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The problem of whether the cohomological support map of a finite dimensional Hopf

algebra has the tensor product property has attracted a lot of attention following

the earlier developments on representations of finite group schemes. Many authors

have focused on concrete situations where positive and negative results have been

obtained by direct arguments. In this paper we demonstrate that it is natural to study

questions involving the tensor product property in the broader setting of a monoidal

triangulated category. We give an intrinsic characterization by proving that the tensor

product property for the universal support datum is equivalent to complete primeness

of the categorical spectrum. From these results one obtains information for other

support data, including the cohomological one. Two theorems are proved giving compete

primeness and non-complete primeness in certain general settings. As an illustration

of the methods, we give a proof of a recent conjecture of Negron and Pevtsova on the

tensor product property for the cohomological support maps for the small quantum

Borel algebras for all complex simple Lie algebras.
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2 D. K. Nakano et al.

1 Introduction

1.1 Monoidal triangular geometry

Tensor triangular geometry as introduced by Balmer has played a unifying role

in understanding the interrelationships between representation theory, homological

algebra and commutative ring theory/algebraic geometry. In [20], the authors developed

a noncommutative version of Balmer’s tensor triangular geometry [2]. Our new theory

has the advantage that it can be applied to a wider variety of categories such as the

stable module category for any finite-dimensional Hopf algebra. Given a monoidal

triangulated category K, we associated

• a topological space Spc K of (thick) prime ideals and

• a support datum map V : K → Xsp(Spc K) to the set of specialization closed

subsets of Spc K,

and we proved that this support datum is a universal final object in the category of all

support data, see Theorem 2.3.2 below.

As in the case for non-commutative rings, for monoidal tensor categories, we

demonstrated that it was important to distinguish various types of prime ideals. The

definition of a prime ideal in this setting involves considering products of ideals,

whereas the definition of a completely prime ideal entails considering products of

objects in the category. The notion of semiprime ideal is also a key concept in this new

theory.

1.2 Support theory

The precursor to support data, namely support varieties, were first developed in the

context of modular representations of finite groups by the pioneering work of Alperin

and Carlson. Since that time, in representation theory (and in the more general setting of

monoidal triangulated categories) there has been a plethora of contexts where support

theory has been studied, which includes the following:

(i) the cohomological support via group, Hopf algebra, and Hochschild coho-

mology [10, 24],

(ii) the rank variety and �-support via embedded subobjects [10, 14],

(iii) support via actions of commutative algebras [4, 5],

(iv) support via actions of the extended endomorphism ring of the identity

object [9],

(v) support via tensor triangular geometry [2],
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Tensor Product Property for Support Maps 3

and other approaches. Many fundamental connections between these support theories

have been established.

In the aforementioned cases, a support datum map is a map σ from the objects

of a monoidal triangulated category K to the set of specialization closed subsets Xsp(X)

of a topological space X. The following problem has attracted a lot of attention and has

been at the heart of applications of support maps:

Problem. When does a support datum σ : K → Xsp(X) possess the tensor product

property

σ(A ⊗ B) = σ(A) ∩ σ(B), ∀A, B ∈ K?

For the cohomological support for modular representations of finite groups this

was proved in [10] and for finite group schemes in [14]. In the support setting in (iii),

a positive answer was obtained in [4, 5] under a stratification assumption. There has

been a great deal of research on this problem for the cohomological support for the

stable module category StMod(H) of a finite dimensional Hopf algebra H. In concrete

situations positive and negative answers were obtained in [6, 13, 22, 23].

1.3 Main results

The main goal of this paper is to illustrate how the tensor product property can be

characterized in terms of the intrinsic structure of the underlying monoidal triangulated

category. More specifically, the main results of this paper are as follows:

(i) Given a monoidal triangulated category, we prove that the universal support

datum V : K → Xsp(Spc K) has the tensor product property if and only if all

prime ideals of K are completely prime (Theorem 3.1.1).

(ii) We prove that if all thick right ideals of a monoidal triangulated category K

are two sided, then the property in (i) holds for K (Theorem 3.2.1).

(iii) We show that if every object of a monoidal triangulated category is either

left or right dualizable and the category has a nilpotent object, then the

property in (i) does not hold for K (Theorem 4.2.1).

The power of Theorem 2.3.2 is that the verification of the support property

for individual objects of the category K is shown to be equivalent to an intrinsic

global property of the Balmer spectrum Spc K of the category. In noncommutative

ring theory, the question of whether all prime deals of a noncommutative ring are

completely prime is a much studied one. Dixmier proved that the universal enveloping
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4 D. K. Nakano et al.

algebra U(g) of a finite dimensional Lie algebra has this property if and only if the Lie

algebra g is solvable [11, Theorem 3.7.2]. For general noncommutative rings there are

no classification theorems of this sort; positive results for quantum function algebras

and Cauchon–Goodearl–Letzter extensions were obtained in [16, 18, 19]. Theorem 2.3.2

establishes a bridge between the tensor product property for support data and the

categorical versions of these questions in ring theory.

Theorems 3.2.1 and 2.3.2 allow for a fast checking of the tensor product property

in many interesting situations. This can be combined with [20, Theorems 6.2.1 and 7.3.1]

where we proved that support data satisfying natural assumptions coincide with the

universal support map V : K → Xsp(Spc K). One can use this to apply Theorems 3.2.1

and 2.3.2 to verify whether other support maps for a monoidal triangulated category K,

for instance the cohomological support map, possess the tensor product property. Along

this path we obtain the last main result in the paper, proving the Negron and Pevtsova

conjecture [22] that

(iv) the cohomological support maps for all small quantum Borel algebras

associated to arbitrary complex simple Lie algebras and arbitrary choices

of group-like elements possess the tensor product property.

2 Preliminaries on Noncommutative Tensor Triangular Geometry

2.1 Monoidal triangulated categories

We follow the conventions in [20]. A monoidal triangulated category (M�C for short) is

a monoidal category K in the sense of [12, Definition 2.2.1], which is triangulated and

for which the monoidal structure ⊗ : K × K → K is an exact bifunctor.

Recall that a thick subcategory of a triangulated category K is a full triangulated

subcategory of K that contains all direct summands of its objects. A thick right (resp.

two-sided) ideal of an M�C, K, is a thick subcategory of K that is closed under right

tensoring (resp. right and left tensoring) with arbitrary objects of K. For each object

M ∈ K there exist unique minimal right and two-sided ideals containing M, which will

be denoted by 〈M〉r and 〈M〉, respectively.

2.2 Prime ideals and the Balmer spectrum

We call a proper two-sided ideal P of K prime if

I ⊗ J ⊆ P ⇒ I ⊆ P or J ⊆ P (2.2.1)
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Tensor Product Property for Support Maps 5

for all thick two-sided ideals I and J of K. This property is equivalent to saying that

(2.2.1) holds for all pairs of thick right ideals I and J of K. It is also equivalent to the

condition that for all A, B ∈ K,

A ⊗ C ⊗ B ∈ P, ∀C ∈ K ⇒ A ∈ P or B ∈ P,

see [20, Theorem 3.2.2].

One can define a notion of primeness on objects of K as follows. An ideal P is

completely prime if and only if

A ⊗ B ∈ P ⇒ A ∈ P or B ∈ P

for all objects A and B in K.

With these definitions of primeness, one can define a topological space that is

analogous to the spectrum of a non-commutative ring.

Definition 2.2.1.

