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SDP Achieves Exact Minimax Optimality
in Phase Synchronization

Chao Gao and Anderson Y. Zhang

Abstract— We study the phase synchronization problem with1

noisy measurements Y = z∗z∗H + σW ∈ C
n×n , where2

z∗ is an n-dimensional complex unit-modulus vector and W3

is a complex-valued Gaussian random matrix. It is assumed4

that each entry Yjk is observed with probability p. We prove5

that an SDP relaxation of the MLE achieves the error bound6

(1 + o(1)) σ2

2np
under a normalized squared �2 loss. This result7

matches the minimax lower bound of the problem, and even the8

leading constant is sharp. The analysis of the SDP is based on9

an equivalent non-convex programming whose solution can be10

characterized as a fixed point of the generalized power iteration11

lifted to a higher dimensional space. This viewpoint unifies the12

proofs of the statistical optimality of three different methods:13

MLE, SDP, and generalized power method. The technique is also14

applied to the analysis of the SDP for Z2 synchronization, and15

we achieve the minimax optimal error exp
�−(1 − o(1)) np

2σ2

�
16

with a sharp constant in the exponent.17

Index Terms— Angular synchronization, minimax risk, SDP,18

Z2 synchronization, Burer-Monteiro factorization.19

I. INTRODUCTION20

CONSIDER the problem of phase synchronization [1] with21

observations22

Yjk = z∗j z̄∗k + σWjk ∈ C, (1)23

for 1 ≤ j < k ≤ n, where z̄∗k stands for the complex conjugate24

of z∗k . Our goal is to estimate z∗1 , · · · , z∗n ∈ C1 = {x ∈ C :25

|x| = 1}. Since |z∗j | = 1, we can write z∗j = eiθ∗
j with some26

θ∗j ∈ (0, 2π] for all j ∈ [n], and thus Yjk is understood to27

be a noisy observation of the pairwise difference between two28

angles θ∗j and θ∗k. Following [2]–[5], we consider an additive29

noise model and we assume that Wjk is a standard complex30

Gaussian variable independently for all 1 ≤ j < k ≤ n.131
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1For Wjk ∼ CN (0, 1), we have Re(Wjk) ∼ N �

0, 1
2

�
and Im(Wjk) ∼

N �
0, 1

2

�
independently.

Recently, minimax risk of estimating z∗ ∈ Cn
1 has been 32

studied by [6] under the loss function 33

�(�z, z) = min
a∈C1

1
n

n�
j=1

|�zj − zja|2. (2) 34

We note that the minimization of a ∈ C
n
1 in the definition 35

of (2) is necessary, since a global rotation of the angles 36

θ∗1 , · · · , θ∗n does not change the distribution of the observations 37

{Yjk}1≤j<k≤n. It was proved by [6] that the minimax risk of 38

phase synchronization has the following lower bound 39

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥ (1 − o(1))
σ2

2n
, (3) 40

and the maximum likelihood estimator (MLE), defined as a 41

global maximizer of 42

max
z∈Cn

1

zHY z, (4) 43

is proved to achieve the error bound (1 + o(1))σ2

2n , and 44

is therefore asymptotically minimax optimal. However, the 45

optimization problem (4) is a constrained quadratic program- 46

ming that is generally known to be NP-hard. This motivates 47

researchers to consider a convex relaxation of (4) in the form 48

of semi-definite programming (SDP) [1], [3], [5], [7], [8]. 49

Write Z = zzH. For any z ∈ Cn
1 , Z is a complex positive- 50

semidefinite Hermitian matrix whose diagonal entries are all 51

one. The SDP relaxation of (4) is then defined as 52

max
Z=ZH∈Cn×n

Tr(Y Z) subject to diag(Z)=In and Z � 0. 53

(5) 54

A global maximizer of (5), denoted as �Z , can thus be used 55

as an estimator of the matrix z∗z∗H. The tightness of the 56

SDP (5) has been thoroughly investigated in the literature of 57

phase synchronization. When σ2 = O(n1/2), it was proved 58

by [3] that the solution to (5) is a rank-one matrix �Z = �z�zH, 59

with �z being a global maximizer of (4). This result was 60

recently proved by [5] to hold under a weaker condition 61

σ2 = O
�

n
log n

�
. Given the tightness of the SDP and the 62

minimax optimality of the MLE in [6], we can immediately 63

claim that the SDP (5) is also asymptotically minimax optimal 64

under the condition σ2 = O
�

n
log n

�
. Without the condition 65

σ2 = O
�

n
log n

�
, whether SDP is still statistically optimal 66

remains as an open question in the literature. 67

In this paper, we study the statistical properties of the 68

SDP (5) directly without the need to establish any connection 69
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between SDP and MLE. This allows us to go beyond the70

condition σ2 = O
�

n
log n

�
and we are able to derive sharp71

statistical error bounds of the SDP (5) as long as σ2 = o(n).72

According to the minimax lower bound (3), the condition73

σ2 = o(n) is necessary for any estimator to have an error74

rate of a nontrivial order. To formally state our main result,75

we introduce a more general statistical estimation setting that76

allows the possibility of missing data. Instead of observing77

Yjk for all 1 ≤ j < k ≤ n, we assume each Yjk is observed78

with probability p. In other words, consider a random graph79

Ajk ∼ Bernoulli(p) independently for all 1 ≤ j < k ≤ n, and80

we only observe Yjk that follows (1) when Ajk = 1. The SDP81

can be extended to this more general setting by replacing all82

Yjk’s with AjkYjk’s in (5). The formula will be given by (13)83

in Section II.84

Theorem 1: Assume np
σ2 → ∞ and np

log n → ∞. Let �Z be85

a global maximizer of the SDP (13) and �zj = uj/|uj| for86

j ∈ [n] with u ∈ Cn being the leading eigenvector of �Z.87

There exists some δ = o(1) such that88

1
n2

	 �Z − z∗z∗H	2
F ≤ (1 + δ)

σ2

np
,89

�(�z, z∗) ≤ (1 + δ)
σ2

2np
,90

with probability at least 1 − n−8 − exp
�
− �np

σ2

�1/4
�

.91

Compared with the minimax lower bound (Theorem 2 in92

Section II), Theorem 1 shows that SDP leads to both minimax93

optimal estimations of the matrix z∗z∗H and of the vector z∗.94

The two error bounds are not just rate-optimal, but the leading95

constants are sharp as well. We remark that both conditions96

σ2 = o(np) and np
log n → ∞ are essential for the results of97

the above theorem to hold. Since the minimax risk of the98

problem is of order σ2

np , the condition σ2 = o(np), which is99

equivalent to σ2

np = o(1), guarantees that the minimax risk100

is of smaller order than the trivial one. The order O(1) is101

trivial, as it can simply be achieved by random guess. The102

condition np
log n → ∞ guarantees that the random graph A is103

connected with high probability. Our technical analysis would104

still go through when p is of the same order as log n
n , but in105

this regime only rate optimality is achieved.106

Our analysis of the SDP does not rely on its connection to107

the MLE, and it is therefore fundamentally different from the108

approaches considered by [3], [5], [8]. To study the statistical109

properties of SDP directly, we consider the following iteration110

procedure,2111

V
(t)
j =

�
k∈[n]\{j} ȲjkV

(t−1)
k			�k∈[n]\{j} ȲjkV
(t−1)
k

			 ∈ C
n, j = 1, · · · , n. (6)112

Define the matrix V (t) ∈ Cn×n with its jth column being113

V
(t)
j . The above iteration can be shorthanded as V (t) =114

f(V (t−1)). We use (6) as a non-convex characterization of the115

SDP (5), because the solution to (5) can always be written as116 �Z = �V H �V for some �V ∈ Cn×n satisfying the fixed-point117

2When the denominator (6) is zero, take V
(t)
j = V

(t−1)
j .

equation �V = f(�V ). Note that the iterative procedure (6) 118

resembles the formula of the generalized power method (GPM) 119

[1], [5], [9],3 120

z
(t)
j =

�
k∈[n]\{j} Yjkz

(t−1)
k


�k∈[n]\{j} Yjkz
(t−1)
k




 ∈ C, j = 1, · · · , n. (7) 121

We can therefore think of (6) as a lift of the GPM (7) into 122

a higher dimensional space. This allows us to analyze the 123

statistical error of SDP from an iterative algorithm perspective, 124

and previous techniques of analyzing general iterative algo- 125

rithms in [10], [11] can be borrowed for the current purpose. 126

To understand the exact statistical error of SDP, we establish 127

the following convergence result for the iterative procedure (6), 128

�(V (t), z∗) ≤ δ�(V (t−1), z∗) + optimal statistical error, 129

for all t ≥ 1, (8) 130

for some δ = o(1) with high probability, as long as it is 131

properly initialized. Here, with slight abuse of notation, the 132

loss of �V is defined by 133

�(�V , z∗) = min
a∈Cn:�a�2=1

1
n

n�
j=1

	�Vj − z̄∗j a	2, (9) 134

which is natural given that the matrix �Z = �V H �V is used to 135

estimate z∗z∗H. Since the SDP solution is a fixed point of the 136

iteration (6), the convergence result (8) directly leads to the 137

sharp statistical error bounds in Theorem 1. 138

Our analysis of SDP through (6) also unifies the understand- 139

ings of the GPM and the MLE. Given the relation between (6) 140

and (7), the convergence result (8) directly implies 141

�(z(t), z∗) ≤ δ�(z(t−1), z∗) + optimal statistical error, 142

for all t ≥ 1, (10) 143

for some δ = o(1) with high probability, as long as the GPM 144

is properly initialized. This provides an alternative proof to 145

the minimax optimality of the GPM that has been previously 146

established by [6]. In addition, just as the SDP can be viewed 147

as a fixed point of the iteration (6), the MLE can be viewed as 148

a fixed point of the iteration (7). The minimax optimality of 149

the MLE can also be derived. To summarize, we are able to 150

show the exact minimax optimality of SDP, GPM, and MLE 151

using a single proof based on the iterative procedure (6). 152

In addition to phase synchronization, we also establish the 153

optimality of the SDP for Z2 synchronization. In the setting 154

of Z2 synchronization, one observes Yjk = z∗j z∗k +σWjk ∈ R 155

for 1 ≤ j < k ≤ n, and the goal is to estimate z∗1 , · · · , z∗n ∈ 156

{−1, 1}. Assume Wjk ∼ N (0, 1) and each Yjk is observed 157

with probability p, we show that the SDP for Z2 synchroniza- 158

tion achieves the error 159

exp
�
−(1 − o(1))

np

2σ2

�
. (11) 160

We also prove a matching lower bound for this problem. 161

Since Z2 synchronization is a discrete parameter estimation 162

problem, the minimax risk is an exponential function of the 163

3When the denominator (7) is zero, take z
(t)
j = z

(t−1)
j .
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signal-to-noise ratio, compared with the polynomial function164

