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SDP Achieves Exact Minimax Optimality
in Phase Synchronization

Chao Gao

Abstract— We study the phase synchronization problem with
noisy measurements ¥ = z*z** + oW € C"*", where
z* is an n-dimensional complex unit-modulus vector and W
is a complex-valued Gaussian random matrix. It is assumed
that each entry Y, is observed with probability p. We prove
that an SDP 2relaxation of the MLE achieves the error bound
(140(1))= Znp under a normalized squared £ loss. This result
matches the minimax lower bound of the problem, and even the
leading constant is sharp. The analysis of the SDP is based on
an equivalent non-convex programming whose solution can be
characterized as a fixed point of the generalized power iteration
lifted to a higher dimensional space. This viewpoint unifies the
proofs of the statistical optimality of three different methods:
MLE, SDP, and generalized power method. The technique is also
applied to the analysis of the SDP for Z2 synchronization, and
we achieve the minimax optimal error exp (—(1 — o(1)) 3:5)
with a sharp constant in the exponent.

Index Terms— Angular synchronization, minimax risk, SDP,
Z2 synchronization, Burer-Monteiro factorization.

I. INTRODUCTION

C ONSIDER the problem of phase synchronization [1] with
observations

Yik = 2;z;, + oWy, € C, (1

for 1 < j < k < n, where z;; stands for the complex conjugate
of z;. Our goal is to estimate zj,---,2} € C; = {z € C:
|z| = 1}. Since |2} = 1, we can write 27 = "% with some
07 € (0,2n] for all j € [n], and thus Y}y, is understood to
be a noisy observation of the pairwise difference between two
angles 9;-‘ and 0. Following [2]-[5], we consider an additive
noise model and we assume that W), is a standard complex
Gaussian variable independently for all 1 < j < k < n.!
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'For Wy, ~ CN(0,1), we have Re(W;;,) ~ N (0, %) and Im(W;,) ~
N (0, 2) independently.

and Anderson Y. Zhang

Recently, minimax risk of estimating z*
studied by [6] under the loss function

€ C7? has been

0(z,2) = ;rel%cn - Z |Z; — zja|?. 2)
We note that the minimization of a € C7 in the definition
of (2) is necessary, since a global rotation of the angles

i, ,0; does not change the distribution of the observations
{Yjr}1<j<k<n. It was proved by [6] that the minimax risk of
phase synchronization has the following lower bound

0_2

f E./¢ >(1-o0(1 3

it A (22) 2 (1= o(1)5 -, )

and the maximum likelihood estimator (MLE), defined as a
global maximizer of

max z"Y z, “4)
z€Cy

is proved to achieve the error bound (1 + o(l ))271, and
is therefore asymptotically minimax optimal. However, the
optimization problem (4) is a constrained quadratic program-
ming that is generally known to be NP-hard. This motivates
researchers to consider a convex relaxation of (4) in the form
of semi-definite programming (SDP) [1], [3], [5], [7], [8].
Write Z = zz". For any z € C}, Z is a complex positive-
semidefinite Hermitian matrix whose diagonal entries are all
one. The SDP relaxation of (4) is then defined as

max Tr(Y'Z) subject to diag(Z)=1, and Z > 0.
Z ZHG(C’ILX’IL
(%)

A global maximizer of (5), denoted as 7 , can thus be used
as an estimator of the matrix z*z*". The tightness of the
SDP (5) has been thoroughly investigated in the literature of
phase synchronization. When o2 = O(n'/?), it was proved
by [3] that the solution to (5) is a rank-one matrix 7 = zzH,
with Z being a global maximizer of (4). This result was
recently proved by [5] to hold under a weaker condition

=0 (logn)' Given the tightness of the SDP and the
minimax optimality of the MLE in [6], we can immediately
claim that the SDP (5) is also asymptotically minimax optimal
=0 (1 e . Without the condition

=0 (logn), whether SDP is still statistically optimal
remains as an open question in the literature.

In this paper, we study the statistical properties of the

SDP (5) directly without the need to establish any connection

under the condition o2
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between SDP and MLE. This allows us to go beyond the

.o, 2 _ n
condition ¢ = O (logn

) and we are able to derive sharp

statistical error bounds of the SDP (5) as long as 0% = o(n).

According to the minimax lower bound (3), the condition
02 = o(n) is necessary for any estimator to have an error
rate of a nontrivial order. To formally state our main result,
we introduce a more general statistical estimation setting that
allows the possibility of missing data. Instead of observing
Y for all 1 < j <k < n, we assume each Y is observed
with probability p. In other words, consider a random graph
A, ~ Bernoulli(p) independently for all 1 < j < k < n, and
we only observe Y, that follows (1) when A;;, = 1. The SDP
can be extended to this more general setting by replacing all
Yji’s with A, Yj.’s in (5). The formula will be given by (13)
in Section II. R
Theorem 1: Assume 7% — oo and 2~ — oo. Let Z be
a global maximizer of the SDP (13) and Z; = u;/|u;| for
j € [n] with u € C™ being the leading eigenvector of Z.
There exists some 0 = o(1) such that
2
<(1+8)=,
np

2

1 ~
17— 2=

0z,2%) < (1+8) 2

2np’

with probability at least 1 — n=8 — exp (— (%)1/4).

Compared with the minimax lower bound (Theorem 2 in
Section II), Theorem 1 shows that SDP leads to both minimax
optimal estimations of the matrix z*z*" and of the vector z*.
The two error bounds are not just rate-optimal, but the leading
constants are sharp as well. We remark that both conditions
0% = o(np) and oem — 0o are essential for the results of
the above theorem to hold. Since the minimax risk of the

. 2 .. . .
problem is of order Z— the condition o2 = o(np), which is
p

. 2 . . .
equivalent to Z—p = o(1), guarantees that the minimax risk

is of smaller order than the trivial one. The order O(1) is
trivial, as it can simply be achieved by random guess. The
condition 1:gpn — oo guarantees that the random graph A is
connected with high probability. Our technical analysis would
still go through when p is of the same order as 105 . but in
this regime only rate optimality is achieved.

Our analysis of the SDP does not rely on its connection to
the MLE, and it is therefore fundamentally different from the
approaches considered by [3], [5], [8]. To study the statistical
properties of SDP directly, we consider the following iteration
procedure,’

Vf 1)
Dl i) Yk s €C =1 (©)
| e Y|

Define the matrix V®) e C"*™ with its jth column being
Vj(t). The above iteration can be shorthanded as V() =
f(V=1)), We use (6) as a non-convex characterization of the
SDP (5), because the solution to (5) can always be written as
Z = V"V for some V € Crn satisfying the fixed-point

V(t)

2When the denominator (6) is zero, take Vj(t) = Vj(t_l).
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equation V = f (‘7) Note that the iterative procedure (6)
resembles the formula of the generalized power method (GPM)
[11, [5], [91.}

(t-1)

(0 _ kel ik
J (t—1

2keln\{}y Yik2n
We can therefore think of (6) as a lift of the GPM (7) into
a higher dimensional space. This allows us to analyze the
statistical error of SDP from an iterative algorithm perspective,
and previous techniques of analyzing general iterative algo-
rithms in [10], [11] can be borrowed for the current purpose.
To understand the exact statistical error of SDP, we establish
the following convergence result for the iterative procedure (6),

(VWO 2y < s0(VEY 2*) + optimal statistical error,
forall t > 1, (8)

€ecC, j=1,--,n. (1

for some § = o(1l) with high probability, as long as it is
properly initialized. Here, with slight abuse of notation, the
loss of V' is defined by

—x 2
" accn: H Hz anHV -zl ©)

~

oV, z*

which is natural given that the matrix Z = ViV is used to
estimate z*z*". Since the SDP solution is a fixed point of the
iteration (6), the convergence result (8) directly leads to the
sharp statistical error bounds in Theorem 1.

Our analysis of SDP through (6) also unifies the understand-
ings of the GPM and the MLE. Given the relation between (6)
and (7), the convergence result (8) directly implies

0(zM, 2*) < 50z,
forall t > 1,

z*) + optimal statistical error,
(10)

for some 6 = o(1) with high probability, as long as the GPM
is properly initialized. This provides an alternative proof to
the minimax optimality of the GPM that has been previously
established by [6]. In addition, just as the SDP can be viewed
as a fixed point of the iteration (6), the MLE can be viewed as
a fixed point of the iteration (7). The minimax optimality of
the MLE can also be derived. To summarize, we are able to
show the exact minimax optimality of SDP, GPM, and MLE
using a single proof based on the iterative procedure (6).

