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ABSTRACT. In this paper the authors introduce an analogue of the nilpotent
cone, N, for a classical Lie superalgebra, g, that generalizes the definition for
the nilpotent cone for semisimple Lie algebras. For a classical simple Lie su-
peralgebra, g = gg @ g7 with Lie G5 = gg, it is shown that there are finitely
many Gg-orbits on N. Later the authors prove that the Duflo-Serganova com-
muting variety, X, is contained in A for any classical simple Lie superalgebra.
Consequently, our finiteness result generalizes and extends the work of Duflo-
Serganova on the commuting variety. Further applications are given at the
end of the paper.

1. INTRODUCTION

1.1. Let g be a finite-dimensional Lie algebra over the complex numbers and N be
the set of nilpotent elements, often referred to as the nilpotent cone. In the case
when g is semisimple with g = Lie G, it is well-known that N has finitely many G-
orbits. For the classical families of simple Lie algebras (root systems of types A-D)
a parametrization of orbits is given by partitions under suitable conditions, and for
the exceptional Lie algebras one can either use the Bala-Carter labelling or weighted
Dynkin diagrams. For a semisimple Lie algebra, g, fundamental results in geometric
representation theory have involved investigating the geometry of the nilpotent cone
N (also its Springer resolution A') and its relationship to the representation theory
for g (cf. [HTTY]).

The nilpotent cone N can be realized as the zero set of the G-invariant poly-
nomials with constant term zero on g. The G-invariant polynomials also have a
direct connection with the semisimple elements. Under the Chevalley isomorphism
theorem the restriction map induces an isomorphism res : S(g*)¢ — S(t*)" where
t is a maximal torus of g and W is the Weyl group. The semisimple elements are
those elements in g that are G-conjugate to an element in t [Huml Section 0.1].

1.2. A similar picture arises in the study of classical simple Lie superalgebras,
g = g5 D 91- Boe, Kujawa and Nakano [BKNI] used invariant theory for reductive
groups to show that there are natural classes of “subalgebras” that detect the
cohomology. These subalgebras arise from considering “semisimple” elements of
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the Gg-action on g1, and fall into two families: f (when g is stable) and e (when g
is polar). If g is a classical simple Lie superalgebra, then g admits a stable action
and in most cases g admits a polar action (cf. [BKNI1, Table 5]).

When stable and polar actions exist (cf. [LRLDK]), the restriction maps induce
isomorphisms:

H.(gag()v(c) —_— H.(fﬂféaC)N — H.(eae()v(c)wc

l I !

S (g% —— SV —— ST

where N is a reductive group and W, is a finite pseudoreflection group. The finite
generation of these cohomology rings was used in [BKNI] to define support varieties
for g-modules. In [GGNW] it was shown that the support varieties (appropriately)
defined over g, f and e are isomorphic.

In order to have a complete picture, it is natural to ask whether there exists an
algebraic variety consisting of “nilpotent elements” for classical Lie superalgebras

that fits into this framework. Since g is classical, gz = Lie G5 where Gj is a
reductive algebraic group. In this paper we study a generalization of the nilpotent
cone

N =Ny = 2(8*(g9)$)

where Z(S* (g%)f“) is the zero-set of G-invariant polynomials with constant term
zero on g7. When g = g(n), one obtains the nilpotent cone for the Lie algebra
al,(C).

The construction in our paper is inspired by work of Kac [K] in 1980. He defined
the nilvariety as the zero locus of the constant term zero Gg-invariant polynomials
on V where V is a rational Gg-module. Kac’s results are in a more general con-
text than our paper and there is some overlap in our results. We anticipate that
the varieties N' will play an important role in the representation theory for Lie
superalgebras. This is evident in Section [ with the strong connections with the
Duflo-Serganova commuting varieties that were introduced in the mid 2000’s. In
the late 2000’s, Gruson and Leidwanger [GL] investigated the case of the nilpotent
cone in the orthosymplectic case and constructed a resolution of singularities. The
aim of our paper is to present a unified self-contained treatment of N for classical
simple Lie superalgebras that can be easily referenced by those working in super
representation theory.

1.3. The paper is organized as follows. In Section 2] the nilpotent cone for classical
Lie superalgebras is defined. We also indicate how this definition generalizes the
definition of the nilpotent cone for complex semisimple Lie algebras. Our first
main result (Theorem B.I.T]) in Section [l demonstrates that the nilpotent cone for
gl(m|n) has finitely many Gg-orbits. Explicit orbit representatives are determined.
In Section [ we prove a theorem that allows us to extend the finiteness result to
the nilpotent cone for other classical simple Lie superalgebras. The ideas of the
theorem are originally due to Richardson and can be applied in cases when there
is a suitable embedding of the classical simple Lie superalgebras into a general
linear Lie superalgebra. With these tools, we show that for classical simple Lie
superalgebras, A has finitely many Gg-orbits.
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Duflo and Serganova [DS] introduced the commuting variety X for any finite-
dimensional Lie superalgebra. They proved that for basic classical Lie superalge-
bras, X’ has finitely many Gg-orbits. In Section Bl we prove that for all classical
simple Lie superalgebras, one has an inclusion X C A. In this way, one should
consider the nilpotent cone as a larger algebraic variety whose geometric proper-
ties should encompass that of X. We show that our results on the finiteness of
orbits for A allow us to extend the finiteness results in [DS] to a wider class of Lie
superalgebras (cf. Corollary B3.T]).