for phase synchronization. Despite being a continuous opti-165

mization method, the SDP is able to adapt to the discreteness166

of the problem. The exponential rate (11) has been previously167

derived for p = 1 by [12]. Our analysis based on the iterative168

algorithm perspective generalizes their result to more general169

values of p 
 log n
n .170

a) Paper organization: The rest of the paper is organized171

as follows. In Section II, we establish the statistical optimality172

of the SDP for phase synchronization. The implications of173

the SDP analysis on the statistical error bounds of GPM and174

MLE are discussed in Section III. The analysis of the SDP175

for Z2 synchronization is presented in Section IV. Finally,176

Section V collects all the technical proofs of the paper.177

b) Notation: For d ∈ N, we write [d] = {1, . . . , d}. Given178

a, b ∈ R, we write a ∨ b = max(a, b) and a ∧ b = min(a, b).179

For a set S, we use I{S} and |S| to denote its indicator180

function and cardinality respectively. For a complex number181

x ∈ C, we use x̄ for its complex conjugate, Re(x) for its real182

part, Im(x) for its imaginary part, and |x| for its modulus.183

For a complex vector x ∈ Cd, we use 	x	 =
��d

j=1 |xj |2184

for its norm. For a matrix B = (Bjk) ∈ Cd1×d2 , we use185

BH ∈ Cd2×d1 for its conjugate transpose such that BH =186

(B̄kj). The Frobenius norm and operator norm of B are187

defined by 	B	F =
��d1

j=1

�d2
k=1 |Bjk|2 and 	B	op =188

supu∈Cd1 ,v∈Cd2 :�u�=�v�=1 uHBv. We use Tr(B) for the trace189

of a squared matrix B. For U, V ∈ Cd1×d2 , U ◦ V ∈ Rd1×d2190

is the Hadamard product U ◦ V = (UjkVjk). The notation P191

and E are generic probability and expectation operators whose192

distribution is determined from the context. For two positive193

sequences {an} and {bn}, an � bn or an = O(bn) means194

an ≤ Cbn for some constant C > 0 independent of n. We also195

write an = o(bn) or bn

an
→ ∞ when lim supn

an

bn
= 0.196

II. MAIN RESULTS197

A. Problem Settings198

Recall that we observe a random graph Ajk ∼ Bernoulli(p)199

independently for all 1 ≤ j < k ≤ n. For each pair (j, k),200

we observe Yjk = z∗j z̄∗k + σWjk with Wjk ∼ CN (0, 1)201

whenever Ajk = 1. The observations can be organized as202

an adjacency matrix A and a masked version of the pairwise203

interactions A◦Y . All the matrices A, W , and Y are Hermitian204

as we define Ajk = Akj , Wjk = W̄kj , and Yjk = Ȳkj for all205

1 ≤ k < j ≤ n and Ajj = Wjj = 0 and Yjj = 1 for206

all j ∈ [n]. Hence we have the matrix representation Y =207

z∗z∗H + σW .208

To estimate the vector z∗ ∈ Cn
1 , the MLE is defined as a209

global maximizer of the following optimization problem210

max
z∈Cn

1

zH(A ◦ Y )z. (12)211

Since (12) is computationally infeasible, we consider the212

following convex relaxation of (12) via SDP,213

max
Z=ZH∈Cn×n

Tr((A ◦ Y )Z) subject to diag(Z)=In and Z�0.214

(13)215

The goal of our paper is to establish the statistical optimality 216

of the SDP (13). We first provide a minimax lower bound as 217

the benchmark of the problem. 218

Theorem 2 (Theorem 4.1 of [6]): Assume σ2 = o(np). 219

Then, we have 220

inf
�Z∈Cn×n

sup
z∈Cn

1

Ez
1
n2

	 �Z − zzH	2
F ≥ (1 − δ)

σ2

np
, 221

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥ (1 − δ)
σ2

2np
, 222

for some δ = o(1). 223

The above theorem has been established by [6] as the 224

minimax lower bound for phase synchronization. In fact, 225

Theorem 4.1 of [6] only states the lower bound result for 226

the loss function �(�z, z). However, the proof of Theorem 227

4.1 of [6] actually established the lower bound under the loss 228

1
n2 	 �Z − zzH	2

F, and the lower bound for �(�z, z) is proved as 229

a direct consequence in view of the inequality 230

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥ 1
2

inf
�Z∈Cn×n

sup
z∈Cn

1

Ez
1
n2

	 �Z − zzH	2
F. 231

Since the solution of the SDP (13) is a matrix, it is natural to 232

study the statistical error under 1
n2 	 �Z − zzH	2

F in addition to 233

the loss �(�z, z). 234

B. A Convergence Lemma 235

Our analysis of the SDP (13) relies on an equivalent non- 236

convex characterization. Since Z is a positive semi-definite 237

Hermitian matrix, it admits a decomposition 238

Z = V HV, 239

for some V ∈ Cn×n. Let Vj be the jth column of V , and we 240

have Zjk = V H
j Vk. In particular, the constraint diag(Z) = In 241

can be written as Zjj = 	Vj	2 = 1 for all j ∈ [n]. Replacing 242

Z by V HV , the SDP (13) can be equivalently represented as 243

max
V ∈Cn×n

Tr((A ◦ Y )V HV ) subject to 	Vj	2 =1 for all j ∈ [n]. 244

(14) 245

The formulation (14) is closely related to the Burer-Monteiro 246

problem [13], [14] for the SDP except that here V is still an 247

n × n matrix without dimension reduction. This non-convex 248

formulation allows us to derive sharp statistical error bounds 249

of the SDP (13). 250

We analyze (14) through the following iteration procedure, 251

V
(t)
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

k∈[n]\{j} AjkȲjkV
(t−1)

k����k∈[n]\{j} AjkȲjkV
(t−1)

k

���
,

if
�

k∈[n]\{j} AjkȲjkV
(t−1)
k �= 0,

V
(t−1)
j , if

�
k∈[n]\{j} AjkȲjkV

(t−1)
k = 0.

(15) 252

Let us shorthand the above formula by 253

V (t) = f(V (t−1)), (16) 254

by introducing a map f : C
n×n
1 → C

n×n
1 such that the jth 255

column of f(V (t−1)) is given by (15). We use the notation 256

C
n×n
1 for the set of n × n complex matrices whose columns 257
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all have unit norms. The update (16) can be seen as a258

local approach (or more precisely, a block coordinate ascent259

approach) [15], [16] to solve (14). To see why this is true,260

consider the following local optimization problem261

max
Vj∈Cn:�Vj�2=1

�
V H

j

⎛⎝ �
k∈[n]\{j}

AjkȲjkV
(t−1)
k

⎞⎠262

+

⎛⎝ �
k∈[n]\{j}

AjkȲjkV
(t−1)
k

⎞⎠H

Vj

�
. (17)263

The objective of (17) collects the terms in the expansion of264

Tr((A◦Y )V HV ) =
�

jk AjkȲjkV H
j Vk that depend on Vj and265

replaces Vk by V
(t−1)
k for all k ∈ [n]\{j}. By simple algebra,266

we can see the solution of (17) is exactly (15).267

Let �V be a global maximizer of (14). The matrix �V must268

be a fixed point of the map f ,269 �V = f(�V ). (18)270

To see why (18) holds, we consider the local optimization271

problem (17) with V
(t−1)
k replaced by �Vk for all k ∈ [n]\{j}.272

Thus, as long as �V maximizes (14), its jth column �Vj must273

maximize this local optimization problem, which then implies274

the fixed-point equation (18).275

Since the SDP solution �Z = �V H �V is an estimator of the276

matrix z∗z∗H, we can think of �Vj as an estimator of z̄∗j277

embedded in Cn. Note that278

z∗j z̄∗k = z∗j aHaz̄∗k,279

for any a ∈ Cn such that 	a	2 = 1, and thus we can280

embed each z̄∗j in C
n by considering the vector z̄∗j a ∈ C

n.281

This motivates the definition of the loss function �(�V , z∗)282

given in (9). The following lemma characterizes the evolution283

of this loss function through the map f .284

Lemma 1: Assume np
σ2 > c1 and np

log n > c2 for some285

sufficiently large constants c1, c2 > 0. Then, for any γ ∈286

[0, 1/16), we have287

P

�
�(f(V ), z∗)≤δ1�(V, z∗) + (1 + δ2)

σ2

2np
for all V ∈ C

n×n
1288

such that �(V, z∗) ≤ γ
�
≥1−(2n)−1 − exp

�
−
�np

σ2

�1/4
�

.289

where δ1 = C1

�
log n+σ2

np and δ2 = C2

�
γ2 + log n+σ2

np

�1/4

290

for some constants C1, C2 > 0.291

The lemma shows that for any V ∈ C
n×n
1 that has a292

nontrivial error, the matrix f(V ) will have an error that is293

smaller by a multiplicative factor δ1 up to an additive term294

(1 + δ2) σ2

2np . Define V ∗ ∈ C
n×n
1 with the jth column given295

by V ∗
j = z̄∗j a for some a ∈ Cn that satisfies 	a	2 = 1.296

We immediately have297

�(f(V ∗), z∗) ≤ (1 + δ2)
σ2

2np
.298

Thus, the additive term (1 + δ2) σ2

2np can be understood as the299

oracle statistical error given the knowledge of z∗.300

The two conditions np
σ2 ≥ c1 and np

log n ≥ c2 are essential 301

for the result to hold. While np
σ2 ≥ c1 makes sure that the 302

statistical error σ2

2np is of a nontrivial order, the condition 303

np
log n ≥ c2 guarantees that the random graph is connected. 304

We can slightly strengthen both conditions to np
σ2 → ∞ and 305

np
log n → ∞ so that both δ1 and δ2 are varnishing. 306

C. Statistical Optimality of SDP 307

In this section, we show the result of Lemma 1 implies the 308

statistical optimality of the SDP (13). Since the solution of 309

the SDP can be written as �Z = �V H �V with �V satisfying the 310

fixed-point equation (18), we can apply the result of Lemma 1 311

to �V = f(�V ) as long as a crude bound �(�V , z∗) ≤ γ can be 312

proved for some γ < 1/16. 313

Lemma 2: Assume np
log n > c for some sufficiently large 314

constant c > 0. Let �Z = �V H �V be a global maximizer of the 315

SDP (13). Then, there exits some constant C > 0 such that 316

�(�V , z∗) ≤ C

�
σ2 + 1

np
, 317

with probability at least 1 − n−9. 318

Under the condition that np
σ2 and np

log n are sufficiently large, 319

we have �(�V , z∗) ≤ γ for some γ < 1/16. Thus, Lemma 1 320

and the fact �V = f(�V ) imply that 321

�(�V , z∗) ≤ δ1�(�V , z∗) + (1 + δ2)
σ2

2np
. (19) 322

After rearrangement, we obtain the bound �(�V , z∗) ≤ 323

1+δ2
1−δ1

σ2

2np . The result is summarized into the following theorem. 324

Theorem 3: Assume np
σ2 > c1 and np

log n > c2 for some 325

sufficiently large constants c1, c2 > 0. Let �Z = �V H �V be a 326

global maximizer of the SDP (13). Then, there exists some 327

δ = C
�

log n+σ2

np

�1/4

for some constant C > 0, such that 328

�(�V , z∗) ≤ (1 + δ)
σ2

2np
, 329

1
n2

	 �Z − z∗z∗H	2
F ≤ (1 + δ)

σ2

np
, 330

with probability at least 1 − 2n−9 − exp
�
− �np

σ2

�1/4
�

. 331

Theorem 3 gives sharp statistical error bounds for both loss 332

functions �(�V , z∗) and 1
n2 	 �Z − z∗z∗H	2

F. While the result for 333

�(�V , z∗) is derived from (19), the result for 1
n2 	 �Z−z∗z∗H	2

F is 334

a consequence of the inequality 335

1
n2

	�V H �V − z∗z∗H	2
F ≤ 2�(�V , z∗), 336

which is established by Lemma 11 in Section V-A. Compared 337

with the minimax lower bound in Theorem 2, we can conclude 338

that the SDP (13) is minimax optimal for the estimation of 339

the matrix z∗z∗H. It not only achieves the optimal rate, but 340

the leading constant is also sharp when σ2 = o(np) and 341

np
log n → ∞. Figure 1 verifies the correctness of the leading 342

constants of the two loss functions. Both loss functions are 343

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on September 02,2022 at 21:16:28 UTC from IEEE Xplore.  Restrictions apply. 