In addition to phase synchronization, we also establish the
optimality of the SDP for Zy synchronization. In the setting
of Zs synchronization, one observes Y, = z;“ zp+oWi, €R
for 1 < j < k <n, and the goal is to estimate z{,--- ,z; €
{—1,1}. Assume Wj; ~ N(0,1) and each Y}, is observed
with probability p, we show that the SDP for Z, synchroniza-
tion achieves the error

exp (—(1=o0(1)) 355 ) - (1

We also prove a matching lower bound for this problem.
Since Zs synchronization is a discrete parameter estimation
problem, the minimax risk is an exponential function of the

3When the denominator (7) is zero, take zj(.t) = zj(.t_l).
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signal-to-noise ratio, compared with the polynomial function
for phase synchronization. Despite being a continuous opti-
mization method, the SDP is able to adapt to the discreteness
of the problem. The exponential rate (11) has been previously
derived for p = 1 by [12]. Our analysis based on the iterative
algorithm perspective generalizes their result to more general
values of p > Og”

a) Paper orgamzation: The rest of the paper is organized
as follows. In Section II, we establish the statistical optimality
of the SDP for phase synchronization. The implications of
the SDP analysis on the statistical error bounds of GPM and
MLE are discussed in Section IIl. The analysis of the SDP
for Zo synchronization is presented in Section IV. Finally,
Section V collects all the technical proofs of the paper.

b) Notation: Ford € N, we write [d] = {1,...,d}. Given
a,b € R, we write a V b = max(a,b) and a A b = min(a,b).
For a set S, we use I{S} and |S]| to denote its indicator
function and cardinality respectively. For a complex number
x € C, we use Z for its complex conjugate, Re(z) for its real
part, Im(x) for its imaginary part, and |z| for its modulus.

R
for its norm. For a matrix B = (Bj;) € C¥*% we use
B" € C%*% for its conjugate transpose such that BY =
(Byj). The Frobenius norm and operator norm of B are

defined by |Blls = /S0, S0, (Bl and [[Bllop =
SUDyecds pecdz:|uf=|v]|=1 ¥ Bv. We use Tr(B) for the trace
of a squared matrix B. For U,V € Ch >4 oV ¢ R x4z
is the Hadamard product U o V' = (U, Vj). The notation P
and [E are generic probability and expectation operators whose
distribution is determined from the context. For two positive
sequences {a,} and {b,}, an, < by or a, = O(b,) means
a,, < Cb,, for some constant C' > 0 independent of n. We also

write a,, = o(by,) or h — oo when limsup,, 3 = 0.

For a complex vector x € C%, we use [|z|| =

II. MAIN RESULTS
A. Problem Settings

Recall that we observe a random graph A;;, ~ Bernoulli(p)
independently for all 1 < j < k < n. For each pair (j, k),
we observe Yj, = z7z; + oWy, with Wi ~ CN(0,1)
whenever Aj;, = 1. The observations can be organized as
an adjacency matrix A and a masked version of the pairwise
interactions AoY'. All the matrices A, W, and Y are Hermitian
as we define A, = A, Wi = ij, and Yy, = ij for all
1§k<j§nandAjj :WijOaHdY}j=1f0r
all j € [n]. Hence we have the matrix representation ¥ =

To estimate the vector z* € C7, the MLE is defined as a
global maximizer of the following optimization problem

max 2" (Ao Y)z.

12
2€Cy ( )

Since (12) is computationally infeasible, we consider the

following convex relaxation of (12) via SDP,

max Tr((AoY)Z) subject to diag(Z)=

I, and Z >0.
Z:ZHE(C"X"

13)
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The goal of our paper is to establish the statistical optimality
of the SDP (13). We first provide a minimax lower bound as
the benchmark of the problem.

Theorem 2 (Theorem 4.1 of [6]): Assume o2 =
Then, we have

o(np).

2
inf supE ||Z—zzHHF (1—5)0—,
ZGCTLXTL ZGC!L np
o2
inf sup E.¢4(Z, 2 1—0)—,
Z€Cy zeéi (2,2) 2 ( )an

for some § = o(1).

The above theorem has been established by [6] as the
minimax lower bound for phase synchronization. In fact,
Theorem 4.1 of [6] only states the lower bound result for
the loss function ¢(Z,z). However, the proof of Theorem
4 1 of [6] actually established the lower bound under the loss

3 L||Z — zz"||%, and the lower bound for /(Z, z) is proved as
a direct consequence in view of the 1nequa11ty

inf  sup E,
ZECH,XIL ZEC"

1
inf sup E.0(Z,z) > 3 5 HZ— 221,

zeCy z€Cyp
Since the solution of the SDP (13) is a matrix, it is natural to

study the statistical error under #H? — 22|24 in addition to
the loss 4(Z, z).

B. A Convergence Lemma

Our analysis of the SDP (13) relies on an equivalent non-
convex characterization. Since Z is a positive semi-definite
Hermitian matrix, it admits a decomposition

Z =V4y,

for some V' € C**". Let V; be the jth column of V, and we
have Zj, = V'Vj. In partlcular the constraint diag(Z) = I,
can be written as Z;; = ||V;||> = 1 for all j € [n]. Replacing
Z by V*V, the SDP (13) can be equivalently represented as
,nax Tr((A o Y)VHV) subject to ||V;||*=1 for all j € [n].

E nxn
(14

The formulation (14) is closely related to the Burer-Monteiro
problem [13], [14] for the SDP except that here V' is still an
n X n matrix without dimension reduction. This non-convex
formulation allows us to derive sharp statistical error bounds
of the SDP (13).

We analyze (14) through the following iteration procedure,

ey A Yir Vi ™
sze vy A YRV 1>H

v® — 15
j if Eke[n]\{]} AjijkV(t 1) £0, (15)
t—1
VD Y gy A YV =0
Let us shorthand the above formula by
v = pvtey), (16)

by introducing a map f : C7*" — C7*" such that the jth
column of f(V{~1) is given by (15). We use the notation
CT™™ for the set of n X n complex matrices whose columns
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all have unit norms. The update (16) can be seen as a
local approach (or more precisely, a block coordinate ascent
approach) [15], [16] to solve (14). To see why this is true,
consider the following local optimization problem

v AV vy
el [V 2 AnTale
kelnh\ ()

H

+ Z Ajijka(til) Vil
ke[n\{j}
The objective of (17) collects the terms in the expansion of
Tr((AoY)VEV) = Z AJkYkVHVk that depend on V; and
replaces V, by V(t Y forall k € [n]\{j}. By simple algebra,
we can see the solutlon of (17) is exactly (15). R
Let V be a global maximizer of (14). The matrix V must
be a fixed point of the map f,
vV =r).
To see why (18) holds, we consider the local optimization
problem (17) with Vk(t_l) replaced by V;, for all k € [n]\{j}.
Thus, as long as V' maximizes (14), its jth column V; must
maximize this local optimization problem, which then implies
the fixed-point equation (18).
Since the SDP solution Z = VHV is an estimator of the
matrix z*z*", we can think of V] as an estimator of zj
embedded in C™. Note that

a7)

(18)

k=% k% H =%
ZjZp = z;a azy,

for any a € C" such that ||a||> = 1, and thus we can
embed each z7 in C" by considering the vector zja € C".
This motivates the definition of the loss function 6(‘7,2*)
given in (9). The following lemma characterizes the evolution
of this loss function through the map f.

Lemma 1: Assume 2% > c¢; and % > ¢y for some
sufficiently large constants c1,co > 0. Then, for any v €
[0,1/16), we have

2

P(0(F(V),2") S0UV, ") + (1 + 52)2%]3 for all V € C¥™

1/4
such that £(V, z*) < 'y) >1—(2n)"" —exp (— (n_];) ) :
g

where 61 = CM/W and 02 = Cy (’y + logZ;” ) v
for some constants C'y, Cy > 0.

The lemma shows that for any V € CI*" that has a
nontrivial error, the matrix f(V') will have an error that is
smaller by a multiplicative factor §; up to an additive term
(14 02) 5. Define V* € CT*" with the jth column given
by V' = z a for some a € C" that satisfies [la||? = 1.
We 1mmed1ately have

V), 27) < (14 82)

2np

Thus, the additive term (1 + 52) can be understood as the
oracle statistical error given the knowledge of z*

5377

T "P_ > ¢y are essential
ogn

> c¢1 makes sure that the

The two conditions 2% > ¢; and
for the result to hold. While Z%

2
statistical error zi_zp is of a nontrivial order, the condition
P > ¢, guarantees that the random graph is connected.
ogn

We can slightly strengthen both conditions to 2% — oo and

e — 00 so that both d; and dy are varnishing.
gn

C. Statistical Optimality of SDP

In this section, we show the result of Lemma 1 implies the
statistical optimality of the SDP (13). Since the solution of
the SDP can be written as Z = V"V with V satisfying the
fixed-point equation (18), we can apply the result of Lemma 1
to V = f(V) as long as a crude bound £(V z*) <~ can be
proved for some v < 1/16.