2. PRELIMINARIES

2.1. Notation. Throughout this paper we will use the conventions in [BKNI]
BKN2| [ BKN3|[BKN4,[LNZ|GGNW|[Janl]. Let g = g5 @ g7 be a classical Lie su-
peralgebra over k = C. This means there exists G, a corresponding connected
reductive algebraic group, such that Lie Gg = gy where g7 is a Gg-module via the
adjoint action. The Lie superalgebra g is a basic classical if it is a classical Lie
superalgebra with a nondegenerate invariant supersymmetric even bilinear form.

Let g be a classical Lie superalgebra and S®(g7) be the symmetric algebra on
the dual of g7. We will often regard S®(g;) as the polynomial functions on g7. Let
S°®(g7)+ be the polynomials with constant term equal to zero. The algebraic group
Gj acts on g1, so we can consider the Gg-invariant polynomials with zero constant
term on gy denoted by S'(g’{)fﬁ. The nilpotent cone, N, for g is the zero set of
these polynomials:

o/ _+\Gp
N =Z(5°(g7)°).
Observe that ' C g7. The algebraic variety A is a G-invariant closed cone in gj.

2.2. Simple classical Lie superalgebra. The main results of the paper will be
stated for classical “simple” Lie superalgebras. We will use the term simple Lie
superalgebra to refer to the Lie superalgebras of general interest that are not sim-
ple in the true sense, but close enough to being simple (cf. [GGNW]). The Lie
superalgebras that will be considered “simple” include:
al(mln), si(mln), psi(n|n)
osp(m, n)
D(2,1,a)
G(3)
F(4)
a(n), psq(n)

* p(n), p(n)
For the Lie superalgebras of Type Q, q(n) is the Lie superalgebra with even and
odd parts gl(n), while psq(n) is the corresponding simple subquotient of g(n) (cf.
[PS]). The Lie superalgebras that fall into the family of Type P include p(n) and
its enlargement p(n).

2.3. Generalization of the ordinary nilpotent cone. We now indicate how
our results generalize known results for the nilpotent cone for complex semisimple
Lie algebras. Let a be a complex semisimple Lie algebra, and set g = gg & g7 with
g5 = a = g7 as vector spaces. We can make g into a Lie superalgebra by defining
the bracket on gg to be the ordinary Lie bracket on a. The bracket of an element
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in g5 on g7 is given by the adjoint action, and the bracket of any two elements in
g1 is zero.

Let Gy be the semisimple simply connected group such that Lie G = g5. Then
N is the ordinary nilpotent cone for g5 = a. One can also set this up for fields of
prime characteristic, if one considers Lie algebras that arise as the Lie algebra of a
semisimple algebraic group.

3. G-ORBITS ON N: gl(m|n) CASE

3.1. The adjoint action of G5 = GL,(C) x GL,(C) on gz is given by conjugation.

Explicitly,
Alo] [ o |xt] [A|lo] [ o [X+t][A]o0
0B X0 | |0|B X |0 0B
B 0 |A'X'B
BX A 0 '

In this case, [Fuks, Section 2.6] has determined the generators of the invariants,
S(g;)ia, to be
Tr(XTXH)M), k=1,...,1

where | = min{m, n}.
For Theorem B1.T] we recall the notion of a matrix in column echelon form. A
matrix is in (reduced) column echelon form if it satisfies the following conditions:

e all columns that consist entirely of zero entries appear as the right-most
columns of the matrix

e the first nonzero entry of each column is called the pivot, and the pivot is
the only nonzero entry in its row

e if j > 4, then the pivot of the nonzero column c; lies in a row strictly below
the row of the pivot of column ¢;.

We also use the convention that each pivot element is 1. By transposing the matrix,
the notion of row echelon form can be defined in a similar way.

In this section we will show that gl(m|n) has finitely many Gg-orbits. Further-
more, explicit orbit representatives for this action will be exhibited. The results are
summarized in Theorem B.1.1] and the proof will be given in the next subsection.

Theorem 3.1.1. Let g = gl(m|n).

