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Abstract—Motivated by the emerging networked applications
that involve strategic communication between selfish, rational
agents whose objectives are misaligned, this paper studies a
strategic variation of the well-known remote estimation problem.
The classical remote estimation problem studies the design of a
system, consisting of a sensor, an encoder, and a decoder, to
observe, transmit and estimate a discrete time stochastic process
with minimal transmission energy and estimation error. In order
to minimize transmission energy, the encoder makes a real-time
(sequential) to send or not to send communication decision based
on sensor’s observation of the stochastic process. In the variation
studied in this paper, the encoder aims to render the estimate
at the receiver biased in a particular, statistical manner, hence
this consideration transforms the classical remote estimation
from a team problem to a game. Specifically, we analyze the
problem of sending N samples within a time window of length
M . Assuming quadratic distortion measures and affine strategies
for sender and receiver, which were shown to be optimal for
Gaussian strategic communication, we first determine the optimal
sequential transmission policies for this problem in the context
of the Stackelberg equilibrium– where the encoder (sensor) is the
leader and the decoder (estimator) is the follower– using dynamic
programming. We demonstrate the effectiveness of our approach
via numerical results.

I. INTRODUCTION

Several emerging networks and applications, such as
inter-vehicular communication, cyber-physical systems, au-
tonomous systems, and the Internet of Things differ from their
classical analogues due to two aspects: i) communication has
strict delay and energy constraints; in fact, low complexity
real-time communication is often a strict requirement ii)
communication occurs between selfish agents with misaligned
objectives as opposed to the hidden assumption underlying
classical communication theory that is communicating agents
form a team sharing an identical objective (minimize some
distortion metric or probability of bit/symbol error etc). This
paper studies these two aspects of communication at the
physical layer, on the particular problem setting of remote
estimation.

Remote estimation problems have recently received a re-
vived interest due to the prevalence of cyber-physical systems
[1]–[3]. This problem, broadly, pertains to a setting where
a random process is observed by a sensor (sender, encoder,
decision maker) which samples and transmits its measurement
to a remote estimator (receiver, decoder). The objective of the
remote estimator is to recover the aforementioned stochastic
process with minimal errors. There exists a fundamental
trade-off between the number of observations that a remote
estimator receives (transmission energy) and the reconstruction
error. Remote estimation algorithms optimize this trade-off

by sequentially making the communication decisions at the
encoder side, based on the realization of the observation.

Most relevant to the proposed scenario is the line of work
initiated by Imer and Başar who considered a variation prob-
lem over a finite time horizon for a sensor and an estimator,
where the sensor is allowed to communicate only a limited
number of times in a given time window [2]. By restricting
the communication strategies to the class of threshold-based
communication strategies, the authors showed that there exists
a unique threshold-based communication strategy which can
be computed via dynamic programming [4]. The threshold
here depends on the realizations, hence varies in time but the
mapping of the number of available communication opportu-
nities to the threshold is determined offline. Threshold-based
strategy simply refers to using the following decision making
procedure: if the magnitude of the sample realization is greater
than a pre-specified threshold, it is considered informative
and transmitted to the estimator. Otherwise, it is not sent and
the estimator also knows that this sample is not sufficiently
informative to be communicated and estimates the missing
sample accordingly. This intuitive strategy is indeed optimal
for Markov, unimodal source processes under mean squared
error estimation criteria, as shown in [5]. Most prior work on
this problem involve a perfect channel between the sensor and
the estimator. Recent efforts have focused on more realistic
variations including the packetized channel with queueing [6],
with packet drops [7], and real-time encoding and decoding
with additive noise channel [8].

In this paper, we extend the approach of Imer and Başar
[2] to strategic scenarios where the objectives of the sensor
(sender) and the estimator (receiver) are misaligned. In the
classical communication paradigm, the encoder and the de-
coder share identical objectives (they constitute a team), such
as minimizing distortion or probability of bit error. However,
in strategic communication, the aforementioned objectives are
misaligned, as is the case in several emerging networks such
as the Internet of Things and inter-vehicular communication.
In game theory parlance, this new consideration substantially
transforms the communication from a team problem to a game.
These problems while being central to the field of information
Economics, see e.g., [9], [10], have not been analyzed in the
engineering literature until very recently. In a recent work [11],
this game is analyzed in the context of Stackelberg equilibrium
where the sender is the leader and hence committed to its
encoding mappings, and the receiver is the follower and acts to
minimize its own cost given the encoding map (best response
to the encoding strategy). It is shown in [11] that the quadratic-
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Fig. 1: Problem setting.

