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Abstract. In this paper the authors introduce an analogue of the nilpotent
cone, N , for a classical Lie superalgebra, g, that generalizes the definition for
the nilpotent cone for semisimple Lie algebras. For a classical simple Lie su-
peralgebra, g = g0̄ ⊕ g1̄ with Lie G0̄ = g0̄, it is shown that there are finitely
many G0̄-orbits on N . Later the authors prove that the Duflo-Serganova com-
muting variety, X , is contained in N for any classical simple Lie superalgebra.
Consequently, our finiteness result generalizes and extends the work of Duflo-
Serganova on the commuting variety. Further applications are given at the

end of the paper.

1. Introduction

1.1. Let g be a finite-dimensional Lie algebra over the complex numbers and N be
the set of nilpotent elements, often referred to as the nilpotent cone. In the case
when g is semisimple with g = Lie G, it is well-known that N has finitely many G-
orbits. For the classical families of simple Lie algebras (root systems of types A-D)
a parametrization of orbits is given by partitions under suitable conditions, and for
the exceptional Lie algebras one can either use the Bala-Carter labelling or weighted
Dynkin diagrams. For a semisimple Lie algebra, g, fundamental results in geometric
representation theory have involved investigating the geometry of the nilpotent cone

N (also its Springer resolution Ñ ) and its relationship to the representation theory
for g (cf. [HTT]).

The nilpotent cone N can be realized as the zero set of the G-invariant poly-
nomials with constant term zero on g. The G-invariant polynomials also have a
direct connection with the semisimple elements. Under the Chevalley isomorphism
theorem the restriction map induces an isomorphism res : S(g∗)G → S(t∗)W where
t is a maximal torus of g and W is the Weyl group. The semisimple elements are
those elements in g that are G-conjugate to an element in t [Hum, Section 0.1].

1.2. A similar picture arises in the study of classical simple Lie superalgebras,
g = g0̄ ⊕ g1̄. Boe, Kujawa and Nakano [BKN1] used invariant theory for reductive
groups to show that there are natural classes of “subalgebras” that detect the
cohomology. These subalgebras arise from considering “semisimple” elements of
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the G0̄-action on g1̄, and fall into two families: f (when g is stable) and e (when g

is polar). If g is a classical simple Lie superalgebra, then g admits a stable action
and in most cases g admits a polar action (cf. [BKN1, Table 5]).

When stable and polar actions exist (cf. [LR,DK]), the restriction maps induce
isomorphisms:

H•(g, g0̄,C) −−−−→ H•(f, f0̄,C)
N −−−−→ H•(e, e0̄,C)

We⏐⏐� ⏐⏐� ⏐⏐�
S•(g∗1̄)

G0̄ −−−−→ S•(f∗1̄)
N −−−−→ S•(e∗1̄)

We

where N is a reductive group and We is a finite pseudoreflection group. The finite
generation of these cohomology rings was used in [BKN1] to define support varieties
for g-modules. In [GGNW] it was shown that the support varieties (appropriately)
defined over g, f and e are isomorphic.

In order to have a complete picture, it is natural to ask whether there exists an
algebraic variety consisting of “nilpotent elements” for classical Lie superalgebras
that fits into this framework. Since g is classical, g0̄ = Lie G0̄ where G0̄ is a
reductive algebraic group. In this paper we study a generalization of the nilpotent
cone

N = Ng = Z(S•(g∗1̄)
G0̄
+ )

where Z(S•(g∗1̄)
G0̄
+ ) is the zero-set of G0̄-invariant polynomials with constant term

zero on g1̄. When g = q(n), one obtains the nilpotent cone for the Lie algebra
gln(C).

The construction in our paper is inspired by work of Kac [K] in 1980. He defined
the nilvariety as the zero locus of the constant term zero G0̄-invariant polynomials
on V where V is a rational G0̄-module. Kac’s results are in a more general con-
text than our paper and there is some overlap in our results. We anticipate that
the varieties N will play an important role in the representation theory for Lie
superalgebras. This is evident in Section 5 with the strong connections with the
Duflo-Serganova commuting varieties that were introduced in the mid 2000’s. In
the late 2000’s, Gruson and Leidwanger [GL] investigated the case of the nilpotent
cone in the orthosymplectic case and constructed a resolution of singularities. The
aim of our paper is to present a unified self-contained treatment of N for classical
simple Lie superalgebras that can be easily referenced by those working in super
representation theory.

1.3. The paper is organized as follows. In Section 2, the nilpotent cone for classical
Lie superalgebras is defined. We also indicate how this definition generalizes the
definition of the nilpotent cone for complex semisimple Lie algebras. Our first
main result (Theorem 3.1.1) in Section 3 demonstrates that the nilpotent cone for
gl(m|n) has finitely many G0̄-orbits. Explicit orbit representatives are determined.
In Section 4, we prove a theorem that allows us to extend the finiteness result to
the nilpotent cone for other classical simple Lie superalgebras. The ideas of the
theorem are originally due to Richardson and can be applied in cases when there
is a suitable embedding of the classical simple Lie superalgebras into a general
linear Lie superalgebra. With these tools, we show that for classical simple Lie
superalgebras, N has finitely many G0̄-orbits.
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Duflo and Serganova [DS] introduced the commuting variety X for any finite-
dimensional Lie superalgebra. They proved that for basic classical Lie superalge-
bras, X has finitely many G0̄-orbits. In Section 5, we prove that for all classical
simple Lie superalgebras, one has an inclusion X ⊆ N . In this way, one should
consider the nilpotent cone as a larger algebraic variety whose geometric proper-
ties should encompass that of X . We show that our results on the finiteness of
orbits for N allow us to extend the finiteness results in [DS] to a wider class of Lie
superalgebras (cf. Corollary 5.3.1).

