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The problem of whether the cohomological support map of a finite dimensional Hopf
algebra has the tensor product property has attracted a lot of attention following
the earlier developments on representations of finite group schemes. Many authors
have focused on concrete situations where positive and negative results have been
obtained by direct arguments. In this paper we demonstrate that it is natural to study
questions involving the tensor product property in the broader setting of a monoidal
triangulated category. We give an intrinsic characterization by proving that the tensor
product property for the universal support datum is equivalent to complete primeness
of the categorical spectrum. From these results one obtains information for other
support data, including the cohomological one. Two theorems are proved giving compete
primeness and non-complete primeness in certain general settings. As an illustration
of the methods, we give a proof of a recent conjecture of Negron and Pevtsova on the
tensor product property for the cohomological support maps for the small quantum

Borel algebras for all complex simple Lie algebras.
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2 D. XK. Nakano et al.
1 Introduction
1.1 Monoidal triangular geometry

Tensor triangular geometry as introduced by Balmer has played a unifying role
in understanding the interrelationships between representation theory, homological
algebra and commutative ring theory/algebraic geometry. In [20], the authors developed
a noncommutative version of Balmer’s tensor triangular geometry [2]. Our new theory
has the advantage that it can be applied to a wider variety of categories such as the
stable module category for any finite-dimensional Hopf algebra. Given a monoidal

triangulated category K, we associated

e atopological space Spc K of (thick) prime ideals and
e a support datum map V : K — Xsp(Spc K) to the set of specialization closed
subsets of Spc K,

and we proved that this support datum is a universal final object in the category of all
support data, see Theorem 2.3.2 below.

As in the case for non-commutative rings, for monoidal tensor categories, we
demonstrated that it was important to distinguish various types of prime ideals. The
definition of a prime ideal in this setting involves considering products of ideals,
whereas the definition of a completely prime ideal entails considering products of
objects in the category. The notion of semiprime ideal is also a key concept in this new

theory.

1.2 Support theory

The precursor to support data, namely support varieties, were first developed in the
context of modular representations of finite groups by the pioneering work of Alperin
and Carlson. Since that time, in representation theory (and in the more general setting of
monoidal triangulated categories) there has been a plethora of contexts where support

theory has been studied, which includes the following:

(i) the cohomological support via group, Hopf algebra, and Hochschild coho-
mology [10, 24],
(ii) the rank variety and IT-support via embedded subobjects [10, 14],
(iii) support via actions of commutative algebras [4, 5],
(iv) support via actions of the extended endomorphism ring of the identity
object [9],

(v) support via tensor triangular geometry [2],
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Tensor Product Property for Support Maps 3

and other approaches. Many fundamental connections between these support theories
have been established.

In the aforementioned cases, a support datum map is a map o from the objects
of a monoidal triangulated category K to the set of specialization closed subsets X, (X)
of a topological space X. The following problem has attracted a lot of attention and has

been at the heart of applications of support maps:

Problem. When does a support datum o : K — X, (X) possess the tensor product

property

0c(A®B)=0(A)No(B), VA,BecK?

For the cohomological support for modular representations of finite groups this
was proved in [10] and for finite group schemes in [14]. In the support setting in (iii),
a positive answer was obtained in [4, 5] under a stratification assumption. There has
been a great deal of research on this problem for the cohomological support for the
stable module category StMod(H) of a finite dimensional Hopf algebra H. In concrete

situations positive and negative answers were obtained in [6, 13, 22, 23].

1.3 Main results

The main goal of this paper is to illustrate how the tensor product property can be
characterized in terms of the intrinsic structure of the underlying monoidal triangulated

category. More specifically, the main results of this paper are as follows:

(i) Given a monoidal triangulated category, we prove that the universal support
datum V : K — X, (Spc K) has the tensor product property if and only if all
prime ideals of K are completely prime (Theorem 3.1.1).

(ii) We prove that if all thick right ideals of a monoidal triangulated category K
are two sided, then the property in (i) holds for K (Theorem 3.2.1).

(iii) We show that if every object of a monoidal triangulated category is either
left or right dualizable and the category has a nilpotent object, then the
property in (i) does not hold for K (Theorem 4.2.1).

The power of Theorem 2.3.2 is that the verification of the support property
for individual objects of the category K is shown to be equivalent to an intrinsic
global property of the Balmer spectrum Spc K of the category. In noncommutative
ring theory, the question of whether all prime deals of a noncommutative ring are

completely prime is a much studied one. Dixmier proved that the universal enveloping
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4 D. K. Nakano et al.

algebra U(g) of a finite dimensional Lie algebra has this property if and only if the Lie
algebra g is solvable [11, Theorem 3.7.2]. For general noncommutative rings there are
no classification theorems of this sort; positive results for quantum function algebras
and Cauchon-Goodearl-Letzter extensions were obtained in [16, 18, 19]. Theorem 2.3.2
establishes a bridge between the tensor product property for support data and the
categorical versions of these questions in ring theory.

Theorems 3.2.1 and 2.3.2 allow for a fast checking of the tensor product property
in many interesting situations. This can be combined with [20, Theorems 6.2.1 and 7.3.1]
where we proved that support data satisfying natural assumptions coincide with the
universal support map V : K — Xsp(Spc K). One can use this to apply Theorems 3.2.1
and 2.3.2 to verify whether other support maps for a monoidal triangulated category K,
for instance the cohomological support map, possess the tensor product property. Along
this path we obtain the last main result in the paper, proving the Negron and Pevtsova

conjecture [22] that

(iv) the cohomological support maps for all small quantum Borel algebras
associated to arbitrary complex simple Lie algebras and arbitrary choices

of group-like elements possess the tensor product property.

2 Preliminaries on Noncommutative Tensor Triangular Geometry
2.1 Monoidal triangulated categories

We follow the conventions in [20]. A monoidal triangulated category (MAC for short) is
a monoidal category K in the sense of [12, Definition 2.2.1], which is triangulated and
for which the monoidal structure ® : K x K — K is an exact bifunctor.