5378 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Fig. 1. Left: average values of �(�V , z∗) (orange solid), 1
n2 � �Z − z∗z∗H�2

F (blue dashed) and max1≤j≤n ��Vj − z̄∗j a�2 (purple dash-dotted) with n = 100,
p = 0.2 and σ2 varying in [0, 6] across 400 independent experiments. The vector a ∈ Cn used in the squared �∞ loss is the minimizer of the right hand side
of (9). Right: probability of the event that the second eigenvalue of �Z is nonzero (i.e., �Z is not rank-one) for the same experiments.

approximately linear at least when σ2 is small. When σ2
344

and np are of the same order, SDP does not have the345

optimal constant anymore, and its asymptotics is predicted346

by a very different technique [14]. We also remark that the347

�2 error control does not imply that each individual z∗j can be348

accurately recovered. This is also reflected in Figure 1 with349

the comparison between �2 and �∞ loss.350

We emphasize that our proof of the optimality of the SDP351

is based on a direct statistical error analysis, regardless of352

whether the SDP relaxation is tight or not. It is shown by [5]353

that the tightness of SDP (when the solution has rank one)354

requires σ2 = O
�

n
log n

�
at least when p = 1. When σ2 =355

o(np), it is possible that SDP is not tight but still statistically356

optimal. This point is also illustrated by Figure 1.357

Since the solution of the SDP is a matrix, some post-358

processing step is required to obtain a vector estimator for z∗.359

This can easily be done by extracting the leading eigenvector360

of �Z. Let u ∈ Cn be the leading eigenvector of �Z, and define361 �z with each entry �zj = uj/|uj|. If uj = 0 we can take �zj = 1.362

The statistical optimality of �z is established by the following363

result. Recall that for two vectors in Cn
1 , the definition of the364

loss �(�z, z∗) is given by (2).365

Theorem 4: Assume np
σ2 > c1 and np

log n > c2 for some366

sufficiently large constants c1, c2 > 0. Let �Z = �V H �V be a367

global maximizer of the SDP (13). Then,368

�(�z, z∗) ≤
�

1 + C

�
log n + σ2

np

�1/4
�

σ2

2np
,369

with probability at least 1−2n−9−exp
�
− �np

σ2

�1/4
�

for some370

constant C > 0.371

Compared with the minimax lower bound in Theorem 2, the372

SDP (13) is also minimax optimal for the estimation of the373

vector z∗ in phase synchronization. Theorem 3 and Theorem 4374

together establish Theorem 1.375

III. IMPLICATIONS ON GENERALIZED376

POWER METHOD AND MLE377

In this section, we show that the analysis of the SDP through378

Lemma 1 also leads to statistical optimality of the generalized379

power method (GPM) and the maximum likelihood estimator 380

(MLE). We note that it has already been established by [6] 381

that both GPM and MLE achieve the optimal error bound 382

(1 + o(1)) σ2

2np under the loss �(�z, z∗). By deriving the same 383

results using the analysis of the SDP, we can unify the three 384

proofs and thus form a coherent understanding of the three 385

different methods. 386

The iteration of GPM of phase synchronization is 387

z
(t)
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

k∈[n]\{j} AjkYjkz
(t−1)
k����k∈[n]\{j} AjkYjkz
(t−1)
k

���
,

if
�

k∈[n]\{j} AjkYjkz
(t−1)
k �= 0,

z
(t−1)
j , if

�
k∈[n]\{j} AjkYjkz

(t−1)
k = 0.

(20) 388

The similarity between (20) and (15) is obvious. To make 389

an explicit connection between the two iteration procedures, 390

we can embed (20) into the space of (15). Let e1 ∈ Cn be the 391

first canonical vector with the first entry 1 and the remaining 392

entries all 0. It is easy to check that as long as V
(t−1)
j = 393

z̄
(t−1)
j e1 for all j ∈ [n], we also have V

(t)
j = z̄

(t)
j e1 for all 394

j ∈ [n]. This is because once the columns V
(t)
1 , · · · , V

(t)
n 395

lie in the same one-dimensional subspace for some t, the 396

iteration (15) remains in this subspace. Thus, the formula (15) 397

exactly describes the GPM iteration (20). In addition to the 398

connection between (20) and (15), the two loss functions 399

�(V, z∗) and �(z, z∗) are also equivalent. Under the condition 400

that Vj = z̄je1 for all j ∈ [n], we have 401

�(V, z∗) = �(z, z∗). 402

Therefore, Lemma 1 directly implies that 403

�(g(z), z∗) ≤ δ1�(z, z∗) + (1 + δ2)
σ2

2np
, (21) 404

uniformly over all z ∈ Cn
1 such that �(z, z∗) < 1/16 with high 405

probability. The map g : Cn
1 → Cn

1 is defined so that (20) can 406

be shorthanded by z(t) = g(z(t−1)). 407

From (21), we know that as long as �(z(t−1), z∗) ≤ γ for 408

some γ < 1/16, the next step of power iteration (20) satisfies 409

�(z(t), z∗) ≤ δ1�(z(t−1), z∗) + (1 + δ2)
σ2

2np
. (22) 410
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The condition �(z(t−1), z∗) ≤ γ then implies �(z(t), z∗) ≤411

δ1γ+(1+δ2) σ2

2np . Given that σ2

2np is sufficiently small, we can412

always choose γ < 1/16 that satisfies σ2

2np ≤ γ
2 . Therefore,413

�(z(t), z∗) ≤ γ. Thus, a simple induction argument implies414

that (22) holds for all t ≥ 1 as long as �(z(0), z∗) ≤ γ. The415

one-step iteration bound (22) immediately implies the linear416

convergence417

�(z(t), z∗) ≤ δt
1�(z

(0), z∗) +
1 + δ2

1 − δ1

σ2

2np
, (23)418

for all t ≥ 1. It has been shown by [6] that the initial error419

condition �(z(0), z∗) ≤ γ < 1/16 is satisfied by a simple420

eigenvector method. That is, z
(0)
j = vj/|vj | with v ∈ Cn

421

being the leading eigenvector of the matrix A ◦ Y . Then, (23)422

implies �(z(t), z∗) ≤ (1 + o(1)) σ2

2np for all t ≥ log
�

1
σ2

�
.423

The optimality of the MLE can be derived from a similar424

embedding argument. Let �z be a global maximizer of (12).425

By the definition of �z, its jth entry must satisfy426

�zj = argmin
zj∈C1

�
k∈[n]\{j}

Ajk|Yjk − zj �̄zk|2427

=

�
k∈[n]\{j} AjkYjk�zk


�k∈[n]\{j} AjkYjk�zk




 ,428

as long as
�

k∈[n]\{j} AjkYjk�zk �= 0. By letting �V = e1�zH,429

it can be shown that the fixed-point equation �V = f(�V ) holds.430

Given the equivalence of the loss �(�V , z∗) = �(�z, z∗), as long431

as we can show a crude bound �(�z, z∗) ≤ γ < 1/16 for the432

MLE, the inequality (19) holds and it can be written as433

�(�z, z∗) ≤ δ1�(�z, z∗) + (1 + δ2)
σ2

2np
,434

which implies �(�z, z∗) ≤ 1+δ2
1−δ1

σ2

2np after rearrangement. The435

crude bound �(�z, z∗) ≤ γ < 1/16 can be easily established for436

the MLE using the argument in [6] or by a similar argument437

to the proof of Lemma 2, and thus we obtain the optimal error438

bound �(�z, z∗) ≤ (1 + o(1)) σ2

2np for the MLE.439

IV. SDP FOR Z2 SYNCHRONIZATION440

In this section, we show our analysis of SDP can also be441

applied to Z2 synchronization and leads to a sharp exponential442

statistical error rate. Suppose we observe a random graph443

Ajk ∼ Bernoulli(p) independently for all 1 ≤ j < k ≤ n.444

For each pair (j, k), we observe Yjk = z∗j z∗k + σWjk with445

z∗j , z∗k ∈ {−1, 1} and Wjk ∼ N (0, 1) whenever Ajk = 1.446

In Z2 synchronization, our goal is to estimate the binary447

vector z∗ ∈ {−1, 1}n from observations {Ajk}1≤j<k≤n and448

{AjkYjk}1≤j<k≤n. We organize the data into two matrices A449

and A ◦ Y . Both the matrices A and Y are symmetric as we450

define Yjk = Ykj and Ajk = Akj for all 1 ≤ k < j ≤ n and451

Yjj = Ajj = 0 for all j ∈ [n].452

With slight abuse of notation, we consider the loss function453

�(�z, z) = min
a∈{−1,1}

1
n

n�
j=1

|�zj − zja|2,454

for any �z, z ∈ {−1, 1}n. Since |�zj − zja|2 = 4I{�zj �= zja}, 455

the loss �(�z, z) is also called the misclassification proportion in 456

a clustering problem [11], [17]. We first present the minimax 457

lower bound of Z2 synchronization under this loss function. 458

Theorem 5: Assume np
σ2 > c1 and np

log n > c2 for some 459

sufficiently large constants c1, c2 > 0. Then, we have 460

inf
�Z∈Rn×n

sup
z∈{−1,1}n

Ez
1
n2

	 �Z − zzT	2
F ≥ exp

�
−(1 + δ)

np

2σ2

�
, 461

inf
�z∈{−1,1}n

sup
z∈{−1,1}n

Ez�(�z, z) ≥ exp
�
−(1 + δ)

np

2σ2

�
, 462

where δ = C
�

log n+σ2

np for some constant C > 0. 463

When p = 1, the above result has been proved by [12], 464

but the lower bound result for a general p is unknown in 465

the literature. Compared with Theorem 2, the minimax lower 466

bound for Z2 synchronization is an exponential function of 467

the signal-to-noise ratio, a consequence of the discreteness of 468

the problem. 469

To estimate z∗ ∈ {−1, 1}n, the MLE is defined as the global 470

maximizer of the following optimization problem 471

max
z∈{−1,1}n

zT(A ◦ Y )z. (24) 472

Similar to (13), a convex relaxation of (24) leads to the 473

following SDP, 474

max
Z=ZT∈Rn×n

Tr((A ◦ Y )Z) subject to diag(Z)=In and Z�0. 475

(25) 476

The SDP for Z2 synchronization is almost in the exact form 477

of (13). The only difference between (25) and (13) is that 478

the optimization (25) is over real symmetric matrices and the 479

optimization of (13) is over complex Hermitian matrices. 480

Our analysis of the SDP (25) for Z2 synchronization relies 481

on a non-convex characterization that is similar to (14). For 482

any Z that is a positive semi-definite real symmetric matrix, 483

it admits a decomposition Z = V TV for some V ∈ Rn×n. 484

By writing the jth column of V as Vj , we can replace the 485

constraint diag(Z) = In by 	Vj	2 = 1 for all j ∈ [n]. Then, 486

an equivalent non-convex form of the SDP (25) is 487

max
V ∈Rn×n

Tr((A ◦ Y )V TV ) subject to 	Vj	2 =1 for all j ∈ [n]. 488

(26) 489

We will study the solution of (26) using the following loss 490

function, 491

�(�V , z) = min
a∈Rn:�a�2=1

1
n

n�
j=1

	�Vj − zja	2. 492

By the same argument that leads to (18), we know that if 493�V is a global maximizer of (26), it will satisfy the equation 494�V = f(�V ), where f : R
n×n
1 → R

n×n
1 is a map such that the 495

jth column of f(�V ) is given by 496

[f(�V )]j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

k∈[n]\{j} AjkYjk
�V (t−1)

k����k∈[n]\{j} AjkYjk
�V (t−1)

k

���
,

if
�

k∈[n]\{j} AjkYjk
�V (t−1)
k �= 0,�V (t−1)

j , if
�

k∈[n]\{j} AjkYjk
�V (t−1)
k = 0.

