 of epoch I𝑖 indeed satisfies

Θ𝑡 − Θ̂𝑡2

𝐹
≤ 𝐶3. Thus it holds that the controllers {𝐾𝑡 } are

indeed (^,𝛾, a) sequentially strongly-stable for 𝑡 ∈ [𝜏𝑖 + 𝐿, \𝑖 ]. Combining (68) and (67), for epoch

E𝑖 = [𝜏𝑖 , \𝑖 ] we get

Pr

[
max

𝑡 ∈[𝜏𝑖+𝐿,\𝑖 ]
∥𝑥𝑡 ∥ ≥ 2^𝑒𝐶𝑠𝑠

(√
8(𝑛 + 𝑑)𝛽
√

1 − 𝜌0

√
log𝑇 + (𝑛 + 𝑑)𝐵

1 − 𝜌0

)]
≤ 2

𝑇 3
. (69)

Therefore, with high probability, a restart of the epoch based on instability detection does not

happen.

E.3 Proofs for Section 7.4

Lemma E.2. Assume Event 1 holds. Let I = [𝑠, 𝑒] be an interval in B𝑖, 𝑗 satisfying Δ2

I ≤ 𝛼I =

1√
|I |

and YI =

Θ̂𝑖, 𝑗−1 − Θ𝑠
2

𝐹
≥ 𝐶5 · 1√

I
, where we define 𝐶5 B (2 + 2𝐶bias + 3𝐶var)2. Define

ỸI B min{YI,𝐶3}. Then, there exists an index𝑚, such that (1) 𝐶5 · 1√
2
𝑚+1𝐿

≤ ỸI ≤ 𝐶5 · 1√
2
𝑚𝐿

, (2)

2
𝑚𝐿 ≤ |I|, and (3) if an exploration phase with index𝑚 starts at some time �̃� within the interval

[𝑠, 𝑒 − 2
𝑚𝐿], then the algorithm starts a new epoch at the end of the exploration phase.

Proof. By our assumption, ỸI ≤ 𝐶5√
𝐿
. Note that I ⊂ J , then ỸI ≥ 𝐶5 · 1√

I
≥ 𝐶5 · 1√

2
𝑗𝐿
. Then

there exist a index𝑚 ∈ [ 𝑗] satisfying (1). (2) is implied by 𝐶5 · 1√
|I |
≤ ỸI ≤ 𝐶5 · 1√

2
𝑚𝐿

.
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To prove (3), let �̃� ∈ [𝑠, 𝑒 − 2
𝑚𝐿] be the starting time of I, condition on Event E and note that

[̃𝑠, �̃� + 2
𝑚𝐿] ⊂ 𝐼 . We have Θ̂𝑖, 𝑗,(𝑚,̃𝑠) − Θ�̃�

𝐹
≤ 𝐶biasΔI +𝐶var |I |−

1

2 .

By direct computation,Θ̂𝑖, 𝑗−1 − Θ̂𝑖, 𝑗,(𝑚,𝑠)

𝐹
≥

Θ̂𝑖, 𝑗−1 − Θ�̃�

𝐹
− ∥Θ�̃� − Θ𝑠 ∥𝐹 −

Θ𝑠 − Θ̂𝑖, 𝑗,(𝑚,̃𝑠)
𝐹

≥
√
𝐶5 · I−

1

4 − ΔI −𝐶biasΔI −𝐶var |I |−
1

2

≥
√
𝐶5 · I−

1

4 − (1 +𝐶bias)I−
1

4 −𝐶var |I |−
1

2

≥ (
√
𝐶5 − 1 −𝐶bias −𝐶var)I−

1

4 .