(a) The noncommutative Balmer spectrum SpcK of an M�C, K, is the set of its

prime ideals with the topology generated by the closed sets

V(M) = {P ∈ Spc K | M �∈ P}

for M ∈ K.

(b) Let CP-Spc K be the topological subspace consisting of all completely prime

ideals of K. Its topology is generated by the sets

VCP(M) = {P ∈ CP-Spc K | M �∈ P}

for M ∈ K.

From the definitions, one can easily verify that every completely prime ideal in

an M�C is prime. Therefore, one has

VCP(M) = V(M) ∩ CP-Spc K.

It is clear that an intersection of prime ideals need not be a prime ideal.
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6 D. K. Nakano et al.

Definition 2.2.2. A semiprime ideal of an M�C, K, is an intersection of prime ideals

of K.

The following characterization of semiprime ideals was proven in [20,

Theorem 3.4.2]:

Theorem 2.2.3. The following are equivalent for a proper thick ideal Q of an

M�C, K:

(a) Q is a semiprime ideal;

(b) For all A ∈ K, if A ⊗ C ⊗ A ∈ Q, ∀C ∈ K, then A ∈ Q;

(c) If I is any thick two-sided ideal of K such that I ⊗ I ⊆ Q, then I ⊆ Q;

(d) If I is any thick right ideal of K such that I ⊗ I ⊆ Q, then I ⊆ Q.

2.3 Support data maps, universality of Spc K

One of the important features about monoidal triangulated categories is the use of maps

that take objects of K to subsets of a topological space. For a given topological space Y,

we will denote by X (Y), Xcl(Y), and Xsp(Y) the collections of its subsets, closed subsets,

and specialization closed subsets, respectively. Given a map σ : K → X (Y), denote its

extension to the set of thick subcategories of K given by

�σ (I) =
⋃

A∈I

σ(A). (2.3.1)

Definition 2.3.1. A support datum for an M�C, K, is a map

σ : K → X (Y)

for a topological space Y such that

(i) σ(0) = ∅ and σ(1) = Y;

(ii) σ(A ⊕ B) = σ(A) ∪ σ(B), ∀A, B ∈ K;

(iii) σ(�A) = σ(A), ∀A ∈ K;

(iv) If A → B → C → �A is a distinguished triangle, then σ(A) ⊆ σ(B) ∪ σ(C);

(v)
⋃

C∈K σ(A ⊗ C ⊗ B) = σ(A) ∩ σ(B), ∀A, B ∈ K.

A weak support datum is a map

σ : K → X (Y),
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Tensor Product Property for Support Maps 7

which satisfies conditions (i)–(iv) and the condition

(v’) �σ (I ⊗ J) = �σ (I) ∩ �σ (J) for all thick two-sided ideals I and J of K.

A quasi support datum is a map

σ : K → X (Y),

which satisfies conditions (i)–(iv) and the condition

(v”) σ(A ⊗ B) ⊆ σ(A), for all A, B ∈ K.

We note that condition (v”) is equivalent to requiring that �σ (〈A〉r) = σ(A) for all

A ∈ K. For M�Cs, K admitting arbitrary set indexed coproducts, we will consider maps

σ : K → X (Y) satisfying the stronger property

(ii’) σ(
⊕

i∈I Ai) =
⋃

i∈I σ(Ai), ∀Ai ∈ K and all sets I

in place of property (ii); this property will be explicitly mentioned when used.

Each support datum is a weak support datum [20, Lemmas 4.3.1 and 4.5.1]. For

every M�C K, the map

V : K → Xcl(SpcK) given by V(A) = {P ∈ Spc K : M /∈ P}

is a support datum. It is universal as proved in [20, Theorems 4.2.2 and 4.5.1]:

Theorem 2.3.2. Let K be an M�C.

(a) The support V is the final object in the collection of support data σ for K

such that σ(A) is closed for each A ∈ K: for any such σ : K → X (Y), there is

a unique continuous map fσ : Y → Spc K satisfying

σ(A) = f −1
σ (V(A)) for A ∈ K.

(b) The support V is the final object in the collection of weak support data σ for

K such that �σ (〈A〉) is closed for each A ∈ K: for any such σ : K → X (Y),

there is a unique continuous map fσ : Y → Spc K satisfying

�σ (〈A〉) = f −1
σ (V(A)) for A ∈ K.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
2
2
1
/6

3
5
4
8
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f G
e
o
rg

ia
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

2
 S

e
p
te

m
b
e
r 2

0
2
2



8 D. K. Nakano et al.

3 The Tensor Product Property for the Universal Support Datum of a Monoidal

Triangulated Category

3.1 Complete primeness of Spc and the tensor product property

We begin by proving a theorem that indicates how the structural properties of a

monoidal triangulated category are captured by characterizations involving the uni-

versal support datum.

Theorem 3.1.1. For every monoidal triangulated category K, the following are equiva-

lent:

(a) The universal support datum V : K → X (Spc K) has the tensor product

property

V(A ⊗ B) = V(A) ∩ V(B), ∀A, B ∈ K.

(b) Every prime ideal of K is completely prime.

Proof. (a ⇒ b) Let P ∈ Spc K and A, B ∈ K be such that A ⊗ B ∈ P. Then

P /∈ V(A ⊗ B) = V(A) ∩ V(B).

Hence, either P /∈ V(A) or P /∈ V(B), and thus, either A ∈ P or B ∈ P.

(b ⇒ a) For A, B ∈ K, we have

Spc K\V(A ⊗ B) = {P ∈ Spc K | A ⊗ B ∈ P}

= {P ∈ Spc K | A ∈ P} ∪ {P ∈ Spc K | B ∈ P}

= (Spc K\V(A)) ∪ (Spc K\V(B)).

Thus, V(A ⊗ B) = V(A) ∩ V(B). �

The proof of Theorem 3.1.1 immediately gives the following fact.

Corollary 3.1.2. For every monoidal triangulated category, K, the map

VCP : K → CP-Spc K given by VCP(A) = V(A) ∩ CP-Spc K
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Tensor Product Property for Support Maps 9

has the tensor product property.

In many cases for monoidal triangulated categories, K, the space CP-Spc K can

be much smaller than Spc K. So in general, the support datum VCP captures much less

information than the universal support datum V.

3.2 A criterion for complete primeness of Spc K

In this section we investigate monoidal tensor categories where the right ideals

coincide with the two-sided ideals. In this situation, every prime ideal is completely

prime and the tensor product property holds. This key observation will be applied in

Section 5.7.

Theorem 3.2.1. Let K be a monoidal triangulated category in which every thick

right ideal is two sided. Then every prime ideal of K is completely prime, and as a

consequence, the universal support datum V : K → X (Spc K) has the tensor product

property

V(A ⊗ B) = V(A) ∩ V(B), ∀A, B ∈ K.

Proof. First, we claim that

〈M〉r = 〈M〉, ∀M ∈ K. (3.2.1)

The inclusion 〈M〉r ⊆ 〈M〉 is obvious. The reverse inclusion is proved as follows. The

hypothesis states that 〈M〉r is a a two-sided thick ideal and, in particular, it contains

〈N〉 for all N ∈ 〈M〉r. Applying this for N = M yields 〈M〉r ⊇ 〈M〉.