Recall that a thick subcategory of a triangulated category K is a full triangulated
subcategory of K that contains all direct summands of its objects. A thick right (resp.
two-sided) ideal of an MAGC, K, is a thick subcategory of K that is closed under right
tensoring (resp. right and left tensoring) with arbitrary objects of K. For each object
M € K there exist unique minimal right and two-sided ideals containing M, which will
be denoted by (M), and (M), respectively.

2.2 Prime ideals and the Balmer spectrum

We call a proper two-sided ideal P of K prime if

IRICP=ICPor JCP (2.2.1)
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Tensor Product Property for Support Maps 5

for all thick two-sided ideals I and J of K. This property is equivalent to saying that
(2.2.1) holds for all pairs of thick right ideals I and J of K. It is also equivalent to the
condition that for all A,B € K,

ARCQRBeP,VCeK=A€cP or BeP,

see [20, Theorem 3.2.2].
One can define a notion of primeness on objects of K as follows. An ideal P is

completely prime if and only if

ARBeP=AcP or BeP

for all objects A and B in K.
With these definitions of primeness, one can define a topological space that is

analogous to the spectrum of a non-commutative ring.

Definition 2.2.1.

(a) The noncommutative Balmer spectrum SpcK of an MAC, K, is the set of its

prime ideals with the topology generated by the closed sets
V(M) ={P e SpcK | M ¢ P}
for M € K.
(b) Let CP-Spc K be the topological subspace consisting of all completely prime
ideals of K. Its topology is generated by the sets
Vep(M) = {P € CP-Spc K | M ¢ P}

for M € K.

From the definitions, one can easily verify that every completely prime ideal in

an MAC is prime. Therefore, one has

Vep(M) = V(M) N CP-Spc K.

It is clear that an intersection of prime ideals need not be a prime ideal.
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6 D. K. Nakano et al.

Definition 2.2.2. A semiprime ideal of an MAC, K, is an intersection of prime ideals
of K.

The following characterization of semiprime ideals was proven in [20,
Theorem 3.4.2]:

Theorem 2.2.3. The following are equivalent for a proper thick ideal Q of an
MAC, K:

(a) Qis asemiprime ideal;

(b) ForallAeK,if AQC®AcQ,VCecXK,thenAd € Q;

(c) IfIis any thick two-sided ideal of K such thatIQI C Q, thenI C Q;

(d) IfIis any thick right ideal of K such that IQ I € Q, then I C Q.

2.3 Support data maps, universality of Spc K

One of the important features about monoidal triangulated categories is the use of maps
that take objects of K to subsets of a topological space. For a given topological space Y,
we will denote by X' (Y), &,;(Y), and Xp(Y) the collections of its subsets, closed subsets,
and specialization closed subsets, respectively. Given a map o : K — X(Y), denote its

extension to the set of thick subcategories of K given by

@, (M = | o). (2.3.1)

Acl

Definition 2.3.1. A support datum for an MAC, K, is a map
o:K—> X(Y)

for a topological space Y such that
(i

(ii

c(0)=@ando(l)=Y;

c(A®B) =c(A)Uo(B), VA, B e K;

o(ZA) = o (A), VA € K;

If A— B— C — XA is adistinguished triangle, then o (4) C o(B) Uo (C);
V) Ucexk9A® C®B) =0 (A)No(B),VA,B e K.

)
)
(iii)
(iv)

A weak support datum is a map

o:K— X(Y),
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Tensor Product Property for Support Maps 7

which satisfies conditions (i)-(iv) and the condition
V) ¢,Ad®J)=o,d N, (J) for all thick two-sided ideals I and J of K.

A quasi support datum is a map

o:K— X(Y),

which satisfies conditions (i)—(iv) and the condition

(v") 0c6(A®B) Co(A),forall A,B K.

We note that condition (v”) is equivalent to requiring that ®_((4),) = 0 (A4) for all
A € K. For MACs, K admitting arbitrary set indexed coproducts, we will consider maps

o : K — X(Y) satisfying the stronger property
(iil) G(®161Al) = UiEI G(Al)’ VAL S K and all sets I

in place of property (ii); this property will be explicitly mentioned when used.
Each support datum is a weak support datum [20, Lemmas 4.3.1 and 4.5.1]. For
every MAC K, the map

V:K— X;(SpcK) givenby V(A)={PeSpcK:M ¢ P}

is a support datum. It is universal as proved in [20, Theorems 4.2.2 and 4.5.1]:

Theorem 2.3.2. Let K be an MAC.

(a) The support V is the final object in the collection of support data o for K
such that o (A4) is closed for each A € K: for any such o : K — X(Y), there is

a unique continuous map f, : ¥ — Spc K satisfying

o(A) =f;1(V(A)) for AcK.

(b) The support V is the final object in the collection of weak support data o for
K such that ®_((A)) is closed for each A € K: for any such ¢ : K — X(Y),

there is a unique continuous map f,, : ¥ — Spc K satisfying

®,((A) =f, ' (V(A)) for AeK.
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8 D. K. Nakano et al.

3 The Tensor Product Property for the Universal Support Datum of a Monoidal

Triangulated Category
3.1 Complete primeness of Spc and the tensor product property

We begin by proving a theorem that indicates how the structural properties of a
monoidal triangulated category are captured by characterizations involving the uni-

versal support datum.

Theorem 3.1.1. For every monoidal triangulated category K, the following are equiva-

lent:

(a) The universal support datum V : K — X (Spc K) has the tensor product
property

V(A®B) = V(A)NV(B), VA,BeK.

(b) Every prime ideal of K is completely prime.

Proof. (a = b)Let P € SpcK and A, B € K be such that A ® B € P. Then

P ¢ V(A®B) = V(A) N V(B).

Hence, either P ¢ V(A) or P ¢ V(B), and thus, either A e Por B € P.
(b = a) For A, B € K, we have

Spc K\V(A®B)={PeSpcK|AQ®B e P}
={PeSpcK|AecP}U{PeSpcK|BEeP}
= (Spc K\V(A)) U (Spc K\V(B)).
Thus, V(A ® B) = V(A) N V(B). ]
The proof of Theorem 3.1.1 immediately gives the following fact.