Gaussian setting admits an essentially unique equilibrium that
is achieved by linear strategies. In this paper, we begin with
the linear strategies derived in [11] apriori and numerically
derive the optimal communication decision making policies
using dynamic programming following the approach taken in
[2] for non-strategic version of the problem.

One intriguing question that does not appear in classical
(noiseless, non-strategic) remote estimation problem, is on
how to account for the change in effective joint statistics of
the source and bias variables due to thresholding operation.
Since the optimal linear encoding and decoding maps depend
on the second order statistics (the marginal variances as well
as the correlation of the source and bias information), they
also indirectly depend on the threshold. Hence, once need
to optimize the parameters of the linear encoding mappings
as well as the threshold jointly which constitutes a substan-
tial research challenge for this problem. We circumvent this
problem by iteratively applying the following two steps until
convergence: i) optimize the threshold for a given statistics;
and ii) update the statistics for a given threshold. This iterative
imposition of person by person optimality conditions is well-
understood to converge to a local minima, see e.g. the Lloyd-
Max quantization algorithms used in source compression [12].

II. PRELIMINARIES

A. Strategic Communication

In this paper, we consider the Stackelberg equilibrium,
(or Bayesian perfect subgame equilibirum in the Economics
parlance) where the sender is the leader and the receiver is
the follower. The game proceeds as follows: the sender plays
first and announces an encoding mapping. As a leader in
Stackelberg game, the sender is committed to its encoding
mapping, i.e., the sender cannot change it after the receiver
plays. The receiver, knowing this commitment, determines its
own mapping that maximizes its pay-off, given the encoding
map. The sender, of course, will anticipate this, and pick
its map accordingly. Note that there is a natural order in
this model of communication: the sender cannot change its
mapping after the receiver announces the decoding strategy.

Here, the source X and bias ✓ are mapped into Y 2 R, via
a stochastic mapping Y = g(X, ✓) and the receiver produces
an estimate of the source X̂ through a mapping h : R ! R
as X̂ = h(Y ).

The objective of the receiver is to minimize

DR = E
⇢⇣

X � X̂
⌘2
�

(1)

while that of the sender is to minimize

DS = E
⇢⇣

X + ✓ � X̂
⌘2
�

(2)

over the mappings g(·, ·) and h(·). We take the source and bias
variables jointly Gaussian, i.e., (X, ✓) ⇠ N (0, RX✓) where,
without any loss of generality, RX✓ is parametrized as

RX✓ = �2
X


1 ⇢
⇢ r

�
, (3)

with r > ⇢2. The optimal strategies for this communication
game are derived in [11] and reproduced below:

Theorem 1 ( [11]). The essentially unique mappings at the
Stackelberg equilibrium are given as g⇤(X, ✓) = X +↵✓ and
h⇤(Y ) = Y , where ↵ and  are:

↵ =
A� 1

2(r + ⇢)
,  =

1 + ↵⇢

1 + ↵2r + 2↵⇢
(4)

Costs at this Stackelberg solution are

DS =�2
X

✓
1 +

(A� 3)(r + ⇢)

A� 1

◆
(5)

DR =�2
X

✓
(r � ⇢2)(A� 1)

A(2r +A⇢+ ⇢)

◆
(6)

where A =
p
1 + 4(r + ⇢).

B. Problem Definition
The problem setting is depicted in Figure 1 where the state

of a remote plant is observed over a perfect channel by the
sensor, and transmitted to a decoder who recovers the state
over a finite time horizon t = 1, . . . ,M . The state and bias
processes are characterized by one-dimensional, independent,
and identically distributed (i.i.d.) stochastic processes denoted
by {Xt} and {✓t}. We take the joint distribution as jointly
Gaussian with zero mean and covariance given in (3), we
denote this probability measure as f(X, ✓). The entire system
consists of three elements: a sensor, and encoder and a decoder.
Here, the sensor and the encoder share identical objectives,
while the decoder’s objective differs from them.
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At each time t, the sensors makes perfect (noiseless) mea-
surements of Xt. Then it makes a binary decision, denoted
here by Ut on whether to transmit or not, where Ut = 1 cor-
responds to transmission and Ut = 0 implies non-transmission.