Let P ∈ Spc K and A, B ∈ K be such that A ⊗ B ∈ P. Therefore, A ⊗ 〈B〉r ⊆ P and, by

(3.2.1), A ⊗ 〈B〉 ⊆ P. This implies that A ⊗ C ⊗ B ∈ P for all C ∈ K and, by the primeness

of P, A ∈ P or B ∈ P. Therefore, the thick ideal P is completely prime. The 2nd statement

follows from the 1st and Theorem 3.1.1. �

If a monoidal triangulated category K has the property that A ⊗ B ∼= B ⊗ A for

all A, B ∈ K, then K satisfies the assumption of Theorem 3.2.1. This in particular holds

for all braided monoidal triangulated categories. The next section contains much more

nontrivial applications of this theorem.
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10 D. K. Nakano et al.

4 A Criterion for Non-complete Primeness of SpcK

4.1 Rigidity and semi-primeness

Recall that an object A of a monoidal category K is left dualizable if there exists an

object A∗ (called the left dual of A), together with evaluation and coevaluation maps

ev : A∗ ⊗ A → 1 and coev : 1 → A ⊗ A∗,

such that the compositions

A
coev⊗id
−−−−−→ A ⊗ A∗ ⊗ A

id ⊗ev
−−−−→ A and A∗ id ⊗coev

−−−−−→ A∗ ⊗ A ⊗ A∗ ev⊗id
−−−→ A∗ (4.1.1)

are the identity maps on A and A∗, respectively. The left dual object A∗ is unique up to

a unique isomorphism [12, Proposition 2.10.5]. In a similar way one defines the notions

of right dualizable objects and their right duals, see [12, Definition 2.10.2]. Finally, an

object of a monoidal category is rigid if it is both left and right dualizable.

Proposition 4.1.1. If K is a monoidal triangulated category in which every object is

either left or right dualizable, then every thick ideal of K is semiprime.

Proof. Fix a thick two-sided ideal I of K. Let A ∈ K be such that A ⊗ B ⊗ A ∈ I for all

B ∈ K. In particular, A ⊗ A∗ ⊗ A ∈ I. Assume that A is left dualizable; the case when it is

right dualizable is handled in a similar fashion. It follows from (4.1.1) that A is a direct

summand of A ⊗ A∗ ⊗ A. Since I is a thick subcategory of K, A ∈ I. Theorem 2.2.3 now

implies that I is a semiprime ideal of K. �

4.2 Existence of nilpotent elements

Given a monoidal tensor category where every object is either left or right dualizable,

one can now show that the existence of a nilpotent element insures that the universal

support datum does not satisfy the tensor product property.

Theorem 4.2.1. Let K be a monoidal triangulated category in which every object is

either left or right dualizable. If K has a non-zero nilpotent object M (i.e., M �∼= 0 but

M⊗n := M ⊗ · · · ⊗ M ∼= 0, for some n > 0) then not all prime ideals of K are completely

prime. As a consequence, the universal support datum V : K → X (Spc K) does not have

the tensor product property.
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Tensor Product Property for Support Maps 11

Proof. By Proposition 4.1.1, 〈0〉 is a semiprime ideal of K. Hence, the prime radical of

K equals 〈0〉.

On the other hand, M lies in all completely prime ideals P of K because M⊗n ∼=

0 ∈ P. If all prime ideals of K are completely prime, this would imply that M belongs to

the prime radical of K (i.e., M ∈ 〈0〉), which is a contradiction. �

The following corollary follows from Theorem 4.2.1, because all objects of

stmod(H) are rigid for finite dimensional Hopf algebras H.

Corollary 4.2.2. Assume that H is a finite dimensional Hopf algebra, which admits a

non-projective finite-dimensional module M such that M⊗n is projective. Then not all

prime ideals of the stable module category stmod(H) are completely prime, that is, the

universal support datum V : K → X (Spc(stmod(H))) does not have the tensor product

property.

The following corollary of Theorem 4.2.1 is of independent interest.

Corollary 4.2.3. If K is a monoidal triangulated category in which every object is either

left or right dualizable and K has objects A and B, such that A ⊗ B ∼= 0 but B ⊗ A �∼= 0,

then not all prime ideals of K are completely prime, that is, the universal support datum

V : K → X (Spc K) does not have the tensor product property.

This follows from Theorem 4.2.1, because M := B ⊗ A is not the zero object in K,

but M ⊗ M ∼= B ⊗ (A ⊗ B) ⊗ A ∼= 0.

4.3 Remarks on the Work of Benson–Witherspoon

In [6], Benson and Witherspoon considered the stable module categories of Hopf

algebras of the form

HG,L := (k[G]#kL)∗,

where G and L are finite groups with L acting on G by group automorphisms, k is a field

of positive characteristic dividing the order of G, kL is the group algebra of L, k[G] is the

dual of the group algebra of G, and # denotes the corresponding smash product.

Let p be a prime number and n be a positive integer. In [6, Example 3.3], Benson

and Witherspoon proved that for G := (Z/pZ)n, L := Z/nZ (with L cyclically permuting
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12 D. K. Nakano et al.

the factors of G) and k a field of characteristic p, HG,L admits a non-projective finite

dimensional module M such that M ⊗ M is projective. By Corollary 4.2.2, the universal

support datum map for stmod(HG,L) does not satisfy the tensor product property.

Benson and Witherspoon constructed [6, Example 3.2] a Hopf algebra of the

form HG,L such that HG,L has a pair of finite dimensional representations A, B with the

property that A⊗B is not projective, but B⊗A is is projective. The group G is chosen to be

the Klein 4-group, L is the cyclic group of order 3 whose generator cyclically permutes

the non-identity elements of G, and the field k has characteristic 2. By Corollary 4.2.3,

for this Hopf algebra HG,L, the universal support datum map for stmod(HG,L) does not

satisfy the tensor product property either.

Remark 4.3.1. We note that [8, Lemma 7.10] implies that every prime ideal of every

monoidal triangulated category is completely prime. A counterexample to the statement

is provided in the aforementioned example. The gap is in the converse direction in the

proof of [8, Lemma 7.10] where it states that the converse direction is analogous.

5 The Tensor Product Property for the Cohomological Support for Small Quantum

Borels

5.1 Preliminaries

Let R be an irreducible root system of rank n. Let ℓ be a positive integer and ζ be a

primitive ℓth root of unity.

We begin by introducing a general construction of the small quantum group for

a Borel algebra that generalizes the well-known construction using group like elements

arising from the root lattice. All of these will be finite-dimensional Hopf algebras.

For a given R, let X be the corresponding weight lattice and R
+ be a set of positive

roots. Denote by {α1, . . . , αn} the base of simple roots for R corresponding to R
+ and

by {d1, . . . , dn} the collection of relatively prime positive integers that symmetrizes the

corresponding Cartan matrix. Denote by 〈−, −〉 the Weyl group invariant nondegenerate

symmetric inner product on the Euclidean space t∗
R

spanned by R, normalized by

〈β, β〉 = 2 for short roots β. In terms of this form, the integers di are given by

di = 〈αi, αi〉/2. Let {α1̌, . . . , αň} be the corresponding coroots thought of as elements of t∗
R

by setting

αǐ =
2αi

〈αi, αi〉
=

αi

di

·
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Tensor Product Property for Support Maps 13

Choose a Z-lattice, Ŵ, with ZR ⊆ Ŵ ⊆ X. Such a lattice Ŵ has rank n. Let

{μ1, . . . , μn} be a Z-basis for Ŵ.