Corollary 3.1.2. For every monoidal triangulated category, K, the map

Vep : K — CP-Spc K givenby Vi p(4) = V(4) N CP-Spc K
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Tensor Product Property for Support Maps 9

has the tensor product property.

In many cases for monoidal triangulated categories, K, the space CP-Spc K can
be much smaller than Spc K. So in general, the support datum V;p captures much less

information than the universal support datum V.

3.2 A criterion for complete primeness of Spc K

In this section we investigate monoidal tensor categories where the right ideals
coincide with the two-sided ideals. In this situation, every prime ideal is completely
prime and the tensor product property holds. This key observation will be applied in

Section 5.7.

Theorem 3.2.1. Let K be a monoidal triangulated category in which every thick
right ideal is two sided. Then every prime ideal of K is completely prime, and as a

consequence, the universal support datum V : K — X (Spc K) has the tensor product

property

V(A®B) = V(A)NV(B), VA,BeK.

Proof. First, we claim that

(M), = (M), VM eK. (3.2.1)

r

The inclusion (M)
hypothesis states that (M), is a a two-sided thick ideal and, in particular, it contains
(N) for all N € (M),. Applying this for N = M yields (M), 2 (M).

Let P € SpcK and A, B € K be such that A ® B € P. Therefore, A® (B), € P and, by
(3.2.1), A ® (B) C P. This implies that A ® C ® B € P for all C € K and, by the primeness
of P, A € P or B € P. Therefore, the thick ideal P is completely prime. The 2nd statement
follows from the 1st and Theorem 3.1.1. |

+ € (M) is obvious. The reverse inclusion is proved as follows. The

If a monoidal triangulated category K has the property that A ® B = B® A for
all A,B € K, then K satisfies the assumption of Theorem 3.2.1. This in particular holds
for all braided monoidal triangulated categories. The next section contains much more

nontrivial applications of this theorem.
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10 D. K. Nakano et al.
4 A Criterion for Non-complete Primeness of SpcK
4.1 Rigidity and semi-primeness

Recall that an object A of a monoidal category K is left dualizable if there exists an

object A* (called the left dual of A), together with evaluation and coevaluation maps
ev:A*®A -1 and coev:l —> ARQA%

such that the compositions

coev®id id ®ev « 1d ®coev
AN ——

ALY oA 0Aa 2% 4 and Ax e

A"RAQ® A* (4.1.1)
are the identity maps on A and A*, respectively. The left dual object A* is unique up to
a unique isomorphism [12, Proposition 2.10.5]. In a similar way one defines the notions
of right dualizable objects and their right duals, see [12, Definition 2.10.2]. Finally, an
object of a monoidal category is rigid if it is both left and right dualizable.

Proposition 4.1.1. If K is a monoidal triangulated category in which every object is

either left or right dualizable, then every thick ideal of K is semiprime.

Proof. Fix a thick two-sided ideal I of K. Let A € K be such that A® B® A € I for all
B € K. In particular, A ® A* ® A € I. Assume that A is left dualizable; the case when it is
right dualizable is handled in a similar fashion. It follows from (4.1.1) that A is a direct
summand of A ® A* ® A. Since I is a thick subcategory of K, A € I. Theorem 2.2.3 now

implies that I is a semiprime ideal of K. ]

4.2 Existence of nilpotent elements

Given a monoidal tensor category where every object is either left or right dualizable,
one can now show that the existence of a nilpotent element insures that the universal

support datum does not satisfy the tensor product property.

Theorem 4.2.1. Let K be a monoidal triangulated category in which every object is
either left or right dualizable. If K has a non-zero nilpotent object M (i.e., M 2 0 but
M®" .=M®---®M = 0, for some n > 0) then not all prime ideals of K are completely
prime. As a consequence, the universal support datum V : K — X (Spc K) does not have

the tensor product property.
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Tensor Product Property for Support Maps 11

Proof. By Proposition 4.1.1, (0) is a semiprime ideal of K. Hence, the prime radical of
K equals (0).

On the other hand, M lies in all completely prime ideals P of K because M®" =
0 € P. If all prime ideals of K are completely prime, this would imply that M belongs to

the prime radical of K (i.e., M € (0)), which is a contradiction. [ |

The following corollary follows from Theorem 4.2.1, because all objects of

stmod(H) are rigid for finite dimensional Hopf algebras H.

Corollary 4.2.2. Assume that H is a finite dimensional Hopf algebra, which admits a
non-projective finite-dimensional module M such that M®" is projective. Then not all
prime ideals of the stable module category stmod(H) are completely prime, that is, the
universal support datum V : K — X (Spc(stmod(H))) does not have the tensor product

property.
The following corollary of Theorem 4.2.1 is of independent interest.

Corollary 4.2.3. IfKis amonoidal triangulated category in which every object is either
left or right dualizable and K has objects A and B, such that AQ B=0butBQ A %0,
then not all prime ideals of K are completely prime, that is, the universal support datum

V :K — X(Spc K) does not have the tensor product property.

This follows from Theorem 4.2.1, because M := B ® A is not the zero object in K,
but M@M=BRAQ®B) QA=0.

4.3 Remarks on the Work of Benson-Witherspoon

In [6], Benson and Witherspoon considered the stable module categories of Hopf

algebras of the form

where G and L are finite groups with L acting on G by group automorphisms, k is a field
of positive characteristic dividing the order of G, kL is the group algebra of L, k[G] is the
dual of the group algebra of G, and # denotes the corresponding smash product.

Let p be a prime number and n be a positive integer. In [6, Example 3.3], Benson

and Witherspoon proved that for G := (Z/pZ)", L := Z/nZ (with L cyclically permuting
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12 D. K. Nakano et al.

the factors of G) and k a field of characteristic p, H;; admits a non-projective finite
dimensional module M such that M ® M is projective. By Corollary 4.2.2, the universal
support datum map for stmod(H ;) does not satisfy the tensor product property.