(a) The number of Gg-orbits of the adjoint action on N is finite.
(b) A complete set of orbit representatives is given by matrices

r- [l

Y- 0
where

A |0 0]

C, 0 0

Y+—[IT 0] and Y~ = | | 0 0

010 — R, -] 0 0 0

0 0 0|0 I, 0
L0 0 0|0 0 0]
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Here I, (resp. Is) is the r x r (resp. s X s) identity matriz, Jy,...J; are

Jordan blocks with zero eigenvalues, where the Jordan block J; is of size

kixki,e=12 ...t withky >ko--->k; withr = Zle k;. Furthermore,

the matriz Cy, (resp. R,,) is of size v x 11 (resp. ro X r) and of the form

T
Cr, = (€i1 €y vt ei,,.l) , R, = (ejl €j, ej7,2)
where ey s the column vector with a single 1 in the k-th row and zeroes

elsewhere. Each index i, (resp. j,) belongs to the set {ki,k1+ko,..., k1 +
ko4 ...+ ke} (resp. {L,1+ky,...;,1+ki+...+ki—1}).

3.2. Proof of Theorem B.1.1l The proof of theorem in the prior subsection will
entail several steps. We start with a general element X € N where g = gl(m/|n).
Through a series of conjugations (i.e., applications of elements in Gg), the element
X will be transformed into a matrix Y of the form in Theorem BIII(b). In the
process of this transformation, we will use Y (including Y™ and Y ™) to denote the
current matrix under the series of transformations.

3.2.1. Let X € N. Using standard results in linear algebra (involving equivalence
of matrices) and the action of (A, B) € G on X, there exists (A, B) € G such
that A='XTB = YT where

a0

010
and where r is the rank of X .
3.2.2. The next step is to identify and later work with (A, B) € G that centralize

Y+, which is equivalent to the condition: A='Y+B = Y*. In order to elaborate
further, it will be useful to consider A and B in block matrix form:

A11 A12 :| |: Bll BQI :|
{ Aoy | Ao By | Bao

The centralizing condition is equivalent to

By |Bia ] [ A0
00 | [ 4n]0]"
Therefore, one has
A | Ao } { A | O }
{ 0 | Ass By | Ba
Note we have a formula for B~! in terms of blocks:

Bl_{ 1141711 1| 01].
—By,'Ba1 ATy | Ba,

We can now provide a formula for the action of (A, B) in the centralizer of Y on
Y~ in block form:

1 _ _
B ly A= 7;411 — | (11 Yy | Yio [ A | Arp ]
—Bg, B21Ary | By Y | Vs, 0 | Az

_ ALY An | AR (Y Ars + Y5 Az0)
Boy (Y3 A11 — B21 A Y[ Ann) | Bay' (Yg; Ar2 + Yz A22) — Boy BarApy (Y] A1z + Yy, A22)
As long as we work with (A, B) € Gy that centralize Yt (i.e., (4,B) € c¢g,(Y™T)),
we can focus on transforming Y~ into the desired form.
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5070 L. ANDREW JENKINS AND DANIEL K. NAKANO

3.2.3. Observe that Y77 can be put into its Jordan form J (upper triangular) via
Aj;. If one chooses A to be in the centralizer of J, one can replace both Y, and
A7'Y;7 Aqp with J in the expression above. By operating with elements (A, B) €
cGy (Y1) (ie., elements in the centralizer of Yt in Gj) with Ay; that centralizes J,
our new expression for the action on Y~ is

J | AT (JAi2 4 Y5 A20)

1, —
By A= T T a Ba1J) | Boy (Yo, A1z + Yy A Bay Ba1A|[ (JA12 + Y, A
20 (Yo A11 — B21J) 20 (Yo1 A12 + Y55A02) — Byy Ba1 Ay (JA12 + Y5 A22)

3.2.4. We also observe that all the eigenvalues of J are zero since
- I, |0 J | X J| Yy,
- [448] [ 38 4P
010 ][ Yy [ Y5 0f 0
The condition that Tr((Y+*Y~)¥) = 0 for k = 1,...,l where | = min{m,n}

implies that if Aj, Ag, ..., A, are the eigenvalues of J then A\¥ + X5 + ...+ \F =0
for k =1,2,...1. Since r < this implies that A; = 0 for all j.

3.2.5. Let J be a Jordan canonical form with Jordan blocks .Ji, .Jo, ..., J; of sizes
ki1 > ko > -+ > k; with all Jordan blocks having eigenvalue zero:

J 0 0 -+ 0

0 J 0 -~ 0
J: ' '._

o o o0 --- 0

o o0 0 - J

Consider the action of (A4, B) € ¢, (Y) with A11, Ags, and Bay to be (appro-
priately sized) identity matrices. Then

J | JA12 + Yy,
}/2_1 — Bgl.] | *

The matrix JAs (resp. BsiJ) consists of matrix entries with zeros in rows
(resp. columns) kq, k1 + ko, .., k1 +ka+ -+ ke (vesp. 1, 1+ky, 1+ k1 + ko, ...,
14k + ko~ -+ ki—1) and arbitrary entries in the other rows (resp. columns).
Therefore, one can choose entries in Ao (resp. Bai) to make JAjo + Y5 (resp.
Y5, — B21J) into a matrix with possibly non-zero entries in rows (resp. columns) k1,
ki+koy .., ki+tkot+---+k (vesp. 1, 14+ky, 1+ky1+ka, ..., 14k +ka+-+kiq)
and zeros in the other rows (resp. columns).