Let uζ (b) be the small quantum group as described in [3, Section 2.2]. Then

uζ (b) = uζ (u)#uζ (t) where uζ (u) is generated by the root vectors {Eβ | β ∈ R
+} satisfying

Eℓ
β = 0 and uζ (t) is a Hopf algebra isomorphic to the group algebra of ZR/(ℓZR) over C,

realized as

uζ (t) = C[K±1
α1

, . . . , K±1
αn

]/(Kℓ
αi

− 1, 1 ≤ i ≤ n),

where Kαi
are group like elements. The relations in uζ (b) defining the smash product

are

Kαi
EβK−1

αi
= ζ 〈β,αi〉Eβ (5.1.1)

for β ∈ R
+.

We can consider the following generalization of the small quantum group for

the Borel subalgebra. Given a lattice Ŵ with ZR ⊆ Ŵ ⊆ X as above, define its sublattice

Ŵ′ := {ν ∈ Ŵ | 〈ν,R〉 ⊆ ℓZ}.

Obviously, Ŵ′ ⊇ ℓŴ, so Ŵ/Ŵ′ is a factor group of Ŵ/ℓŴ ∼= (Z/ℓZ)n. Denote the canonical

projection

Ŵ ։ Ŵ/Ŵ′ by μ �→ μ. (5.1.2)

Let

uζ ,Ŵ(t) denote the group algebra of Ŵ/Ŵ′ over C. (5.1.3)

For μ ∈ Ŵ/Ŵ′ denote by Kμ the element of uζ ,Ŵ(t) corresponding to μ. Consider the Hopf

algebra

uζ ,Ŵ(b) = uζ (u)#uζ ,Ŵ(t)

with relations

KμEαK−1
μ = ζ 〈α,μ0〉Eα for μ ∈ Ŵ/Ŵ′, α ∈ R

+, (5.1.4)
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14 D. K. Nakano et al.

where μ0 ∈ Ŵ is a preimage of μ. By the definition of the lattice Ŵ′, the right-hand

side does not depend on the choice of preimage. The coproduct of the generators Eαi
is

given by

�(Eαi
) = Eαi

⊗ 1 + Kαi
⊗ Eαi

(5.1.5)

for 1 ≤ i ≤ n. The antipode is given by S(Eαi
) = −K−1

αi
Eαi

.

In all of the above definitions, the lattice Ŵ′ can be replaced with any sublattice

of Ŵ′. The motivation for the use of the full lattice Ŵ′ is that this makes uζ ,Ŵ(b) small in

the sense that the only group-like central elements of uζ ,Ŵ(b) are the scalars.

Remark 5.1.1. Consider two lattices Ŵ1 and Ŵ2 such that ZR ⊆ Ŵ1 ⊆ Ŵ2 ⊆ X. Then

Ŵ′
1 = Ŵ1 ∩ Ŵ′

2. Hence, we have a Hopf algebra embedding

uζ ,Ŵ1
(b) →֒ uζ ,Ŵ2

(b) given by Kμ+Ŵ′
1

�→ Kμ+Ŵ′
2
, Eα �→ Eα

for μ ∈ Ŵ1, α ∈ R
+.

5.2 Assumptions on ℓ

For the remainder of this section we will employ one of the following assumptions in

the statements of our results where ζ is an ℓth root of unity.

Assumption 5.2.1. Let ℓ be a positive integer such that

(a) ℓ is odd;

(b) If R is of type G2 then 3 ∤ ℓ;

(c) If R is of type A1 then ℓ ≥ 3, otherwise ℓ > 3.

Conditions (a)–(b) in Assumption 5.2.1 are equivalent to saying that ℓ is an odd positive

integer, which is coprime to {d1, . . . , dn}.

Assumption 5.2.2. Let ℓ be a positive integer such that

(a) ℓ is odd;

(b) If R is of type G2 then 3 ∤ ℓ;

(c) ℓ > h where h is the Coxeter number for R.

Note that if ℓ satisfies Assumption 5.2.2 then ℓ satisfies Assumption 5.2.1.
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Tensor Product Property for Support Maps 15

The group of group-like elements of uζ ,Ŵ(t) is isomorphic to Ŵ/Ŵ′. Next we

explicitly describe this finite abelian group.

Proposition 5.2.3.

(a) If ℓ is coprime to {d1, . . . , dn}, then

Ŵ′ = Ŵ ∩ ℓX.

That is, Ŵ/Ŵ′ ∼= Ŵ/(Ŵ ∩ ℓX).

(b) If ℓ is coprime to {d1, . . . , dn} and |X/Ŵ|, then

Ŵ′ = ℓŴ.

That is, Ŵ/Ŵ′ ∼= Ŵ/(ℓŴ) ∼= (Z/ℓZ)n.

Proof. (a) Let ν =
∑

miωi ∈ Ŵ ⊆ X for some mi ∈ Z. Then ν ∈ Ŵ′ ⇔

〈ν, αi〉 ∈ ℓZ, ∀1 ≤ i ≤ n ⇔

midi ∈ ℓZ, ∀1 ≤ i ≤ n ⇔

mi ∈ ℓZ, ∀1 ≤ i ≤ n ⇔

ν ∈ Ŵ ∩ ℓX.

(b) In view of part (a), we have to prove that under the assumptions in part (b),

Ŵ ∩ ℓX = ℓŴ. Clearly,

Ŵ ∩ ℓX ⊇ ℓŴ.

For the opposite inclusion, take ν ∈ Ŵ ∩ ℓX. Then the order of ν/ℓ + Ŵ in X/Ŵ divides ℓ.

Since ℓ is coprime to the order of the group X/Ŵ, the order of ν/ℓ+Ŵ equals 1. Therefore,

ν/ℓ ∈ Ŵ, and thus, ν ∈ ℓŴ. Hence, Ŵ ∩ ℓX = ℓŴ. �

Example 5.2.4. The standard notion of a small quantum Borel subalgebra uζ (b) is

recovered from the above one as follows. Proposition 5.2.3(b), applied for the root lattice

Ŵ = ZR, implies that, if ℓ is coprime to {d1, . . . , dn} and |X/ZR|, then

uζ ,ZR(b) ∼= uζ (b).
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16 D. K. Nakano et al.

Note that both aforementioned algebras are defined for general values of ℓ, but become

isomorphic under the coprimeness conditions.

5.3 Automorphisms, representations, and cohomology

In this section we will generalize many of the properties presented in [20, Section

8.3] for uζ (b) to uζ ,Ŵ(b). For the reader’s convenience, we will use the same notational

conventions.

Denote the character group of Ŵ/Ŵ′ by

Ŵ̂/Ŵ′.

By abuse of notation, for λ ∈ Ŵ̂/Ŵ′ we denote by the same symbol the one-dimensional

representation of uζ ,Ŵ(b) given by

Kμ �→ λ(μ), Eα �→ 0, ∀μ ∈ Ŵ/Ŵ′, α ∈ R
+.

For each λ ∈ Ŵ̂/Ŵ′, one can define an automorphism, γλ of uζ ,Ŵ(b) as follows:

γλ(Eα) = λ(α)Eα, γλ(Kμ) = Kμ, ∀μ ∈ Ŵ/Ŵ′, α ∈ R
+.

Denote the subgroup � = {γλ : λ ∈ Ŵ̂/Ŵ′} ⊆ Aut(uζ ,Ŵ(b)). For any uζ ,Ŵ(b)-module, Q, the

automorphism γλ can be used to define a new module structure on it called the twist:

Qγλ . The underlying vector space of Qγλ is still Q with the action given by x.m = γλ(x)m

for all x ∈ uζ ,Ŵ(b), and m ∈ Qγλ .