Hence Θ̂𝑖, 𝑗−1 − Θ̂𝑖, 𝑗,(𝑚,̃𝑠)
2

𝐹
≥ (

√
𝐶5 − 1 −𝐶bias −𝐶var)2I−

1

2 ≥ (1 +𝐶bias + 2𝐶var)2I−
1

2

and EndOfExplorationTest(𝑖, 𝑗,𝑚, 𝑠) = Fail. □

Proof of Lemma 7.11. Starting with the definition in (12),

L(𝐼 ) :=
∑
𝑡 ∈I

min

{
𝐶4

Θ̂𝑖, 𝑗−1 − Θ𝑡
2

𝐹
,𝐶3

}
≤ 𝐶4

∑
𝑡 ∈I

Θ𝑡 − Θ̂𝑖, 𝑗−1

2

𝐹

≤ 2𝐶4 |I |
Θ̂𝑖, 𝑗−1 − Θ𝑠

2

𝐹
+ 2𝐶4

∑
𝑡 ∈I
∥Θ𝑡 − Θ𝑠 ∥2𝐹

≤ 2𝐶4 |I |
(
(𝛼I + YI1{YI ≥ 𝛼I}) + Δ2

I
)
.

Proof of Lemma 7.12. We create the partition using Algorithm 4, where we check the truncating

condition current interval ends and a new interval is created at time 𝑡 ∈ J whenever Δ [𝑠𝑘 ,𝑡 ] ≤√
log | 𝐽 |

(𝑡−𝑠𝑘 )1/2+1
and Δ [𝑠𝑘 ,𝑡+1] >

√
log | 𝐽 |

(𝑡−𝑠𝑘 )1/2+2
at each time 𝑡 ∈ J .

Algorithm 4: Creating Partition

Input: an block J = [𝑠, 𝑒].;
Initialize: Set 𝑘 = 1; 𝑠1 = 𝑠 ; 𝑡 = 𝑠 .;

while 𝑡 ≤ 𝑒 do
if Δ [𝑠𝑘 ,𝑡 ] ≤

√
log | 𝐽 |

(𝑡−𝑠𝑘 )1/2+1
and Δ [𝑠𝑘 ,𝑡+1] >

√
log | 𝐽 |

(𝑡−𝑠𝑘 )1/2+2
then

Let 𝑒𝑘 ← 𝑡 ; I𝑘 ← [𝑠𝑘 , 𝑒𝑘 ]; 𝑘 ← 𝑘 + 1.

end
𝑡 ← 𝑡 + 1

end
if 𝑠𝑘 ≤ 𝑒 then

𝑒𝑘 ← 𝑒; I𝑘 ← [𝑠𝑘 , 𝑒𝑘 ].
end
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To calculate an upper bound for the number of intervals Γ, consider the inequality

Δ [𝑠,𝑒 ] ≥ Δ [𝑠1,𝑒1+1] + Δ [𝑠2,𝑒2+1] + . . . + Δ [𝑠Γ−1,𝑒Γ−1+1] ≥
Γ−1∑
𝑘=1

√
log |𝐽 |

(𝑒𝑘 − 𝑠𝑘 )1/2 + 2

=

Γ−1∑
𝑘=1

√
log |𝐽 |
I1/2
𝑘
+ 1

.

On the other hand, by Holder’s inequality,(
Γ−1∑
𝑘=1

√
log |𝐽 |
|I𝑘 |1/2 + 1

) 2

3

(
Γ−1∑
𝑘=1

(
|I𝑘 |1/2 + 1

)) 1

3

≥ (Γ − 1) (log |𝐽 |)
1

3 .

Combining the two inequalities, we have

Γ − 1 ≤ (log |𝐽 |)−
1

3

(
Γ−1∑
𝑘=1

(
|I𝑘 |1/2 + 1

)) 1

3

Δ
2

3

[𝑠,𝑒 ] ≤ O
(
(log |𝐽 |)−

2

5 |J | 15 Δ
4

5

[𝑠,𝑒 ] + 1

)
.

To prove the upper bound using 𝑆J , recall the condition Δ [𝑠𝑘 ,𝑡+1] >
√

log | 𝐽 |
(𝑡−𝑠𝑘 )1/2+2

. Each distribution

switch only creates one interval, then we have Γ − 1 ≤ 𝑆J − 1.