Lemma 2: Assume -2~ > c for some sufficiently large
gn

constant ¢ > 0. Let Z = V¥V be a global maximizer of the
SDP (13). Then, there exits some constant C' > 0 such that

N 21
07,2y < oy ) 2
np

with probability at least 1 — n =Y.

Under the condition that 2% and ; "” are sufficiently large,
we have E(V z*) < v for some < 1/16 Thus, Lemma 1
and the fact V = f (V) imply that

~

UV, 27) <010V, 2) + (14 62) (19)

After rearrangement, we obtain the bound WV,z*) <

1+gi 2in The result is summarized into the following theorem.
P np

Theorem 3: Assume 22
o logn

> ¢; and > ¢y for some

sufficiently large constants cj,co > 0. Let Z = V"V be a
global maximizer of the SDP (13). Then, there exists some

o\ 1/4
§=C (M) for some constant C' > 0, such that

np
oV 52
V,2*) < (1 —
V.2 < (407,
1 > * ok 2 02
BlZ-=) < ara

with probability at least 1 — 2n

9 —exp (— (@)1/4)

Theorem 3 gives sharp statlstlcal error bounds for both loss
functions ¢(V, z*) and o ||Z *2*H|2. Whlle the result for
0(V, z*) is derived from (19), the result for - 1Z— 22|13 s
a consequence of the inequality

1~ ~
IV - R < 207, 2),
which is established by Lemma 11 in Section V-A. Compared
with the minimax lower bound in Theorem 2, we can conclude
that the SDP (13) is minimax optimal for the estimation of
the matrix z*z*". It not only achieves the optimal rate, but

the leading constant is also sharp when o2 = o(np) and
lggpn — 00. Figure 1 verifies the correctness of the leading

constants of the two loss functions. Both loss functions are
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25

1.0
Squared I, norm

2.0 - Squared Frobenius norm
. - Squared |, norm .
1.5 -
N 04 —
- 0.2 H
0.0 o —miiiemmmmemmmmTTIE N

Fig. 1. Left: average values of £(V, z*) (orange solid), n—12 Iz - z*2*H||2 (blue dashed) and maxi<j<p |\\7] - Z;.‘aHQ (purple dash-dotted) with n. = 100,
p = 0.2 and 02 varying in [0, 6] across 400 independent experiments. The vector a € C™ used in the squared {oo loss is the minimizer of the right hand side
of (9). Right: probability of the event that the second eigenvalue of Z is nonzero (i.e., Z is not rank-one) for the same experiments.

2 2

approximately linear at least when ¢“ is small. When o
and np are of the same order, SDP does not have the
optimal constant anymore, and its asymptotics is predicted
by a very different technique [14]. We also remark that the
{5 error control does not imply that each individual 27 can be
accurately recovered. This is also reflected in Figure 1 with
the comparison between /o and /. loss.

We emphasize that our proof of the optimality of the SDP
is based on a direct statistical error analysis, regardless of
whether the SDP relaxation is tight or not. It is shown by [5]
that the tightness of SDP (when the solution has rank one)

n
logn

o(np), it is possible that SDP is not tight but still statistically
optimal. This point is also illustrated by Figure 1.

Since the solution of the SDP is a matrix, some post-
processing step is required to obtain a vector estimator for z*.
This can easily be done by extracting the leading eigenvector
of Z. Let u € C" be the leading eigenvector of Z, and define
z with each entry z; = u;/|u;|. If u; = 0 we can take z; = 1.
The statistical optimality of Z is established by the following
result. Recall that for two vectors in C7, the definition of the
loss ¢(Z, z*) is given by (2).

Theorem 4: Assume %

requires 02 = O ( ) at least when p = 1. When o2 =

np
Tognt > ¢y for some

sufficiently large constants cj,co > 0. Let Z = V"V be a
global maximizer of the SDP (13). Then,

2\ 1/4 2

> ¢; and

np 2np’

with probability at least 1 —2n "% —exp (— (@) Y 4) for some
constant C' > 0.

Compared with the minimax lower bound in Theorem 2, the
SDP (13) is also minimax optimal for the estimation of the
vector z* in phase synchronization. Theorem 3 and Theorem 4
together establish Theorem 1.

III. IMPLICATIONS ON GENERALIZED
POWER METHOD AND MLE

In this section, we show that the analysis of the SDP through
Lemma 1 also leads to statistical optimality of the generalized

power method (GPM) and the maximum likelihood estimator
(MLE). We note that it has already been established by [6]
that both GPM and MLE achieve the optimal error bound
(1+ 0(1))% under the loss ¢(Z, z*). By deriving the same
results using the analysis of the SDP, we can unify the three
proofs and thus form a coherent understanding of the three
different methods.
The iteration of GPM of phase synchronization is

t—1
> ke i) AikYirzg

t—1
|Zkew\m Az ™V

. (t—1)
- if 2 ke i) Ajijka( )7507
t—1 . t—1
g 0 Yy AnYiez, T =0,
The similarity between (20) and (15) is obvious. To make
an explicit connection between the two iteration procedures,
we can embed (20) into the space of (15). Let e; € C™ be the
first canonical vector with the first entry 1 and the remaining
entries all 0. It is easy to check that as long as Vj(t_l) =
5(41&71)61 for all j € [n], we also have v = Zﬁt)el for all

J J
j € [n]. This is because once the columns Vl(t), e ,Vn(,t)

lie in the same one-dimensional subspace for some ¢, the
iteration (15) remains in this subspace. Thus, the formula (15)
exactly describes the GPM iteration (20). In addition to the
connection between (20) and (15), the two loss functions
0(V,z*) and £(z, z*) are also equivalent. Under the condition
that V; = Zje; for all j € [n], we have

LV, z") =l(z,2").

?

AP = (20)

Therefore, Lemma 1 directly implies that
2
Uglz)#") < 8ll2") + (L S)5 s 21)
uniformly over all z € C7} such that £(z, z*) < 1/16 with high
probability. The map g : C — C7 is defined so that (20) can
be shorthanded by z(Y) = g(2(*=1).
From (21), we know that as long as ¢(z(!~1), z*) < for
some v < 1/16, the next step of power iteration (20) satisfies
2

00, 2%) < 510z 2 + (1 + 52)2%}7. (22)
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The condition E( (t=1) 2*) < 5 then implies ¢(z(), 2*) <
2

017+ (1402) 5. Given that 7 is sufficiently small, we can

always choose v < 1/16 that satisfies

2np”
o2

Ty = 7. Therefore,
¢(2™, 2*) < ~. Thus, a simple induction argument implies
that (22) holds for all ¢ > 1 as long as 8(2(0), 2*) < ~. The
one-step iteration bound (22) immediately implies the linear

convergence

1+ 69 o?
1—-6;,2
for all ¢ > 1. It has been shown by [6] that the initial error
condition £(2(?), 2*) < ~ < 1/16 is satisfied by a simple
eigenvector method. That is, z( ) = vj/|v;| with v € C”
being the leading eigenvector of the matrix AoY. Then, (23)
implies £(z("), 2*) < (1 +o(1 ) 30 for all & > log (Z).

The optimality of the MLE can be derived from a similar
embedding argument. Let Z be a global maximizer of (12).
By the definition of Z, its jth entry must satisfy

Z; = argmin Z Al — zjzk|
€0 keln\ (5}

C Ykepn\} AikYirZk
‘Eke[n]\{j} AjijkEk‘

020, 2%) < 840(2?, 2%) + (23)

as long as Zke NG} A;YkzZi # 0. By lettlng V =ezn
it can be shown that the fixed-point equation V=f ( ) holds.
Given the equivalence of the loss £(V, z*) = (%, z*), as long
as we can show a crude bound ¢(%,2*) < v < 1/16 for the
MLE, the inequality (19) holds and it can be written as

2

UZ, %) < 6103, 2°) + (1 + 52)%,

1462 0'2

1-01 2np
crude bound £(Z, z*) < < 1/16 can be easily established for
the MLE using the argument in [6] or by a similar argument
to the proof of Lemma 2, and thus we obtain the optimal error
bound £(z,z") < (14 o(1)) 5 for the MLE.

which implies ¢(Z, z*) <

after rearrangement. The

IV. SDP FOR Zs SYNCHRONIZATION

In this section, we show our analysis of SDP can also be
applied to Zo synchronization and leads to a sharp exponential
statistical error rate. Suppose we observe a random graph
A ~ Bernoulli(p) independently for all 1 < j < k < n.
For each pair (j, k), we observe Yy, = zj2; + oWj;, with
27,2y € {—=1,1} and Wy, ~ N(0,1) wheneverAk =1
In Zo synchronlzatlon our goal is to estimate the binary
vector z* € {—1,1}" from observations {A;}1<j<k<, and
{A;1Yjr }1<j<k<n. We organize the data into two matrices A
and A oY. Both the matrices A and Y are symmetric as we
define Y, = Yy; and Aj, = Ay forall 1 <k < j <n and
Y;; = Aj; =0 for all j € [n].