Benson and Witherspoon constructed [6, Example 3.2] a Hopf algebra of the
form H ; such that H;; has a pair of finite dimensional representations A, B with the
property that A®B is not projective, but B®A is is projective. The group G is chosen to be
the Klein 4-group, L is the cyclic group of order 3 whose generator cyclically permutes
the non-identity elements of G, and the field k has characteristic 2. By Corollary 4.2.3,
for this Hopf algebra Hg ;, the universal support datum map for stmod(H; ;) does not
satisfy the tensor product property either.

Remark 4.3.1. We note that [8, Lemma 7.10] implies that every prime ideal of every
monoidal triangulated category is completely prime. A counterexample to the statement
is provided in the aforementioned example. The gap is in the converse direction in the

proof of [8, Lemma 7.10] where it states that the converse direction is analogous.

5 The Tensor Product Property for the Cohomological Support for Small Quantum

Borels
5.1 Preliminaries

Let R be an irreducible root system of rank n. Let £ be a positive integer and ¢ be a
primitive £th root of unity.

We begin by introducing a general construction of the small quantum group for
a Borel algebra that generalizes the well-known construction using group like elements
arising from the root lattice. All of these will be finite-dimensional Hopf algebras.
For a given R, let X be the corresponding weight lattice and R* be a set of positive
roots. Denote by {ay,...,a,} the base of simple roots for R corresponding to R* and
by {d,....,d,} the collection of relatively prime positive integers that symmetrizes the
corresponding Cartan matrix. Denote by (—, —) the Weyl group invariant nondegenerate
symmetric inner product on the Euclidean space t; spanned by R, normalized by

(B,B8) = 2 for short roots B. In terms of this form, the integers d; are given by

d; = (o, a;)/2. Let {a7,...,a,} be the corresponding coroots thought of as elements of t;
by setting
o = 20 _ %
(o) d;

2202 Jaquisydag zo uo Jesn salelqi] e161099) Jo AjIsioAun AQ SG8YSE9/ L Z2aBU/UIWI/SE0 L 0 L /I0p/8|01B-80UBAPER/UIWI/WOD dNO dIWapeae//:sd)y Wol) POPEOjUMO(]



Tensor Product Property for Support Maps 13

Choose a Z-lattice, I', with ZR € I' € X. Such a lattice I' has rank n. Let
{tt1,..., 1, } be a Z-basis for I.

Let u,(b) be the small quantum group as described in [3, Section 2.2]. Then
U, (b) = u, (wWHu, (b where U, (1) is generated by the root vectors {Eg| B e R*} satisfying
Ef} = 0 and u, (1) is a Hopf algebra isomorphic to the group algebra of ZR/(¢{ZR) over C,

realized as
u () =CIK;, ... K 1/(KL — 1,1 <i<n),

where K, are group like elements. The relations in u,(b) defining the smash product

are
K, EgK, ' = PE, (5.1.1)
for e RT.
We can consider the following generalization of the small quantum group for
the Borel subalgebra. Given a lattice I" with ZR C I" C X as above, define its sublattice

I''={el|{R)CLZ}

Obviously, I'" 2 ¢TI", so I'/ T is a factor group of I'/¢T" = (Z/¢Z)™. Denote the canonical

projection
r -T/I" by pur T (5.1.2)
Let
u, r(t) denote the group algebra of I'/ I'" over C. (5.1.3)

For u € T'/T’ denote by K, the element of u, (t) corresponding to u. Consider the Hopf
algebra

ug,r(f’) =U, (u)#ugyr(t)
with relations

K,EK,;'=;*"E, for pel/T,aeR", (5.1.4)
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14 D. K. Nakano et al.

where p, € T is a preimage of u. By the definition of the lattice I'/, the right-hand
side does not depend on the choice of preimage. The coproduct of the generators E, is

given by
A(E,) =E, ® 1+ Ky ®E,, (5.1.5)

for 1 <i < n. The antipode is given by S(E, ) = —Ka:ilEai.
In all of the above definitions, the lattice I'" can be replaced with any sublattice
of T'". The motivation for the use of the full lattice I'’ is that this makes U r(b) small in

the sense that the only group-like central elements of u, r(b) are the scalars.

Remark 5.1.1. Consider two lattices I';y and I';, such that ZR € I') € I'y € X. Then
' =T, NT,. Hence, we have a Hopf algebra embedding

U r, () = u,r, (b) givenby K, .= K, .1, E, —E,
forperl;,a e R".

5.2 Assumptions on ¢

For the remainder of this section we will employ one of the following assumptions in

the statements of our results where ¢ is an ¢th root of unity.

Assumption 5.2.1. Let £ be a positive integer such that
(a) ¢is odd;
(b) If Ris of type G, then 31¢;
(c) If Ris of type A, then £ > 3, otherwise ¢ > 3.

Conditions (a)-(b) in Assumption 5.2.1 are equivalent to saying that ¢ is an odd positive

integer, which is coprime to {d,,...,d,}.

Assumption 5.2.2. Let ¢ be a positive integer such that

(a) ¢1is odd;
(b) If Ris of type G, then 31¢;

(c) £ > h where h is the Coxeter number for k.

Note that if ¢ satisfies Assumption 5.2.2 then ¢ satisfies Assumption 5.2.1.
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Tensor Product Property for Support Maps 15

The group of group-like elements of u, () is isomorphic to I'/ [V. Next we

explicitly describe this finite abelian group.

Proposition 5.2.3.

(a) If¢iscoprimeto{d,,...,d,}, then
I"'=TnN¢ex.

That is, I'/ IV = I'/(I" N £X).
(b) If ¢1is coprime to {d;,...,d,} and |X/T|, then

I =¢r.
That is, I'/ IV = /(1) = (Z/LZ)".
Proof. (a)Letv =) m;w; el C X for somem; € Z. Thenvel' &

(via;)elZ, V1<i<ns
midiGKZ, V1§l§n<:>
m; € {7, Vi<i<n<&

vel NiX.