497
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Here, we use the notation R
n×n
1 for set of n × n real matrices498

whose columns all have unit norms. For each j ∈ [n], define499

the random variable500

Uj =
σ

(n − 1)p

�
k∈[n]\{j}

z∗kAjkWjk.501

The following lemma characterizes the evolution of the loss502

�(V, z∗) through the map f .503

Lemma 3: Assume np
σ2 ≥ c2 and np

log n ≥ c2 for504

some sufficiently large constants c1, c2 > 0. Then, for any505

γ ∈ [0, 1/16), we have506

P

�
�(f(V ), z∗) ≤ 1

2
�(V, z∗) +

4
n

n�
j=1

I{|Uj| > 1 − δ}507

for all V ∈ R
n×n
1 such that �(V, z∗) ≤ γ

�
≥ 1 − 2n−9,508

where δ = C
�√

γ +
�

log n+σ2

np

�
for some constant C > 0.509

Lemma 3 immediately implies that for any �V that satisfies510

the fixed-point equation �V = f(�V ) and the crude error bound511

�(�V , z∗) ≤ γ < 1/16, we have512

�(�V , z∗) ≤ 8
n

n�
j=1

I{|Uj| > 1 − δ}, (27)513

with high probability. The property of the random variable514

8
n

�n
j=1 I{|Uj | > 1 − δ} can be easily analyzed, and we515

present the following lemma.516

Lemma 4: Assume np
σ2 ≥ c1 and np

log n ≥ c2 for some517

sufficiently large constants c1, c2 > 0. Then, for any δ ∈ (0, 1),518

we have519

8
n

n�
j=1

I{|Uj | > 1 − δ} ≤ exp
�
−(1 − δ�)

np

2σ2

�
,520

with probability at least 1− exp
�−�np

σ2

�− n−9, where δ� =521

C
�
δ +

�
log n
np

�
for some constant C > 0. If we additionally522

assume (1 − δ�) np
2σ2 > log n, then523

8
n

n�
j=1

I{|Uj| > 1 − δ} = 0,524

with probability at least 1 − exp
�−�np

σ2

�− n−9.525

We also need a lemma to establish a crude error bound for526

�(�V , z∗).527

Lemma 5: Assume np
log n ≥ c for some constant c > 0. Let528 �Z = �V T �V be a global maximizer of the SDP (25). Then, there529

exits some constant C > 0 such that530

�(�V , z∗) ≤ C

�
σ2 + 1

np
,531

with probability at least 1 − n−9.532

The results of Lemma 3, Lemma 4 and Lemma 5 immedi-533

ately imply the statistical optimality of the SDP (25).534

Theorem 6: Assume np
σ2 ≥ c1 and np

log n ≥ c2 for some535

sufficiently large constants c1, c2 > 0. Let �Z = �V T �V be a536

global maximizer of the SDP (25) and u ∈ Rn be the leading537

eigenvector of �Z . Define �z with each entry �zj = uj/|uj|. 538

If uj = 0 we can take �zj = 1. Then, there exists some δ = 539

C
�

log n+σ2

np

� 1
4

for some constant C > 0, such that 540

�(�V , z∗) ≤ exp
�
−(1 − δ)

np

2σ2

�
, 541

1
n2

	 �Z − z∗z∗T	2
F ≤ exp

�
−(1 − δ)

np

2σ2

�
, 542

�(�z, z∗) ≤ exp
�
−(1 − δ)

np

2σ2

�
, 543

with probability at least 1− exp
�−�np

σ2

�− 2n−9. Moreover, 544

if we additionally assume σ2 < (1 − �) np
2 log n for some 545

arbitrarily small constant � > 0, the SDP solution �Z is a rank- 546

one matrix that satisfies �Z = z∗z∗T with probability at least 547

1 − exp
�−�np

σ2

�− 2n−9. 548

While the first conclusion of the theorem is a direct con- 549

sequence of Lemma 3, the second conclusion can be derived 550

from the inequality 551

1
n2

	�V T �V − z∗z∗T	2
F ≤ 2�(�V , z∗), 552

which is established by Lemma 11 in Section V-A. The result 553

for the loss �(�z, z∗) is resulted from a matrix perturbation 554

bound [18]. 555

Theorem 6 has established the minimax optimality of the 556

SDP (25) for Z2 synchronization in view of the matching 557

lower bound results in Theorem 5. The special case p = 1 558

recovers the results of [12]. Moreover, under the condition 559

σ2 < (1 − �) np
2 log n , we show that the SDP solution �Z is 560

exactly rank-one and therefore rounding through the lead- 561

ing eigenvector is not needed. This result generalizes the 562

exact recovery threshold of Z2 synchronization when p = 1 563

[3], [19], [20]. The phenomenon that SDP can achieve exact 564

recovery has also been revealed in community detection under 565

stochastic block models [21]–[26]. 566

We shall compare Theorem 6 to Theorem 3 and Theorem 4. 567

Though the two SDPs (25) and (13) have the same type of 568

constraints, the difference of the domain implies two types of 569

convergence rates exp
�−(1 − o(1)) np

2σ2

�
and (1 + o(1)) σ2

2np . 570

It is quite surprising that the SDP (25), a continuous optimiza- 571

tion problem, is able to achieve an exponential rate, which is 572

typical for a discrete problem. The adaptation of the SDP (25) 573

to the discrete structure is a consequence of the fact that 574

both (25) and (26) are optimization problems over Rn×n. 575

We make this effect explicit by bounding the statistical error 576

by the random variable 8
n

�n
j=1 I{|Uj| > 1− δ} in Lemma 3. 577

To close this section, we briefly discuss the implications of 578

Lemma 3 on the MLE (24) and the generalized power method 579

defined by the iteration procedure 580

z
(t)
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

k∈[n]\{j} AjkYjkz
(t−1)
k����k∈[n]\{j} AjkYjkz
(t−1)
k

���
,

if
�

k∈[n]\{j} AjkYjkz
(t−1)
k �= 0,

z
(t−1)
j , if

�
k∈[n]\{j} AjkYjkz

(t−1)
k = 0.

(28) 581

We note that the iteration (28) is real-valued so that we always 582

have z
(t)
j ∈ {−1, 1}, which makes it different from (20). The 583

statistical optimality of the generalized power method (28) 584
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has been established by [11] for Z2 synchronization when585

p = 1. Following the same argument in Section III, we can586

embed both MLE and GPM into R
n×n
1 , and thus Lemma 3587

also implies that both MLE and GPM achieve the optimal rate588

exp
�−(1 − o(1)) np

2σ2

�
for a general p as well. Just as what we589

have for phase synchronization, the analyses of MLE, GPM,590

and SDP for Z2 synchronization are all based on Lemma 3,591

and thus we have unified the three different methods from an592

iterative algorithm perspective.593

V. PROOFS594

This section presents the proofs of all technical results in the595

paper. We first list some auxiliary lemmas in Section V-A. The596

key lemmas of the SDP analyses, Lemma 1 and Lemma 3, are597

proved in Section V-B and Section V-C, respectively. We then598

prove the main results including Theorem 3, Theorem 4599

and Theorem 6 in Section V-D. Theorem 5 is proved in600

Section V-E. Finally, the proofs of Lemma 2, Lemma 5 and601

Lemma 4 are given in Section V-F.602

A. Some Auxiliary Lemmas603

Lemma 6: Assume np
log n → ∞. Then, there exists a constant604

C > 0, such that605

max
j∈[n]

⎛⎝ �
k∈[n]\{j}

(Ajk − p)

⎞⎠2

≤ Cnp log n,606

and607

	A − EA	op ≤ C
√

np,608

with probability at least 1 − n−10.609

Proof: The first result is a direct application of union610

bound and Bernstein’s inequality. The second result is611

Theorem 5.2 of [27].612

The following result is essentially Corollary 3.11 of [28].613

The specific form that we need is from Lemma 5.2 in [6].614

Lemma 7 (Corollary 3.11 of [28]): Assume np
log n → ∞.615

Then, there exists a constant C > 0, such that616

	A ◦ W	op ≤ C
√

np,617

with probability at least 1 − n−10. The result holds for both618

complex W in Section II and real W in Section IV.619

Lemma 8 (Lemma 5.3 of [6]): Assume np
log n > c for620

some sufficiently large constant c > 0. Consider independent621

random variables Xjk ∼ N (0, 1) for 1 ≤ j < k ≤ n. Assume622

Xkj = Xjk for 1 ≤ j < k ≤ n. Then, we have623

n�
j=1

⎛⎝ �
k∈[n]\{j}

AjkXjk

⎞⎠2

≤ n(n − 1)p + C
�

n3p2 log n,624

with probability at least 1 − n−10. The same result holds if625

Xkj = −Xjk is assumed instead for 1 ≤ j < k ≤ n.626

Lemma 9 (Lemma 13 of [29]): Consider independent ran-627

dom variables Xj ∼ N (0, 1) and Ej ∼ Bernoulli(p). Then,628

P

⎛⎝






n�

j=1

XjEj/p







 > t

⎞⎠ ≤ 2 exp
�
−min

�
pt2

16n
,
pt

2

��
,629

for any t > 0.630

Lemma 10: The following three statements hold: 631

1) For any x, y ∈ Cn such that 	y	 = 1 and Re(yHx) > 0, 632

we have 633				 x

	x	 − y

				2

≤ 	(In − yyH)x	2 + |Im(yHx)|2
|Re(yHx)|2 . 634

2) For any x, y ∈ Rn such that 	y	 = 1 and yTx > 0, 635

we have 636				 x

	x	 − y

				2

≤ 	(In − yyT)x	2

|yTx|2 . 637

3) For any x ∈ C such that Re(x) > 0, we have 638



 x

|x| − 1




2 ≤ |Im(x)|2

|Re(x)|2 . 639

Proof: It is easy to see that the last two statements are 640

special cases of the first one. Thus, we only need to prove the 641

first statement. Note that 642				 x

	x	 − y

				2

=
				 (In − yyH)x + (yHx)y

	x	 − y

				2

643

=
	(In − yyH)x	2 + |yHx − 	x	|2

	x	2
644

=
b2 +

�
a −√

a2 + b2
�2

a2 + b2
, 645

where a, b are defined as a = Re(yHx) > 0 and b = 646�|Im(yHx)|2 + 	(In − yyH)x	2. Since 647

b2 +
�
a −√

a2 + b2
�2

a2 + b2
=

2b2

a2 + b2 + a
√

a2 + b2
≤ b2

a2
, 648

the proof is complete. 649

Lemma 11: For any V = (V1, · · · , Vn) ∈ Cn×n and any 650

z ∈ Cn
1 such that 	Vj	 = 1 for all j ∈ [n], we have 651

n−2	V HV − zzH	2
F ≤ 2�(V, z). 652

For any V = (V1, · · · , Vn) ∈ Rn×n and any z ∈ {−1, 1}n
653

such that 	Vj	 = 1 for all j ∈ [n], we have 654

n−2	V TV − zzT	2
F ≤ 2�(V, z). 655

Proof: We only prove the complex version of the inequal- 656

ity. The real version follows the same argument. By definition, 657

we have 658

�(V, z) =

�
2 − max

a∈Cn:�a�2=1

�
aH

⎛⎝ 1
n

n�
j=1

zjVj

⎞⎠ 659

+

⎛⎝ 1
n

n�
j=1

zjVj

⎞⎠H

a

��
= 2

⎛⎝1 −
						 1

n

n�
j=1

zjVj

						
⎞⎠ . 660
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Then,661

n−2	V HV − zzH	2
F662

=
1
n2

n�
j=1

n�
l=1

|V H
j Vl − zj z̄l|2663

≤ 1
n2

n�
j=1

n�
l=1

�
2 − V H

j Vlz̄jzl − V H
l Vjzj z̄l

�
664

= 2

⎛⎜⎝1 −
						 1

n

n�
j=1

zjVj

						
2
⎞⎟⎠ .665

Therefore, n−2	V HV − zzH	2
F ≤ �(V, z)