With slight abuse of notation, we consider the loss function

{(Z,z) = min Zz—za
(7) ae{ll}n |J ]|7
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for any Z,z € {—1,1}". Since |Z; — zja|? = 41{Z; # zja},
the loss £(Z, z) is also called the misclassification proportion in
a clustering problem [11], [17]. We first present the minimax
lower bound of Z, synchronization under this loss function.

Theorem 5: Assume 25 > ¢ and 72 > cp for some

. logn
sufficiently large constants ¢y, co > 0. Then, we have

. 1,.-
inf sup EZEHZ—ZZTH%Eexp( (1+5)202)

ZeRnxn ze{~1,1}n

f E./ > 146
ze{ml 1}"ze{su1p1}w (z,2) exp( 1+ )202)

where 6 = Cy/ W for some constant C' > 0.

When p = 1, the above result has been proved by [12],
but the lower bound result for a general p is unknown in
the literature. Compared with Theorem 2, the minimax lower
bound for Z, synchronization is an exponential function of
the signal-to-noise ratio, a consequence of the discreteness of
the problem.

To estimate z* € {—1, 1}", the MLE is defined as the global
maximizer of the following optimization problem

zT(AoY)z.

max
ze{—1,1}"

(24)
Similar to (13), a convex relaxation of (24) leads to the
following SDP,

max Tr((AoY)Z) subject to diag(Z)=

1, and Z > 0.
Z:ZTE]R”X”

(25)

The SDP for Zy synchronization is almost in the exact form
of (13). The only difference between (25) and (13) is that
the optimization (25) is over real symmetric matrices and the
optimization of (13) is over complex Hermitian matrices.
Our analysis of the SDP (25) for Zy synchronization relies
on a non-convex characterization that is similar to (14). For
any Z that is a positive semi-definite real symmetric matrix,
it admits a decomposition Z = V"V for some V € R™"*".
By writing the jth column of V' as V;, we can replace the
constraint diag(Z) = I,, by ||V;||> = 1 for all j € [n]. Then,
an equivalent non-convex form of the SDP (25) is
VIéIﬁg}gnTr((A o Y)V™V) subject to ||V;||*=1 for all j € [n].
(26)

We will study the solution of (26) using the following loss
function,

(v Z V-
(V,z) = L P IVj = 2jall®.

By the same argument that leads to (18), we know that if
V is a global maximizer of (26), it will satisfy the equation
V = f(V), where f:R}*" — R}*" is a map such that the
jth column of f(V) is given by

Zke[n]\{j} A.7kY7k‘71c(t71)

Zke[n]\{j}AJkY Vi ( )

. S(t-1

( )1f ke Ly AikYirVy ( )#0,
S(t—1) . i (t—1
Vil i Y ey Ak Yk Ve =0

[F(V)); =
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Here, we use the notation R} *" for set of n x n real matrices
whose columns all have unit norms. For each j € [n], define
the random variable

Uj = m Z Z;:,Ajijk.
ke[n]\{s}
The following lemma characterizes the evolution of the loss
¢(V, z*) through the map f.
Lemma 3: Assume Z—é’ > ¢y and longpn > ¢y for
some sufficiently large constants c;,co > 0. Then, for any
v €[0,1/16), we have

n

oV, 2%) + % > KU, > 16}

j=1

P<€(f(V),Z*) <

for all V € RT*™ such that £(V,2") < 7) >1—2n"?,

where § = (\/_ + 4/ logzlf” ) for some constant C' > 0.

Lemma 3 immediately implies that for any V that satisfies
the fixed-point equation V' = f(V') and the crude error bound
K(V,z ) <7 < 1/16, we have

~ 8 &
LV, 2") < — {|U;| > 1 -4},
(V,2%) < = S WUyl > 1}

j=1

27)

with high probability. The property of the random variable
g 1 I{|U;| > 1 — 6} can be easily analyzed, and we
present the following lemma.

Lemma 4: Assume Z—é’ > ¢; and % > ¢y for some
sufficiently large constants ¢y, co > 0. Then, for any ¢ € (0, 1),

we have

S U > 1 -6} < exp (~(1- )28,

‘ 202
j=1

with probability at least 1 — exp (—. / Z—é’) —n~?
C (5 +4/ log ) for some constant C' > 0. If we additionally
5245 > logn, then

, where §' =

assume (1 — 5’

S Hjul > 16y =0,
j=1

with probability at least 1 — exp (—/ZF) —n~°.
We also need a lemma to establish a crude error bound for

oV, 2.

Lemma 5: Assume 10"— > ¢ for some constant ¢ > 0. Let
7 =V bea global maximizer of the SDP (25). Then, there
exits some constant C' > 0 such that

~ o2 +1

Wv,z)<cC )
np

with probability at least 1 — n =Y.
The results of Lemma 3, Lemma 4 and Lemma 5 immedi-
ately imply the statistical optimality of the SDP (25).

Theorem 6: Assume 7% > c; and lolgpn > ¢y for some

sufficiently large constants c1,co > 0. Let Z = V™V be a
global maximizer of the SDP (25) and © € R™ be the leading
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eigenvector of Z. Define Z with each entry 2, = u;/|u;l.
If u; = 0 we can take Ej = 1. Then, there exists some § =

1
N
C (lﬂ%) " for some constant C' > 0, such that

oV, 2*)

IN

exp (~(1-9)573).
(-a-0)35).

~ np
052 < exp(—(1-0)55),
G) < ew(-(1-0)55
with probability at least 1 — exp (— \/ Z—é’) —2n~9. Moreover,

if we additionally assume 0% < (1 — €) T7os - for some

arbitrarily small constant € > 0, the SDP solution 7 is a rank-

one matrix that satisfies Z = z*2*T with probability at least

1 —exp (—\/Z—_g’) —2n~

While the first conclusion of the theorem is a direct con-
sequence of Lemma 3, the second conclusion can be derived
from the inequality

*T (|2
I

IN

1 = *
EHZ—ZZ exp

ST TR < 207, 2%),

which is established by Lemma 11 in Section V-A. The result
for the loss ¢(Z,z*) is resulted from a matrix perturbation
bound [18].

Theorem 6 has established the minimax optimality of the
SDP (25) for Zs synchronization in view of the matching
lower bound results in Theorem 5. The special case p =1
recovers the results of [12]. Moreover, under the condition
o? < (1 - €) 770y, We show that the SDP solution Z is
exactly rank-one and therefore rounding through the lead-
ing eigenvector is not needed. This result generalizes the
exact recovery threshold of Zs synchronization when p = 1
[3], [19], [20]. The phenomenon that SDP can achieve exact
recovery has also been revealed in community detection under
stochastic block models [21]-[26].

We shall compare Theorem 6 to Theorem 3 and Theorem 4.
Though the two SDPs (25) and (13) have the same type of
constraints, the difference of the domain implies two types of
convergence rates exp (—(1 —o(1))g2) and (1 + o(1))55.
It is quite surprising that the SDP (25), a continuous optimiza-
tion problem, is able to achieve an exponential rate, which is
typical for a discrete problem. The adaptation of the SDP (25)
to the discrete structure is a consequence of the fact that
both (25) and (26) are optimization problems over R™*",
We make this effect explicit by bounding the statistical error
by the random variable £ Z 1 {|U;| > 1—4} in Lemma 3.

To close this section, we brleﬂy discuss the implications of
Lemma 3 on the MLE (24) and the generalized power method
defined by the iteration procedure

t—1
Zke[n]\{j} Ajkyjkzl(c )

) ‘Zke nI\{s} AJkYJkZ;(:
- i Chepn iy ArVinz ) A0,

z§t71), if Eke I\ {5} A]k,Y]k,z,(C b _ .

We note that the iteration (28) is real-valued so that we always

have z ) e {-=1, 1}, which makes it different from (20). The
statistical optimality of the generalized power method (28)

(28)
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has been established by [11] for Zs synchronization when
p = 1. Following the same argument in Section III, we can
embed both MLE and GPM into R}*", and thus Lemma 3
also implies that both MLE and GPM achieve the optimal rate
exp (—(1 — o(1)) 5% ) for a general p as well. Just as what we
have for phase synchronization, the analyses of MLE, GPM,
and SDP for Zy synchronization are all based on Lemma 3,
and thus we have unified the three different methods from an
iterative algorithm perspective.

V. PROOFS

This section presents the proofs of all technical results in the
paper. We first list some auxiliary lemmas in Section V-A. The
key lemmas of the SDP analyses, Lemma 1 and Lemma 3, are
proved in Section V-B and Section V-C, respectively. We then
prove the main results including Theorem 3, Theorem 4
and Theorem 6 in Section V-D. Theorem 5 is proved in
Section V-E. Finally, the proofs of Lemma 2, Lemma 5 and
Lemma 4 are given in Section V-F.