Let R = H•(uζ ,Ŵ(b),C) be the cohomology ring of uζ ,Ŵ(b). An automorphism

in � acts on the cohomology ring by taking an n-fold extension of C with C and

twisting each module in the n-fold extension to produce a new n-fold extension. This

provides an action of the group � on the ring R. The following proposition summarizes

properties of the automorphisms in � and how they interact with representations and

the cohomology.

Proposition 5.3.1. Let uζ ,Ŵ(b) be the small quantum group for the Borel subalgebra

and R = H•(uζ ,Ŵ(b),C) be the cohomology ring.

(a) The irreducible representations for uζ ,Ŵ(b) are one-dimensional and are

precisely the representations λ for λ ∈ Ŵ̂/Ŵ′.
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Tensor Product Property for Support Maps 17

(b) For any uζ ,Ŵ(b)-module, Q, and λ ∈ Ŵ̂/Ŵ′ one has

λ ⊗ Q ⊗ λ−1 ∼= Qγλ .

(c) The action of � on R is trivial.

(d) The action of � on Proj(R) is trivial.

Proof. (a) The relations Eℓ
α = 0 for α ∈ R

+ imply that all root vectors Eβ are in

the radical of the finite-dimensional algebra uζ ,Ŵ(b) and so they act by 0 on every

irreducible representation of uζ ,Ŵ(b). Hence, every irreducible representations of uζ ,Ŵ(b)

is an irreducible representation of uζ ,Ŵ(t), which is the group algebra of Ŵ/Ŵ′, so the

irreducible representation of uζ ,Ŵ(t) are precisely the representations λ for λ ∈ Ŵ̂/Ŵ′.

(b) The isomorphism follows from the coproduct formula (5.1.5) and the fact that

the set {Kμ, Eαi
| μ ∈ Ŵ, i = 1, . . . , n} generates the algebra uζ ,Ŵ(b).

(c and d) Note that (d) follows immediately from (c). So to finish the proof we

show that the action of � on the cohomology ring R is trivial.

By using the Lyndon–Hochschild–Serre (LHS) spectral sequence and the fact that

the representations for uζ ,Ŵ(t) are completely reducible (because uζ ,Ŵ(t) is isomorphic to

the group algebra over C of a finite group), it follows that R = H•(uζ (u),C)uζ ,Ŵ(t) with

respect to the action (5.1.4) (cf. [15, Theorem 2.5]). Consequently, for every weight ν ∈ ZR

of R

〈ν, Ŵ〉 ⊆ ℓZ ⇒ 〈ν,R〉 ⊆ ℓZ ⇒ ν ∈ ZR ∩ Ŵ′ ⇒ ν = 0.

Let f ∈ R be of weight ν. The automorphism γλ ∈ � acts on f by

γλ(f ) = λ(ν)f = f ,

which proves the triviality of the �-action on R. �

5.4 Finite generation

In order to verify the finite generation conditions on the cohomology, we state the

following result from [3, Proposition 5.6.3] on the cohomology for uζ (u).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
2
2
1
/6

3
5
4
8
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f G
e
o
rg

ia
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

2
 S

e
p
te

m
b
e
r 2

0
2
2



18 D. K. Nakano et al.

Theorem 5.4.1. Let ℓ satisfy Assumption 5.2.1, and ζ be an ℓth root of unity. There

exists a polynomial ring S•(u∗) such that the following holds:

(a) H•(uζ (u),C) is finitely generated over S•(u∗);

(b) H•(uζ (u),C) is a finitely generated C-algebra.

Theorem 5.4.1 allows us to consider the issue of finite generation of cohomology

for uζ ,Ŵ(b). The filtration in [3, Section 2.9] on uζ (u) that induces the grading as in

[3, Lemma 5.6.1] is stable under the action of Kμi
, i = 1, 2 . . . , n. Consequently, there

exists a spectral sequence

E
i,j
1 = Hi+j(gr uζ (u),C)(i) ⇒ Hi+j(uζ (u),C) (5.4.1)

such that

Hn(gr uζ (u),C) ∼=
⊕

2a+b=n

Sa(u∗)[1] ⊗ �b
ζ .

Here S•(u∗)[1] is the symmetric algebra on u∗ (the dual of u and the [1] indicates

that uζ ,Ŵ(t) acts trivially) and �b
ζ is a deformation of the exterior algebra on u∗ with

generators and relations defined in [3, Section 2.9]. In the proof of Theorem 5.4.1 (given

in [3, Proposition 5.6.3]), it is shown that under the assumptions on ℓ, dr(S
•(u∗)[1]) = 0

for r ≥ 1 where dr is the differential on the Er-page of the spectral sequence (5.4.1). One

can then conclude part (a) of Theorem 5.4.1.

Since uζ (u) is normal in uζ ,Ŵ(b) (cf. [3, Section 2.8]) with quotient uζ ,Ŵ(t), and the

filtration is stable under uζ ,Ŵ(t), it follows that uζ ,Ŵ(t) acts on the spectral sequence

(5.4.1). Furthermore, one can verify that uζ ,Ŵ(t) acts trivially on S•(u∗)[1].

Since finite-dimensional representations for uζ ,Ŵ(t) are completely reducible,

the fixed point functor (−)uζ ,Ŵ(t) is exact. By using the LHS spectral sequence and the

exactness, one shows that

H•(uζ ,Ŵ(b),C) ∼= H•(uζ (u),C)uζ ,Ŵ(t).

Moreover, the fixed-point functor can be applied to get a spectral sequence:

E
i,j
1 = [Hi+j(gr uζ (u),C)(i)]

uζ ,Ŵ(t) ⇒ Hi+j(uζ (b),C). (5.4.2)
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Tensor Product Property for Support Maps 19

We can now verify the requisite finite generation assumptions on the cohomology for

uζ ,Ŵ(b).

Theorem 5.4.2. Let ℓ satisfy Assumption 5.2.1, ζ be an ℓth root of unity, and uζ ,Ŵ(b)

be a small quantum group for a Borel subalgebra. Then

(a) H•(uζ ,Ŵ(b),C) is a finitely generated C-algebra;

(b) For any finite-dimensional uζ ,Ŵ(b)-module, M, H•(uζ ,Ŵ(b), M) is finitely

generated over H•(uζ ,Ŵ(b),C).

Proof. (a) Let R := H•(uζ ,Ŵ(b),C). From Theorem 5.4.1(a), and the spectral sequence

(5.4.2), we have polynomial ring S := S•(u∗)[1] with dr(S) = 0 for r ≥ 1. Consequently, R

finitely generated over S. This shows (a).

(b) By using induction on the composition length of M and the long exact

sequence in cohomology one can reduce the statement to showing that H•(uζ ,Ŵ(b), M)

is finitely generated over R for M a simple uζ ,Ŵ(b)-module.

The simple uζ ,Ŵ(b)-modules are one-dimensional and indexed by λ ∈ Ŵ̂/Ŵ′. By

using the LHS spectral sequence, one has

H•(uζ ,Ŵ(b), λ) ∼= Homuζ ,Ŵ(t)(−λ, H•(uζ (u),C)) = Aλ.