(b) In view of part (a), we have to prove that under the assumptions in part (b),
' N¢X = ¢T. Clearly,

rnex o Lr.
For the opposite inclusion, take v € I' N £X. Then the order of v/¢ + ' in X/T" divides ¢.
Since ¢ is coprime to the order of the group X/ T, the order of v/£+T equals 1. Therefore,

v/¢ € T', and thus, v € ¢I". Hence, ' N ¢X = (T, [ |

Example 5.2.4. The standard notion of a small quantum Borel subalgebra u,(b) is
recovered from the above one as follows. Proposition 5.2.3(b), applied for the root lattice
I' = ZR, implies that, if £ is coprime to {d;,...,d,} and |X/ZR|, then

U, 27 (0) = ug (b).
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16 D. K. Nakano et al.

Note that both aforementioned algebras are defined for general values of ¢, but become

isomorphic under the coprimeness conditions.

5.3 Automorphisms, representations, and cohomology

In this section we will generalize many of the properties presented in [20, Section
8.3] for u, (b) to u, (b). For the reader’s convenience, we will use the same notational
conventions.

Denote the character group of I'/ T by
/T

By abuse of notation, for A € F//F’ we denote by the same symbol the one-dimensional

representation of u, -(b) given by
K, Ap), E,—0, Vuel/T",aeR".
For each X € lﬁ?’, one can define an automorphism, y, of u“ﬂ(b) as follows:
V() = A@E,, v (K,)=K, VYuel/T' ac RT.

Denote the subgroup [T ={y, : 1 € F//?/} € Aut(u, (b)). For any uglr(b)—module, Q, the
automorphism y, can be used to define a new module structure on it called the twist:
Q”. The underlying vector space of Q"* is still Q with the action given by x.m = y, (x)m
for all x U r(b), and m € Q.

Let R = H'(uglr(b),(C) be the cohomology ring of U, r(b). An automorphism
in IT acts on the cohomology ring by taking an n-fold extension of C with C and
twisting each module in the n-fold extension to produce a new n-fold extension. This
provides an action of the group IT on the ring R. The following proposition summarizes
properties of the automorphisms in IT and how they interact with representations and

the cohomology.

Proposition 5.3.1.  Let u, r(b) be the small quantum group for the Borel subalgebra
and R = H‘(ugyr(b), C) be the cohomology ring.
(@) The irreducible representations for u, r(b) are one-dimensional and are

precisely the representations A for A € F//F/
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Tensor Product Property for Support Maps 17

(b) For any u, r(b)-module, Q, and A € F//F/ one has
r@Qer=ar.

() The action of IT on R is trivial.
(d) The action of IT on Proj(R) is trivial.

Proof. (a) The relations E! = 0 for « € R* imply that all root vectors Ey are in
the radical of the finite-dimensional algebra u, (b) and so they act by O on every
irreducible representation of u, r(b). Hence, every irreducible representations of U r(b)
is an irreducible representation of u, (t), which is the group algebra of I'/T”, so the
irreducible representation of u, (t) are precisely the representations A for 2 € I'/ I"".

(b) The isomorphism follows from the coproduct formula (5.1.5) and the fact that
the set {KM,E%, |uwel,i=1,...,n} generates the algebra Uy (b).

(c and d) Note that (d) follows immediately from (c). So to finish the proof we
show that the action of IT on the cohomology ring R is trivial.

By using the Lyndon-Hochschild-Serre (LHS) spectral sequence and the fact that
the representations for u, r(t) are completely reducible (because U r (b is isomorphic to
the group algebra over C of a finite group), it follows that R = H*(u, (u), C)%er® with
respect to the action (5.1.4) (cf. [15, Theorem 2.5]). Consequently, for every weight v € ZR
of R

(W, TYClZ= (v,R)CLZ=veZRNT =1 =0.
Let f € R be of weight v. The automorphism y, € IT acts on f by

which proves the triviality of the IT-action on R. |

5.4 Finite generation

In order to verify the finite generation conditions on the cohomology, we state the

following result from [3, Proposition 5.6.3] on the cohomology for u, (u).
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18 D. K. Nakano et al.

Theorem 5.4.1. Let ¢ satisfy Assumption 5.2.1, and ¢ be an ¢th root of unity. There
exists a polynomial ring S°®(u*) such that the following holds:

(a) H'(ug (u), C) is finitely generated over S*®(u*);

(b) H®(u, (), C) is a finitely generated C-algebra.

Theorem 5.4.1 allows us to consider the issue of finite generation of cohomology

for U, r(b). The filtration in [3, Section 2.9] on U, () that induces the grading as in

[3, Lemma 5.6.1] is stable under the action of Km' i =1,2...,n. Consequently, there
exists a spectral sequence
EY = HY(gr u, (), C) ) = H (u, (u),C) (5.4.1)

such that

H'(gru,w), 0= P s°@H @Al
2a+b=n

Here S*(u*)!!! is the symmetric algebra on u* (the dual of u and the [1] indicates
that U, r(H) acts trivially) and A? is a deformation of the exterior algebra on u* with
generators and relations defined in [3, Section 2.9]. In the proof of Theorem 5.4.1 (given
in [3, Proposition 5.6.3]), it is shown that under the assumptions on ¢, dr(S'(u*)[”) =0
for r > 1 where d,. is the differential on the E,-page of the spectral sequence (5.4.1). One
can then conclude part (a) of Theorem 5.4.1.

Since U, (u) is normal in U, r(b) (cf. [3, Section 2.8]) with quotient U (1), and the
filtration is stable under U (), it follows that U, r(t) acts on the spectral sequence
(5.4.1). Furthermore, one can verify that U, r () acts trivially on S®(u*)!1.

Since finite-dimensional representations for u, -(t) are completely reducible,
the fixed point functor (—)% M is exact. By using the LHS spectral sequence and the

exactness, one shows that
H* (u, r(b),C) = H*(u, (u), O)r V.
Moreover, the fixed-point functor can be applied to get a spectral sequence:

Ey = [H™Y (gr u, ), €)™ = H Y (1, (0), ©). (5.4.2)
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Tensor Product Property for Support Maps 19

We can now verify the requisite finite generation assumptions on the cohomology for
u;,r(b)-

Theorem 5.4.2. Let ¢ satisfy Assumption 5.2.1, ¢ be an £th root of unity, and u, -(b)

be a small quantum group for a Borel subalgebra. Then

(a) H®(u, r(b), C) is a finitely generated C-algebra;
(b) For any finite-dimensional uglr(b)—module, M, H*(u,p(b), M) is finitely
generated over H* (u, r(b), ©).