2. Preliminaries

2.1. Notation. Throughout this paper we will use the conventions in [BKN1,
BKN2,BKN3,BKN4, LNZ,GGNW, Jan1]. Let g = g0̄ ⊕ g1̄ be a classical Lie su-
peralgebra over k = C. This means there exists G0̄, a corresponding connected
reductive algebraic group, such that Lie G0̄ = g0̄ where g1̄ is a G0̄-module via the
adjoint action. The Lie superalgebra g is a basic classical if it is a classical Lie
superalgebra with a nondegenerate invariant supersymmetric even bilinear form.

Let g be a classical Lie superalgebra and S•(g∗1̄) be the symmetric algebra on
the dual of g1̄. We will often regard S•(g∗1̄) as the polynomial functions on g1̄. Let
S•(g∗1̄)+ be the polynomials with constant term equal to zero. The algebraic group
G0̄ acts on g1̄, so we can consider the G0̄-invariant polynomials with zero constant

term on g1̄ denoted by S•(g∗1̄)
G0̄
+ . The nilpotent cone, N , for g is the zero set of

these polynomials:

N = Z(S•(g∗1̄)
G0̄
+ ).

Observe that N ⊆ g1̄. The algebraic variety N is a G0̄-invariant closed cone in g1̄.

2.2. Simple classical Lie superalgebra. The main results of the paper will be
stated for classical “simple” Lie superalgebras. We will use the term simple Lie
superalgebra to refer to the Lie superalgebras of general interest that are not sim-
ple in the true sense, but close enough to being simple (cf. [GGNW]). The Lie
superalgebras that will be considered “simple” include:

• gl(m|n), sl(m|n), psl(n|n)
• osp(m,n)
• D(2, 1, α)
• G(3)
• F (4)
• q(n), psq(n)
• p(n), p̃(n)

For the Lie superalgebras of Type Q, q(n) is the Lie superalgebra with even and
odd parts gl(n), while psq(n) is the corresponding simple subquotient of q(n) (cf.
[PS]). The Lie superalgebras that fall into the family of Type P include p(n) and
its enlargement p̃(n).

2.3. Generalization of the ordinary nilpotent cone. We now indicate how
our results generalize known results for the nilpotent cone for complex semisimple
Lie algebras. Let a be a complex semisimple Lie algebra, and set g = g0̄ ⊕ g1̄ with
g0̄ = a = g1̄ as vector spaces. We can make g into a Lie superalgebra by defining
the bracket on g0̄ to be the ordinary Lie bracket on a. The bracket of an element
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5068 L. ANDREW JENKINS AND DANIEL K. NAKANO

in g0̄ on g1̄ is given by the adjoint action, and the bracket of any two elements in
g1̄ is zero.

Let G0̄ be the semisimple simply connected group such that Lie G0̄ = g0̄. Then
N is the ordinary nilpotent cone for g0̄ = a. One can also set this up for fields of
prime characteristic, if one considers Lie algebras that arise as the Lie algebra of a
semisimple algebraic group.

3. G0̄-orbits on N : gl(m|n) case

3.1. The adjoint action of G0̄ = GLm(C)×GLn(C) on g1̄ is given by conjugation.
Explicitly,[

A 0
0 B

]
·
[

0 X+

X− 0

]
=

[
A 0
0 B

]−1 [
0 X+

X− 0

] [
A 0
0 B

]

=

[
0 A−1X+B

B−1X−A 0

]
.

In this case, [Fuks, Section 2.6] has determined the generators of the invariants,

S(g∗1̄)
G0̄
+ , to be

Tr((X+X−)k), k = 1, . . . , l

where l = min{m,n}.
For Theorem 3.1.1 we recall the notion of a matrix in column echelon form. A

matrix is in (reduced) column echelon form if it satisfies the following conditions:

• all columns that consist entirely of zero entries appear as the right-most
columns of the matrix

• the first nonzero entry of each column is called the pivot, and the pivot is
the only nonzero entry in its row

• if j > i, then the pivot of the nonzero column cj lies in a row strictly below
the row of the pivot of column ci.

We also use the convention that each pivot element is 1. By transposing the matrix,
the notion of row echelon form can be defined in a similar way.

In this section we will show that gl(m|n) has finitely many G0̄-orbits. Further-
more, explicit orbit representatives for this action will be exhibited. The results are
summarized in Theorem 3.1.1 and the proof will be given in the next subsection.

Theorem 3.1.1. Let g = gl(m|n).
(a) The number of G0̄-orbits of the adjoint action on N is finite.
(b) A complete set of orbit representatives is given by matrices

Y =

[
0 Y +

Y − 0

]
,

where

Y + =

[
Ir 0
0 0

]
and Y − =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J1 | 0 0
. . . Cr1 0 0

Jt | 0 0
− Rr2 − 0 0 0
0 0 0 0 Is 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Here Ir (resp. Is) is the r × r (resp. s × s) identity matrix, J1, . . . Jt are
Jordan blocks with zero eigenvalues, where the Jordan block Ji is of size
ki×ki, i = 1, 2, . . . , t with k1 ≥ k2 · · · ≥ kt with r =

∑t
i=1 ki. Furthermore,

the matrix Cr1 (resp. Rr2) is of size r × r1 (resp. r2 × r) and of the form

Cr1 =
(
ei1 ei2 · · · eir1

)
, Rr2 =

(
ej1 ej2 · · · ejr2

)T
where ek is the column vector with a single 1 in the k-th row and zeroes
elsewhere. Each index ip (resp. jq) belongs to the set {k1, k1 + k2, . . . , k1 +
k2 + . . .+ kt} (resp. {1, 1 + k1, . . . , 1 + k1 + . . .+ kt−1}).