A. Some Auxiliary Lemmas

np

Togn — OO Then, there exists a constant

Lemma 6: Assume

C' > 0, such that
2

Z (Ajr —p)

ke[n]\{s}

max

< Cnplogn,
j€[n]

and
|A—EA|o, < Cy/np,

with probability at least 1 —n =10,

Proof: The first result is a direct application of union
bound and Bernstein’s inequality. The second result is
Theorem 5.2 of [27]. O

The following result is essentially Corollary 3.11 of [28].
The specific form that we need is from Lemma 5.2 in [6].

Lemma 7 (Corollary 3.11 of [28]): Assume I:gpn — 00.
Then, there exists a constant C' > 0, such that

[AeWllop < Cv/ap,

with probability at least 1 — n !0, The result holds for both
complex W in Section II and real W in Section IV.

Lemma 8 (Lemma 5.3 of [6]): Assume % > ¢ for
some sufficiently large constant ¢ > 0. Consider independent
random variables X ~ ./\/(O7 1) for 1 < j < k < n. Assume

Xpj = Xji for 1 < j <k < n. Then, we have

2
2o D AnXa

<n(n—1)p+ Cv/n3p?logn,

J=1 \ke[n]\{j}
with probability at least 1 — n =19, The same result holds if
Xp; = — X, is assumed instead for 1 < j < k <n.

Lemma 9 (Lemma 13 of [29]): Consider independent ran-
dom variables X; ~ N(0,1) and E; ~ Bernoulli(p). Then,

= 2
t t
P ZXjEj/p >t ] <2exp (—min (fﬁi—n’%>>’

Jj=1

for any ¢ > 0.
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Lemma 10: The following three statements hold:
1) For any z,y € C" such that ||y|| = 1 and Re(y"x) > 0,

we have
2
‘ . [(Zn = yy™)z|* + [Im(y"z)[?
|z - [Re(yz)[?

2) For any x,y € R™ such that ||y|| = 1 and y"2 > 0,
we have

3) For any x € C such that Re(z) > 0, we have

2
T

Ll < [(Zn — ny)xHQ.
]

- ly*z|?

[Tm(a)|?
= Re(@)2’

||

Proof: 1t is easy to see that the last two statements are
special cases of the first one. Thus, we only need to prove the
first statement. Note that

‘i_ 2 H(In—yyH)H(nyﬂ)y_ ?
T - 2]
1 = el + gt — Yl
BB
b2+(a—\/m)2
- a? + b2 '

where a,b are defined as a = Re(y"z) > 0 and b =
VIm(yx) 2 + (L — yy™)z[?. Since

b2 + (a— Va2 + bz’)2 B 2b? b
a® +b? a2+t avar b2 T a?
the proof is complete. O

Lemma 11: For any V = (V,---,V,) € C"*™ and any
z € C7 such that ||V;|| =1 for all j € [n], we have

n VIV — 2273 < 20(V, 2).

For any V = (V4,---,V,) € R™"™ and any z € {—1,1}"
such that ||V;|| =1 for all j € [n], we have

nT VTV — 2275 < 20(V, 2).
Proof: We only prove the complex version of the inequal-

ity. The real version follows the same argument. By definition,
we have

1 n
‘ =|2- o = v
) ( CZ( w2

max

1 n " 1 n
- v/ —9l1_1Z= RV
+ n;'zf J a)) n;Zj J
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Then,

nE VRV — z2MR

= - 5P

j=11=1
1 n o n

é EZZ(Q—V}HVEZJ'Z[ —WH‘/}ZjZl)
j=11=1

2

1 n
n;'zf J

Therefore, n=2||V1V — 2242 < U(V,2) (2— 34(V,2)) <
2¢(V, z), and the proof is complete. O

B. Proof of Lemma 1

We organize the proof into four steps. We first list a few
high-probability events in Step 1. These events are assumed to
be true in later steps. Step 2 provides an error decomposition
of £(f(V), z*), and then each error term in the decomposition
will be analyzed and bounded in Step 3. Finally, we combine
the bounds and derive the desired result in Step 4.

a) Step 1: Some high-probability events: By Lemma 6,
Lemma 7, and Lemma 8, we know that

mln Z Ajp > (n—1)p—Cy/nplogn, (29)

n]\{sj}
max Z A < (n—1)p+ Cy/nplogn, (30)
T ey
||A_EAHop < Cynp, (31
[AoW|op < Cy/np, (32)

S AjpIm(Wiziz)) (33)

J=1|ken]\{s}
n p <1+C /1ogn> ’
2 n

n

IN

Z Aije(ijZ,ﬁz]*») (34)
J=1|ken]\{5}

2
< M<1+c 1°gn>,
2 n

all hold with probability at least 1 — n~ for some
constant C > 0. To establish (33)-(34), note that
V2Im(W. ikZR2T)s V2Re(W. jkZrz;) are all independently
standard normally distributed for 1 < j < k < n. We also
have —Im(Wjxz;25) = Im(Wjpz;z;) = Im(Wy; 2} 2;) and
Re(Wjkziz7) = Re(Wiykzpzj) = Re(Wk]z z}) for any
1<7j<k<n.

In addition to (29)-(34), we need another high 2probablhty
inequality. For a sufficiently small p such that #5* is suf-
ficiently large, we want to upper bound the random variable

Z?:1 I {i_[; ’Eke[n]\{j} AjkV_ijZZ, > p}. The existence of
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such p is guaranteed by the condition 2% is sufficiently large,
and the specific choice will be given later We first bound its
expectation by Lemma 9,

Z]P 2—0 Z A]‘ijkiz >p
j=1

ke[n\{7}

ke[n\{7}

n

+Z]P 2 Z AjieIm( szk)

np

" 20
Z]P — Z A]kRe ]kzk g}
j=1
S P
2

ke["]\{J}

< 4nexp( 95602 >+4nexp(—%).

By Markov inequality, we have

ZH 2—0 Z A]‘ijkiz >p

i=t " |keln i

402 1 /p? np
< — 35
S o exp < TV o ) (35)

with probability at least
2 2 2
ppn ponp 1 [p*np
1— _ _
o2 <eXp < 25602 16V o2 )
_pmp L [ptnp
+eXp< 8 "6V 2
2p%pn 1 [p? np
B BT
1 2
> 1—exp < P np) .
32

Finally, we conclude that the events (29)-(35) hold simultane-

ously with probability at least 1 — — exp —3% p2np

vV

b) Step 2: Error decomposition: For any V € CT*™ such
that £(V, z*) < ~, we can define V' € C"*" such that

7= Cken\iy} AirYin Vi
ket i) Ak
for each j € [n]. Denote XZ = f(V) then ‘73 = V,/|IV;]| for

each coordinate such that V; # 0.
The condition £(V, z*) < ~ implies there exists some b €

C™ such that ||b]| = 1 and nl(V,2*) = ||V — bz*||Z < yn.
By direct calculation, we can write
> ket Aikzi (Ve — Z;b)

2 e\ () Aok
0750 ke i) Aik Wik i

Lokelisy Ak
+

ke {5y Aik

z?f/j:b—l—

+
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1 * %
— 1Zj(Vj — z;b)

1 . * ox
Zb—l—msz(Vk —Zkb) —

<Ek€["]\{J}A3kzk(Vk z5h)
Z’fE[n]\{J} Ajk

1 * —x
o250 Y et iy A WinZ:
ke () Ak
N 02} Y ke 5y Ak Wik (Ve — Zb)
kel Ao

Now we define ag = b+ —5 >0 | 25(Vi — z;b) and a =
ap/||aol|, and we have

Za"V; = |laol - —7a"(V; = Z}b) (36)
—|—aHFj +a"bGj + a" Hj,
~ 1 e
I(In —ad®)Vi]| < ——=[IV; — 250l + |5 (37
| (In = aa™)b[||G;| + [[Hj]],
where
5 _ 2keln gy Ak (Ve — Z0)
L=
2 ke {5y Aik
(Vi — Zb)

0% Tkemn gy AnWinZi

T e A

025 D ey Ak Wik (Ve —
2kt {5y Ak

By Lemma 10, we have the bound

(I, — aa™)V; || + |Im(2}a" V) [?

zgh)

H; =

V; —zta|? < < , (38)
1Vj = Zjall Re(z V)P
whenever Re(z;‘aHVj) > 0 holds. Since
lao — bl = || — D" (Vi — 228)
k=1
1
< ——VnllV = bz""||p
n—1
<
n
we have [la — b|| < 2|lag — b|| < 4,/7. Therefore,
laoll = (1Bl = llao — bll = 1 =2/, 39)
|70 — 1| = [(a = 0)"b < [la = b]| <47, (40)
[(In = aa™)b]| < [l = b]| + [a"b — 1] < 8y/7. “D