If the sensor decides to transmit its observation, then it
sends Xt to the encoder. Otherwise, it transmits a free symbol
(denoted by ✏) representing that there is no transmission.
We consider the well-studied two variations for the cost of
the sensor. The soft-constrained problem variation involves a
transmission cost c for each transmission, while there is no
limit on the number of total transmissions. A non-transmission
decision does not incur any cost. The hard-constrained vari-
ation limits the number of transmissions to N over the time
horizon M , that is,

MX

t=1

Ut  N. (7)

After receiving the message X̃t from the sensor, the en-
coder sends a message Yt to the decoder. In the noise-free
channel variation, as also studied in this paper, this message
is transmitted to the decoder without any errors.

After receiving the message from the channel the decoder
estimates the state process {Xt} in minimum mean-squared
error sense.

The objective of the team of sensor and encoder is to
minimize following cost:

DE(t) = E
⇢⇣

Xt + ✓t � X̂t

⌘2
�

(8)

while the objective of the decoder is

DR(t) = E
⇢⇣

Xt � X̂t

⌘2
�

(9)

We consider two variations of this problem, as done in [2],
[8]. In the problem version with a hard constraint, the encoder
can use M of the total N communication opportunities. On
the version with a soft constraint, there are no hard limits
on the number of transmission opportunities, but there is a
distortion cost associated with each transmission. We take
the channel model as perfect channel, the decoder receives
the message transmitted by the encoder (when it makes the
transmit decision), without any errors or distortions. In both
variations of the problem, we assume threshold-based decision
making strategies apriori, i.e., we assume that the encoder will
make the transmit decision if x, ✓ 2 ⌧ , otherwise it will not
transmit. This strategy was first intuitively selected and studied
in [2] and later was shown to be optimal for unimodal sources
with Markov temporal dependency, under some mild technical
assumptions [5].

III. MAIN RESULTS
A. Problem with the hard constraint

We follow the steps similar to those in [2] to derive a dy-
namic programming solution to the hard constrained problem,
albeit there are significant modifications due to the strategic
aspect of the problem at hand. We start by defining the encoder

distortion as a function of the communication opportunities
left s and the time remaining t, as e(s, t). The optimal value
of this function is denoted as e⇤(s, t). There are boundaries at
s = t and s = 0 where the threshold becomes constant. We let
�T (X, ✓) and �NT (X, ✓) denote the encoder’s distortion when
the message is sent and not sent. In the non-strategic (original)
variation of the remote estimation problem, these functions
are simply �NT (X) = X2 and �T (X) = 0. Here, due to the
strategic aspect of the problem both functions involve X and
✓, and given as follows:

�T (X, ✓) = ((X + ✓)� (X + ↵✓))2 (10)
�NT (X, ✓) = (X + ✓)2 (11)

We let ⌧(s,t) denote the set of X, ✓ values that results in
the transmission decision when time is t and the number of
communication opportunities left is s.

Plugging in the expectation expressions and after straight-
forward algebra (omitted here), we obtain equation (13).

The recursive equation (12) follows from the distortion
relations. These recursive equations suggest a dynamic pro-
gramming solution, as it does in the case of [2] which
require the determination of initial conditions. One initial
condition pertains to s = 0 case: here, we have no more
communication opportunities left, and the expected error is the
product of the expected error for not transmitting and t, i.e.,
e⇤(0, t) = tE[�NT (X, ✓)]. The other initial condition is the
s = t case: here, the encoder always transmits if transmission
is beneficial to the encoder, and does not transmit otherwise,
i.e., the one step error is simply1

P1 = P{A}E[�T (X, ✓)|A] + P{B}E[�NT (X, ✓)|B],

where A is the event �NT (X, ✓) � �T (X, ✓) and B denotes
the event �T (X, ✓) � �NT (X, ✓). The overall error is simply
e⇤(t, t) = tP1. Here we note that the encoder transmits
messages only if �NT (X, ✓) � �T (X, ✓) even in the case
of unlimited communication opportunities, because there are
realizations of X and ✓ for which transmitting a message
increases encoder’s cost due to the way the receiver estimates
the source (more on this in Remark 1). With these conditions
the optimal error can be calculated for any state. We also note
that ⌧(s,t) can be expressed as