3.2. Proof of Theorem 3.1.1. The proof of theorem in the prior subsection will
entail several steps. We start with a general element X ∈ N where g = gl(m|n).
Through a series of conjugations (i.e., applications of elements in G0̄), the element
X will be transformed into a matrix Y of the form in Theorem 3.1.1(b). In the
process of this transformation, we will use Y (including Y + and Y −) to denote the
current matrix under the series of transformations.

3.2.1. Let X ∈ N . Using standard results in linear algebra (involving equivalence
of matrices) and the action of (A,B) ∈ G0̄ on X, there exists (A,B) ∈ G0̄ such
that A−1X+B = Y + where

Y + =

[
Ir 0
0 0

]
and where r is the rank of X+.

3.2.2. The next step is to identify and later work with (A,B) ∈ G0̄ that centralize
Y +, which is equivalent to the condition: A−1Y +B = Y +. In order to elaborate
further, it will be useful to consider A and B in block matrix form:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B21

B21 B22

]
.

The centralizing condition is equivalent to[
B11 B12

0 0

]
=

[
A11 0
A21 0

]
.

Therefore, one has

A =

[
A11 A12

0 A22

]
B =

[
A11 0
B21 B22

]
.

Note we have a formula for B−1 in terms of blocks:

B−1 =

[
A−1

11 0

−B−1
22 B21A

−1
11 B−1

22

]
.

We can now provide a formula for the action of (A,B) in the centralizer of Y + on
Y − in block form:

B
−1

Y
−
A =

[
A−1

11 0

−B−1
22 B21A

−1
11 B−1

22

] [
Y −
11 Y −

12

Y −
21 Y −

22

] [
A11 A12

0 A22

]

=

[
A−1

11 Y −
11A11 A−1

11 (Y −
11A12 + Y −

12A22)

B−1
22 (Y −

21A11 − B21A
−1
11 Y −

11A11) B−1
22 (Y −

21A12 + Y −
22A22) − B−1

22 B21A
−1
11 (Y −

11A12 + Y −
12A22)

]
.

As long as we work with (A,B) ∈ G0̄ that centralize Y + (i.e., (A,B) ∈ cG0̄
(Y +)),

we can focus on transforming Y − into the desired form.
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5070 L. ANDREW JENKINS AND DANIEL K. NAKANO

3.2.3. Observe that Y −
11 can be put into its Jordan form J (upper triangular) via

A11. If one chooses A11 to be in the centralizer of J , one can replace both Y −
11 and

A−1
11 Y

−
11A11 with J in the expression above. By operating with elements (A,B) ∈

cG0̄
(Y +) (i.e., elements in the centralizer of Y + in G0̄) with A11 that centralizes J ,

our new expression for the action on Y − is

B
−1

Y
−
A =

[
J A−1

11 (JA12 + Y −
12A22)

B−1
22 (Y −

21A11 − B21J) B−1
22 (Y −

21A12 + Y −
22A22) − B−1

22 B21A
−1
11 (JA12 + Y −

12A22)

]
.

3.2.4. We also observe that all the eigenvalues of J are zero since

Y +Y − =

[
Ir 0
0 0

] [
J X−

12

Y −
21 Y −

22

]
=

[
J Y −

12

0 0

]
.

The condition that Tr((Y +Y −)k) = 0 for k = 1, . . . , l where l = min{m,n}
implies that if λ1, λ2, . . . , λr are the eigenvalues of J then λk

1 + λk
2 + · · · + λk

r = 0
for k = 1, 2, . . . l. Since r ≤ l this implies that λj = 0 for all j.

3.2.5. Let J be a Jordan canonical form with Jordan blocks J1, J2, . . . , Jt of sizes
k1 ≥ k2 ≥ · · · ≥ kt with all Jordan blocks having eigenvalue zero:

J =

⎛
⎜⎜⎜⎜⎜⎝

J1 0 0 · · · 0
0 J2 0 · · · 0
...

. . .

0 0 0 · · · 0
0 0 0 · · · Jt

⎞
⎟⎟⎟⎟⎟⎠ .

Consider the action of (A,B) ∈ cG0̄
(Y +) with A11, A22, and B22 to be (appro-

priately sized) identity matrices. Then

B−1Y −A =

[
J JA12 + Y −

12

Y −
21 −B21J ∗

]
.

The matrix JA12 (resp. B21J) consists of matrix entries with zeros in rows
(resp. columns) k1, k1 + k2,. . . , k1 + k2 + · · ·+ kt (resp. 1, 1 + k1, 1 + k1 + k2, . . . ,
1 + k1 + k2 + · · · + kt−1) and arbitrary entries in the other rows (resp. columns).
Therefore, one can choose entries in A12 (resp. B21) to make JA12 + Y −

12 (resp.
Y −
21−B21J) into a matrix with possibly non-zero entries in rows (resp. columns) k1,

k1+k2,. . . , k1+k2+ · · ·+kt (resp. 1, 1+k1, 1+k1+k2, . . . , 1+k1+k2+ · · ·+kt−1)
and zeros in the other rows (resp. columns).