�
2 − 1

2�(V, z)
� ≤666

2�(V, z), and the proof is complete.667

B. Proof of Lemma 1668

We organize the proof into four steps. We first list a few669

high-probability events in Step 1. These events are assumed to670

be true in later steps. Step 2 provides an error decomposition671

of �(f(V ), z∗), and then each error term in the decomposition672

will be analyzed and bounded in Step 3. Finally, we combine673

the bounds and derive the desired result in Step 4.674

a) Step 1: Some high-probability events: By Lemma 6,675

Lemma 7, and Lemma 8, we know that676

min
j∈[n]

�
k∈[n]\{j}

Ajk ≥ (n − 1)p − C
�

np log n, (29)677

max
j∈[n]

�
k∈[n]\{j}

Ajk ≤ (n − 1)p + C
�

np log n, (30)678

	A − EA	op ≤ C
√

np, (31)679

	A ◦ W	op ≤ C
√

np, (32)680

681

n�
j=1








�

k∈[n]\{j}
AjkIm(W̄jk z̄∗kz∗j )








2

(33)682

≤ n2p

2

�
1 + C

�
log n

n

�
,683

n�
j=1








�

k∈[n]\{j}
AjkRe(W̄jk z̄∗kz∗j )








2

(34)684

≤ n2p

2

�
1 + C

�
log n

n

�
,685

all hold with probability at least 1 − n−9 for some686

constant C > 0. To establish (33)-(34), note that687 √
2Im(W̄jk z̄∗kz∗j ),

√
2Re(W̄jk z̄∗kz∗j ) are all independently688

standard normally distributed for 1 ≤ j < k ≤ n. We also689

have −Im(W̄jk z̄∗kz∗j ) = Im(Wjkz∗kz̄∗j ) = Im(W̄kj z̄
∗
j z∗k) and690

Re(W̄jk z̄∗kz∗j ) = Re(Wjkz∗k z̄∗j ) = Re(W̄kj z̄
∗
j z∗k) for any691

1 ≤ j < k ≤ n.692

In addition to (29)-(34), we need another high-probability693

inequality. For a sufficiently small ρ such that ρ2np
σ2 is suf-694

ficiently large, we want to upper bound the random variable695 �n
j=1 I

�
2σ
np




�k∈[n]\{j} AjkW̄jk z̄∗k



 > ρ

 
. The existence of696

such ρ is guaranteed by the condition np
σ2 is sufficiently large, 697

and the specific choice will be given later. We first bound its 698

expectation by Lemma 9, 699

n�
j=1

P

⎧⎨⎩2σ

np








�

k∈[n]\{j}
AjkW̄jk z̄∗k







 > ρ

⎫⎬⎭ 700

≤
n�

j=1

P

⎧⎨⎩2σ

np








�

k∈[n]\{j}
AjkRe(W̄jk z̄∗k)







 >
ρ

2

⎫⎬⎭ 701

+
n�

j=1

P

⎧⎨⎩2σ

np








�

k∈[n]\{j}
AjkIm(W̄jk z̄∗k)







 >
ρ

2

⎫⎬⎭ 702

≤ 4n exp
�
− ρ2np

256σ2

�
+ 4n exp

�
−ρnp

8σ

�
. 703

By Markov inequality, we have 704

n�
j=1

I

⎧⎨⎩2σ

np








�

k∈[n]\{j}
AjkW̄jk z̄∗k







 > ρ

⎫⎬⎭ 705

≤ 4σ2

ρ2p
exp

�
− 1

16

�
ρ2np

σ2

�
, (35) 706

with probability at least 707

1 − ρ2pn

σ2

�
exp

�
− ρ2np

256σ2
+

1
16

�
ρ2np

σ2

�
708

+ exp

�
−ρnp

8σ
+

1
16

�
ρ2np

σ2

��
709

≥ 1 − 2ρ2pn

σ2
exp

�
− 1

16

�
ρ2np

σ2

�
710

≥ 1 − exp

�
− 1

32

�
ρ2np

σ2

�
. 711

Finally, we conclude that the events (29)-(35) hold simultane- 712

ously with probability at least 1− n−9 − exp
�
− 1

32

�
ρ2np
σ2

�
. 713

b) Step 2: Error decomposition: For any V ∈ C
n×n
1 such 714

that �(V, z∗) ≤ γ, we can define $V ∈ Cn×n such that 715

$Vj =

�
k∈[n]\{j} AjkȲjkVk�

k∈[n]\{j} Ajk
, 716

for each j ∈ [n]. Denote �V = f(V ) then �Vj = $Vj/	$Vj	 for 717

each coordinate such that $Vj �= 0. 718

The condition �(V, z∗) ≤ γ implies there exists some b ∈ 719

Cn such that 	b	 = 1 and n�(V, z∗) = 	V − bz∗H	2
F ≤ γn. 720

By direct calculation, we can write 721

z∗j $Vj = b +

�
k∈[n]\{j} Ajkz∗k(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
722

+
σz∗j b

�
k∈[n]\{j} AjkW̄jk z̄∗k�
k∈[n]\{j} Ajk

723

+
σz∗j

�
k∈[n]\{j} AjkW̄jk(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
724
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= b +
1

n − 1

n�
k=1

z∗k(Vk − z̄∗kb) − 1
n − 1

z∗j (Vj − z̄∗j b)725

+

��
k∈[n]\{j} Ajkz∗k(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
726

− 1
n − 1

n�
k=1

z∗k(Vk − z̄∗kb)

�
727

+
σz∗j b

�
k∈[n]\{j} AjkW̄jk z̄∗k�
k∈[n]\{j} Ajk

728

+
σz∗j

�
k∈[n]\{j} AjkW̄jk(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
.729

Now we define a0 = b + 1
n−1

�n
k=1 z∗k(Vk − z̄∗kb) and a =730

a0/	a0	, and we have731

z∗j aH $Vj = 	a0	 − 1
n − 1

z∗j aH(Vj − z̄∗j b) (36)732

+aHFj + aHbGj + aHHj ,733

	(In − aaH)$Vj	 ≤ 1
n − 1

	Vj − z̄∗j b	 + 	Fj	 (37)734

+	(In − aaH)b	|Gj | + 	Hj	,735

where736

Fj =

�
k∈[n]\{j} Ajkz∗k(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
737

− 1
n − 1

n�
k=1

z∗k(Vk − z̄∗kb),738

Gj =
σz∗j

�
k∈[n]\{j} AjkW̄jk z̄∗k�

k∈[n]\{j} Ajk
,739

Hj =
σz∗j

�
k∈[n]\{j} AjkW̄jk(Vk − z̄∗kb)�

k∈[n]\{j} Ajk
.740

By Lemma 10, we have the bound741

	�Vj − z̄∗j a	2 ≤ 	(In − aaH)$Vj	2 + |Im(z∗j aH $Vj)|2
|Re(z∗j aH $Vj)|2

, (38)742

whenever Re(z∗j aH $Vj) > 0 holds. Since743

	a0 − b	 =

					 1
n − 1

n�
k=1

z∗k(Vk − z̄∗kb)

					744

≤ 1
n − 1

√
n	V − bz∗H	F745

≤ n

n − 1
√

γ ≤ 2
√

γ,746

we have 	a − b	 ≤ 2	a0 − b	 ≤ 4
√

γ. Therefore,747

	a0	 ≥ 	b	 − 	a0 − b	 ≥ 1 − 2
√

γ, (39)748

|aHb − 1| = |(a − b)Hb| ≤ 	a − b	 ≤ 4
√

γ, (40)749

	(In − aaH)b	 ≤ 	a − b	 + |aHb − 1| ≤ 8
√

γ. (41)750

We also have751 



 1
n − 1

z∗j aH(Vj − z̄∗j b)




 ≤ 1

n − 1
	Vj − z̄∗j b	 ≤

√
γn

n − 1
.752

(42)753

Therefore, as long as 	Fj	 ∨ |Gj | ∨ 	Hj	 ≤ ρ, we have 754

Re
�
z∗j aH $Vj

�
≥1−2

√
γ−

√
γn

n − 1
−3ρ ≥ 1−3(

√
γ+ρ)>0, 755

(43) 756

where we have used (36), (39), and (42), and the last inequality 757

is due to the assumption that γ < 1/16 and ρ is sufficiently 758

small. Hence, the event {$Vj = 0} is included in the event 759

{	Fj	 ∨ |Gj | ∨ 	Hj	 > ρ}. 760

By (38), we obtain the bound 761

	�Vj − z̄∗j a	2
762

≤ 	(In − aaH)$Vj	2 + |Im(z∗j aH $Vj)|2
|Re(z∗j aH $Vj)|2

763

× I{	Fj	 ∨ |Gj | ∨ 	Hj	 ≤ ρ} 764

+ 4I{	Fj	 ∨ |Gj | ∨ 	Hj	 > ρ} 765

≤
�

1
n−1	Vj − z̄∗j b	 + 	Fj	 + 8

√
γ|Gj | + 	Hj	

�2

(1 − 3(
√

γ + ρ))2
766

+

�
1

n−1	Vj − z̄∗j b	 + 	Fj	 + |Im(aHbGj)| + 	Hj	
�2

(1 − 3(
√

γ + ρ))2
767

+ 4I{	Fj	 > ρ} + 4I{|Gj| > ρ} + 4I{	Hj	 > ρ} 768

≤ (1 + η)|Im(aHbGj)|2 + 256γ|Gj|2
(1 − 3(

√
γ + ρ))2

769

+
(7 + 4η−1)

�
1

(n−1)2 	Vj − z̄∗j b	2 + 	Fj	2 + 	Hj	2
�

(1 − 3(
√

γ + ρ))2
770

+ 4I{	Fj	 > ρ} + 4I{|Gj| > ρ} + 4I{	Hj	 > ρ}, 771

for some η to be specified later. The last inequality above is 772

due to Jensen’s inequality. 773

c) Step 3: Analysis of each error term: Next, we will 774

analyze the error terms Fj , Hj and Gj separately. By triangle 775

inequality, (29) and (30), we have 776

	Fj	 777

≤
					
�

k∈[n]\{j}(Ajk − p)z∗k(Vk − z̄∗kb)�
k∈[n]\{j} Ajk

					 778

+

						p
�

k∈[n]\{j}
z∗k(Vk − z̄∗kb)

						





 1�

k∈[n]\{j} Ajk
− 1

(n − 1)p






 779

≤ 2
np

						
�

k∈[n]\{j}
(Ajk − p)z∗k(Vk − z̄∗kb)

						 780

+ p
√

n	V − bz∗H	F

2



�k∈[n]\{j}(Ajk − p)





n2p2

781

≤ 2
np

						
�

k∈[n]\{j}
(Ajk − p)z∗k(Vk − z̄∗kb)

						 782

+ C1

√
p log n

np
	V − bz∗H	F. 783
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Using (31), we have784

n�
j=1

	Fj	2 ≤ 8
n2p2

n�
j=1

						
�

k∈[n]\{j}
(Ajk − p)z∗k(Vk − z̄∗kb)