Proof of Lemma 7.13. In Section 7.4, we sketched the proof for an upper bound for regret for

block 𝐽 , where we only considered the first Γ − 1 complete intervals. Here we show the omitted

details in the proof. Following the technique in [8], we define J ′ B [𝜏𝑖 , 𝜏𝑖 + 2
𝑗𝐿] to be the block

that differs from J only in that J is assumed not triggering the restart. Note that following the

same partitioning procedure, we have J ′ = I ′
1
∪ I ′

2
∪ · · · ∪ I ′Γ′ . We can check that Γ ≤ Γ′, I ′

𝑘
= I𝑘

for 𝑘 = 1, 2, . . . , Γ − 1. Moreover, let IΓ = [𝑠Γ, 𝑒Γ] and I ′Γ = [𝑠 ′Γ, 𝑒 ′Γ]. We have 𝑠Γ = 𝑠 ′Γ and 𝑒Γ ≤ 𝑒 ′Γ .
By direct computation, we bound the first term in (13) by

Γ∑
𝑘=1

|I𝑘 |𝛼I𝑘 =

Γ−1∑
𝑘=1

|I ′
𝑘
|𝛼I′

𝑘
+ |IΓ |𝛼IΓ

≤
Γ−1∑
𝑘=1

|I ′
𝑘
|𝛼I′

𝑘
+ |I ′Γ |𝛼I′Γ

≤
Γ∑
𝑘=1

√��I ′
𝑘

��
log

��I ′
𝑘

��
≤

√√√
Γ

Γ∑
𝑘=1

|I ′
𝑘
|

≤ O
(
min

{
|J | 35 Δ

2

5

J,
√
𝑆J

})
,

where the last inequality comes from applying Cauchy-Schwarz inequality and plugging in

Γ = O
(
min

{
𝑆 𝐽 , (log |𝐽 |)−

2

5 Δ
4

5

J |J |
1

5 + 1

})
.

In the following, we upper bound the second term in (13). Note that IΓ ⊂ I ′Γ , we only need to

bound

∑Γ
𝑘=1
|I ′
𝑘
|YI′

𝑘
1{YI′

𝑘
≥ 𝛼I′

𝑘
}. We follow [8] and prove the following adapted lemma.

Lemma E.3. With probability at least 1 − 𝛿 , it holds that
Γ∑
𝑘=1

|I ′
𝑘
|YI′

𝑘
1{YI′

𝑘
≥ 𝛼I′

𝑘
} ≤ O

(
min

{
|J | 35 Δ

2

5

J,
√
𝑆J

})
.
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Proof. Define M = {𝑘 ∈ [Γ] |YI′
𝑘
≥ 𝛼I′

𝑘
}. Let 𝑚𝑘 be the index defined in Lemma E.2. By

definition,

Γ∑
𝑘=1

|I ′
𝑘
|YI′

𝑘
1{YI′

𝑘
≥ 𝛼I′

𝑘
} =

∑
𝑘∈M
|I ′
𝑘
|YI′

𝑘

≤
∑
𝑘∈M
( |I ′

𝑘
| − 2

𝑚𝑘𝐿)YI′
𝑘
+

∑
𝑘∈M

2
𝑚𝑘𝐿 × YI′

𝑘
.

Following a similar derivation as in Chen et al. [8, Lemma 26], the first term is bounded by

O
(√
|J | log𝑇

)
with probability at least 1 − 𝛿 . Specifically,∑
𝑘∈M
( |I ′

𝑘
| − 2

𝑚𝑘𝐿)YI′
𝑘
=

∑
𝑘∈M

∑
𝑡 ∈[𝑠𝑘+2𝑚𝑘 𝐿,𝑒𝑘 ]

YI′
𝑘

≤
∑
𝑘∈M

∑
𝑡 ∈[𝑠𝑘+2𝑚𝑘 𝐿,𝑒𝑘 ]

𝐶5 ·
1

√
2
𝑚𝑘𝐿

=
∑
𝑘∈M

∑
𝑡 ∈[𝑠′

𝑘
+2𝑚𝑘 𝐿,𝑒′

𝑘
]
𝐶5 ·

1

√
2
𝑚𝑘𝐿

1{𝑡 ≤ 𝑒Γ}

= 𝜑 (𝑒Γ),

wherewe define𝜑 (𝜏) = ∑
𝑘∈M

∑
𝑡 ∈[𝑠′

𝑘
+2𝑚𝑘 𝐿,𝑒′

𝑘
] 𝐶5· 1√

2
𝑚𝑘 𝐿

1{𝑡 ≤ 𝜏}. By definition, we havePr[𝜙 (𝑒Γ) > 𝜙 (𝜏)] ≤
Pr[𝑒Γ > 𝜏]. By Lemma E.2, if the algorithm has not been restarted till time 𝜏 , for all 𝑘 such that