3.2.6. Now consider the action of (A,B) ∈ cG0̄
(Y +) with A11 being the identity

matrix, A12 = 0 and B21 = 0. Then

B−1Y −A =

[
J Y −

12A22

B−1
22 Y −

21 ∗

]
.

Now one can make A22 (resp. B−1
22 ) into a product of a permutation matrix and

elementary matrices to transform Y −
12A22 (resp. B−1

22 Y −
21) into a column (resp. row)

echelon form with possibly non-zero entries in rows (resp. columns) k1, k1+k2,. . . ,
k1 + k2 + · · · + kt (resp. 1, 1 + k1, 1 + k1 + k2, . . . , 1 + k1 + k2 + · · · + kt−1) and
zeros in the other rows (resp. columns).
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3.2.7. The next step is to transform Y −
12 into a matrix Cr1 of the form stated in the

theorem. Let (A,B) ∈ cG0̄
(Y +) with A12 = 0, B21 = 0 and A22, B22 being identity

matrices. Then

B−1Y −A =

[
A−1

11 JA11 A−1
11 Y

−
12

Y −
21A11 ∗

]
.

By using the action of A11 ∈ c(J) (centralizer of J), we can assume without a
loss of generality that the pivots in Y −

12 are all 1’s. Normally we can transform Y −
12

into an elementary row echelon form by making A−1
11 into a product of elementary

matrices that performs the row operations used in Gaussian elimination, and since
Y −
12 is already in column echelon form from the previous step, this is equivalent to

the form of Cr1 . The issue is that this product of elementary matrices need not
centralize J . This problem can be remedied for the cases of the elementary row
operations of row addition and row scaling as follows.1

The matrix Y −
12 is in column echelon form and has non-zero entries in rows k1,

k1+k2,. . . , k1+k2+· · ·+kt with zeros in the other rows. Set f(j) = k1+k2+· · ·+kj ,
j = 1, 2, . . . , t. Furthermore, the non-zero pivots can lie in matrix positions (f(j), j)
for j = 1, 2, . . . , t. We want to use A−1

11 to clear the matrix entries in the columns
directly below the pivots. If there was no restriction on A−1

11 one can accomplish
this with a product of elementary matrices. For example, if one wants to eliminate
a non-zero entry α in position (f(i), j), then one can apply the elementary matrix
Ef(j),f(i)(−α) on the left which replaces Row f(j) with −α× Row f(j)+ Row f(i).

Consider the matrix Lf(j),f(i)(−α) which is in the centralizer of J where

Lf(j),f(i)(−α) =

⎛
⎜⎜⎜⎜⎜⎝

Ik1
0 0 · · · 0

Z2,1 Ik2
0 · · · 0

Z3,1 Z3.2 Ik3
. . . 0

...
...

...
. . . 0

Zt,1 Zt,2 Zt,3 · · · Ikt

⎞
⎟⎟⎟⎟⎟⎠ .

Here Ikj
are kj × kj identity matrices and Zj,i are kj × ki matrices where i =

1, 2, . . . , t − 1 and j = 2, 3, . . . , t. Moreover, set Zj′,i′ = 0 for (j, i) 	= (j′, i′), and
the block matrix

Zj,i =
(
0 −αIkj

)
.

It can be directly verified that Lf(j),f(i)(−α) will have the same effect as

Ef(j),f(i)(−α) on the Gaussian elimination process on Y −
12 .

Similarly, it can be directly verified that the matrix

Mkj
(α) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ik1
0 0 · · · 0

0
. . . 0 · · · 0

0 0 αIkj
. . . 0

...
...

...
. . . 0

0 0 0 · · · Ikt

⎞
⎟⎟⎟⎟⎟⎟⎠

will scale row k1 + . . .+ kj by α and also centralizes J .

1The permutation matrices necessary to perform the row swapping operation of Gaussian
elimination are also not in the centralizer of J ; however there are only finitely many possible
forms of Cr1 up to permutation.
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5072 L. ANDREW JENKINS AND DANIEL K. NAKANO

Therefore, if the rank of the current iteration of Y −
12 is r1 with pivots in rows

i1, . . . , ir1 , then it is transformed to(
Cr1 0 · · · 0

)
where

Cr1 =
(
ei1 ei2 · · · eir1

)
and where eip is the column vector with a 1 in the ip-th row and zeroes elsewhere.
Furthermore, each index ip is an element of {k1, k1 + k2, . . . , k1 + k2 + . . . + kt}.
That is, the nonzero entry of each column eip occurs in one of the aforementioned
rows.

3.2.8. We now perform the same procedure as in the last step to transform Y −
21 into

a matrix Rr2 with form analogous to the transpose of Cr1 . Recall from Section 3.2.6
that we have already transformed Y −

21 into row echelon form. Let (A,B) ∈ cG0̄
(Y +)

with A12 = 0, B21 = 0 and A22, B22 being identity matrices. Here one makes A11

into a product of matrices that are upper triangular, are in the centralizer of J ,
and perform column operations to clear out the entries in the pivot rows of all
non-zero entries (except for the pivot). In this case each index jq is an element of
{1 + k1, 1 + k1 + k2, . . . , 1 + k1 + k2 + . . .+ kt−1} and so the nonzero entry of each
row occurs in one of these columns.

Note that in the process we have changed Y −
12 out of the form of Cr1 . Consider

A11. Then A−1
11 will still be upper triangular and A−1

11 Y
−
12 will be a matrix with 1’s

in the same pivot entries as Y −
12 with possible non-zero entries above and to the

right of the position of the pivot entries in Y −
12 . The next two steps will correct this

issue.