Proof. (a) Let R := H'(uglr(b),(C). From Theorem 5.4.1(a), and the spectral sequence
(5.4.2), we have polynomial ring S := S*(uw*)!!! with d,(S) = 0 for r > 1. Consequently, R
finitely generated over S. This shows (a).

(b) By using induction on the composition length of M and the long exact
sequence in cohomology one can reduce the statement to showing that H* (u, -(b), M)
is finitely generated over R for M a simple u, -(b)-module.

The simple u, (b)-modules are one-dimensional and indexed by A € I'/T". By

using the LHS spectral sequence, one has
H* (u, r(b), 2) = Hom,,__(—% H*(u, (w),C)) = 4;.

Now S acts on H'(ugyr(b),)\) and thus acts on A,. This action is compatible with the

actionon T = H*(u, (u),C). We have T = @)\er//FAk' and by Theorem 5.4.1, T is finitely

generated over S. Consequently, A, is finitely generated over S, thus finitely generated

over R. ]

5.5 Calculation of the cohomology ring

In this section we calculate the cohomology ring R := H*(u, -(b), C) for £ > h. We will
need the following fact proved by Andersen and Jantzen [1, §2.2 statement (2)].

Lemma 5.5.1. [1] Let R be an irreducible root system. For every weight A of A®*(u*) and

simple root o;,
(A o) +1 =h -1,

where h is the Coxeter number for R.
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20 D. K. Nakano et al.

The following theorem provides a natural generalization to the fundamental

result of Ginzburg and Kumar [15, Theorem 2.5].

Theorem 5.5.2. Let ¢ satisfy Assumption 5.2.2 (in particular, £ > h), ¢ be an £th root
of unity, and u, -(b) be a small quantum group for a Borel subalgebra. Then

(@) H2(u,r(b),C) =S wHl;

(b) H**'(u, (b),C) =0.

Proof. Consider the spectral sequence (5.4.2) and

Hn(gr u;‘ (u), (C)u[,l“(t) >~ @ Sa(u*)[ll ® [A?]u;,r(t)'
2a+b=n

The ugyr(t)—weights of A? come from the t-weights of A®(u*). If A is a weight of A°®(u*)
corresponding to an element in [Alg]uff("), then (A, T") C ¢Z. Therefore, (1, «;) € ¢Z for all

1 <i < n. For each simple root «; of R we have

()\.,Ol;) = dip‘l ai>'

13
Since (A, «;) is an integer, (A, «;) € ¢Z and gcd(¢,d;) = 1, we have that that (A, ;) is a
multiple of ¢. Lemma 5.5.1 gives that

(h,0f) <h <.

The combination of the two facts implies that (A, «;) = O for all simple roots «;. Thus,
A=0and

0 ifb>0
[A?]“ar(f) =~ (5.5.1)

C ifb=0.

Consequently, the Ei'j—term of the spectral sequence only contains terms of the
form S¢(u*)[!! where 2a = i +j. From Theorem 5.4.2, d,.(S*(u*)!)) = 0 for r > 1. Thus, the
spectral sequence (5.4.2) collapses and yields (a) and (b). |

5.6 Classification of tensor ideals

Let stmod(u, (b)) be the stable module category of finitely generated u, (b)-modules.
The stable module category for all uglr(b)—modules will be denoted by StMod(uglr(b)).
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The category stmod(u, (b)) is a monoidal triangulated category. The goal of this
section will be to describe the thick tensor ideals in stmod(u, (b)) and its Balmer
spectrum.

Let R = H'(ugyr(b),(C) be the cohomology ring for the small quantum group
U, r(b). In Theorem 5.4.2(a), it was shown that R is a a finitely generated C-algebra.
Therefore, Y = Proj(R), the space of (nontrivial) homogeneous prime ideals of R, is a
Noetherian topological space. In fact, Y is a Zariski space.

For brevity, the set of subsets, closed subsets, and specialization-closed subsets
of Y will be denoted by X, X;, and Xsp, respectively. The finite generation result in
Theorem 5.4.2(b) can be used to define a (cohomological) support variety theory for
U, r(b). Let W(-) be the cohomological support Stmod(ugyr(b)) — X, defined by

W(M) = {p € Proj R : Ext*(M, M),, # 0}.
This extends to a support map StMod(u, (b)) — X, by [4, Theorem 5.5], which we will
also denote by W(-).
Let

® = ®y;, : {thick right ideals of stmod(ugyr(b))} - X

be the map given by (2.3.1). Note that it takes values in Xsp because W(M) € X for all

M e Stmod(ugyr(b)). On the other hand, we can define an assignment

®: Xsp — {thick right ideals of stmod(uzyr(b))}

©(2) = (M € stmod(u, (b)) | WM) C Z} for Ze X,

We can now state the theorem that classifies thick ideals in Stmod(uglr(b)). Our results
extend the results due to the authors in [20, Theorems 8.2.1 and 8.3.1].

Theorem 5.6.1. Let u, (b) be the small quantum group for the Borel subalgebra for
an arbitrary finite dimensional complex simple Lie algebra. Assume that ¢ satisfies

Assumption 5.2.2 (in particular, ¢ > h), which implies that R = S°(u*).
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22 D. K. Nakano et al.
(a) The above ® and ® are mutually inverse bijections

P

{thick right ideals of Stmod(uglr(b))} : {specialization closed sets of Proj(R)}.

©

(b) Every thick right ideal of stmod(u, -(b)) is two sided.
(c) There exists a homeomorphism f : Proj(R) — Spc(stmod(u, 1-(b))).

For the proof of the theorem we will need the following auxiliary lemma

Lemma 5.6.2. In the setting of Theorem 5.6.1, for every finite-dimensional u, -(b)-

module Q and its dual Q%*,
w(Q) = w(Q").