𝑒 ′
𝑘
≤ 𝜏 , the algorithm must have missed all opportunities to start an exploration phase with index

𝑚𝑘 . And for the 𝑘 with 𝜏 ∈
[
𝑠 ′
𝑘
, 𝑒 ′
𝑘

]
the algorithm must have missed all opportunities to start a

exploration phase with index in

[
𝑠 ′
𝑘
, 𝜏 − 2

𝑚𝑘𝐿
]
. Define 𝑝𝑚 = 1

𝐿
2
−𝑗/2

2
−𝑚/2

. Hence, we have

Pr[𝑒Γ > 𝜏] ≤
∏
𝑘∈M

∏
𝑡 ∈[𝑠′𝑘 ,𝑒′𝑘−2

𝑚𝑘 𝐿]

(
1 − 𝑝𝑚𝑘

1 {𝑡 ≤ 𝜏 − 2
𝑚𝑘𝐿}

)
≤

∏
𝑘∈M

∏
𝑡 ∈[𝑠′𝑘+2𝑚𝑘 𝐿,𝑒′

𝑘]

(
1 − 𝑞𝑚𝑘

1{𝑡 ≤ 𝜏}
)

≤
∏
𝑘∈M

∏
𝑡 ∈[𝑠′𝑘+2𝑚𝑘 𝐿,𝑒′

𝑘]
exp

(
−𝑞𝑚𝑘

1{𝑡 ≤ 𝜏}
)

≤
∏
𝑘∈M

∏
𝑡 ∈[𝑠′𝑘+2𝑚𝑘 𝐿,𝑒′

𝑘]

(
1 − 𝑞𝑚𝑘

1{𝑡 ≤ 𝜏}
)

≤ exp

©«−
∑
𝑘∈M

∑
𝑡 ∈[𝑠′𝑘+2𝑚𝑘 𝐿,𝑒′

𝑘]
𝑞𝑚𝑘

1{𝑡 ≤ 𝜏}
ª®®¬

= exp

(
− 𝜑 (𝜏)
𝐶5

√
2
𝑗𝐿
1{𝑡 ≤ 𝜏}

)
= exp

(
− 𝜑 (𝜏)
𝐶5

√
|J |

1{𝑡 ≤ 𝜏}
)
.
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Define 𝑧 =

(
1√
𝐿 |J |
+ log(1/𝛿)

)
𝐶5

√
|J | and pick 𝜏 such that 𝜑 (𝜏) ≤ 𝑧 ≤ 𝜑 (𝜏 + 1). If no such 𝑧

exists, then Pr[𝜙 (𝑒Γ) > 𝜙 (𝜏)] = 0. Then we have 𝜑 (𝜏) > 𝜑 (𝜏 + 1) − 𝐶5√
𝐿
> 𝑧 − 𝐶5√

𝐿
and

Pr[𝜙 (𝑒Γ) > 𝑧] ≤ Pr[𝜙 (𝑒Γ) > 𝜙 (𝜏)] ≤ exp

(
− 𝑧

𝐶5

√
|J |
+ 𝐶5

𝐶5

√
|J |
√
𝐿

)
= 𝛿.

Hence, 𝜙 (𝑒Γ) ≤
(

1√
𝐿 |J |
+ log(1/𝛿)

)
𝐶5

√
|J | with probability at least 1 − 𝛿 .

The second term is bounded as∑
𝑘∈M

2
𝑚𝑘𝐿 × YI′

𝑘
≤

∑
𝑘∈M

2
𝑚𝑘𝐿 ×𝐶5

1

√
2
𝑚𝑘𝐿

=
∑
𝑘∈M

𝐶5

√
|I𝑘 |

≤ 𝐶5

√
Γ

∑
𝑘∈M
|I𝑘 |.

Plugging in Γ = O
(
min

{
𝑆 𝐽 , (log |𝐽 |)−

2

5 Δ
4

5

J |J |
1

5 + 1

})
concludes the proof. □
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F PROOF OF THEOREM 8.3

Our goal is to prove that for the randomized instance described in Section 8, algorithm RestartLQR

with the optimally tuned window size𝑊 and exploration noise 𝜎 yields regret Ω(𝑉 1/3
𝑇
𝑇 2/3).