3.2.9. Now let (A,B) ∈ cG0̄
(Y +) with A11, A22, and B22 be identity matrices, and

B21 = 0. Then

B−1Y −A =

[
J JA12 + Y −

12

Y −
21 ∗

]
.

We can now transform Y −
12 into a matrix in row echelon form by choosing A12 to

kill the non-zero entries in the “non-pivot” rows. Note that Y −
21 is unchanged.

3.2.10. Let (A,B) ∈ cG0̄
(Y +) with A11, B22 being identity matrices, and A12 = 0,

B21 = 0. Then

B−1Y −A =

[
J Y −

12A22

Y −
21 ∗

]
.

The matrix A22 can be chosen to clear out the non-zero entries that are not pivots
to make Y −

12 in column echelon form. Again Y −
21 is unchanged in the process.

3.2.11. The final step is to transform Y −
22 into a matrix of the desired form. We

will work with (A,B) in the centralizer of Y + with A11 centralizing J . Let A11 = I
and A12, B21 = 0. Then Y −

22 is transformed to B−1
22 Y −

22A22. Let rank(Cr1) = r1 and
rank(Rr2) = r2.

Write

Y −
22 =

(
ξ11 ξ12
ξ21 ξ22

)
where ξ11 is an r2×r1 matrix. Moreover, ξ12 is r2×(n−r−r1), ξ21 is (m−r−r2)×r1,
and ξ22 is (m− r − r2)× (n− r − r1).
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Now to centralize Cr1 and Rr2 we require the first r1 rows of A22 to be the first
r1 rows of the identity matrix and similarly the first r2 columns of B−1

22 to be the
first r2 columns of the identity matrix. Therefore, we can write A22 and B−1

22 in
block form (in a similar way with Y −

22) as

A22 =

(
Ir1 0
α21 α22

)
and B−1

22 =

(
Ir2 β12

0 β22

)
.

Then

B−1
22 Y −

22A22 =

(
ξ11 + β12ξ21 + ξ12α21 + β12ξ22α21 ξ12α22 + β12ξ22α22

β22ξ21 + β22ξ22α21 β22ξ22α22

)
.

This shows that we can send ξ22 to (
Is 0
0 0

)
where s = rank(ξ22).

3.2.12. Now choose (A,B) ∈ cG0̄
(Y +) with A11, A22 and B−1

22 to be the identity,

while allowing A12 and B21 to be free. This action will fix ξ22 and image of Y −
22 is

(3.2.1) −B21JA12 −B21Y
−
12 + Y −

21A12 + Y −
22 .

Set B21 to be zero. Let the pivots of Y −
21 be in columns j1, . . . , jr2 . Then set the

j1-th row of A12 to be the negative of the 1st row of Y −
22 , the j2-th row of A12 to

be the negative of the 2nd row of Y −
22 and so forth. Then by (3.2.1), (A,B) sends

ξ11 and ξ12 to 0.

3.2.13. Finally, we need to choose (A,B) ∈ cG0̄
(Y +) that stabilizes the current

Y −
11 , Y

−
12 , Y

−
21 , ξ11, ξ12, ξ22 and sends ξ21 to 0. This can be accomplished by setting

A11, A22 and B−1
22 to be the identity, and A12 to be zero. If the pivots of Y −

12 are in
rows i1, . . . , ir1 , then set the i1-th column of B21 to be the 1st column of Y −

22 , the
i2-th column of B21 to be the 2nd column of Y −

22 and so forth. This concludes the
proof of Theorem 3.1.1.

Note that it can be checked using our proof that none of the orbit representatives
constructed are in the same G0̄-orbit.

4. G0̄-orbits on N : general case

4.1. In the ordinary Lie algebra case, the adjoint action of the algebraic group G
on g is known to have finitely many nilpotent orbits via Richardson’s Theorem (see
[Hum, Theorem 3.8]). In this section, we prove an appropriate generalization for
Lie superalgebras. We begin by stating Lemma 4.1.1 whose proof can be found in
[Jan2, Section 2.4].

Lemma 4.1.1. Let G be an algebraic group and let H be a closed subgroup of
G. Let X be a G-variety and let Y be a closed and H-invariant subvariety of X.
Suppose that for all y ∈ Y ,

(4.1.1) Ty(G · y) ∩ Ty(Y ) ⊆ (dπy)id(LieH),

where Ty denotes the tangent space at y and πy : G → G · y sends g to gy. Then
the intersection with Y of each G-orbit in X is a finite union of H-orbits.
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4.2. Generalization of Richardson’s Theorem. We can now state a general-
ization of Richardson’s Theorem in the context of Lie superalgebras.

Theorem 4.2.1. Let G0̄ be a closed subgroup of some GLm(C)×GLn(C). Let g =
g0̄⊕g1̄ be a Lie superalgebra with LieG0̄ = g0̄. Suppose there exists a supersubspace
M ⊆ gl(m|n) such that gl(m|n) = M ⊕ g and [g,M ] ⊆ M . Then the intersection
with g of each GLm(C) × GLn(C)-orbit in gl(m|n) is a union of finitely many
G0-orbits.

Proof. Assume such a complement M exists. We show that condition (4.1.1) of
Lemma 4.1.1 is satisfied where X = gl(m|n), Y = g, G = GLm(C)×GLn(C), and
H = G0̄. This means one must show for every y ∈ g

Ty(G · y) ∩ Ty(g) ⊆ (dπy)id(g0̄).