We also have

D)

* —% 1 —x
za" (V= 2jb)| < ——= IV = Zjbl < =
(42)

n—1"7 J
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Therefore, as long as ||F}|| V |G;| V ||H,|| < p, we have
* HT7 v
Re (zjaHVj) >1-27- Y12 =3p > 1-3(y7+0) >0,

(43)

where we have used (36), (39), and (42), and the last inequality
is due to the assumption that v < 1/16 and p is sufficiently
small. Hence, the event {V; = 0} is included in the event
{IE VGV HS | > p}
By (38), we obtain the bound
IV; = 25 all?
H(I —aa )V 1% + [Tm (2} atV; ol
|Re(2; aHV)|2
X WE5 1 VIG5V L H; | < p}
+4I{[| Fy[| v IG5 v [ Hjll > p}
2
_ (FV: = 0l + 1551+ 871Gl + 1 )
- (1 =37 +0))?
2
(= 1V; =zl + 15 + (a6, + 1)
=37 +p)?
+A{[[E5] > p} +4I{|G;| > p} + 4I{[| H;]| > p}
(1 +n)[Im(a"bG;)|* + 2567|G;[>
- =37 +p)?
(7 +417Y) (e IV — 5500 + 1B 12 + 15 1)
=37 +p)?
+A[[E5] > p} +4I{|G;| > p} + 4I{[| H;]| > p},

+

for some 7 to be specified later. The last inequality above is
due to Jensen’s inequality.

c) Step 3: Analysis of each error term: Next, we will
analyze the error terms Fj, H; and G separately. By triangle
inequality, (29) and (30), we have

[1E5]l
ke i1 Ak — P2 (Vie = 2}b)
- 2okelm i) Aok
+lp D (Vi —zb) ‘ Yl 11
keln\ )} Zke[n]\{j} ik (n—=1)p
2 * —%
< > (A —p)zi(Ve — Zb)
ken\{s}
21> ke 5y (Aik — p)
+pvn||V = bz |r ‘ nszz
2 * —%
< np Z (Aje — )z (Ve — Zb)
ken\{s}
vpl
+ cl%gnnv — bzl
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Using (31), we have

> IE? <
j=1

Y (A =)z (Ve — 2D)
J=1 ||ke[n]\{5}
1ogn

+201 IV = bz""|%
< QHA EA|[5, IV — b2""[%
1
+202 Og”nv b2 |12
logn
< Com 2V = b (44)
The above bound also 1mphes
-2 2 C2 108;” *H |2
ZH{IIF I>p}<p ZHF I© < IV = bz

Slmllarly, we can also bound the error terms that depend
on Hj;. By (29) and (32), we have

2

n
SOIHE? < 22 Z Ak Wi (Vi — 2:b)
Jj=1 Jj=1 [n\{s}
202 y
= 7ﬂPQII(V—bZ (Ao W) R
2 2
< IIA W2V — bz"||%
< Cg—HV—bz*HH%, (45)
np
and thus
- Cs o .
S KIH | > py < p” QZHH I?< =3 IIV—b RES
= = P

For the contribution of Gj, we use (29) and (35), and have

n

> HIGi| > p)

j=1

n 20 =
< ZH n—p Z ' Ajijka >p
j=1 keln]\{5}

2 [2
< 4i exp L./ np .
p*p 16
Next, we study the main error term |[Im(a"bG;)|?. By (29),
we have

(46)

n

> Im(a"bG;)|?

j=1

<(oy52) 255

> ApIm(Wji2) Zrab)
ken)\ {5}
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1
<(1+n) <1+C4\/ Ogn) ng 2

2

Z AjeIm (W2 27)
keln\ {4}
2

logn o2 i:
np n2p? 4

Jj=1

+(1+nh <1+C4
2

> ApRe(Wjnz)z)| [Im(a™)|*.
kelr\{j}

By (40), we have

Im(a”b)| = Im(a™b — 1)| < |a"b — 1] < 4,/7.

logn )\ o®
np 2p’

Together with (33) and (34), we have

n

> [Im(a"bG;)|? <

<1+C5 <n+n_17+

j=1
47)
We also have
n n 2
202 - o?
2 * —k
Z |G]| S n2—p22 Z . AjijijZk S 06?7
Jj=1 J=1 |ke[n]\{s}
(48)

by (33) and (34).

d) Step 4: Combining the bounds: Plugging all the
individual error bounds obtained in Step 3 into the error
decomposition in Step 2, we obtain

nb(V,z%)

n A~
<V -zl
j=1

< <1+C7 <p+n+ﬁ+n17+

1602 1 / n
+ 20 exp p p
p°p 16

logn o?
np 2p

_ o\ logn + 02 N
+Cr (7 4 p72) umz(v,z).
np
We set
1 2 1 2
n= +70gn+o and p2=\/3_2 7Ogn+g.
np np

2
Then, since “—* is sufficiently large, we have

2 2 2\ 2 2 2
o oy 25 ) < % (50) < T
p°p 16 p°p \ p°np p \ np
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Therefore, we have

oV, 2*) < <1+Cs (72+710gn+02>1/4> o

2np
llog n -+ 02

Since the above 1nequahty is derived from the conditions
(29)-(35) and £(V,z*) < ~, it holds uniformly over all
V € CT*™ such that ¢(V, 2*) < ~ with probability at least

1-n%—exp <_ (%)1/4). The proof is complete.

C. Proof of Lemma 3

Similar to the proof of Lemma 1, we organize the proof of
Lemma 3 into four steps.
a) Step 1: Some high-probability events: We already
know that (29), (30) and (31) hold with probability at least
1 —n~°. We also have

Ao W”Op < Cy/np, (49)

with probability at least 1 — n~2 by Lemma 7. Note that
the matrix W in (49) is real-valued, compared with the
complex version of the bound (32). Another high probability
event we need is for the random variable » 7, | 2 okem\{j}

AW By Lemma 8 and with a similar analysis that
leads to (34), we can conclude that with probability at least

-9
1—n"7,

2
< /1
E E A]‘ijkz;Z; < 712]7 <1 +C Oin> .

J=1[ke[n]\{j}

(50)

In the end, we conclude that the events (29), (30), (31), (49)
and (50) hold simultaneously with probability at least 1 —
29,

b) Step 2: Error decomposition: For any V' € RT*™ such

that £(V, 2*) <, we can write V = (V) with each column
V V/HVH where
5 _ 2kl ArYin e
7 - .
2okeln\ 15} Ak

The condition £(V, z*) <~ implies there exists some b € R”
such that [[b|| = 1 and nl(V,2*) = ||V — bz*"||2 < n.
By direct calculation, we can write

* 1 * *
V—b—l——sz — zpb) — _1zj(Vj—zjb)
<Eke[n]\{]} A ikzk (Vi — 2;b)
2okeln\ {7y Aik

n—lzzk zkb>

UzijkE[n]\{j} AjWik 2,
+ A
Len\5) Aik
+ A .
e\ (5} Aik
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Now we define ap = b+ =15 377" | 2/(Vi — 2;b) and a =
ap/||aol|, and we have
~ 1
z;a"Vj = — zia"(Vj — 2;b) + a™ F}
+ aTbG4 +a"Hj,
(L, — aa™)Vj | < 7 Vi = 25l + I E ]
+ ||(In —aa’)b|[|G;| + || Hjl|,
where
o > ke 1 Aikzie (Ve — 2;0)
J= Z A
kE[ﬂ]\{J} ik
— z;b),
o oz} Eke[n]\{j} AjeWikzy,
' Lokelm i) Aok
g %% ket AikWik(Vie — 2;b)
ke[n]\{5} Ik

By Lemma 10, we have the bound

(L, — aa™)V;]|?

IV = 5all? < = (51)
n 250" V2
whenever z;anfj > 0 holds. Since
n
lao = bl = Z = z;,0)
< — V —bz"" V —bz""
<= 1\/ﬁll e < \/—II E

we have |la — b|| < 2[jag — b|| < %HV — bz*"||p. Therefore,

2
llaoll = |6l = flao — 0] > 1 — WHV = bz |,
(52)
4
la™b —1| = [(a—b)"d] < [la—1b| < %IIV —bz""|r,
(53)
[(In — aa™)b|| < lla = b + [a"b — 1 < \/_”V —bz"|p.
(54)
We also have
1, . 1 *
— 1ZjaT(Vj — z;b)| < m”Vj — z;0||

IN

1
—— |V = bz""||p. (55)
n—1

Therefore, as long as || F;|| V [[Hj|| < p and |G| < 1 —4p,
we have

* 17 2 * 1 *
zja'V; 21— %HV—Z)Z e = = IV = 62"
—IE 1 = 1G] =

>1-37-2p—
=P

I1Hjl
(1—4p)
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where we have used (52) and (55), and we set p to satisfy
p > 34/7. The specific choice of p will be given later. Hence,
the event {‘7] = 0} is included in the event { | F}|| V || H;| >
por |G| >1—4p}.