						785

+ 2C2
1

log n

np
	V − bz∗H	2

F786

≤ 8
n2p2

	A − EA	2
op	V − bz∗H	2

F787

+ 2C2
1

log n

np
	V − bz∗H	2

F788

≤ C2
log n

np
	V − bz∗H	2

F. (44)789

The above bound also implies790

n�
j=1

I{	Fj	 > ρ} ≤ ρ−2
n�

j=1

	Fj	2 ≤ C2

ρ2

log n

np
	V − bz∗H	2

F.791

Similarly, we can also bound the error terms that depend792

on Hj . By (29) and (32), we have793

n�
j=1

	Hj	2 ≤ 2σ2

n2p2

n�
j=1

						
�

k∈[n]\{j}
AjkW̄jk(Vk − z̄∗kb)

						
2

794

=
2σ2

n2p2
	(V − bz∗H)(A ◦ W )H	2

F795

≤ 2σ2

n2p2
	A ◦ W	2

op	V − bz∗H	2
F796

≤ C3
σ2

np
	V − bz∗H	2

F, (45)797

and thus798

n�
j=1

I{	Hj	 > ρ} ≤ ρ−2
n�

j=1

	Hj	2 ≤ C3

ρ2

σ2

np
	V − bz∗H	2

F.799

For the contribution of Gj , we use (29) and (35), and have800

n�
j=1

I{|Gj | > ρ}801

≤
n�

j=1

I

⎧⎨⎩2σ

np








�

k∈[n]\{j}
AjkW̄jk z̄∗k







 > ρ

⎫⎬⎭802

≤ 4σ2

ρ2p
exp

�
− 1

16

�
ρ2np

σ2

�
. (46)803

Next, we study the main error term |Im(aHbGj)|2. By (29),804

we have805

n�
j=1

|Im(aHbGj)|2806

≤
�

1 + C4

�
log n

np

�2

σ2

n2p2

n�
j=1

807








�

k∈[n]\{j}
AjkIm(W̄jkz∗j z̄∗kaHb)








2

808

≤ (1 + η)

�
1 + C4

�
log n

np

�2

σ2

n2p2

n�
j=1

809








�

k∈[n]\{j}
AjkIm(W̄jkz∗j z̄∗k)








2

810

+ (1 + η−1)

�
1 + C4

�
log n

np

�2

σ2

n2p2

n�
j=1

811








�

k∈[n]\{j}
AjkRe(W̄jkz∗j z̄∗k)








2

|Im(aHb)|2. 812

By (40), we have 813

|Im(aHb)| = |Im(aHb − 1)| ≤ |aHb − 1| ≤ 4
√

γ. 814

Together with (33) and (34), we have 815

n�
j=1

|Im(aHbGj)|2 ≤
�

1 + C5

�
η + η−1γ +

�
log n

np

��
σ2

2p
. 816

(47) 817

We also have 818

n�
j=1

|Gj |2 ≤ 2σ2

n2p2

n�
j=1








�

k∈[n]\{j}
AjkW̄jkz∗j z̄∗k








2

≤ C6
σ2

p
, 819

(48) 820

by (33) and (34). 821

d) Step 4: Combining the bounds: Plugging all the 822

individual error bounds obtained in Step 3 into the error 823

decomposition in Step 2, we obtain 824

n�(�V , z∗) 825

≤
n�

j=1

	�Vj − z̄∗j a	2
826

≤
�

1 + C7

�
ρ + η +

√
γ + η−1γ +

�
log n

np

��
σ2

2p
827

+
16σ2

ρ2p
exp

�
− 1

16

�
ρ2np

σ2

�
828

+ C7

�
η−1 + ρ−2

� log n + σ2

np
n�(V, z∗). 829

We set 830

η =

�
γ +

log n + σ2

np
and ρ2 =

√
32

�
log n + σ2

np
. 831

Then, since ρ2np
σ2 is sufficiently large, we have 832

16σ2

ρ2p
exp

�
− 1

16

�
ρ2np

σ2

�
≤ σ2

ρ2p

�
σ2

ρ2np

�2

≤ σ2

p

�
σ2

np
. 833
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Therefore, we have834

�(�V , z∗) ≤
�

1 + C8

�
γ2 +

log n + σ2

np

�1/4
�

σ2

2np
835

+ C8

�
log n + σ2

np
�(V, z∗).836

Since the above inequality is derived from the conditions837

(29)-(35) and �(V, z∗) ≤ γ, it holds uniformly over all838

V ∈ C
n×n
1 such that �(V, z∗) ≤ γ with probability at least839

1 − n−9 − exp
�
− �np

σ2

�1/4
�

. The proof is complete.840

C. Proof of Lemma 3841

Similar to the proof of Lemma 1, we organize the proof of842

Lemma 3 into four steps.843

a) Step 1: Some high-probability events: We already844

know that (29), (30) and (31) hold with probability at least845

1 − n−9. We also have846

	A ◦ W	op ≤ C
√

np, (49)847

with probability at least 1 − n−9 by Lemma 7. Note that848

the matrix W in (49) is real-valued, compared with the849

complex version of the bound (32). Another high-probability850

event we need is for the random variable
�n

j=1



�
k∈[n]\{j}851

AjkWjkz∗j z∗k


2. By Lemma 8 and with a similar analysis that852

leads to (34), we can conclude that with probability at least853

1 − n−9,854

n�
j=1








�

k∈[n]\{j}
AjkWjkz∗j z∗k








2

≤ n2p

�
1 + C

�
log n

n

�
.855

(50)856

In the end, we conclude that the events (29), (30), (31), (49)857

and (50) hold simultaneously with probability at least 1 −858

2n−9.859

b) Step 2: Error decomposition: For any V ∈ R
n×n
1 such860

that �(V, z∗) ≤ γ, we can write �V = f(V ) with each column861 �Vj = $Vj/	$Vj	, where862

$Vj =

�
k∈[n]\{j} AjkYjkVk�

k∈[n]\{j} Ajk
.863

The condition �(V, z∗) ≤ γ implies there exists some b ∈ Rn
864

such that 	b	 = 1 and n�(V, z∗) = 	V − bz∗T	2
F ≤ γn.865

By direct calculation, we can write866

z∗j $Vj = b +
1

n − 1

n�
k=1

z∗k(Vk − z∗kb) − 1
n − 1

z∗j (Vj − z∗j b)867

+

��
k∈[n]\{j} Ajkz∗k(Vk − z∗kb)�

k∈[n]\{j} Ajk
868

− 1
n − 1

n�
k=1

z∗k(Vk − z∗kb)

�
869

+
σz∗j b

�
k∈[n]\{j} AjkWjkz∗k�
k∈[n]\{j} Ajk

870

+
σz∗j

�
k∈[n]\{j} AjkWjk(Vk − z∗kb)�

k∈[n]\{j} Ajk
.871

Now we define a0 = b + 1
n−1

�n
k=1 z∗k(Vk − z∗kb) and a = 872

a0/	a0	, and we have 873

z∗j aT $Vj = 	a0	 − 1
n − 1

z∗j aT(Vj − z∗j b) + aTFj 874

+ aTbGj + aTHj , 875

	(In − aaT)$Vj	 ≤ 1
n − 1

	Vj − z∗j b	 + 	Fj	 876

+ 	(In − aaT)b	|Gj | + 	Hj	, 877

where 878

Fj =

�
k∈[n]\{j} Ajkz∗k(Vk − z∗kb)�

k∈[n]\{j} Ajk
879

− 1
n − 1

n�
k=1

z∗k(Vk − z∗kb), 880

Gj =
σz∗j

�
k∈[n]\{j} AjkWjkz∗k�

k∈[n]\{j} Ajk
, 881

Hj =
σz∗j

�
k∈[n]\{j} AjkWjk(Vk − z∗kb)�

k∈[n]\{j} Ajk
. 882

By Lemma 10, we have the bound 883

	�Vj − z∗j a	2 ≤ 	(In − aaT)$Vj	2

|z∗j aT $Vj |2
, (51) 884

whenever z∗j aT $Vj > 0 holds. Since 885

	a0 − b	 =

					 1
n − 1

n�
k=1

z∗k(Vk − z∗kb)

					 886

≤ 1
n − 1

√
n	V − bz∗T	F ≤ 2√

n
	V − bz∗T	F, 887

we have 	a− b	 ≤ 2	a0 − b	 ≤ 4√
n
	V − bz∗T	F. Therefore, 888

	a0	 ≥ 	b	 − 	a0 − b	 ≥ 1 − 2√
n
	V − bz∗T	F, 889

(52) 890

|aTb − 1| = |(a − b)Tb| ≤ 	a − b	 ≤ 4√
n
	V − bz∗T	F, 891

(53) 892

	(In − aaT)b	 ≤ 	a − b	 + |aTb − 1| ≤ 8√
n
	V − bz∗T	F. 893

(54) 894

We also have 895



 1
n − 1

z∗j aT(Vj − z∗j b)




 ≤ 1

n − 1
	Vj − z∗j b	 896

≤ 1
n − 1

	V − bz∗T	F. (55) 897

Therefore, as long as 	Fj	 ∨ 	Hj	 ≤ ρ and |Gj | ≤ 1 − 4ρ, 898

we have 899

z∗j aT $Vj ≥ 1 − 2√
n
	V − bz∗T	F − 1

n − 1
	V − bz∗T	F 900

− 	Fj	 − |Gj | − 	Hj	 901

≥ 1 − 3
√

γ − 2ρ− (1 − 4ρ) 902

≥ ρ, 903
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where we have used (52) and (55), and we set ρ to satisfy904