We observe that Ty(g) = g and (dπy)id(g0̄) = [g0̄, y].
Now showing (4.1.1) is equivalent in our case to showing

(4.2.1) Ty(G · y) ∩ g ⊆ [g0̄, y],

for every y ∈ g.
Note that Lie Gx = (gl(m)⊕ gl(n))x, and by a standard fact in [Bor, Prop. 9.1]

this is equivalent to Ty(G · y) = [gl(m)⊕ gl(n), y].
Now apply the complement condition to obtain that

[gl(m)⊕ gl(n), y] = [M0̄ ⊕ g0̄, y] = [M0̄, y] + [g0̄, y].

By assumption [M0̄, y] ⊆ M , so (4.2.1) becomes

Ty(G · y) ∩ g ⊆ (M + [g0̄, y]) ∩ g

and since M ∩ g = {0} and [g0̄, y] ⊆ g, this reduces to

Ty(G · y) ∩ g ⊆ [g0̄, y].

So (4.2.1) is satisfied and the result follows by Lemma 4.1.1. �

4.3. In the case when Richardson’s Theorem is applied to show the finiteness of
G-orbits for the nilpotent cone for complex semisimple Lie algebras, the existence
of such an M is guaranteed via complete reducibility. More specifically, this follows
from regarding gl(n) as a G-module under the adjoint action. Then g = Lie G
is a submodule and therefore has a vector space complement M in gl(n) that is
invariant under the adjoint action of g.

In the situation for Lie superalgebras, we can apply this same reasoning to G0̄

acting on g0̄ to produce an M0̄ satisfying gl(m|n)0̄ = g0̄ ⊕M0̄ and G0̄ ·M0̄ ⊆ M0̄.
Then M0̄ will also be invariant under the derived g0̄ action, so that [g0̄,M0̄] ⊆ M0̄.
However, an issue arises when considering g1̄. We can still regard g1̄ as a G0̄-module
and produce a complement M1̄, but since the derived action involves only g0̄, we
know nothing about [g1̄,M1̄].

In order to prove finiteness of orbits for N in the superalgebra case we construct
M in a case-by-case manner and show directly that [gī,Mj̄ ] ⊆ Mi+j . Details can
be found in Appendix A. It is worth noting that the methods we use to produce
these complements are analogous to the methods used to produce complements in
the characteristic p case of Richardson’s Theorem. Therefore, even though all of
the Lie superalgebras considered here are over C, we still need to use ideas from
the characteristic p case in order to produce compatible complements.
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4.4. We can now verify the finiteness of G0̄-orbits on N .

Theorem 4.4.1. Let g be a classical simple Lie superalgebra over C. Then N has
finitely many G0̄-orbits.

Proof. For classical simple Lie superalgebras g other thanD(2, 1, α), G(3) and F (4),
there exists an embedding g ↪→ g′ ∼= gl(m|n) and a supersubspace M ⊆ g′ such
that g′ = M ⊕ g and [g,M ] ⊆ M . The embeddings and complements are described
in Section 4.3 and Appendix A.

Next we need to show that Ng ⊆ Ng′ . We will prove a stronger statement that
Ng′ ∩ g1̄ = Ng. First we prove that Ng ⊆ Ng′ ∩ g1̄. Let z ∈ Ng; then f(z) = 0 for
every f(x) ∈ S•(g∗1̄)

G0̄ . We have the identifications:

(4.4.1) S•((g′1̄)
∗)G

′
0̄ ⊆ S•((g′1̄)

∗)G0̄ = [S•(g∗1̄)⊗ S•(M∗
1̄ )]

G0̄ .

Under this identification, one can regard g(x) = g(p, q) ∈ S•((g′1̄)
∗)G

′
0̄ . If z ∈ Ng ⊆

g1̄ then g(z) = g(z, 0) = 0; thus z ∈ Ng′ .
The other inclusion, Ng′ ∩ g1̄ ⊆ Ng, uses properties of the embedding described

in the first paragraph. One has S•(g∗1̄)
G0̄ = S•(g∗1̄)

g0̄ , and it will be more convenient
to use Lie algebra invariants. We have

(4.4.2) S•((g′1̄)
∗)g

′
0̄ = [S•(g∗1̄)⊗ S•(M∗

1̄ )]
g
′
0̄ ⊆ [S•(g∗1̄)⊗ S•(M∗

1̄ )]
g0̄ ,

and

(4.4.3) S•(g∗1̄)
g0̄ ⊆ [S•(g∗1̄)⊗ S•(M∗

1̄ )]
g0̄ .

The inclusion (4.4.3) is given by f(x) 
→ f(x) ⊗ 1. Let h(x) ∈ S•(g∗1̄)
g0̄ . Let

p = g0̄ +m0̄ ∈ g′0̄ where g0̄ ∈ g0̄ and m0̄ ∈ M0̄. Using the inclusion in (4.4.3) and
the fact that [M0̄, g1̄] ⊆ M1̄, it follows that

p.h(x) = −h([g0̄, x] + [m0̄, x]) = −h([g0̄, x]) = g0̄.h(x) = 0.

From (4.4.2), if z ∈ Ng′ ∩ g1̄ then z ∈ Ng.
We can now prove the finiteness of G0̄-orbits on N := Ng. Let G0̄ · y ∈ N . Set

G′
0̄ = GLm(C) × GLn(C). Then G′

0̄ · y contains G0̄ · y, and y ∈ Ng′ . Now the
finiteness of G0̄-orbits on N follows from the finiteness of orbits for the nilpotent
cone of gl(m|n) and the fact that the intersection of any orbit in Ng′ with g contains
only finitely many G0̄-orbits (see Theorem 4.2.1).