Proof. Every object of stmod(u, (b)) is rigid. The 1st composition in (4.1.1) gives that

if Q is a finite dimensional uglr(b)-module, then Q is a summand of Q ® Q* ® Q. So,
w(@Q) Cc WQQRQa*® Q).

Since Q has a composition series by subquotients isomorphic to the one-dimensional

modules X € F//F’,

waea*®a) = (] WOeQ*® Q).
keﬁ

The cohomological support W is automatically a quasi support datum. Applying this
fact and Proposition 5.3.1(b-c), we obtain that

Wh®Q*®Q) c Ww(a@H" ®i® Q) C W((Q")"™) =w(Q")

forall x € I‘//F’ Combining the above inclusions gives W(Q) € W(Q*). Since the square
of the antipode of u, (b) is an inner automorphism, @** = Q. Interchanging the roles of
Q and Q* gives W(Q*) C W(Q). Hence, W(Q) = W(Q*). |

Proof of Theorem 5.6.1. (a) This statement follows by [20, Theorem 7.4.3]. The (fg)
assumption is established in Theorem 5.4.2. The arguments in [7, Section 7.4], Lemma

5.6.2, and the faithfulness of the cohomological support verify [20, Assumption 7.2.1].
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Tensor Product Property for Support Maps 23

We will prove (b) and (c) by an analogous argument to [20, Theorem 6.2.1]. As
noted earlier, the cohomological support W is a quasi support datum and satisfies
[20, Assumption 7.2.1]. One now needs to show that W satisfies the following property:

(Realization) If V is a closed set in Y, then there exists a compact object M with
(M) =V.

We compute the following:

o(M) = |J WCeMeD)
C,DeK®

U wecom
CeK®

U W ® M)
rel/T7

U woemer™
rel/ T

— U W)

AEF7F

=11 W)

= W(M).

The 2nd and 4th equalities follow from the fact that W is a quasi support datum, the

4th since

WOARQIM) CWARIML HCWOALIMA ' ®1) =WH e M).

The 3rd, 5th, and 7th equalities follow from Proposition 5.3.1, parts (a), (b), and (d),
respectively. Since ®((M)) = W(M) and every closed set of Proj R may be realized as
W(M) for some compact M, W satisfies the Realization Property.

Analogously to the proof of [20, Theorem 6.2.1], the conditions that W is a quasi
support satisfying [20, Assumption 7.2.1] and the Realization Property allow one to

conclude that there exists an order-preserving bijection:

@
{thick two-sided ideals of Stmod(uglr(b))} __ {specialization closed sets of Proj(R)}.
0]
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Since we already know by (a) that ® induces a bijection between the thick right ideals
of stmod(u, (b)) and specialization closed sets of Proj(R), it follows immediately that
every thick right ideal is two sided.

In order to obtain part (c), we must show that ® is a weak support datum. Let
I and J be two thick ideals of Stmod(ugyr(b)). We claim that (I® J) = INJ. It is clear
that (I® J) € INJ, by definition. Both thick ideals (I® J) and INJ of Stmod(u“ﬂ(b)) are

semiprime, by Proposition 4.1.1. In other words,
I®J) = ﬂ{P € Spc(stmod(u, (b)) : (I® J) < P}

= ("){P e Spc(stmod(u, (b)) : 1 S P}

()P € Spc(stmod(u, (b)) : J € P},
and
INJ = (|(P € Spc(stmod(u, (b)) : INJ C P}.

Then it is clear that INJ € (I ® J), since each prime ideal containing either I or J must
necessarily contain I N J. Therefore, INJ = (I® J). By (a), ® gives an order-preserving
bijection between thick two-sided ideals of stmod(u, (b)) and specialization closed sets
of Proj(R), which shows that

P((I®J) =2ANJ)

= &) N D).
Therefore, W is a weak support datum and [20, Theorem 6.2.1] gives part (c). |

5.7 The tensor product property for the cohomological support map

In this section we illustrate Theorem 3.2.1. We prove that the cohomological support
maps for all small quantum Borel algebras associated to arbitrary complex simple
Lie algebras and arbitrary choices of group-like elements have the tensor product
property. This was conjectured by Negron and Pevtsova [22] and proved by them in the
type A case.

Theorem 5.7.1.  Let u, (b) be the small quantum group for the Borel subalgebra of

an arbitrary finite-dimensional complex simple Lie algebra and a lattice ZR € ' C X.
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Assume that ¢ satisfies Assumption 5.2.2 (in particular, £ > h). Then the following
hold:

(a) All prime ideals of stmod(u, (b)) are completely prime.
(b) The cohomological support

W(-) : stmod(u, (b)) — Xcl(Proj(H°(u§,F(b),(C)))

has the tensor product property WA ® B) = W(A) N W(B) for all
A,Be stmod(um(b)).

Proof. Part (a) of the theorem follows by combining Theorems 3.2.1 and 5.7.1(a).

(b) Recall the universal support datum
V. stmod(u”(b)) — ch(Spc(stmod(uclr(b))))

defined in Section 2.3. It follows from Theorem 3.1.1 and part (a) of this theorem that V
has the tensor product property.
In the proof of Theorem 5.6.1 it was shown that W is a weak support datum. By

Theorem 2.3.2(b), there exists a homeomorphism
S+ Proj(H* (u, - (b), C)) — Spc(stmod(u, (b))

satisfying &, ((M)) = F~L(v)) for all M € stmod(ug(b)). Applying Theorem 5.6.1(b),
(3.2.1) and the fact that W is a quasi support datum, we obtain

WM) € (M) = ®({M),) S W)
for all M e stmod(u{(b)). Therefore,
WM) = ©((M)) = f~1(V(M)), VM € stmod(u, (b)).