Now S acts on H•(uζ ,Ŵ(b), λ) and thus acts on Aλ. This action is compatible with the

action on T = H•(uζ (u),C). We have T ∼= ⊕
λ∈Ŵ̂/Ŵ′Aλ, and by Theorem 5.4.1, T is finitely

generated over S. Consequently, Aλ is finitely generated over S, thus finitely generated

over R. �

5.5 Calculation of the cohomology ring

In this section we calculate the cohomology ring R := H•(uζ ,Ŵ(b),C) for ℓ > h. We will

need the following fact proved by Andersen and Jantzen [1, §2.2 statement (2)].

Lemma 5.5.1. [1] Let R be an irreducible root system. For every weight λ of �•(u∗) and

simple root αi,

|〈λ, αǐ 〉 + 1| ≤ h − 1,

where h is the Coxeter number for R.
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20 D. K. Nakano et al.

The following theorem provides a natural generalization to the fundamental

result of Ginzburg and Kumar [15, Theorem 2.5].

Theorem 5.5.2. Let ℓ satisfy Assumption 5.2.2 (in particular, ℓ > h), ζ be an ℓth root

of unity, and uζ ,Ŵ(b) be a small quantum group for a Borel subalgebra. Then

(a) H2•(uζ ,Ŵ(b),C) ∼= S•(u∗)[1];

(b) H2•+1(uζ ,Ŵ(b),C) = 0.

Proof. Consider the spectral sequence (5.4.2) and

Hn(gr uζ (u),C)uζ ,Ŵ(t) ∼=
⊕

2a+b=n

Sa(u∗)[1] ⊗ [�b
ζ ]uζ ,Ŵ(t).

The uζ ,Ŵ(t)-weights of �b
ζ come from the t-weights of �•(u∗). If λ is a weight of �•(u∗)

corresponding to an element in [�b
ζ ]uζ ,Ŵ(t), then 〈λ, Ŵ〉 ⊆ ℓZ. Therefore, 〈λ, αi〉 ∈ ℓZ for all

1 ≤ i ≤ n. For each simple root αi of R we have

〈λ, αǐ 〉 =
1

di

〈λ, αi〉.

Since 〈λ, αǐ 〉 is an integer, 〈λ, αi〉 ∈ ℓZ and gcd(ℓ, di) = 1, we have that that 〈λ, αǐ 〉 is a

multiple of ℓ. Lemma 5.5.1 gives that

|〈λ, αǐ 〉| ≤ h < ℓ.

The combination of the two facts implies that 〈λ, αǐ 〉 = 0 for all simple roots αi. Thus,

λ = 0 and

[�b
ζ ]uζ ,Ŵ(t) ∼=

⎧
⎨
⎩

0 if b > 0

C if b = 0.
(5.5.1)

Consequently, the E
i,j
1 -term of the spectral sequence only contains terms of the

form Sa(u∗)[1] where 2a = i + j. From Theorem 5.4.2, dr(S
•(u∗)[1]) = 0 for r ≥ 1. Thus, the

spectral sequence (5.4.2) collapses and yields (a) and (b). �

5.6 Classification of tensor ideals

Let stmod(uζ ,Ŵ(b)) be the stable module category of finitely generated uζ ,Ŵ(b)-modules.

The stable module category for all uζ ,Ŵ(b)-modules will be denoted by StMod(uζ ,Ŵ(b)).
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Tensor Product Property for Support Maps 21

The category stmod(uζ ,Ŵ(b)) is a monoidal triangulated category. The goal of this

section will be to describe the thick tensor ideals in stmod(uζ ,Ŵ(b)) and its Balmer

spectrum.

Let R := H•(uζ ,Ŵ(b),C) be the cohomology ring for the small quantum group

uζ ,Ŵ(b). In Theorem 5.4.2(a), it was shown that R is a a finitely generated C-algebra.

Therefore, Y = Proj(R), the space of (nontrivial) homogeneous prime ideals of R, is a

Noetherian topological space. In fact, Y is a Zariski space.

For brevity, the set of subsets, closed subsets, and specialization-closed subsets

of Y will be denoted by X ,Xcl, and Xsp, respectively. The finite generation result in

Theorem 5.4.2(b) can be used to define a (cohomological) support variety theory for

uζ ,Ŵ(b). Let W(−) be the cohomological support stmod(uζ ,Ŵ(b)) → Xcl, defined by

W(M) = {p ∈ Proj R : Ext•(M, M)p �= 0}.

This extends to a support map StMod(uζ ,Ŵ(b)) → Xsp by [4, Theorem 5.5], which we will

also denote by W(−).

Let

� = �W : {thick right ideals of stmod(uζ ,Ŵ(b))} → X

be the map given by (2.3.1). Note that it takes values in Xsp because W(M) ∈ Xcl for all

M ∈ stmod(uζ ,Ŵ(b)). On the other hand, we can define an assignment

� : Xsp → {thick right ideals of stmod(uζ ,Ŵ(b))}

by

�(Z) = {M ∈ stmod(uζ ,Ŵ(b)) | W(M) ⊆ Z} for Z ∈ Xsp.

We can now state the theorem that classifies thick ideals in stmod(uζ ,Ŵ(b)). Our results

extend the results due to the authors in [20, Theorems 8.2.1 and 8.3.1].

Theorem 5.6.1. Let uζ ,Ŵ(b) be the small quantum group for the Borel subalgebra for

an arbitrary finite dimensional complex simple Lie algebra. Assume that ℓ satisfies

Assumption 5.2.2 (in particular, ℓ > h), which implies that R ∼= S•(u∗).
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22 D. K. Nakano et al.

(a) The above � and � are mutually inverse bijections

{thick right ideals of stmod(uζ ,Ŵ(b))}

�
−→
←−
�

{specialization closed sets of Proj(R)}.

(b) Every thick right ideal of stmod(uζ ,Ŵ(b)) is two sided.

(c) There exists a homeomorphism f : Proj(R) → Spc(stmod(uζ ,Ŵ(b))).

For the proof of the theorem we will need the following auxiliary lemma

Lemma 5.6.2. In the setting of Theorem 5.6.1, for every finite-dimensional uζ ,Ŵ(b)-

module Q and its dual Q∗,

W(Q) = W(Q∗).

Proof. Every object of stmod(uζ ,Ŵ(b)) is rigid. The 1st composition in (4.1.1) gives that

if Q is a finite dimensional uζ ,Ŵ(b)-module, then Q is a summand of Q ⊗ Q∗ ⊗ Q. So,

W(Q) ⊆ W(Q ⊗ Q∗ ⊗ Q).

Since Q has a composition series by subquotients isomorphic to the one-dimensional

modules λ ∈ Ŵ̂/Ŵ′,

W(Q ⊗ Q∗ ⊗ Q) =
⋃

λ∈Ŵ̂/Ŵ′

W(λ ⊗ Q∗ ⊗ Q).

The cohomological support W is automatically a quasi support datum. Applying this

fact and Proposition 5.3.1(b-c), we obtain that

W(λ ⊗ Q∗ ⊗ Q) ⊆ W((Q∗)γλ ⊗ λ ⊗ Q) ⊆ W((Q∗)γλ) = W(Q∗)

for all λ ∈ Ŵ̂/Ŵ′. Combining the above inclusions gives W(Q) ⊆ W(Q∗). Since the square

of the antipode of uζ ,Ŵ(b) is an inner automorphism, Q∗∗ ∼= Q. Interchanging the roles of

Q and Q∗ gives W(Q∗) ⊆ W(Q). Hence, W(Q) = W(Q∗). �

Proof of Theorem 5.6.1. (a) This statement follows by [20, Theorem 7.4.3]. The (fg)

assumption is established in Theorem 5.4.2. The arguments in [7, Section 7.4], Lemma

5.6.2, and the faithfulness of the cohomological support verify [20, Assumption 7.2.1].
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Tensor Product Property for Support Maps 23

We will prove (b) and (c) by an analogous argument to [20, Theorem 6.2.1]. As

noted earlier, the cohomological support W is a quasi support datum and satisfies

[20, Assumption 7.2.1]. One now needs to show that W satisfies the following property:

(Realization) If V is a closed set in Y, then there exists a compact object M with

�(〈M〉) = V.