ρ ≥ 3
√

γ. The specific choice of ρ will be given later. Hence,905

the event {$Vj = 0} is included in the event {	Fj	 ∨ 	Hj	 >906

ρ or |Gj | > 1 − 4ρ}.907

By (51), we obtain the bound908

	�Vj − z∗j a	2
909

≤ 	(In − aaT)$Vj	2

|z∗j aT $Vj |2
I{	Fj	 ∨ 	Hj	 ≤ ρ, |Gj | ≤ 1 − 4ρ}910

+ 4I{	Fj	 ∨ 	Hj	 > ρ or |Gj | > 1 − 4ρ}911

≤ 1
ρ2

�
1

n − 1
	Vj − z∗j b	 + 	Fj	912

+ 	(In − aaT)b	|Gj | + 	Hj	
�2

913

+ 4I{	Fj	 > ρ} + 4I{|Gj | > 1 − 4ρ} + 4I{	Hj	 > ρ}914

≤ 4	Vj − z∗j b	2

ρ2(n − 1)2
+

4	Fj	2

ρ2
+

4	(In − aaT)b	2|Gj |2
ρ2

915

+
4	Hj	2

ρ2
+

4	Fj	2

ρ2
+

4	Hj	2

ρ2
+ 4I{|Gj | > 1 − 4ρ}916

≤ 4	Vj − z∗j b	2

ρ2(n − 1)2
+

8	Fj	2

ρ2
+

256	V − bz∗T	2
F|Gj |2

nρ2
917

+
8	Hj	2

ρ2
+ 4I{|Gj | > 1 − 4ρ}.918

We have used (54), Jensen’s inequality and Markov’s inequal-919

ity in the above derivation.920

c) Step 3: Analysis of each error term: Next, we will921

analyze the error terms Fj , Hj and Gj separately. Following922

the same analysis that leads to (44), (45) and (48), we have923

n�
j=1

	Fj	2 ≤ C1
log n

np
	V − bz∗H	2

F,924

n�
j=1

	Hj	2 ≤ C2
σ2

np
	V − bz∗H	2

F,925

n�
j=1

|Gj |2 ≤ C3
σ2

p
.926

Note that the above three bounds are based on the events (29),927

(30), (31), (49) and (50).928

d) Step 4: Combining the bounds: Plugging all the929

individual error bounds obtained in Step 3 into the error930

decomposition in Step 2, we obtain931

n�(�V , z∗)932

≤
n�

j=1

	�Vj − z∗j a	2
933

≤
�

4
ρ2(n − 1)2

+
8C1 log n + (8C2 + 256C3)σ2

ρ2np

�
n�(V, z∗)934

+ 4
n�

j=1

I{|Gj | > 1 − 4ρ}.935

Set 936

ρ2 =
�

C4
log n + σ2

np

�
∨ (3γ) , 937

for some sufficiently large constant C4 such that 4
ρ2(n−1)2 + 938

8C1 log n+(8C2+256C3)σ2

ρ2np ≤ 1
2 . Then, we have 939

�(�V , z∗) 940

≤ 1
2
�(V, z∗) +

4
n

n�
j=1

I{|Gj | > 1 − 4ρ} 941

≤ 1
2
�(V, z∗) +

4
n

n�
j=1

I

%
σ

(n − 1)p








�

k∈[n]\{j}
z∗kAjkWjk







 > 942

�
1 − C5

�
log n + σ2

np
−
�

3γ

�&
, 943

where the last inequality is by (29) and (30). Note that 944

log n+σ2

np is sufficiently small and γ < 1/16, we have δ < 1 945

with δ = C5

�
log n+σ2

np +
√

3γ. Since the above about is 946

derived from the conditions (29), (30), (31), (49) and (50) and 947

�(V, z∗) ≤ γ, it holds uniformly over all V ∈ R
n×n
1 such that 948

�(V, z∗) ≤ γ with probability at least 1 − 2n−9. The proof is 949

complete. 950

D. Proofs of Theorem 3, Theorem 4, and Theorem 6 951

Proof of Theorem 3: We obtain (19) as a consequence 952

of Lemma 1 and Lemma 2, which immediately implies the 953

first conclusion. The second conclusion is a consequence of 954

Lemma 11. 955

Proof of Theorem 4: By Theorem 3, we have 	�V − 956

bz∗H	2
F ≤ σ2

p with high probability for some b ∈ Cn such 957

that 	b	 = 1. Since �V = f(�V ), we can follow the same 958

analysis in the proof of Lemma 1 and obtain the bound 959

	�V − az∗H	2
F ≤ (1 + δ)

σ2

2p
, (56) 960

with high probability, where δ = C
�

log n+σ2

np

�1/4

and a = 961

a0/	a0	 with a0 = b + 1
n−1

�n
k=1 z∗k(�Vk − z̄∗kb). Let $z = 962�V H�a where �a is the leading left singular vector of �V . By the 963

definition of �z, we can write �zj = $zj/|$zj | for all j ∈ [n] with 964

non-zero $zj . 965

By (56) and Wedin’s sin-theta theorem [30], we have 966

	�a− ha	2 ≤ 	�V − az∗H	2
F

n
≤ σ2

np
, (57) 967

form some h ∈ C1. Define d0 = aH�a and d = d0/|d0|. With 968$zj = �V H
j �a, we have 969

$zj z̄
∗
j d̄ = |d0|+ hd̄z̄∗j (�Vj − z̄∗j a)Ha + d̄(�Vj − z̄∗j a)H(�a− ha)z̄∗j .

(58) 970

By Lemma 10, we have the bound 971

|�zj − dz∗j |2 =






 $zj z̄
∗
j d̄

|$zj z̄∗j d̄| − 1







2

≤ |Im($zj z̄
∗
j d̄)|2

|Re($zj z̄∗j d̄)|2 , (59) 972
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as long as Re($zj z̄
∗
j d̄) > 0. By (57), we have |d0| ≥973

Re(h�aHa) ≥ 1 − σ2

2np and |d̄(�Vj − z̄∗j a)H(�a − ha)z̄∗j | ≤974 �
σ2

np	�Vj − z̄∗j a	. Moreover,975

|hd̄z̄∗j (�Vj − z̄∗j a)Ha| ≤ |(�Vj − z̄∗j a)Ha| = |�V H
j az̄∗j − 1|976

= |aH �Vjz
∗
j − 1|.977

Therefore,978

Re($zj z̄
∗
j d̄) ≥ 1− σ2

2np
−|aH �Vjz

∗
j−1|−

�
σ2

np
	�Vj−z̄∗j a	. (60)979

In the following, we are going to establish a lower bound980

for (60) using some similar analysis as in the proof of981

Lemma 1. Since �V = f(�V ), we can write �Vj = $Vj/	$Vj	982

for all non-zero $Vj , where983

$Vj =

�
k∈[n]\{j} AjkYjk

�Vk�
k∈[n]\{j} Ajk

.984

Similar to the decomposition (36), we can write985

aH$Vjz
∗
j =	a0	− 1

n−1
z∗j aH(�Vj−z̄∗j b)+aHFj +aHbGj+aHHj ,986

where987

Fj =

�
k∈[n]\{j} Ajkz∗k(�Vk−z̄∗kb)�

k∈[n]\{j} Ajk
− 1

n−1

n�
k=1

z∗k(�Vk−z̄∗kb),988

Gj =
σz∗j

�
k∈[n]\{j} AjkW̄jk z̄∗k�

k∈[n]\{j} Ajk
,989

Hj =
σz∗j

�
k∈[n]\{j} AjkW̄jk(�Vk − z̄∗kb)�

k∈[n]\{j} Ajk
.990

By the same argument that leads to (43) with γ = σ2

np , for any991

ρ > 0, we know that as long as 	Fj	 ∨ |Gj | ∨ 	Hj	 ≤ ρ,992

we have993

|Re(aH $Vjz
∗
j ) − 1| ≤ 3ρ + 3

�
σ2

np
. (61)994

Moreover,995

|Im(aH $Vjz
∗
j )|996

≤ 1
n − 1

	�Vj − z̄∗j b	 + 	Fj	 + |Im(aHbGj)|2 + 	Hj	997

≤ 1
n − 1

�
σ2

p
+ 	Fj	 + |Im(aHbGj)|2 + 	Hj	998

≤ 1
n − 1

�
σ2

p
+ 3ρ. (62)999

By a similar bound to (37), we also have1000

	(In − aaH)$Vj	 ≤ 1
n − 1

	�Vj − z̄∗j b	 + 	Fj	 + |Gj | + 	Hj	1001

≤ 1
n − 1

�
σ2

p
+ 3ρ.1002

With the decomposition 	$Vj	2 = 	(In − aaH)$Vj	2 + 1003

|Im(aH $Vjz
∗
j )|2 + |Re(aH $Vjz

∗
j )|2, we have 1004


	$Vj	2 − 1




 1005

≤ 	(In − aaH)$Vj	2 + |Im(aH $Vjz
∗
j )|2 +




|Re(aH $Vjz
∗
j )|2 − 1




 1006

≤ 4ρ + 4

�
σ2

np
. (63) 1007

Let ρ be a sufficiently small with explicit expression to be 1008

given later. Together with the assumption that σ2

np is also suffi- 1009

ciently small, both (61) and (63) can be upper bounded by 1/2, 1010

which implies Re(aH $Vjz
∗
j ) > 1/2 and 'Vj �= 0 respectively. 1011

Then �Vj = $Vj/	$Vj	 leads to the bound 1012

|aH �Vjz
∗
j − 1| 1013

≤





Re(aH $Vjz

∗
j ) − 	$Vj	

	$Vj	






+ |Im(aH $Vjz
∗
j )|

	$Vj	
1014

≤





Re(aH $Vjz

∗
j ) − 1

	$Vj	






+





1 − 	$Vj	

	$Vj	






+ |Im(aH $Vjz
∗
j )|

	$Vj	
1015

≤ C1

�
ρ +

�
σ2

np

�
, 1016

where we use (61)-(63). By Lemma 10, we have the bound 1017

	�Vj − z̄∗j a	2 ≤ 	(In − aaH)$Vj	2 + |Im(z∗j aH $Vj)|2
|Re(z∗j aH $Vj)|2

1018

≤ C2

�
ρ2 +

σ2

n2p

�
. (64) 1019

Plugging the above two bounds into (60), we have 1020

Re($zj z̄
∗
j d̄) ≥ 1 − C3

�
ρ +

�
σ2

np

�
, 1021

which is positive since ρ and σ2

np are sufficiently small. 1022

Therefore, we have Re($zj z̄
∗
j d̄) > 0 and the bound (59) holds 1023

when 	Fj	 ∨ |Gj | ∨ 	Hj	 ≤ ρ. Also this implies the event 1024

{$zj = 0} is included in the event {	Fj	 ∨ |Gj | ∨ 	Hj	 > ρ}. 1025

As a consequence, we have 1026

|�zj − dz∗j |2 1027

≤ |Im($zj z̄
∗
j d̄)|2�

1 − C3

�
ρ +

�
σ2

np

��2 I{	Fj	 ∨ |Gj | ∨ 	Hj	 ≤ ρ} 1028

+ 4I{	Fj	 ∨ |Gj | ∨ 	Hj	 > ρ}. 1029

Now we need to bound |Im($zj z̄
∗
j d̄)| according to the 1030

expansion (58). We have 1031

|Im($zj z̄
∗
j d̄)| 1032

≤



Im(z̄∗j (�Vj − z̄∗j a)Ha)




+ |Im(hd̄)|



Re(z̄∗j (�Vj − z̄∗j a)Ha)




 1033

+ 	�Vj − z̄∗j a		�a− ha	. (65) 1034

By (57) and (64), the third term in the bound (65) can 1035

be further bounded by C2

�
σ2

np

�
ρ +

�
σ2

n2p

�
. To bound the 1036
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second term on the right hand side of (65), we have1037

|Im(hd̄)| ≤ |Im(haH�a)| ≤ �
1 − |Re(haHa)|2 ≤1038 �

σ2

np by (57). Together with (61), we obtain the bound1039

3
�

σ2

np

�
ρ +

�
σ2

np

�
. By (63), we can bound the first term in1040

the bound (65) by1041 


Im(z̄∗j (�Vj − z̄∗j a)Ha)



 =




Im(�V H
j az̄∗j )




 =



Im(aH �Vjz

∗
j )



1042

≤




Im(aH $Vjz
∗
j )





1 − 4
�
ρ +

�
σ2

np

� .1043

Then, we have1044

|�zj − dz∗j |21045

≤
�

1 + C4

�
ρ +

�
σ2

np

��


Im(aH $Vjz
∗
j )