⌧(s,t) =
�
(X, ✓)|�NT (X, ✓)� �T (X, ✓) > �(s,t)

 
(14)

By applying the first order necessary conditions for optimal-
ity on equation (13), we obtain the optimal threshold �⇤

(s,t) as:

�⇤
(s,t) = e⇤(s�1,t�1) � e⇤(s,t�1). (15)

Hence, once the error functions associated with every time
and state have been computed, the optimal threshold can be
simply computed via (15) as well.

We have implemented the dynamic programming solution
described above to obtain numerical simulation results. We

1The symbol P(A) denotes the probability of event A.
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e⇤(s, t) = min
⌧(s,t)

8
><

>:

⇣
e⇤(s�1,t�1)+E

⇥
�T (X, ✓)| (X, ✓) 2 ⌧(s,t)

⇤⌘Z

⌧(s,t)

df +
⇣
e⇤(s,t�1) + E[�NT (X, ✓)| (X, ✓) 2 ⌧ c(s,t)]

⌘ Z

⌧c
(s,t)

df

9
>=

>;

(12)

e⇤(s, t) = e⇤(s,t�1) +

Z
�T (X✓)df + min

⌧(s,t)

8
><

>:

⇣
e⇤(s�1,t�1) � e⇤(s,t�1)

⌘ Z

(X,✓)2⌧(s,t)

df+

Z

(X,✓)2⌧(s,t)

�
�T (X, ✓)� �NT (X, ✓)

�
df

9
>=

>;
(13)

Fig. 2: Encoder distortions for ⇢ = 0 varying r (left), and sample communication path (right).

plot encoder’s costs associated with varying initial commu-
nication opportunities (M ) in Figure 2 for N = 25 for
statistics with varying r and ⇢ is fixed at ⇢ = 0. As expected,
an increase in the number of communication opportunities
decreases the expected error. However, as can be seen from
Figure 2, while the non-strategic version of the problem
results in an expected convex relationship between the number
of communication opportunities available M and encoder’s
cost, as the problem becomes more and more strategic, the
numerical results suggest that this complexity disappears, as
can be seen for the case r = 2.

B. Problem with the soft constraint

Remark 1. A rather surprising observation here, that does
not appear in the classical remote estimation problem, is that
the encoder may not use all of its communication opportu-
nities available. A similar observation is also made for the
setting with additive noise channel in [8]. However, here the
underlying reason is different than that of in [8]. In this
strategic setting, it might be more beneficial not transmit
(even if the transmission is available for no cost) and have
the decoder estimate the source as its mean, e.g., if the
realization of X is close to that of �✓, the encoder distortion
E{(X + ✓� X̂)2} would be small given that the decoder will
reconstruct X̂ = 0. This is demonstrated in Figure 2 as there

are unused communication opportunities left at the end of the
communication window. In the noisy but non-strategic setting
analyzed in [8], the underlying reason for this phenomenon
is the fact that the received (noisy) signal at the decoder may
not be as informative as the information obtained from the
thresholding operation (which is sent to the receiver over a
noiseless ternary channel).

For the soft constrained problem, the encoder does not have
limited communication opportunities, but there is a penalty, c,
for sending a message in addition to the distortion. i.e., the
overall cost of the encoder is

min
⌧t

{E[
TX

t=1

cUt + dt(Xt, ✓t) ]} (16)

where

dt(Xt, ✓t) =

(
�NT (Xt, ✓t), if Ut = 0

�T (Xt, ✓t), if Ut = 1
(17)

Noting the memoryless nature of the source (X) and bias ✓,
and following the arguments used in [8] for a similar problem,
it is straightforward to decouple the objective and transform
the problem equivalently to the following one-step (static)
problem.
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Fig. 3: Encoder and decoder distortions for r = 1 and varying ⇢ (left), ⇢ = 0 and varying r (middle), and varying c with
r = 1, ⇢ = 0 (right).