We first begin by noting that using the sequence of controllers 𝐾𝑡 = 𝐾
∗ (Θ𝑡 ) incurs a total cost of

at most

∑
𝑡 ∈[𝑇 ] 𝐽

∗
𝑡 +O(𝑆), where 𝑆 denotes the number of switches in the hypothesis. This is because

for an interval {𝜏1, 𝜏1 + 1, . . . , 𝜏2} where the dynamics remain fixed at \ with optimal parameters

𝑝∗, 𝑘∗, 𝐽 ∗, we have
𝜏2∑
𝑡=𝜏1

𝑥2

𝑡 + 𝑢2

𝑡 =

𝜏2∑
𝑡=𝜏1

𝑥2

𝑡 + (𝑘∗𝑥𝑡 )2 =
𝜏2∑
𝑡=𝜏1

𝐽 ∗ + 𝑝∗𝑥2

𝜏1

− 𝑝∗E
[
𝑥2

𝜏2+1
]
≤

𝜏2∑
𝑡=𝜏1

𝐽 ∗ + 𝑝∗𝑥2

𝜏1

.

Furthermore, since the optimal controllers yield |𝑎 + 𝑏𝑡𝑘∗𝑡 | =
���𝑎 1−𝑏2

𝑡𝑝
∗
𝑡

1+𝑏2

𝑡𝑝
∗
𝑡

��� ≤ 𝑎 = 1√
5

, E[𝑥𝑡 ] is bounded
for all 𝑡 ∈ [𝑇 ].
We next show that the loss for the optimally tuned RestartLQR algorithm is at least

∑
𝑡 𝐽
∗
𝑡 +

Ω
(
𝑉

1/3
𝑇
𝑇 2/3

)
. We will use the following lemma from [7].

Lemma F.1 (Lemma 14 in [7]). Let 𝐼 = {𝜏1, . . . , 𝜏2} be an interval with dynamics 𝑎 = 1/
√

5, 𝑏𝑡 = 𝑏

with |𝑏 | ≤ 0.05, E
[
𝑤2

𝑡

]
= 𝜓 2

, and optimal policy parameters 𝑘∗, 𝐽 ∗. Then for an arbitrary admissible

control policy {𝑢𝑡 },

E

[∑
𝑡 ∈𝐼

𝑥2

𝑡 + 𝑢2

𝑡

]
− |𝐼 |𝐽 ∗ ≥ 0.99E

[∑
𝑡 ∈𝐼
(𝑢𝑡 − 𝑘∗𝑥𝑡 )2

]
− 4𝜓 2, (70)

as well as:

E

[∑
𝑡 ∈𝐼

𝑥2

𝑡 + 𝑢2

𝑡

]
− |𝐼 |𝐽 ∗ ≥ 1

3

E

[∑
𝑡 ∈𝐼

𝑢2

𝑡

]
− 5

6

𝜓 2 (𝑘∗)2 |𝐼 |. (71)

We begin by defining the random variables that specify the instance. Let {`𝑡 } (𝑡 = 1, 2, . . . ,𝑇 ) be

the sequence specifying the magnitude of changes in 𝑏𝑡 , defined so that `1 = 𝜖 , and `2, . . . , `𝑇 are

i.i.d. random variables with the following distribution:

`𝑡 =


0.05 with probability

𝑉𝑇
2𝑇
,

𝜖 with probability

(
𝑉𝑇
𝑇

)
5/6
,

0 otherwise,

where

𝜖 = 0.05 · (𝑉𝑇 /𝑇 )1/6 .
Let {𝜒𝑡 } be the sequence specifying the sign of changes in 𝑏𝑡 , defined so that 𝜒1 = 1 and 𝜒𝑡 for