B ly A=

3.2.6. Now consider the action of (A, B) € cg,(Y") with A;; being the identity
matrix, Ajo =0 and By; = 0. Then
J | Y5 A
e
Bay Yo | *

B 'y A=

Now one can make Agy (resp. B;QI) into a product of a permutation matrix and
elementary matrices to transform Y;, Ags (resp. Bay Yy) into a column (resp. row)
echelon form with possibly non-zero entries in rows (resp. columns) k1, ki + ko,. . .,
kv +ko+ -+ ke (vesp. 1, 14+Fky, L+ky+koy ..., 1+ki +ka+--+ k1) and
zeros in the other rows (resp. columns).
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3.2.7. The next step is to transform Y}, into a matrix C,, of the form stated in the
theorem. Let (A, B) € ¢, (Y T) with Aj3 = 0, By; = 0 and Agg, By being identity
matrices. Then

AT An | ALY,
Yo A ’ *

By using the action of A;; € ¢(J) (centralizer of J), we can assume without a
loss of generality that the pivots in Y7, are all 1’s. Normally we can transform Y7,
into an elementary row echelon form by making A1_11 into a product of elementary
matrices that performs the row operations used in Gaussian elimination, and since
Y|, is already in column echelon form from the previous step, this is equivalent to
the form of C,,. The issue is that this product of elementary matrices need not
centralize J. This problem can be remedied for the cases of the elementary row
operations of row addition and row scaling as follows[]

The matrix Y7, is in column echelon form and has non-zero entries in rows ky,
k1+ko,..., ki+ko+---+k; with zeros in the other rows. Set f(j) = k1+ko+- - -+k;,
j=1,2,...,t. Furthermore, the non-zero pivots can lie in matrix positions (f(j), )
for j =1,2,...,t. We want to use Afll to clear the matrix entries in the columns
directly below the pivots. If there was no restriction on Afll one can accomplish
this with a product of elementary matrices. For example, if one wants to eliminate
a non-zero entry « in position (f(¢),7), then one can apply the elementary matrix
E(j),:)(—c) on the left which replaces Row f(j) with —ax Row f(j)+ Row f(i).

Consider the matrix Ly (;y, ¢¢;)(—a) which is in the centralizer of J where

By A=

Ik1 0 0 R 0

Z2,1 Ik2 0 Ce 0

Ly, (—) = Z{’ul Z§.2 11.93 .0
: : : .0

Zt,l Zt 2 Zt 3 N Ikt

Here ij are k; x k; identity matrices and Z;; are k; x k; matrices where i =
1,2,...,t —1land j = 2,3,...,t. Moreover, set Z;, ; = 0 for (j,7) # (j',7'), and
the block matrix
Zj,i = (0 —Oé[k,j) .
It can be directly verified that Ly ri)(—«) will have the same effect as
E(jy,r(iy(—a) on the Gaussian elimination process on Y},.
Similarly, it can be directly verified that the matrix

Ly 0 0 0

0o . 0 0
Mi,(@)=|0 0 af, 0
: : : 0

0 0 0 - I

will scale row k1 + ...+ k; by a and also centralizes J.

IThe permutation matrices necessary to perform the row swapping operation of Gaussian
elimination are also not in the centralizer of J; however there are only finitely many possible
forms of Cy; up to permutation.
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5072 L. ANDREW JENKINS AND DANIEL K. NAKANO

Therefore, if the rank of the current iteration of Yj, is r; with pivots in rows

i1,...,%r,, then it is transformed to
(Cn 0 --- 0)
where
Cr, = (€i1 Ciy 61;1)

and where e;, is the column vector with a 1 in the 7,-th row and zeroes elsewhere.
Furthermore, each index i, is an element of {k1, k1 + ko,..., k1 +ka + ... + Kk}
That is, the nonzero entry of each column e;, occurs in one of the aforementioned
rOwWS.