Next we consider the remaining cases when g is an exceptional Lie superalgebra.
Let g = D(2, 1, α). Then G0̄

∼= SL2×SL2×SL2 with g1̄ = V �V �V where V is the
two-dimensional natural representation. When α = 1, one hasD(2, 1, α) = osp(4, 2)
[CW, 1.1.5], so in this case N has finitely many G0̄-orbits from the argument in the
preceding paragraph. Now the action of G0̄ on g1̄ for D(2, 1, α) does not depend
on α. Hence, for arbitrary α, N has finitely many orbits.

For g = G(3) or F (4), one can argue the finiteness as follows. Let g = G(3).
In this case g1̄ = V � Z where V is the 2-dimensional natural representation for
SL2 := SL2(C) and Z is the 7-dimensional irreducible representation for G2. Let
vH = (1, 0)T and vL = (0, 1)T be vectors forming the standard basis for V and let
zH be a highest weight vector for Z. If x ∈ N then x = vH ⊗ p1 + vL ⊗ p2. If
p1 = 0 or p2 = 0 then we can use the fact that SL2 acts transitively on V and G2

acts transitively on Z to show that x is G0̄-conjugate to vH ⊗ zH .
Now suppose that p1 	= 0 and p2 	= 0. First, we can conjugate x to x1 =

vH ⊗ zH + vL ⊗ p′2. Using the Bruhat decomposition for G2 one can show that
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if B is a Borel subgroup (corresponding to the positive roots) for G2 then there
are finitely many B-orbits on Z with orbit representatives given by weight vectors
of the form zγ where γ is a short root for G2. The group B = T � U where
U acts trivially on zH and T acts by scaling zH . Thus, x1 is G0̄-conjugate to
x2 = α(vH ⊗ zH) + vL ⊗ zγ α 	= 0. Moreover, since x2 ∈ N and satisfies a 4th
degree T0̄-invariant polynomial (T0̄ a maximal torus for G0̄), it follows that zγ is
not a multiple of a lowest weight vector zL. Now one can use T0̄ to conjugate x2

to x3 = vH ⊗ zH + vL ⊗ zγ . Consequently, there are only finitely many G0̄-orbits
on N .

A similar argument can be used to prove the finiteness of G0̄-orbits for g = F (4).
Our conclusions on the finiteness for G(3) and F (4) can also be found in [K, Table
IV]. �

5. Connections with the Duflo-Serganova self-commuting variety

5.1. Let g = g0̄⊕g1̄ be a finite-dimensional complex Lie superalgebra with Lie G0̄ =
g0̄. Duflo and Serganova defined the self-commuting variety as

X = {x ∈ g1̄ : [x, x] = 0}.

The variety X is a G0̄-invariant conical variety of g1̄. In [DS], it was shown for
a finite-dimensional g-module, M , one can define a subvariety XM of X . The
collection of these associated varieties governs the representation theory of g.

5.2. Theorem 5.2.1 shows that under suitable conditions on g, the self-commuting
variety is contained in the nilpotent cone of g.

Theorem 5.2.1. Let g be a classical Lie superalgebra such that

(a) there exists an embedding g ↪→ g′ ∼= gl(m|n),
(b) there exists a supersubspace M ⊆ g′ such that g′ = M ⊕ g and [g,M ] ⊆ M .

Then X ⊆ N .

Proof. Let X = Xg (resp. Xg′) be the self-commuting variety of g (resp. g′).
Similarly, denote the nilpotent cone of g (resp. g′) by N = Ng (resp. Ng′).

Recall from Section 3.1 that Ng′ is defined as the zero set of Tr((X+X−)k),
k = 1, . . . , l where l = min{m,n}. This characterization can be used to show that

(5.2.1) Xg′ ⊆ Ng′ .

Moreover, using the definition of the self-commuting variety, one has

(5.2.2) Xg ⊆ Xg′ .

Now from the proof of Theorem 4.4.1, Ng′ ∩ g1̄ ⊆ Ng. Consequently, Xg ⊆ Ng. �

5.3. We can now state and prove generalizations of the finiteness of G0̄-orbits on
X due to Duflo and Serganova (cf. [DS, Theorem 4.2]). Note that their work
is stated under the assumption that g is a contragredient Lie superalgebra with
indecomposable Cartan matrix.

Corollary 5.3.1. Let g be a classical simple Lie superalgebra over C. Then

(a) X ⊆ N ,
(b) X has finitely many G0̄-orbits.
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Proof. We handle the case first when g is not isomorphic to D(2, 1, α), F (4) or
G(3). In this situation, Theorem 5.2.1 applies. Therefore, X ⊆ N and X has
finitely many G0̄-orbits.

Now consider the case when g = D(2, 1, α), F (4) or G(3). One can obtain the
inclusion X ⊆ N because X is the closure of G0̄ ·vH where vH is the highest weight
vector (cf. [DS, pf. of Theorem 4.2]). Since vH satisfies the defining equation for
N , one obtains the inclusion. The finiteness result for X for the exceptional Lie
superalgebras follows from the finiteness results in Theorem 4.4.1. �
5.4. For gl(m|n), we can use the parametrization of G0̄-orbit representatives for N
to recover the Duflo-Serganova parametrization of G0̄-orbit representatives for X
(cf. [DS, Theorem 4.2]).