By (51), we obtain the bound

175~ 2jall?
| — aa™)
< W = DB gy v 15 < 151 < 1 - 40)
5t
FAI(IBI VI > p or [G,] > 1 4p)
1/ 1 .
< = (21 -5+ 1

2
+Mh—aJMMQLHWH>

+ AR Fjll > p} + 4{[ G| > 1 — 4p} + 4I{[| H;|| > p}

AV, — 2001 4l F 4 A — aa”)b|?|G; |
p2(n —1)2 02 02

AllH; |12 AN AllH;)?

+ + +4{|G;| > 1 —4p

p2 2 = {1G;] }

4V = z5bl* 8|12 L 2560V — bz*" IG5
p2(n —1)2 02 np?

8 H;|?

|p ” +4I{|G,| > 1 — 4p}.

We have used (54), Jensen’s inequality and Markov’s inequal-
ity in the above derivation.

c) Step 3: Analysis of each error term: Next, we will
analyze the error terms £, H; and G; separately. Following
the same analysis that leads to (44), (45) and (48), we have

1ogn N
ZHF I? < Cr—==|IV = b=""|%,
7j=1

Z 151 < Cz—HV = b2,

7j=1

2
SIek <l
=1 P

Note that the above three bounds are based on the events (29),
(30), (31), (49) and (50).

d) Step 4: Combining the bounds: Plugging all the
individual error bounds obtained in Step 3 into the error
decomposition in Step 2, we obtain

nﬁ(?, 2")

<> IV = zal?
j=1
_ 4 8Cilogn+(3Cs + 256C3) 0>
=\ p2(n—1)2 o2np
n
+4) |Gy > 1 - 4p}.

j=1

) nl(V, 2%
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Set
9 logn + o2
pm=Ci—r— |V (37),
np

for some sufficiently large constant C; such that W +

8C 1 8C5+256C3)0>
1 Og”Jr(pznif s)o” % Then, we have

n

Z Z;:,Ajijk >
keln]\{j}

)}

where 2the last inequality is by (29) and (30). Note that
71%2""7 is sufficiently small and v < 1/16, we have § < 1

with § = Cj % + /3. Since the above about is
derived from the conditions (29), (30), (31), (49) and (50) and
{(V, 2*) < 4, it holds uniformly over all V' € R}*" such that
¢(V, z*) < ~ with probability at least 1 — 2n~%. The proof is
complete.

n—1)p

D. Proofs of Theorem 3, Theorem 4, and Theorem 6

Proof of Theorem 3: We obtain (19) as a consequence
of Lemma 1 and Lemma 2, which immediately implies the
first conclusion. The second conclusion is a consequence of
Lemma 11. o

Proof of Theorem 4: By Theorem 3, we have ||V —
bz |3 < "Tf with high probability for some b € C” such
that ||b| = 1. Since V = f(V), we can follow the same
analysis in the proof of Lemma 1 and obtain the bound

o2
IV — a2 < (1+5) o (56)

1/4
with high probability, where § = C (M) and a =
ao/|lacl| with ag = b + = LS 25 (Vi — Zfh). Let 7 =

V"G where @ is the leading left singular vector of V. By the
definition of Z, we can write Z; = z;/|z;| for all j € [n] with
NON-ZEro z;.

By (56) and Wedin’s sin-theta theorem [30], we have

R ‘7_ *H || 2 2

n np
form some h € C;. Define dy = a"a and d = do/|do|. With

zj = Vj'a, we have

Z5Z; *d = |d0|—|—hdz (V —Zja)" a+d(V zia)"(a— ha)z;

G

(58)
By Lemma 10, we have the bound
— 2 —
Z.zZ%d Im(Z;zd)|?
2 —dz? = | 22— — _% (59)
5z Re(Z7;d)|
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as long as Re(z;z;jd) > 0. By (57), we have |dy|
Re(ha"a) > 1 — £~ and |d(V; — Zia)"(@ — ha)z}]

2np

>
<

Z—;HV] — zjal|. Moreover,
|hJZ}‘( i — z;a)"al < |( i — Zja)"al = |‘//\']-Ha2;‘ — 1]
= |aHij;‘ —1].
Therefore,

o2 [62
Re(z;z;d) > 1— 2——|aHij —1|- n—p||Vj—zjaH. (60)

In the following, we are going to establish a lower bound
for (60) using some similar analysis as in_the proof of
Lemma 1. Since V = f(V), we can write V = V/HV I

for all non-zero VJ, where

7o ke gy Ak Yir Vi
' 2 kel Ask

Similar to the decomposition (36), we can write

z”-‘aH(‘A/j—Z;b)—i—aHFj—i—aHbGj—i—aHHj,

@525 =llaoll - —2;

n—

where

Ykep iy Akt (Vi—25b)

F‘ Zk Vk —
’ ke (5} ik n—1 Z
o 027 D ke 5y AikWikZ
’ Dretpgy Ak
725 Letnnisy Aok Wik (Ve — 2:b)
H, = S — .
kel 5} Ak

By the same argument that leads to (43) with v = Z—z, for any
p > 0, we know that as long as ||F}|| V |G;| V | Hj| < p,

we have
H/ % o?
|Re(a"V;z;) =1 <3p+3 s (61)
Moreover,
[Im(a™V; 27|
1 17 —%
< 7 IV = Zoll + 1 E5 ] + [m(a"bG5)[* + || Hy|

IN

1 o?
n-1 \/;+ | E5]| + [m(a™bGy) [ + || H; |
1 2
< \/;+3P
n—1

By a similar bound to (37), we also have

(62)

~ 1 ~ .
Will < ——= V5 = 256l + 1 E5 || + 1G] + [ Hj

1 o2
< — + 3p.
n—1\ p

[(I, — aa™

5387
With the decomposition: IVill2 = |I(In a" V|12 +
Im(a HVz )12 + [Re(a HVz )|%, we have

17302 - 1|

< |(In — aa™)V; % + [Im(a"V;25)? + |[Re(a"V;25)|? — 1

2

<dp+4 (63)

np
Let p be a sufficiently small with explicit exgression to be
given later. Together with the assumption that Z—p is also suffi-
ciently small, both (61) and (63) can be upper bounded by 1 /2,
which implies Re( HVz ) > 1/2 and V; # 0 respectively.
Then V v /||V I leads to the bound

|a"V; 25 — 1
_ | Re(@®Viz)) — [Vill| | [im(a"V;25)|

V51 V51
_|Re(@ Vi) 1] 1 [ill| | [Im(a™V;z))|
N Wl Al Wl
o)

where we use (61)-(63). By Lemma 10, we have the bound
(10 = aa™) V512 + [Im(z}a" V) *
|Re(z; *aV;)|?

2
<C?(”2+n—2p)'

Plugging the above two bounds into (60), we have

- o?
Re(z;zjd) > 1-Cs ( p+ o)

. . ., . . 2 .
which is positive since p and < are sufficiently small.
np

Therefore, we have Re(EjZ;cZ) > (0 and the bound (59) holds
when ||F}|| V |G| V ||H,|| < p. Also this implies the event
{Z; = 0} is included in the event {|| F;|| V |G;| V || H}|| > p}.
As a consequence, we have

IV; — Zal* <

(64)

5 — dz]?
n(z2d)
< - SILNES |V G5V I H [ < p}
(1—03 (p+\/;—p))

+A[ | VG|V HE > py-

Now we need to bound [Im(Z;z;d)| according to the
expansion (58). We have
[Tm (22} d)|
< |tm(z (v, - Z;‘a)Ha)‘ + |Im(hd))| ‘Re(z;f(v; — zta)"a)
+11V; = Zjal[|a - hal|. (6)

By (57) and (64), the third term in the bound (65) can

be further bounded by Ca,/ 7> (p +4/ ) To bound the
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secondﬁ term on the right hand side of (65), we have
Im(hd)] < |[Im(ha"a)] < 1 —|Re(hata)]? <
,/”—2 by (57). Together with (61), we obtain the bound
3 (p +1/ s ) By (63), we can bound the first term in
the bound (65) by

}Im(é;(?j - Z;fa)Ha)} = ‘Im VjHai;) = (aH‘A/jz]*)
‘Im( HVz )

g .
-4 (p+ /%)
Then, we have

12 — dzj?

a? HY/ %
< <1+C4 (p—’_”n_p)) ‘Im(a Vizi)