We compute the following:

�(〈M〉) =
⋃

C,D∈Kc

W(C ⊗ M ⊗ D)

=
⋃

C∈Kc

W(C ⊗ M)

=
⋃

λ∈Ŵ̂/Ŵ′

W(λ ⊗ M)

=
⋃

λ∈Ŵ̂/Ŵ′

W(λ ⊗ M ⊗ λ−1)

=
⋃

λ∈Ŵ̂/Ŵ′

W(Mγλ)

= � · W(M)

= W(M).

The 2nd and 4th equalities follow from the fact that W is a quasi support datum, the

4th since

W(λ ⊗ M) ⊆ W(λ ⊗ M ⊗ λ−1) ⊆ W(λ ⊗ M ⊗ λ−1 ⊗ λ) = W(λ ⊗ M).

The 3rd, 5th, and 7th equalities follow from Proposition 5.3.1, parts (a), (b), and (d),

respectively. Since �(〈M〉) = W(M) and every closed set of Proj R may be realized as

W(M) for some compact M, W satisfies the Realization Property.

Analogously to the proof of [20, Theorem 6.2.1], the conditions that W is a quasi

support satisfying [20, Assumption 7.2.1] and the Realization Property allow one to

conclude that there exists an order-preserving bijection:

{thick two-sided ideals of stmod(uζ ,Ŵ(b))}

�
−→
←−
�

{specialization closed sets of Proj(R)}.
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24 D. K. Nakano et al.

Since we already know by (a) that � induces a bijection between the thick right ideals

of stmod(uζ ,Ŵ(b)) and specialization closed sets of Proj(R), it follows immediately that

every thick right ideal is two sided.

In order to obtain part (c), we must show that � is a weak support datum. Let

I and J be two thick ideals of stmod(uζ ,Ŵ(b)). We claim that 〈I ⊗ J〉 = I ∩ J. It is clear

that 〈I ⊗ J〉 ⊆ I ∩ J, by definition. Both thick ideals 〈I ⊗ J〉 and I ∩ J of stmod(uζ ,Ŵ(b)) are

semiprime, by Proposition 4.1.1. In other words,

〈I ⊗ J〉 =
⋂

{P ∈ Spc(stmod(uζ ,Ŵ(b))) : 〈I ⊗ J〉 ⊆ P}

=
⋂

{P ∈ Spc(stmod(uζ ,Ŵ(b))) : I ⊆ P}∩

⋂
{P ∈ Spc(stmod(uζ ,Ŵ(b))) : J ⊆ P},

and

I ∩ J =
⋂

{P ∈ Spc(stmod(uζ ,Ŵ(b))) : I ∩ J ⊆ P}.

Then it is clear that I ∩ J ⊆ 〈I ⊗ J〉, since each prime ideal containing either I or J must

necessarily contain I ∩ J. Therefore, I ∩ J = 〈I ⊗ J〉. By (a), � gives an order-preserving

bijection between thick two-sided ideals of stmod(uζ ,Ŵ(b)) and specialization closed sets

of Proj(R), which shows that

�(〈I ⊗ J〉) = �(I ∩ J)

= �(I) ∩ �(J).

Therefore, W is a weak support datum and [20, Theorem 6.2.1] gives part (c). �

5.7 The tensor product property for the cohomological support map

In this section we illustrate Theorem 3.2.1. We prove that the cohomological support

maps for all small quantum Borel algebras associated to arbitrary complex simple

Lie algebras and arbitrary choices of group-like elements have the tensor product

property. This was conjectured by Negron and Pevtsova [22] and proved by them in the

type A case.

Theorem 5.7.1. Let uζ ,Ŵ(b) be the small quantum group for the Borel subalgebra of

an arbitrary finite-dimensional complex simple Lie algebra and a lattice ZR ⊆ Ŵ ⊆ X.
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Tensor Product Property for Support Maps 25

Assume that ℓ satisfies Assumption 5.2.2 (in particular, ℓ > h). Then the following

hold:

(a) All prime ideals of stmod(uζ ,Ŵ(b)) are completely prime.

(b) The cohomological support

W(−) : stmod(uζ ,Ŵ(b)) → Xcl(Proj(H•(uζ ,Ŵ(b),C)))

has the tensor product property W(A ⊗ B) = W(A) ∩ W(B) for all

A, B ∈ stmod(uζ ,Ŵ(b)).

Proof. Part (a) of the theorem follows by combining Theorems 3.2.1 and 5.7.1(a).

(b) Recall the universal support datum

V : stmod(uζ ,Ŵ(b)) → Xcp(Spc(stmod(uζ ,Ŵ(b))))

defined in Section 2.3. It follows from Theorem 3.1.1 and part (a) of this theorem that V

has the tensor product property.

In the proof of Theorem 5.6.1 it was shown that W is a weak support datum. By

Theorem 2.3.2(b), there exists a homeomorphism

f : Proj(H•(uζ ,Ŵ(b),C)) → Spc(stmod(uζ ,Ŵ(b)))

satisfying �W(〈M〉) = f −1(V(M)) for all M ∈ stmod(uζ (b)). Applying Theorem 5.6.1(b),

(3.2.1) and the fact that W is a quasi support datum, we obtain

W(M) ⊆ �(〈M〉) = �(〈M〉r) ⊆ W(M)

for all M ∈ stmod(uζ (b)). Therefore,

W(M) = �(〈M〉) = f −1(V(M)), ∀M ∈ stmod(uζ (b)).

Now Theorem 3.2.1, the continuity of f , and the fact that the universal support datum V

has the tensor product property give

W(A ⊗ B) = f −1(V(A ⊗ B)) = f −1(V(A) ∩ V(B))

= f −1(V(A)) ∩ f −1(V(B)) = W(A) ∩ W(B)
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26 D. K. Nakano et al.

for all A, B ∈ stmod(uζ (b)). �

Example 5.2.4 and Theorem 5.7.1 imply the following:

Corollary 5.7.2. Let uζ (b) be the standard small quantum group for the Borel

subalgebra of an arbitrary finite-dimensional complex simple Lie algebra. Assume that

ℓ satisfies Assumption 5.2.2 and that ℓ is coprime to |X/ZR|. Then the following hold:

(a) All prime ideals of stmod(uζ (b)) are completely prime.

(b) The cohomological support

W(−) : stmod(uζ (b)) → Xcl(Proj(H•(uζ (b),C)))

has the tensor product property W(A ⊗ B) = W(A) ∩ W(B) for all

A, B ∈ stmod(uζ (b)).

Remark 5.7.3. Assume that ℓ satisfies Assumption 5.2.2 and that ℓ is coprime to

|X/ZR|. Then by Proposition 5.2.3(b), the small quantum Borel subalgebra uζ ,Ŵ(b) is

based off the group algebra of the lattice Ŵ/ℓŴ, cf. (5.1.3). Therefore, the statements

in parts (a) and (b) of Theorem 5.7.1 hold for the version of a small quantum Borel

subalgebra based off the group algebra of the lattice Ŵ/ℓŴ.