3.2.8. We now perform the same procedure as in the last step to transform Y5, into
a matrix R,, with form analogous to the transpose of Cy,. Recall from Section [3.2.6]
that we have already transformed Y5, into row echelon form. Let (A, B) € ¢q,(Y™T)
with A2 =0, By = 0 and Ass, Bos being identity matrices. Here one makes Aqq
into a product of matrices that are upper triangular, are in the centralizer of J,
and perform column operations to clear out the entries in the pivot rows of all
non-zero entries (except for the pivot). In this case each index j, is an element of
{1+k,14+k +koy...,1+ ki +ko+ ...+ ki—1} and so the nonzero entry of each
row occurs in one of these columns.

Note that in the process we have changed Y}, out of the form of C).,. Consider
Aq1. Then A1_11 will still be upper triangular and Al_llYlg will be a matrix with 1’s
in the same pivot entries as Y;5, with possible non-zero entries above and to the
right of the position of the pivot entries in Y;,. The next two steps will correct this
issue.

3.2.9. Now let (A4, B) € ¢g, (V") with Ay1, Asz, and Bay be identity matrices, and
Bgl = 0. Then

BlYA_[ J |JA12+Y15}

Yool o+
We can now transform Y}, into a matrix in row echelon form by choosing A5 to
kill the non-zero entries in the “non-pivot” rows. Note that Y;; is unchanged.

3.2.10. Let (A, B) € cg, (Y1) with Ay1, By being identity matrices, and Ay = 0,

Bs; = 0. Then
Bly-A= L Yede
Yoo | x '

The matrix Ao can be chosen to clear out the non-zero entries that are not pivots
to make Y7, in column echelon form. Again Y;; is unchanged in the process.

3.2.11. The final step is to transform Y5, into a matrix of the desired form. We
will work with (A, B) in the centralizer of Y+ with A1, centralizing J. Let A;; =1
and Ajz, By; = 0. Then Yy, is transformed to By, Yy Agg. Let rank(C,.,) = 1 and

rank(R,,) = ra.
Write
Vo — 11 &2
22 (fﬂ 22
where £11 is an 79 X1 matrix. Moreover, £12 is ro X (n—r—r1), {21 is (m—r—r3) X711,

and &oo is (M —r —1r9) X (n —1r —1rq).
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Now to centralize C,,, and R,., we require the first 7 rows of Ass to be the first
r1 rows of the identity matrix and similarly the first ro columns of B§21 to be the
first o columns of the identity matrix. Therefore, we can write Ao and Bg; in
block form (in a similar way with Y5;) as

Ir 0 —1 IT 612)
Aoy = 1 d B5, = 2 .
* (O‘?l O‘22> e Pz (0 B2
Then

Bl Y Agy = &1+ Pr2éar + Sr2aar + Braboaar 120002 + Sr2€a20i2
22 722 Ba2&21 + Bazéaoainr Bao&aoian '

This shows that we can send &35 to
I, 0
0 0

3.2.12. Now choose (A, B) € cg, (Y1) with Aj1, Az and Bg; to be the identity,
while allowing A1 and Bs; to be free. This action will fix {55 and image of Y, is

(3.2.1) —Ba1J A1z — Ba1 Yy, + Yo A1z + Yoy

where s = rank(&a22).

Set Ba; to be zero. Let the pivots of Y5, be in columns ji, ..., jr,. Then set the
Ji-th row of A to be the negative of the 1st row of Y5, the jo-th row of A;3 to
be the negative of the 2nd row of Y5, and so forth. Then by (321)), (A, B) sends
511 and 512 to 0.

3.2.13. Finally, we need to choose (A,B) € cg,(Y ") that stabilizes the current
Y1, Y15, Y51, €11, €12, 820 and sends €21 to 0. This can be accomplished by setting
Aq1, Asg and 32_21 to be the identity, and A2 to be zero. If the pivots of Y| are in
TOWS i1,...,%, then set the i;-th column of By; to be the 1st column of Y,,, the
i9-th column of By; to be the 2nd column of Y;, and so forth. This concludes the
proof of Theorem B.1.11

Note that it can be checked using our proof that none of the orbit representatives
constructed are in the same Gg-orbit.

4. G§-ORBITS ON N: GENERAL CASE

4.1. In the ordinary Lie algebra case, the adjoint action of the algebraic group G
on g is known to have finitely many nilpotent orbits via Richardson’s Theorem (see
[Hum| Theorem 3.8]). In this section, we prove an appropriate generalization for
Lie superalgebras. We begin by stating Lemma [.T.1] whose proof can be found in
[Jan2l Section 2.4].

Lemma 4.1.1. Let G be an algebraic group and let H be a closed subgroup of
G. Let X be a G-variety and let Y be a closed and H-invariant subvariety of X.
Suppose that for ally €Y,

(4.1.1) T,(G-y) NT,(Y) C (dry)sa(Lic H),

where Ty, denotes the tangent space at y and my : G — G -y sends g to gy. Then
the intersection with Y of each G-orbit in X is a finite union of H-orbits.
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5074 L. ANDREW JENKINS AND DANIEL K. NAKANO

4.2. Generalization of Richardson’s Theorem. We can now state a general-
ization of Richardson’s Theorem in the context of Lie superalgebras.