Let Y be an orbit representative as described in Theorem 3.1.1(b). Then Y ∈ X
if and only if [Y, Y ] = 2Y 2 = 0. A direct calculation shows that Y 2 = 0 if and only
if Y −Y + = 0 and Y +Y − = 0. This is equivalent to the Jordan blocks Ji = 0 for
i = 1, 2, . . . , t, Cr1 = 0, and Rr2 = 0. Hence, Y ∈ X if and only if

Y + =

[
Ir 0
0 0

]
and Y − =

⎡
⎣ 0 0 0

0 Is 0
0 0 0

⎤
⎦ .

This corresponds to taking a representative of a subset of linearly independent set
of mutually orthogonal isotropic odd roots under the action of the Weyl group for
G0̄ (see the paragraph after [DS, Theorem 4.2]) which is precisely how Duflo and
Serganova describe their orbit representatives for X .

Appendix A. Construction of complements M

A.1. For each classical Lie superalgebra g, an explicit matrix realization of g is well-
known (for example, see [K]). We construct a matrix realization for the complement
M in Table A.1.1 below.

A.2. We now check that each of the non-exceptional classical Lie superalgebras
g (except gl(m|n)) satisfies the hypotheses of Theorem 4.2.1 case-by-case. From
the construction of M = M0̄ ⊕ M1̄ in each case below it follows that gl(m|n)ī =
gī ⊕ Mī for i = 0, 1 since each generator Eij of gl(m|n) can be written as a sum
of a (homogeneous) element of g and an element of M in an obvious way. Direct
calculation shows that [gī,Mj̄ ] ⊆ Mi+j in each case. Sample calculations are given
below for some of the classical Lie superalgebras when i = j = 1. In each case, let
X ∈ g1̄ and Y ∈ M1̄ so that [X,Y ] = XY + Y X.

• sl(m|n) : Y = 0, so [X,Y ] = 0.

• q(n) : X =

[
0 b
b 0

]
, Y =

[
0 d
−d 0

]
. Then

[X,Y ] =

[
db− bd 0

0 −(db− bd)

]
.

• p(n) : X =

[
0 b
c 0

]
, Y =

[
0 a
d 0

]
with b, d symmetric and a, c skew-

symmetric. Then

[X,Y ] =

[
bd+ ac 0

0 ca+ db

]
=

[
bd+ ac 0

0 (bd+ ac)t

]
.
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Table A.1.1. Block matrix realization of M for classical Lie superalgebras

g M

sl(m|n)
[

λIm 0
0 −λIn

]
, Im, In identity matrices, λ ∈ C

psl(n|n)
[

(μ+ λ)In 0
0 (μ− λ)In

]
, In identity matrix, λ, μ ∈ C

osp(2m+ 1|2n)

⎡
⎢⎢⎢⎢⎣

δ ut vt x x1

v a b y y1
u c at z z1
xt
1 zt1 yt

1 d e
−xt −zt −yt f dt

⎤
⎥⎥⎥⎥⎦, b, c symmetric, e, f skew-symmetric

osp(2m|2n)

⎡
⎢⎢⎣

a b y y1
c at z z1
zt1 yt

1 d e
−zt −yt f dt

⎤
⎥⎥⎦ , b, c symmetric, e, f skew-symmetric

q(n)

[
a b
−b −a

]

psq(n)

[
a+ λIn b+ μIn
−b+ μIn −a+ λIn

]
, In identity matrix, λ, μ ∈ C

p̃(n)

[
a b
c at

]
, b skew-symmetric, c symmetric

p(n)

[
a+ λIn b

c at + λIn

]
, b skew-symmetric, c symmetric,

In identity matrix, λ ∈ C

• osp(2m+ 1|2n) : X =

⎡
⎢⎢⎢⎢⎣

x x1

y y1
z z1

xt
1 zt1 yt

1

−xt −zt −yt

⎤
⎥⎥⎥⎥⎦ ,

Y =

⎡
⎢⎢⎢⎢⎣

a a1

b b1
c c1

at
1 ct1 bt1

−at −ct −bt

⎤
⎥⎥⎥⎥⎦ . Then [X,Y ] =

[
A 0
0 B

]
where the ma-

trices A,B have block forms

A =

⎡
⎣ xat

1 − x1a
t − axt

1 + a1x
t xct1 − x1c

t − azt1 + a1z
t xbt1 − x1b

t − ayt
1 + a1y

t

yat
1 − y1a

t − bxt
1 + b1x

t yct1 − y1c
t − bzt1 + b1z

t ybt1 − y1b
t − byt

1 + b1y
t

zat
1 − z1a

t − cxt
1 + c1x

t zct1 − z1c
t − czt1 + c1z

t zbt1 − z1b
t − cyt

1 + c1y
t

⎤
⎦

B =

[
−xt

1a− zt1b− yt
1c+ at

1x+ ct1y + bt1z −xt
1a1 − zt1b1 − yt

1c1 + at
1x1 + ct1y1 + bt1z1

xta+ ztb+ ytc− atx− cty − btz xta1 + ztb1 + ytc1 − atx1 − cty1 − btz1

]
with the blocks satisfying the relations

A12 = At
31, A13 = At

21, A33 = At
22, B22 = Bt

11

and with A23, A32 symmetric and B12, B21 skew-symmetric.
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• osp(2m|2n): Since this superalgebra is obtained by deleting the first row
and first column of osp(2m+1|2n), the calculations in this case are obtained
in a similar manner.
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