5.8 The Negron–Pevtsova small quantum Borel algebras

In [21, 22] Negron and Pevtsova considered a different version of small quantum Borel

subalgebras. For a lattice, Ŵ, with ZR ⊆ Ŵ ⊆ X, set

Ŵ⊥ := {ν ∈ Ŵ | 〈ν, Ŵ〉 ⊆ ℓZ}.

Denote the canonical projection

Ŵ ։ Ŵ/Ŵ⊥ by μ �→ μ.

Let

ũζ ,Ŵ(t) denote the group algebra of Ŵ/Ŵ⊥ over C.
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Tensor Product Property for Support Maps 27

For μ ∈ Ŵ/Ŵ⊥ denote by Kμ the corresponding element of uζ ,Ŵ(t). Following [21, 22],

define the Hopf algebra

ũζ ,Ŵ(b) = uζ (u)#ũζ ,Ŵ(t)

with relations

KμEαK−1
μ = ζ 〈α,μ0〉Eα for μ ∈ Ŵ/Ŵ′, α ∈ R

+,

where μ0 ∈ Ŵ is a preimage of μ. By the definition of the lattice Ŵ⊥, the right-hand

side does not depend on the choice of preimage. The coproduct of the generators Eαi
is

given by

�(Eαi
) = Eαi

⊗ 1 + Kαi
⊗ Eαi

(5.8.1)

for 1 ≤ i ≤ n. The antipode is given by S(Eαi
) = −K−1

αi
Eαi

.

Clearly, Ŵ′ ⊇ Ŵ⊥ and the elements

{Kμ | μ ∈ Ŵ′/Ŵ⊥}

are in the center of ũζ ,Ŵ(b). In other words, ũζ ,Ŵ(b) has a larger center than uζ ,Ŵ(b).

By abuse of notation we will denote by μ �→ μ the canonical projection Ŵ/Ŵ⊥
։

Ŵ/Ŵ′, recall (5.1.2). There exists a surjective Hopf algebra homomorphism

ũζ ,Ŵ(t) ։ uζ ,Ŵ(t)

given by Kμ �→ Kμ for μ ∈ Ŵ/Ŵ⊥ and Eα �→ Eα for α ∈ R
+. Its kernel is the ideal generated

by the central elements

{Kμ − 1 | μ ∈ Ŵ′/Ŵ⊥}.

Let d be the minimal positive integer such that the restriction of 〈−, −〉 to Ŵ takes

values in Z/d. Choose a primitive (dℓ)th root of unity ξ such that ζ = ξd. Consider the

symmetric (multiplicative) bicharacter

χ : Ŵ/Ŵ⊥ × Ŵ/Ŵ⊥ → C× given by χ(μ, ν) := ξ 〈μ,ν〉 for μ, ν ∈ Ŵ/Ŵ⊥,
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28 D. K. Nakano et al.

where μ0 and ν0 are preimages of μ and ν in Ŵ. By the definition of Ŵ⊥, the bicharacter

is well defined and nondegenerate. It induces the isomorphism

ϕ : Ŵ/Ŵ⊥
∼=

−→ Ŵ̂/Ŵ⊥ given by ϕ(μ) := χ(μ, −) for μ ∈ Ŵ/Ŵ⊥. (5.8.2)

Similarly to the discussion for uζ ,Ŵ(t), for λ ∈ Ŵ̂/Ŵ⊥ define the one-dimensional

representation of ũζ ,Ŵ(t)

Kμ �→ λ(μ), Eα �→ 0, ∀μ ∈ Ŵ/Ŵ⊥, α ∈ R
+.

The irreducible representations of ũζ ,Ŵ(t) are one-dimensional and are indexed by Ŵ̂/Ŵ⊥.

We have a much simplified version of Proposition 5.3.1 for the algebras ũζ ,Ŵ(t):

Proposition 5.8.1. [21]

(a) The irreducible representations for ũζ ,Ŵ(b) are one-dimensional and are

precisely the representations λ for λ ∈ Ŵ̂/Ŵ⊥.

(b) For any ũζ ,Ŵ(b)-module, Q, and λ ∈ Ŵ̂/Ŵ⊥ one has

λ ⊗ Q ⊗ λ−1 ∼= Q.

Part (a) is proved in the same way as Proposition 5.3.1(a). Part (b) follows at once

by combining the following two facts:

(1) For any ũζ ,Ŵ(b)-module, Q, and λ ∈ Ŵ̂/Ŵ⊥, λ ⊗ Q ⊗ λ−1 ∼= Qγ ′′
λ where, γ ′′

λ is the

automorphism of ũζ ,Ŵ(b) given by

γ ′′
λ (Eα) = λ(α)Eα, γλ(Kμ) = Kμ, ∀μ ∈ Ŵ/Ŵ⊥, α ∈ R

+

(this follows from (5.8.1));

(2) γ ′′
λ equals the an inner automorphism x �→ Kϕ−1(μ)xK−1

ϕ−1(μ)
(this follows from

(5.8.2)).

From this point further, the proofs of Theorems 5.5.2 and 5.7.1 extend mutatis

mutandis from the family of algebras uζ ,Ŵ(b) to the family of algebras ũζ ,Ŵ(b). Further-

more, there is a simplification in the proof of the analog of Theorem 5.7.1: on the 3rd

line of the long display λ ⊗ M ⊗ λ−1 ∼= M and the rest of the equalities in the display can

be omitted. This proves the following:
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Theorem 5.8.2. Let ũζ ,Ŵ(b) be the version of the small quantum group for the Borel

subalgebra of an arbitrary finite dimensional complex simple Lie algebra and a lattice

ZR ⊆ Ŵ ⊆ X defined in [21]. Assume that ℓ satisfies Assumption 5.2.2. Then the

following hold:

(a) H2•+1(ũζ ,Ŵ(b),C) = 0 and R := H2•(ũζ ,Ŵ(b),C) ∼= S•(u∗)[1].

(b) There exist two mutually inverse bijections

{thick right ideals of stmod(ũζ ,Ŵ(b))}

�
−→
←−
�

{specialization closed sets of Proj(R)},

where � and � are given by

�(I) :=
⋃

A∈I

W(A)

for the cohomological support W : stmod(ũζ ,Ŵ(b)) → Xcl(Proj(R)) and

�(Z) := {M ∈ stmod(uζ ,Ŵ(b)) | W(M) ⊆ Z} for Z ∈ Xsp(Proj(R)).

(c) Every thick right ideal of stmod(ũζ ,Ŵ(b)) is two sided.

(d) There exists a homeomorphism Proj(R) ∼= Spc(stmod(uζ ,Ŵ(b))).

(e) All prime ideals of stmod(ũζ ,Ŵ(b)) are completely prime.

(f) The cohomological support

W(−) : stmod(ũζ ,Ŵ(b)) → Xcl(Proj R)

has the tensor product property W(A ⊗ B) = W(A) ∩ W(B) for all

A, B ∈ stmod(ũζ ,Ŵ(b)).

There is a further simplification in the proof of part (c) of the theorem

compared to that of Theorem 5.6.1(b). Since the algebras ũζ ,Ŵ(b) satisfy the property

in Proposition 5.8.1(b), part (c) of the theorem also follows directly from this property.
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