Theorem 4.2.1. Let Gg be a closed subgroup of some GLy,(C) x GL,(C). Let g =
95991 be a Lie superalgebra with Lie G5 = gg. Suppose there exists a supersubspace
M C gl(m|n) such that gl(m|n) = M @ g and [g, M] C M. Then the intersection
with g of each GL,,(C) x GL,(C)-orbit in gl(m|n) is a union of finitely many
Go-orbits.

Proof. Assume such a complement M exists. We show that condition [@II]) of
Lemma [£T11]is satisfied where X = gl(m|n), Y =g, G = GL,,(C) x GL,(C), and
H = Gj. This means one must show for every y € g

T)(G-y)NTy(g) € (dmy)ia(go)-
We observe that Ty (g) = g and (dmy):q(g95) = [95, ¥]-
Now showing (@I is equivalent in our case to showing

(4.2.1) T,(G-y)Ng C gy,

for every y € g.

Note that Lie G, = (gl(m) @ gl(n))., and by a standard fact in [Bor, Prop. 9.1]
this is equivalent to T, (G - y) = [gl(m) @ gl(n), y].

Now apply the complement condition to obtain that

[al(m) @ gl(n),y] = [M; © g5, y] = [Mo, y] + 96, y]-
By assumption [Mg,y] € M, so ([{.21) becomes
T,(G-y)Ng S (M +[go,9)) Ng
and since M Ng = {0} and [gg,y] C g, this reduces to

Ty(G-y)Ng < [g0: Y]
So (2] is satisfied and the result follows by Lemma A T.1] O

4.3. In the case when Richardson’s Theorem is applied to show the finiteness of
G-orbits for the nilpotent cone for complex semisimple Lie algebras, the existence
of such an M is guaranteed via complete reducibility. More specifically, this follows
from regarding gl(n) as a G-module under the adjoint action. Then g = Lie G
is a submodule and therefore has a vector space complement M in gl(n) that is
invariant under the adjoint action of g.

In the situation for Lie superalgebras, we can apply this same reasoning to Gy
acting on gg to produce an Mj satisfying gl(m|n)g = gg ® My and Gg - My C M.
Then Mg will also be invariant under the derived gg action, so that [gg, M5] C M.
However, an issue arises when considering g;. We can still regard g7 as a Gg-module
and produce a complement M7, but since the derived action involves only gz, we
know nothing about [g7, Mj].

In order to prove finiteness of orbits for A/ in the superalgebra case we construct
M in a case-by-case manner and show directly that [g7, M;] C Mm Details can
be found in Appendix [Al It is worth noting that the methods we use to produce
these complements are analogous to the methods used to produce complements in
the characteristic p case of Richardson’s Theorem. Therefore, even though all of
the Lie superalgebras considered here are over C, we still need to use ideas from
the characteristic p case in order to produce compatible complements.
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4.4, We can now verify the finiteness of Gg-orbits on N.

Theorem 4.4.1. Let g be a classical simple Lie superalgebra over C. Then N has
finitely many Gg-orbits.

Proof. For classical simple Lie superalgebras g other than D(2,1, ), G(3) and F'(4),
there exists an embedding g — g’ = gl(m|n) and a supersubspace M C g’ such
that ¢ = M @ g and [g, M] C M. The embeddings and complements are described
in Section E3] and Appendix [Al

Next we need to show that Ny C Ny. We will prove a stronger statement that
Ny N gy = Ny. First we prove that Ny C Ny Ngi. Let z € Ny; then f(z) = 0 for
every f(z) € 5*(g%)“0. We have the identifications:

(4.4.1) S*((a1)")% € §°((g5)")% = [S*(g7) @ §°(M])]%.
Under this identification, one can regard g(z) = g(p, q) € S'((g’i)*)cg. Ifze Ny C
g1 then g(z) = g(2,0) = 0; thus z € N

The other inclusion, Ny N g7 C Ny, uses properties of the embedding described
in the first paragraph. One has 5®(g})“° = 5*(g¥)9%, and it will be more convenient

to use Lie algebra invariants. We have

(44.2) 5°((97)7)% = [S"(a7) @ 5*(M)]% C [S*(a) @ 5°(M)]*,
and
(44.3) 5°(a7)% C [S*(af) @ S°(M7))%.

The inclusion E43) is given by f(z) — f(z) ® 1. Let h(z) € S°(g7)%. Let
p = go +mp € g5 where g5 € gg and mg € M. Using the inclusion in (£4.3) and
the fact that [Mg, g7] C My, it follows that

p-h(x) = =h(lgo, x] + [ms, 2]) = —h(lgs, z]) = go.h(x) = 0.
From [{Z2), if z € Ny N g7 then z € Nj.