21046

+ C5
σ2

np

�
ρ2 +

σ2

np

�
+ 4I{	Fj	 ∨ |Gj | ∨ 	Hj	 > ρ}1047

≤
�

1 + C6

�
ρ +

�
σ2

np
+ η

��
|Im(aHbGj)|21048

+ C7η
−1

�
σ2

n2p
+ 	Fj	2 + 	Hj	2

�
1049

+ C5
σ2

np

�
ρ2+

σ2

np

�
+4ρ−2

�	Fj	2+	Hj	2
�
+4I{|Gj| > ρ},1050

for some η to be specified later, where the last inequality is1051

by (62). Summing over j ∈ [n], we obtain1052

n�(�z, z∗) ≤
n�

j=1

|�zj − dz∗j |21053

≤
�

1 + C6

�
ρ +

�
σ2

np
+ η

��
n�

j=1

|Im(aHbGj)|21054

+ C7η
−1 σ2

np
+ C5

σ2

p

�
ρ2 +

σ2

np

�
1055

+ (C7η
−1 + 4ρ−2)

n�
j=1

�	Fj	2 + 	Hj	2
�

1056

+ 4
n�

j=1

I{|Gj | > ρ}.1057

By the same argument that leads to the bound (44)-(47) (with1058

γ = σ2

np in (47)), we have1059

n�
j=1

(	Fj	2 + 	Hj	2) ≤ C� log n

np
	�V − bz∗H	2

F ≤ C� log n

np

σ2

p
,1060

n�
j=1

I{|Gj | > ρ} ≤ 4σ2

ρ2p
exp

�
− 1

16

�
ρ2np

σ2

�
,1061

n�
j=1

|Im(aHbGj)|2 ≤
�

1 + C��
�

η + η−1 σ2

np
1062

+

�
log n

np

��
σ2

2p
.1063

Take η = ρ2 =
�

log n+σ2

np , and we have some constant 1064

C��� > 0 such that 1065

�(�z, z∗) ≤
�

1 + C���
�

log n + σ2

np

�1/4
�

σ2

2np
. 1066

Note that the above bound is derived from conditions 1067

(29)-(34), and thus the result holds with high probability. 1068

Proof of Theorem 6: The first conclusion is an imme- 1069

diate consequence of Lemma 3, Lemma 4 and Lemma 5. 1070

By Lemma 11, we also obtain the second conclusion. For 1071

the last conclusion, we have |�zj − z∗j | ≤ 2|√nuj − z∗j | and 1072

|�zj + z∗j | ≤ 2|√nuj + z∗j | by the definition of �zj . Then, 1073

�(�z, z∗) ≤ 4
�	u − z∗/

√
n	2 ∧ 	u + z∗/

√
n	2

�
1074

≤ 16
n2

	 �Z − z∗z∗T	2
F, 1075

by Davis-Kahan theorem [18]. Thus, we can derive the third 1076

conclusion from the second one. Finally, when σ2 < (1 − 1077

�) np
2 log n , we know from (27) and Lemma 4 that �(�V , z∗) = 0. 1078

Lemma 11 implies that 	 �Z−z∗z∗T	2
F = 0 and thus �Z = z∗z∗T

1079

is a rank-one matrix. 1080

E. Proof of Theorem 5 1081

Since �(�z, z) = 2
�
1 − 1

n |�zTz|� and n−2	�z�zT − zzT	2
F = 1082

2
�
1 − 1

n2 |�zTz|2�, we have 1083

n−2	�z�zT − zzT	2
F = �(�z, z)

�
1 +

1
n
|�zTz|

�
≤ 2�(�z, z), 1084

and thus 1085

inf
�z∈{−1,1}n

sup
z∈{−1,1}n

Ez�(�z, z) 1086

≥ inf
�z∈{−1,1}n

sup
z∈{−1,1}n

Ez
1

2n2
	�z�zT − zzT	2

F 1087

≥ 1
2

inf
�Z∈Rn×n

sup
z∈{−1,1}n

Ez
1
n2

	 �Z − zzT	2
F. 1088

It suffices to prove a lower bound for the loss 	 �Z − zzT	2
F. 1089

We lower bound the minimax risk by a Bayes risk 1090

inf
�Z∈Rn×n

sup
z∈{−1,1}n

Ez
1
n2

	 �Z − zzT	2
F 1091

≥ inf
�Z∈Rn×n

1
2n

�
z∈{−1,1}n

Ez
1
n2

	 �Z − zzT	2
F 1092

≥ 1
n2

�
1≤j 	=k≤n

1
2n−2

�
z−(j,k)∈{−1,1}n−2

1093

inf
�T

1
4

�
zj∈{−1,1}

�
zk∈{−1,1}

Ez| �T − zjzk|2, 1094
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where z−(j,k) is a sub-vector of z by excluding the jth and1095

the kth entries. For each z−(j,k), we have1096

inf
�T

�
zj∈{−1,1}

�
zk∈{−1,1}

Ez | �T − zjzk|21097

≥ inf
�T

�
E(z−(j,k),zj=1,zk=−1)| �T + 1|21098

+E(z−(j,k),zj=1,zk=1)| �T − 1|2
�

1099

≥ 2
(

dP(z−(j,k),zj=1,zk=−1) ∧ dP(z−(j,k),zj=1,zk=1),1100

where the last inequality is due to the classical Le Cam’s1101

two-point method. The total variation affinity characterizes1102

the optimal testing error between two simple hypotheses of1103

zk = −1 versus zk = 1 with the values of all other parameters1104

are known. By Neyman-Pearson lemma, we have1105 (
dP(z−(j,k),zj=1,zk=−1) ∧ dP(z−(j,k),zj=1,zk=1)1106

≥ P(z−(j,k),zj=1,zk=−1)

�
dP(z−(j,k),zj=1,zk=1)

dP(z−(j,k),zj=1,zk=−1)
> 1

�
1107

= P(z−(j,k),zj=1,zk=−1)

⎛⎝ �
j∈[n]\{k}

zjAjkYjk > 0

⎞⎠1108

= P

⎛⎝σ
�

j∈[n]\{k}
zjAjkWjk >

�
j∈[n]\{k}

Ajk

⎞⎠ .1109

Let A be the collections of A’s that satisfy the conclusions of1110

Lemma 6, and we know that P(A) ≥ 1 − n−10. Let PA be1111

the shorthand of the conditional probability P(·|A). For each1112

A ∈ A, a standard Gaussian tail bound implies1113

PA

⎛⎝σ
�

j∈[n]\{k}
zjAjkWjk >

�
j∈[n]\{k}

Ajk

⎞⎠1114

≥ exp
�
−(1 + δ)

np

2σ2

�
,1115

where δ = C
�

log n+σ2

np for some constant C > 0. This1116

implies1117

P

⎛⎝σ
�

j∈[n]\{k}
zjAjkWjk >

�
j∈[n]\{k}

Ajk

⎞⎠1118

≥ inf
A∈A

PA

⎛⎝σ
�

j∈[n]\{k}
zjAjkWjk >

�
j∈[n]\{k}

Ajk

⎞⎠P(A)1119

≥ 1
2

exp
�
−(1 + δ)

np

2σ2

�
.1120

Therefore,1121

inf
�z∈{−1,1}n

sup
z∈{−1,1}n

Ez�(�z, z)1122

≥ 1
2

inf
�Z∈Rn×n

sup
z∈{−1,1}n

Ez
1
n2

	 �Z − zzT	2
F1123

≥ 1
16

exp
�
−(1 + δ)

np

2σ2

�
.1124

By absorbing the constant 1/16 into the exponent, the proof1125

is complete.1126

F. Proofs of Lemma 2, Lemma 5, and Lemma 4 1127

Proof of Lemma 2: By the definition of �Z = �V H �V , 1128

we have Tr((A ◦Y ) �Z) ≥ Tr((A ◦Y )z∗z∗H). Rearranging this 1129

inequality, we obtain 1130

Tr(z∗z∗H(z∗z∗H − �Z)) 1131

≤ Tr
�
(A ◦ Y/p − z∗z∗H)( �Z − z∗z∗H)

�
. (66) 1132

The right hand side of (66) can be bounded by 1133


Tr
�
(A ◦ Y/p − z∗z∗H) �Z�


 1134

+ |Tr ((A ◦ Y/p − z∗z∗H)z∗z∗H)| 1135

≤ 	A ◦ Y/p − z∗z∗H	op Tr( �Z) 1136

+	A ◦ Y/p − z∗z∗H	op Tr(z∗z∗H) 1137

= 2n	A ◦ Y/p − z∗z∗H	op 1138

≤ 2n

�
1
p
	(A − EA) ◦ z∗z∗H	op +

σ

p
	A ◦ W	op

�
. 1139

By Lemma 6, 1140

	(A − EA) ◦ z∗z∗H	op 1141

= sup
�u�=1








�

1≤j 	=k≤n

(Ajk − p)z∗j z̄∗kuj ūk







 1142

≤ 	A − EA	op 1143

≤ C1
√

np, 1144

with probability at least 1−n−10. By Lemma 7, 	A◦W	op ≤ 1145

C2
√

np with probability at least 1 − n−10. Thus, we have 1146

Tr(z∗z∗H(z∗z∗H − �Z)) ≤ C3n

�
(1 + σ2)n

p
. 1147

Define m = 1
n

�n
j=1

�Vjz
∗
j . By the inequality 	x/	x	 − 1148

y/	y		 ≤ 2	x − y	/	x	, we have 1149

�(�V , z∗) = min
a∈Cn:�a�2=1

1
n

n�
j=1

	�Vjz
∗
j − a	2

1150

= min
a∈Cn\{0}

1
n

n�
j=1

	�Vjz
∗
j − a/	a		2

1151

≤ min
a∈Cn\{0}

4
n

n�
j=1

	�Vjz
∗
j − a	2

1152

=
4
n

n�
j=1

	�Vjz
∗
j − m	2

1153

=
2
n2

n�
j=1

n�
l=1

�
	�Vjz

∗
j − m	2 + 	�Vlz

∗
l − m	2

�
1154

=
2
n2

n�
j=1

n�
l=1

	�Vjz
∗
j − �Vlz

∗
l 	2

1155

=
4
n2

n�
j=1

n�
l=1

(1 − z̄∗j z∗l �V H
j
�Vl) 1156

=
4
n2

Tr(z∗z∗H(z∗z∗H − �Z)). 1157

Therefore, we have �(�V , z∗) ≤ 4C3

�
(1+σ2)

np , and the proof 1158

is complete. 1159
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Proof of Lemma 5: Following the same argument in the1160

proof of Lemma 2, we have1161

Tr(z∗z∗T(z∗z∗T − �Z)) ≤ Cn

�
(1 + σ2)n

p
,1162

with probability at least 1 − n−9 and �(�V , z∗) ≤1163

4
n2 Tr(z∗z∗T(z∗z∗T − �Z)). Then, we obtain the bound1164

�(�V , z∗) ≤ 4C
�

(1+σ2)
np , and the proof is complete.1165

Proof of Lemma 4: Let A be the collections of A’s that1166

satisfy the conclusions of Lemma 6, and we know that1167

P(A) ≥ 1−n−10. Let PA be the shorthand of the conditional1168

probability P(·|A). For each A ∈ A, a standard Gaussian tail1169

bound implies1170

8
n

n�
j=1

PA (|Uj | > 1 − δ)1171

≤ 16
n

n�
j=1

exp

�
− (1 − δ)2(n − 1)2p2

2σ2
�

k∈[n]\{j} Ajk

�
1172

≤ exp
�
−(1 − δ̄)

np

2σ2

�
,1173

where δ̄ = C
�
δ +

�
log n
np

�
for some constant C > 0.1174

Therefore,1175

P

�
8
n

n�
j=1

I{|Uj| > 1 − δ}1176

> exp

�
−
�

1 − δ̄ −
�

2σ2

np

�
np

2σ2

��
1177

≤ sup
A∈A

PA

�
8
n

n�
j=1

I{|Uj| > 1 − δ}1178

> exp

�
−
�

1 − δ̄ −
�

2σ2

np

�
np

2σ2

��
+ P(Ac)1179

≤ exp
�
−
�

np

σ2

�
+ n−10,1180

by Markov’s inequality. This immediately implies the first con-1181

clusion. For the second conclusion, it is easy to see that when1182 �
1 − δ̄ −

�
2σ2

np

�
np
2σ2 > log n, we have 8

n

�n
j=1 I{|Uj| >1183

1 − δ} ≤ 1
n , and thus the value of 8

n

�n
j=1 I{|Uj| > 1 − δ}1184

has to be 0.1185
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