Fig. 4: Distortion costs of the original encoding/decoding parameters and the revised encoding/decoding parameters.

min
⌧

{E[cUt + dt(X, ✓)]} (18)

We solve this static optimization problem, i.e. find the
optimal threshold ⌧ as a function of c, and plot our numer-
ical results in Figure 3 which demonstrates the relationship
between the distortion costs associated with the encoder and
decoder and the statistical characteristics of (X, ✓), and cost
of transmission. These error curves in Figure 3 are similar to
those found in the strategic communication setting [11]. The
monotonicity of the error curves (and asymmetry around the
mean) is demonstrated in the left subfigure in Figure 3, as
stated in Remark 1, when ⇢ ! �1, the encoder chooses not
to transmit and to force the decoder to estimate X̂ = 0, and
thereby making the encoder distortion E{(X+ ✓� X̂)2} ! 0
and E{(X � X̂)2} ! �2

X
. Hence, as ⇢ increases DE also

increases while DD decreases.

C. Adjusting the statistics due to thresholding
We next address the following concern: once the message

Y generated from (X, ✓) pair is thresholded, does the op-
timal linear mappings change? We note that this problem
does not appear in the classical, original variation of the
remote estimation problem since there is no encoding of the
transmitted value in that problem. The noisy channel variation
studied in [8] accounts for this effect by simply computing
the conditional variance of the source given that Ut = 1,

which is rather straightforward to compute. Here, obviously
the problem is more involved. As a practical remedy, even
though the thresholding policy generates a non-Gaussian joint
distribution of X and ✓, we still approximate it as jointly
Gaussian, albeit with a different second order statistics, i.e., we
recompute �2

X
, r and ⇢. After the statistics are approximated,

we recompute the optimal mappings, i.e., ↵ and  values based
on the newly generated �2

X
, r and ⇢ via (4). We repeat this

two step procedure until this process converges.
We implemented the above procedure for our running

example of jointly Gaussian X and ✓. We plot the revised
values of ↵ and  are shown in Figures 5 and 6.

Remark 2. When using thresholding communication and find
the new encoding scheme the values of ↵ and  decrease. This
is due to the fact that negatively correlated values of (X, ✓)
have low error when not transmitted, meaning they will not
be in the set that of values that are transmitted. This makes
the set of (X, ✓) more positively correlated, decreasing the
optimal values of ↵ and .

We plot our simulation results in Figure 4 for varying r
values while keeping ⇢ fixed at ⇢ = 0 as well as for varying
⇢ values while keeping r is fixed at r = 1. With new values
of ↵ and , the costs associated with the encoder and the
decoder change as well. This set of (X, ✓) is also more posi-
tively correlated than its original (unthresholded) distribution.
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Fig. 5: ↵ value for varying ⇢ with r = 1, c = 1

Fig. 6:  value for varying ⇢ with r = 1, c = 1

We analyzed in detail the previous section, more positively
correlated distributions increase encoder’s distortion, DE ,
while decreasing decoder’s distortion DD. This observation
is here demonstrated in Figure 4 where it can be seen that
DN (New Decoder Error) is smaller than DO(Old Decoder
Error). For the encoder more positively correlated messages
increase its error and this is also seen in the simulated results
with EN (New Encoder Error) is larger than EO(Old Encoder
Error).

Remark 3. When using thresholding communication and we
find that the new encoding scheme the values of ↵ and 
decrease. This is due to the fact that negatively correlated
values of (X, ✓) have low error when not transmitted, meaning
they will not be in the set that of values that are transmitted.
This makes the set of (X, ✓) more positively correlated,
decreasing the optimal values of ↵ and .

IV. DISCUSSION

In this paper, we have extended the analysis for the remote
estimation problem form classical communication to strategic

settings where the sender (encoder) and the receiver (decoder)
have diverging objectives. Our analysis has uncovered an inter-
esting observation: unlike the classical remote estimation prob-
lem, in this strategic variation, the encoder might choose not
to utilize all available communication opportunities. Another
rather surprising observation pertains to the analysis made to
account for the statistics change due to thresholding. This
correction of statistics after thresholding, results in positively
correlated X and ✓, thereby increases the encoder’s error DE

while decreases the decoder’s error DD.
Extending the analysis to settings with additive communi-

cation channels constitutes a part of our future research.
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