We can now prove the finiteness of Gg-orbits on N := Nj. Let Gj -y € N. Set
G5 = GLp(C) x GLy(C). Then G -y contains G - y, and y € Ny. Now the
finiteness of Gg-orbits on N follows from the finiteness of orbits for the nilpotent
cone of gl(m|n) and the fact that the intersection of any orbit in Ny with g contains
only finitely many Gg-orbits (see Theorem [2T]).

Next we consider the remaining cases when g is an exceptional Lie superalgebra.
Let g = D(2,1,a). Then Gg = SLyxSLyx SLe with g1 = VKVRV where V is the
two-dimensional natural representation. When « = 1, one has D(2, 1, a) = o0sp(4, 2)
[CWL, 1.1.5], so in this case N has finitely many Gg-orbits from the argument in the
preceding paragraph. Now the action of G on g7 for D(2,1,«) does not depend
on a. Hence, for arbitrary «, A has finitely many orbits.

For g = G(3) or F(4), one can argue the finiteness as follows. Let g = G(3).
In this case g1 = V X Z where V is the 2-dimensional natural representation for
SLs := SLy(C) and Z is the 7-dimensional irreducible representation for Go. Let
vg = (1,0)T and vz, = (0,1)7 be vectors forming the standard basis for V and let
zg be a highest weight vector for Z. If x € A then x = vy ® p; + v @ pa. If
p1 = 0 or po = 0 then we can use the fact that SLs acts transitively on V and G4
acts transitively on Z to show that x is Gig-conjugate to vy ® zg.

Now suppose that p; # 0 and py # 0. First, we can conjugate x to z; =
vy ® zg + v, ® ph. Using the Bruhat decomposition for G2 one can show that
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if B is a Borel subgroup (corresponding to the positive roots) for G2 then there
are finitely many B-orbits on Z with orbit representatives given by weight vectors
of the form z, where 7 is a short root for G5. The group B = T x U where
U acts trivially on zy and T acts by scaling zgy. Thus, 1 is Gg-conjugate to
2 = a(vg @ zy) + v ® 2y a # 0. Moreover, since zo € N and satisfies a 4th
degree Tg-invariant polynomial (Tj a maximal torus for Gjp), it follows that z, is
not a multiple of a lowest weight vector zy. Now one can use T to conjugate x
to x3 = vy ® 2y + v ® z,. Consequently, there are only finitely many Gg-orbits
on N.

A similar argument can be used to prove the finiteness of Gg-orbits for g = F'(4).
Our conclusions on the finiteness for G(3) and F(4) can also be found in [K| Table
Iv]. O

5. CONNECTIONS WITH THE DUFLO-SERGANOVA SELF-COMMUTING VARIETY

5.1. Let g = g5 g7 be a finite-dimensional complex Lie superalgebra with Lie G5 =
gg- Duflo and Serganova defined the self-commuting variety as
X={zegi: [r,z] =0}

The variety X is a Gg-invariant conical variety of g;. In [DS], it was shown for
a finite-dimensional g-module, M, one can define a subvariety Xp; of X. The
collection of these associated varieties governs the representation theory of g.

5.2. Theorem [(.2.] shows that under suitable conditions on g, the self-commuting
variety is contained in the nilpotent cone of g.
Theorem 5.2.1. Let g be a classical Lie superalgebra such that

(a) there exists an embedding g — ¢’ = gl(m|n),
(b) there exists a supersubspace M C g’ such that ¢’ = M @ g and [g, M] C M.

Then X C N.
Proof. Let X = Xy (resp. Xy ) be the self-commuting variety of g (resp. ¢’).
Similarly, denote the nilpotent cone of g (resp. g') by N' = Ny (resp. Ny).

Recall from Section B.I] that Ay is defined as the zero set of Tr((X+X)k),
k=1,...,l where l = min{m,n}. This characterization can be used to show that
(5.2.1) Xy C Ny
Moreover, using the definition of the self-commuting variety, one has
(5.2.2) X, C Xy
Now from the proof of Theorem ELZI] Ny Ng; € Ny. Consequently, Xy C Ny. O
5.3. We can now state and prove generalizations of the finiteness of Gg-orbits on
X due to Duflo and Serganova (cf. [DS, Theorem 4.2]). Note that their work

is stated under the assumption that g is a contragredient Lie superalgebra with
indecomposable Cartan matrix.

Corollary 5.3.1. Let g be a classical simple Lie superalgebra over C. Then

(a) X C N,
(b) X has finitely many Gg-orbits.
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Proof. We handle the case first when g is not isomorphic to D(2,1,«), F(4) or
G(3). In this situation, Theorem B.2.1] applies. Therefore, X C A and X has
finitely many Gg-orbits.