𝑡 ≥ 2 are i.i.d. Rademacher random variables (i.e., ±1 with equal probability). Given the above, the

sequence 𝑏𝑡 is defined as

𝑏𝑡 = 𝑏𝑡−1 · 1`𝑡=0 +`𝑡 · 𝜒𝑡 .
Let

H𝑡 = {𝑤𝑠 , [𝑠 , 𝜎𝑠 , `𝑠 , 𝜒𝑠 }𝑡𝑠=1

denote the history of the dynamics and instances until time 𝑡 . Recall that the RestartLQR(𝑊 ) family

of algorithms partition the horizon into contiguous non-overlapping windows of size𝑊 . We will

use 𝐼𝑖 = [𝑊 · (𝑖 − 1) + 1, . . . ,𝑊 · 𝑖] to denote the 𝑖-th window. The control for 𝑡 ∈ 𝐼𝑖 is chosen as

�̂� (𝑖) + 𝜎𝑡[𝑡 where [𝑡 are i.i.d. N(0, 1) and 𝜎𝑡 is an arbitrary adapted sequence of exploration energy
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injected by the algorithm. With some abuse of notation, we will use 𝑘∗ (𝑏) to denote the optimal

linear feedback controller as a function of 𝑏 (with 𝑎 = 1/
√

5 and𝑤𝑡 ∼ N(0,𝜓 2) implicit), and note

that 𝑘∗ (𝑏) = −𝑘∗ (−𝑏).
We will partition our windows into three sets:

(1) I1: windows 𝑖 which have at least one `𝑡 = 0.05 for 𝑡 ∈ 𝐼𝑖 ; let 𝜏1 (𝑖) ∈ 𝐼𝑖 be the first time such

that `𝜏1 (𝑖) ≠ 0,

(2) I𝜖 : pairs of contiguous windows (𝑖, 𝑖 + 1) with `𝑡 = 0 for all 𝑡 ∈ 𝐼𝑖 ∪ 𝐼𝑖+1, and |𝑏𝑡 | = 𝜖 ,
(3) I2: the remaining windows.

Note that this partition is not unique. In particular, there could be many ways to pair up contiguous

windows with small 𝑏𝑡 and no change of dynamics to create the second set. We pick any such

maximal partition.

We can use (70) and (71) to express the total cost of the algorithm as:

E

∑
𝑡 ∈[𝑇 ]

𝑥2

𝑡 + 𝑢2

𝑡

 −
∑
𝑡 ∈[𝑇 ]

𝐽 ∗𝑡

≥ 0.99E

[∑
𝑡 ∈𝑇
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

]
− 4𝜓 2𝑆

≥
∑
𝑖∈I1

0.99E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2


+

∑
(𝑖,𝑖+1) ∈I𝜖

(
1

3

E

[∑
𝑡 ∈𝐼𝑖

𝑢2

𝑡

]
− 5

6

𝜓 2 (𝑘∗ (𝜖))2𝑊 + 0.99E

[ ∑
𝑡 ∈𝐼𝑖+1
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

])
−𝜓 2𝑆. (72)

Begin by considering the event E𝑖,1 := {𝑖 ∈ 𝐼1}. Conditioning on this event, 𝜏1 (𝑖) is uniformly

distributed in 𝐼𝑖 . Furthermore, the sign of 𝑏𝜏1 (𝑖) is ±1 with equal probability. We thus bound the

contribution to regret due to windows in I1 as:

E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

������ E𝑖,1,H𝑡


= E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝜎𝑡[𝑡 + (�̂� (𝑖) − 𝑘∗𝑡 )𝑥𝑡 )2

������ E𝑖,1,H𝑡


≥ E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(�̂� (𝑖) − 𝑘∗𝑡 )2𝑥2

𝑡

������ E𝑖,1,H𝑡


≥ 𝜓 2E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(�̂� (𝑖) − 𝑘∗𝑡 )2

������ E𝑖,1,H𝑡


≥ 𝜓 2E


𝑖 ·𝑊∑
𝑡=(𝑖−1)𝑊 +1

1{𝑡 ≥𝜏1 (𝑖), |𝑏𝑡 |=1} (�̂� (𝑖) − 𝑘∗𝑡 )2
������ E𝑖,1,H𝑡


≥ 𝜓 2E[|𝑡 : 𝑡 ≥ 𝜏1 (𝑖), |𝑏𝑡 | = 1|]E

[
(�̂� (𝑖) − 𝑘∗ (𝑏))2

��� E𝑖,1,H𝑡 ],
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where 𝑏 denotes a random variable that is ±0.05 with equal probability;