Now Theorem 3.2.1, the continuity of f, and the fact that the universal support datum V

has the tensor product property give

WA®B) =f(V(A®B) =f (VA NVB))

= (@) NIV ®B) = W) N W)
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forall A,B ¢ Stmod(u{(b)). |
Example 5.2.4 and Theorem 5.7.1 imply the following:

Corollary 5.7.2. Let u,(b) be the standard small quantum group for the Borel
subalgebra of an arbitrary finite-dimensional complex simple Lie algebra. Assume that
¢ satisfies Assumption 5.2.2 and that ¢ is coprime to |[X/ZR|. Then the following hold:

(a) All prime ideals of stmod(u, (b)) are completely prime.
(b) The cohomological support

W(-) : stmod(u, (b)) — X (Proj(H* (u, (b),C)))

has the tensor product property WA ® B) = W(A) N W(B) for all
A,Be stmod(u{(b)).

Remark 5.7.3. Assume that ¢ satisfies Assumption 5.2.2 and that ¢ is coprime to
|X/ZR|. Then by Proposition 5.2.3(b), the small quantum Borel subalgebra u, (b) is
based off the group algebra of the lattice I'/¢T", cf. (5.1.3). Therefore, the statements

in parts (a) and (b) of Theorem 5.7.1 hold for the version of a small quantum Borel

subalgebra based off the group algebra of the lattice I'/4T".

5.8 The Negron-Pevtsova small quantum Borel algebras

In [21, 22] Negron and Pevtsova considered a different version of small quantum Borel
subalgebras. For a lattice, I', with ZR C T C X, set

rt:=(er|(T)CzZ).
Denote the canonical projection

I -»T/T't by ue 7.
Let

U, r(t) denote the group algebra of I'/ 't over C.
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For u € I'/T' denote by K, the corresponding element of u, (t). Following [21, 22],
define the Hopf algebra

ﬂ“«(b) = ug(u)#ﬂgyr(t)
with relations
K EK,'=;“"E, for pel/T,aeR",

where 1y € I' is a preimage of u. By the definition of the lattice r't, the right-hand
side does not depend on the choice of preimage. The coproduct of the generators E, is

given by
AE,)=E, ®1+KQE, (5.8.1)

for 1 <i < n. The antipode is given by S(E,,) = —K%Eai.
1

Clearly, I'" © I'! and the elements
K, |pel’/TH
are in the center of ﬂ{,r(b). In other words, ﬂgyr(b) has a larger center than U, r(b).

By abuse of notation we will denote by i — 7 the canonical projection I'/ T+ —

I'/T’, recall (5.1.2). There exists a surjective Hopf algebra homomorphism

givenby K, — K forpu e I'/ 't and E, — E, fora € R*. Its kernel is the ideal generated

by the central elements
{K,—1|per’ /T
Let d be the minimal positive integer such that the restriction of (—, —) to I takes
values in Z/d. Choose a primitive (d¢)th root of unity & such that ¢ = £%. Consider the

symmetric (multiplicative) bicharacter

x:T/Ttxr/Tt > C* givenby x(u,v):=&"" for u,vel/Tt,
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where 1 and vy are preimages of u and v in I'. By the definition of I't, the bicharacter

is well defined and nondegenerate. It induces the isomorphism

—

¢:T/TY S 1/rL givenby (u) := x(u,—) for u e I/T. (5.8.2)

Similarly to the discussion for Up (), for A € I')TL define the one-dimensional

representation of ﬁ{r Q)
K, M), E,—>0, VYuel/I"aeR"

The irreducible representations of ag,r (t) are one-dimensional and are indexed by I'/ I'L.

We have a much simplified version of Proposition 5.3.1 for the algebras u, - (t):

Proposition 5.8.1. [21]

(a) The irreducible representations for ac,l"(b) are one-dimensional and are

precisely the representations A for A € T/ L.
(b) For any ﬁ;lr(b)-module, Q,and A € I'/T< one has

r@a@itx

Part (a) is proved in the same way as Proposition 5.3.1(a). Part (b) follows at once

by combining the following two facts:

(1) For any ﬂglr(b)—module, Q,and A € F//E-, A®Q® A"~ Q% where, vy is the

automorphism of ﬁ;,r([’) given by
v/ (E,) = A@E,, v,(K,)=K,, VYpel/TtaeR?®

(this follows from (5.8.1));
(2) ) equals the an inner automorphism x — K1 M)XK(;_II (v (this follows from
(5.8.2)).

From this point further, the proofs of Theorems 5.5.2 and 5.7.1 extend mutatis
mutandis from the family of algebras u, (b) to the family of algebras ag,r([’)- Further-
more, there is a simplification in the proof of the analog of Theorem 5.7.1: on the 3rd
line of the long display A ® M ® A~ = M and the rest of the equalities in the display can

be omitted. This proves the following:
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Theorem 5.8.2. Let ag,r(b) be the version of the small quantum group for the Borel

subalgebra of an arbitrary finite dimensional complex simple Lie algebra and a lattice
ZR C I' € X defined in [21]. Assume that ¢ satisfies Assumption 5.2.2. Then the

following hold:
(@) H2M (T, (b),C) =0and R := H* (@, (b),C) = S* ")
(b) There exist two mutually inverse bijections
@
{thick right ideals of stmod(ﬁglr(b))} __ {specialization closed sets of Proj(R)},
e
where ® and © are given by
o) = | W)
A€l
for the cohomological support W : stmod(ﬁ{,r(b)) — X, (Proj(R)) and
O(2) := {M € stmod(u, (b)) | WM) € Z} for Z e Xy, (Proj(R)).
(c) Every thick right ideal of stmod(ﬁg’r(b)) is two sided.
(d) There exists a homeomorphism Proj(R) = Spc(stmod(ugyr(b))).
(e) All prime ideals of stmod(ﬁglr(b)) are completely prime.
(f) The cohomological support

w(-): stmod(ﬁglr(b)) — X(ProjR)

has the tensor product property W(A ® B) = W(A) N W(B) for all
A,Be stmod(ﬁglr(b)).

There is a further simplification in the proof of part (c) of the theorem

compared to that of Theorem 5.6.1(b). Since the algebras ﬁ;,r([’) satisfy the property

in Proposition 5.8.1(b), part (c) of the theorem also follows directly from this property.
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