Now consider the case when g = D(2,1,«), F(4) or G(3). One can obtain the
inclusion X C A because X is the closure of G- vy where vy is the highest weight
vector (cf. [DS| pf. of Theorem 4.2]). Since vy satisfies the defining equation for
N, one obtains the inclusion. The finiteness result for X for the exceptional Lie
superalgebras follows from the finiteness results in Theorem .41 O

5.4. For gl(m|n), we can use the parametrization of Gg-orbit representatives for N’
to recover the Duflo-Serganova parametrization of Gg-orbit representatives for X
(cf. [DS, Theorem 4.2]).

Let Y be an orbit representative as described in Theorem BZILTI(b). Then Y € X
if and only if [Y,Y] = 2Y? = 0. A direct calculation shows that Y% = 0 if and only
if Y"Y* =0and YTY~ = 0. This is equivalent to the Jordan blocks J; = 0 for
i=1,2,...,t,Cr, =0, and R,, = 0. Hence, Y € X if and only if

0] 0]0
Y+_[% 8] and Y =[0]||0
0(01|0

This corresponds to taking a representative of a subset of linearly independent set
of mutually orthogonal isotropic odd roots under the action of the Weyl group for
Gy (see the paragraph after [DS| Theorem 4.2]) which is precisely how Duflo and
Serganova describe their orbit representatives for X.

APPENDIX A. CONSTRUCTION OF COMPLEMENTS M

A.1. For each classical Lie superalgebra g, an explicit matrix realization of g is well-
known (for example, see [K]). We construct a matrix realization for the complement
M in Table [ATT] below.

A.2. We now check that each of the non-exceptional classical Lie superalgebras
g (except gl(m|n)) satisfies the hypotheses of Theorem H21] case-by-case. From
the construction of M = Mg @ Mj in each case below it follows that gl(m|n); =
g; & M; for i = 0,1 since each generator E;; of gl(m|n) can be written as a sum
of a (homogeneous) element of g and an element of M in an obvious way. Direct
calculation shows that [g3, M;] C M7 in each case. Sample calculations are given
below for some of the classical Lie superalgebras when ¢ = j = 1. In each case, let
X €gyand Y € My so that [X,Y] = XY +YX.

e sl(mln) : Y =0, s0 [X,Y] =0.

.q(n):Xz[(b) 8},3/:{_% g:.Then
[KHZ[%EM 4%{MJ'

e p(n) : X = { (c) 8 } Y = [ 2 g with b,d symmetric and a,c skew-

symmetric. Then

[X’Y]_|:bd+ac 0 ]

bd + ac 0
0 ca + db

0 (bd + ac)?
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TABLE A.1.1. Block matrix realization of M for classical Lie superalgebras

g M
A . . .
sl(mn) { Om 7;)1 } , I, I,, identity matrices, A € C
psl(nfn) { (n +OA)In y 70/\)171 } 7 I, identity matrix, A, € C
1) ut ot |l m
v a b Y Y1
osp(2m + 1)2n) U c a® |z 21 |, b,csymmetric, e, f skew-symmetric
x5 P v | d e
—.Tt _Zt _yt f dt
a b [T
t
osp(2m|2n) ct at S , b, c symmetric, e, f skew-symmetric
21 Y1 d e
2t —yt | f o
a b
an) -
a+ M, b+ ply, . . .
psq(n) [ b+l —at AL | I, identity matrix, A, u € C
p(n) [ CCL (ft } , b skew-symmetric, ¢ symmetric
a+ M, b . .
p(n) { . at - AL ] , b skew-symmetric, ¢ symmetric,
I, identity matrix, A € C
X X1
Yy WU
e osp(2m+1J2n): X = z oz |,
i 2w
gt Lyt
a al
bob A0
Y = c1 | . Then [X,Y] = where the ma-
T T Bt 0 B
ay C1 1
—at —ct b
trices A, B have block forms
:ca’i —zr1at — axtl + a2t xc’i — 1z — azi + a2t :cbﬁ — bt — ayf + alyt
A= yai —yrat —bat + bzt oyl —yict — b2l + b1zt ybh — yibt — byl + biyt
za’i — ziat — cmtl + 1zt zctl — 7zt — czi + 2t zbtl — 21t — cy’i + clyt
B —zta—2Zb—yict+alo+ Ay +blz —xlar — 2iby —ylcr +alx + chys + bl

zta+ 20+ yle — alz — fy — b2

ztay + 2'by + ytcl —atzy — ctyl — btz

with the blocks satisfying the relations

A1p = A4y, Ars = Aby, Asz = Ay, Bas = By

and with Asg, Ags symmetric and Bio, Bo; skew-symmetric.
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0sp(2m|2n): Since this superalgebra is obtained by deleting the first row
and first column of osp(2m+1|2n), the calculations in this case are obtained
in a similar manner.
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