2 2
+c§r<p+~—>+ﬂﬂEﬂVWﬂVWﬁ”>ﬁ

2
< <1 + Co (p =+ n)) IIm(a"bG,) 2
np

[0
O (S IBI + 1 1P

2

0'2 20'2
— — ) +4p2 (|| F5112+ | Hj||?) +4I{ |G,
+ o (P ) o™ (L P+ 1) +4141651 > ),

for some 7 to be specified later, where the last inequality is
by (62). Summing over j € [n], we obtain

+ (0777*1 +4p72

)Y EI” + 1H;1%)

j=1
+4) I{|G;| > p}
j=1
By the same argument that leads to the bound (44)-(47) (with

v = g—; in (47)), we have

n

S UFNP +1H;)?) < ¢'—— bz™||E < ¢
j=1
- 40 1 [p?np
;H{|Gj|>ﬂ}§%exp <_E o >,

n 2
> [Im(a"bG))[* < (1 +C” <n et
np

j=1
logn o2
np 2

1og n logn o2

v - ;
np p
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2
Take n = p? = ,/loggi;'”, and we have some constant

C" > 0 such that

2\ /4 2
0z,2") < <1+C’" <M> ) ;—.
np np

Note that the above bound is derived from conditions
(29)-(34), and thus the result holds with high probability. []

Proof of Theorem 6: The first conclusion is an imme-
diate consequence of Lemma 3, Lemma 4 and Lemma 5.
By Lemma 11, we also obtain the second conclusion. For
the last conclusion, we have |2; — 27| < 2|/nu; — 27| and
|Zj + 27| < 2|v/nu; + 25| by the definition of Z;. Then,

e 4 (Jlu=2*/Val® Allu+ 2 /v/n]?)

16 oot
< —QHZ 2

by Davis-Kahan theorem [18]. Thus, we can derive the third
conclusion from the second one. Finally, when Of < (1-
€) 71es7» We know from (27) and Lemma 4 that K(V z*) =0.
Lemma 11 implies that || Z—2*2*"||Z = 0 and thus Z = 2*z*

is a rank-one matrix. O

E. Proof of Theorem 5

Since ((2,z) = 2(1— —|z z|) and n™2||Z27 — 2273 =
2 (1= 2|272[%), we have

SN ~ 1 . ~
n"2|22T — 22" || = ((Z, 2) (1 + E|ZTZ|> < 20(Z, z),
and thus
inf sup [E.l(Z,z
ze{-1,1}n ze{-1,1}n * ( )
1
> inf sup [E, 22" — 227"
ze{-11}" ye{_1,1}n 2n2 H HF
1 1 ~
> — inf sup - Z - 2273

2 EER”X” Ze{fl,l}"

It suffices to prove a lower bound for the loss ||Z — 2272,
We lower bound the minimax risk by a Bayes risk

1 ~
inf su E.—||Z — 22"||?
R

ZerRmxn ze{—1,1}n

o1 L.z
> zlﬂlngHQ—n Z EZFHZ_ZZTH%‘
€ ze{—-1,1}n
1 1
> F Z on—2 Z
1<j#k<n Zgme{-11}m 2

H%fi Z Z E2|T\_ijk 27

zje{—1,1} z,e{—1,1}
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where z_(; 1) is a sub-vector of z by excluding the jth and
the kth entries. For each z_; 1y, we have

2. 2

zje{—1,1} ze{—1,1}

= iITlf (E(z—auk)x%:l&k:*l)|T + 1|2

irlf Ez|j:'— ijk|2

+]E(Z*(Jvk>7zj:172k=l) |T _ 1|2)

Z 2/d]P(z,(]1k>,Zj=1,zk=—1) /\dP(Z,(j,k),Zj=l,zk=1)7

where the last inequality is due to the classical Le Cam’s
two-point method. The total variation affinity characterizes
the optimal testing error between two simple hypotheses of
z, = —1 versus z; = 1 with the values of all other parameters
are known. By Neyman-Pearson lemma, we have

/dP(Z,(]1k>,Zj=1,Zk=—1) A dP(z,(Lk),zj:l,zk:l)

dP(z zj=1,z;,=1)

—(4,k)2%i Fk

P(Zf(j,k)sz:lvzk:_l) (dP( G ss= L) >1
Z—(j,k) %=L 2k=—

v

Z ZjAjkY}k >0
Je\{k}

= Plo Z ZjAjijk > Z Ajk
J€ln]\{k} Jen\{k}
Let A be the collections of A’s that satisfy the conclusions of
Lemma 6, and we know that P(A) > 1 — n=10, Let P4 be
the shorthand of the conditional probability P(-|A). For each
A € A, a standard Gaussian tail bound implies

Py l|o Z ZjAjijk > Z Ajk
Jen\{k} €[]\ {k}
np
> _ 4
7exp( (1+5)202)’

where § = C\/W for some constant C' > 0. This

implies

P(z—u,m z2j=1,z,=—1)

Pl|o Z ZjAjijk> Z Ajk
Jen]\{k} €[]\ {k}

> filrelfélPA o ‘ Z ZjAjijk > Z AJk IP
JEI\{k} €I\ {k}
1 np
Therefore,
inf sup
ze{-1L1}" ye{—1,1}n
1

> — _inf sup
2 ZGR”X” Ze{—Ll}"

- fon(-0+052)

E.((3, 2)

1 ~
B2 - 2272

By absorbing the constant 1/16 into the exponent, the proof Therefore, we have Z(‘A/, z2*) < 4C4

is complete.
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F. Proofs of Lemma 2, Lemma 5, and Lemma 4

Proof of Lemma 2: By the definition of Z = vuy,
we have Tr((AoY)Z) > Tr((AoY)z*z*"). Rearranging this
inequality, we obtain

TI’( * *H(Z*Z*H o 2))
<Tr ((A oY/p— 22" (Z - z*z*H)) .
The right hand side of (66) can be bounded by

‘Tr( AoY/p—z* *H)Z)‘
+Tr((AoY/p— 2"2")z"2"")|

(66)

< Ao Y/p— 2"z oy T(Z)
Fl[AeY/p— 272" lop Tr(2"2™)
= 2nf[AcY/p—z"2"op
1
= ”<‘|(A—EA)OZ*Z*Hllop+E|A°W|0P>'
p p
By Lemma 6,

[(A=EA) 0 2"2"op

sup Z (Ajk — p)z; Zu g,
flul|=1 1<j#k<n

HA - EAHOP

Cl\/ np,

with probability at least 1 —n =10, By Lemma 7, || Ao W||op <
Cy/mp with probability at least 1 — n 1%, Thus, we have

INIA

o~ 1 2
Tr(z* 2" (22" — Z)) < Csn w.
p
Define m = EZ Vz By the inequality ||z/|x| —

y/llyllll < 2Hx = i) we have

oV, 2% = min Z V.2t —al?
(Vo) = _min, ST —af
= min Z Vz —a/llall||?
By 2 175 =l
< min

aetcn\{o}nZH i —all”
- —ZHV;z —m|?
= 5 ZZ(HVJZJ —ml+ |[Viz; —m]|?)

j=11=1
2 n n N
= 222 Vi - Ve
j=11=1
4 n n
S WELEIAD
j=11=1
4 ~
= 3 Tr(z* 2" (2% 2" — 7).
%, and the proof
is complete. O
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Proof of Lemma 5: Following the same argument in the
proof of Lemma 2, we have

(14+0%)n
p

Tr(z* 2" (2" 2" — Z)) < Cn ,
with probability at least 1 — n® and ((V,z*) <
L Tr(2*2*"(2*2*" — Z)). Then, we obtain the bound
E(‘A/, z*) < 4C (12—22), and the proof is complete. 0

Proof of Lemma 4: Let A be the collections of A’s that
satisfy the conclusions of Lemma 6, and we know that
P(A) > 1—n"1% Let P4 be the shorthand of the conditional
probability P(-|A). For each A € A, a standard Gaussian tail
bound implies

8 n
_ZPA(lUj| >1-46)
et

16 «— 1—06)2(n—1)2%p?
< —Zexp _(2 )*(n—1)%p
n 2023 ke sy ik
- np
< o (-(1-HD),
‘ on(-0-922
where 6 = C (5+ l(;gp") for some constant C' > 0.
Therefore,

8 n
P( - KU >1-6
w 2SI > 1 -0)

- 202\ np
> Y Y i A
b np | 202
8 n
< sup Pa| — KU;|>1-96
s Pa( 53w > 1)
> 1o 22 ) ) ) pay
exp|—[1-6—4/— | —
P np | 202

< exp<— %)—f—nm,

by Markov’s inequality. This immediately implies the first con-
clusion. For the second conclusion, it is easy to see that when

(1—5— ,/%) 5z > logn, we have %E?ZIH{|U]-| >
1 — 0} < %, and thus the value of 25" | T{|U;| > 1 — 4}
has to be 0. O
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