= 𝜓 2 · E[|𝑡 : 𝑡 ≥ 𝜏1 (𝑖), |𝑏𝑡 | = 0.05|] ·
(

1

2

(�̂� (𝑖) − 𝑘∗ (0.05))2 + 1

2

(�̂� (𝑖) + 𝑘∗ (0.05))2
)

≥ 𝜓 2 · E[|𝑡 : 𝑡 ≥ 𝜏1 (𝑖), |𝑏𝑡 | = 0.05|] · 𝑘∗ (0.05)2

≥ 𝜓 2 · E[|𝑡 : 𝑡 ≥ 𝜏1 (𝑖), |𝑏𝑡 | = 0.05|] · 1

4000

.

Therefore,∑
𝑖∈I1

E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

������ E𝑖,1,H𝑡
 =

∑
𝑖

E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

������ E𝑖,1,H𝑡
E

[
1E𝑖,1

]
≥

∑
𝑖

𝜓 2 · E[|𝑡 : 𝑡 ≥ 𝜏1 (𝑖), |𝑏𝑡 | = 0.05|] · 1

4000

E
[
E𝑖,1

]
=

𝜓 2

4000

∑
𝑖

∑
𝑡 ∈𝐼𝑖

Pr[`𝑡 = 0.05]E
[
min{𝑖 ·𝑊 − 𝑡 + 1,Geom(𝑉𝑇 /𝑇 + (𝑉𝑇 /4𝑇 )5/6)}

]
,

where Geom(𝑝) denotes a Geometric random variable with success probability 𝑝 . For any non-

negative integer-valued random variable 𝑋 with median 𝑋 and non-negative integer 𝑎, we have

the identity,

E[min{𝑋, 𝑎}] =
𝑎∑
𝑥=1

Pr[𝑋 ≥ 𝑥] ≥
min{𝑎,𝑋 }∑
𝑥=1

Pr[𝑋 ≥ 𝑥] ≥ min{𝑋, 𝑎}
2

.

For 𝑋 ∼ Geom(𝑝), we have 𝑋 ≥ 1

5𝑝
, which finally gives,

∑
𝑖∈I1

E

𝑖 ·𝑊∑

𝑡=𝜏1 (𝑖)
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

������ E𝑖,1,H𝑡
 ≥

𝜓 2

4000

∑
𝑖

∑
𝑡 ∈𝐼𝑖

𝑉𝑇

2𝑇

min{𝑊, 0.1(4𝑇 /𝑉𝑇 )5/6}
2

=
𝜓 2

8000

𝑉𝑇 min

{
𝑊, 0.1(4𝑇 /𝑉𝑇 )5/6

}
. (73)

Note that if𝑊 = Ω
(
(𝑇 /𝑉𝑇 )2/3

)
, then (73) already gives the regret lower bound of the Theorem.

Therefore, henceforth we will assume𝑊 = O
(
(𝑇 /𝑉𝑇 )2/3

)
.

Next, we turn to windows in I𝜖 . Specifically, pick a pair (𝑖, 𝑖 + 1), and our goal is to bound

1

3

E

[∑
𝑡 ∈𝐼𝑖

𝑢2

𝑡

]
− 5

6

𝜓 2 (𝑘∗ (𝜖))2𝑊 + 0.99E

[ ∑
𝑡 ∈𝐼𝑖+1
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

]
.

We next invoke yet another useful lemma from [7].

Lemma F.2 (Lemma 15 in [7]). Let P+ and P− denote the probability laws of {𝑥𝑡 }𝑡 ∈𝐼𝑖 under 𝑏𝑡 = +𝜖
and 𝑏𝑡 = −𝜖 (∀𝑡 ∈ 𝐼𝑖 ), respectively. Then, the total variation distance between these is upper bounded

as

𝑇𝑉 (P+, P−) ≤
𝜖

𝜓

√√√
E

[∑
𝑡 ∈𝐼𝑖

𝑢2

𝑡

]
.
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We will use the notation of the above lemma for the rest of the proof to bound the regret due to

windows (𝑖, 𝑖 + 1). As before, we bound the regret in the window 𝐼𝑖+1 by:

0.99E

[ ∑
𝑡 ∈𝐼𝑖+1
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

]
≥ 0.99𝜓 2𝑊E

[(
�̂� (𝑖+1) − 𝑘∗𝑡

)
2

]
= 0.99𝜓 2𝑊

(
1

2

E+
[(
�̂� (𝑖+1) − 𝑘∗ (𝜖)

)
2

]
+ 1

2

E−
[(
�̂� (𝑖+1) + 𝑘∗ (𝜖)

)
2

] )
.

Let 𝐹+, 𝐹− denote the distribution of �̂� (𝑖+1) underP+, P−, respectively, and let𝑔+ (𝑘) :=

(
�̂� (𝑖+1) − 𝑘∗ (𝜖)

)
2

and 𝑔− (𝑘) :=

(
�̂� (𝑖+1) + 𝑘∗ (𝜖)

)
2

. Note that 𝑔+, 𝑔− are non-negative and

1

2

(𝑔+ (𝑘) + 𝑔− (𝑘)) ≥ 𝑘∗ (𝜖)2.

Therefore,

1

2

E+
[(
�̂� (𝑖+1) − 𝑘∗ (𝜖)

)
2

]
+ 1

2

E−
[(
�̂� (𝑖+1) + 𝑘∗ (𝜖)

)
2

]
=

1

2

∫
ℜ
𝑔+ (𝑘)𝑑𝐹+ (𝑘) +

1

2

∫
ℜ
𝑔− (𝑘)𝑑𝐹− (𝑘)

= sup

𝐹 ∈Γ (𝐹+,𝐹+)

∫
ℜ×ℜ

1

2

(𝑔+ (𝑘1) + 𝑔− (𝑘2)) 𝑑𝐹 (𝑘1, 𝑘2)

where Γ(𝐹+, 𝐹−) denotes the set of stochastic couplings of measures 𝐹+, 𝐹−,

≥ sup

𝐹 ∈Γ (𝐹+,𝐹+)

∫
ℜ×ℜ

1

2

(𝑔+ (𝑘1) + 𝑔− (𝑘2)) 1{𝑘1=𝑘2 } 𝑑𝐹 (𝑘1, 𝑘2)

≥ sup

𝐹 ∈Γ (𝐹+,𝐹+)

∫
ℜ×ℜ

𝑘∗ (𝜖)2𝑑𝐹 (𝑘1, 𝑘2)

≥ 𝑘∗ (𝜖)2 (1 −𝑇𝑉 (P+, P−)) .

We therefore have,

1

3

E

[∑
𝑡 ∈𝐼𝑖

𝑢2

𝑡

]
− 5

6

𝜓 2 (𝑘∗ (𝜖))2𝑊 + 0.99E

[ ∑
𝑡 ∈𝐼𝑖+1
(𝑢𝑡 − 𝑘∗𝑡 𝑥𝑡 )2

]
≥ 𝜓

2𝑇𝑉 (P+, P−)2
3𝜖2

+𝜓 2𝑘∗ (𝜖)2𝑊
(
0.99(1 −𝑇𝑉 (P+, P−)) −

5

6

)
≥ min

{
𝜓 2

300𝜖2
,
𝜓 2𝑘∗ (𝜖)2𝑊

20

}
≥ min

{
𝜓 2

300𝜖2
,
𝜓 2𝜖2𝑊

200

}
. (74)

Since we are assuming𝑊 = O
(
(𝑇 /𝑉𝑇 )2/3

)
= 𝑜

(
(𝑇 /𝑉𝑇 )5/6

)
(the mean duration between switches

in 𝑏𝑡 ), the expected number of pairs (𝑖, 𝑖 + 1) in any maximal choice of I𝜖 is Ω (𝑇 /𝑊 ), which gives

the total regret contribution due to intervals in I𝜖 of at least

𝑇 ·min

{
𝜓 2

300𝑊𝜖2
,
𝜓 2𝜖2

200

}
.
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The expression above is decreasing in𝑊 , and for𝑊 = O
(
(𝑇 /𝑉𝑇 )2/3

)
is Ω

(
𝑉

1/3
𝑇
𝑇 2/3

)
. □
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