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ABSTRACT

The P300 Brain-Computer Interface (BCI) is a well-established communication channel for severely
disabled people. However, variation in P300 latency, or latency jitter, is both increased in people
with amyotrophic lateral sclerosis (ALS) and negatively associated with BCl performance. In this
study, we proposed an augmentation and correction (A/C) characterization scheme with data
augmentation and correction for jitter, both relying on time-shifted responses with individualized
parameters determined based on latency jitter. We tested this approach offline on longitudinal
data collected from six participants with ALS. While our longitudinal analysis showed decreased BCI
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performance and increased latency jitter over time with both our proposed characterization
scheme and conventional methods, our proposed A/C characterization scheme significantly
improved character selection accuracy, required for usability, along with recall and F-scores,
showing the effectiveness of our proposed approach. These results should inform further work
on improving longitudinal BCl performance and reliability for people with ALS.

1. Introduction

As people with amyotrophic lateral sclerosis (ALS)
develop significant motor disability and lose voluntary
motor control, including speech-related motor control
[1], they frequently require tools for augmentative and
alternative communication. Currently available tools
including brain-computer interfaces (BCIs) support
communication for people with ALS, but people with
ALS have been reported to show reduced BCI perfor-
mance in comparison to neurotypical users [2-6]. In
addition, BCI users can experience substantial varia-
tions in BCI performance within and across days [7-
9]. Given these concerns, significant attention has been
paid to both understanding the correlates of BCI per-
formance and improving selection accuracy [10-15].
Much of this research is dedicated to understanding
and improving BClIs based on the visual P300 response,
a positive electrical deflection occurring 250-500 ms
after an attended rare event [16,17]. In a longitudinal
study of P300-based BCI home users, Shahriari and
colleagues found that BCI performance was positively
correlated with P200 amplitude, parietal alpha-band
spectral power, and occipital beta-band spectral power,
and that these measures were significantly increased for
successful BCI sessions as compared to unsuccessful

sessions. They also found BCI performance was nega-
tively correlated with occipital delta-band power [9].
Mak and colleagues found that among participants
with ALS, increased event-related potential (ERP)
amplitudes and theta-band spectral power were asso-
ciated with increased P300 BCI performance [18].
Geronimo and colleagues found that higher cognitive
scores, including scores measuring attention, were asso-
ciated with both increased P300 quality and BCI perfor-
mance [6,19].

Trial to trial variation in P300 latency, known as
latency jitter, has been found to be negatively associated
with BCI performance in a mixed group of neurotypical
participants and potential end-users [20], in neurotypi-
cal participants [21,22], and in people with ALS [4]. For
example, Zisk and colleagues recently determined that
this latency jitter is elevated in people with ALS as
compared to neurotypical controls [4], and latency jitter
is a factor affecting BCI performance for people with
ALS [4,20,23].

As studies have shown latency jitter can predict BCI
performance [20,21], Mowla and colleagues used
latency estimation and a secondary classifier to improve
BCI performance, though they did not report an online
implementation of this method [24]. Togashi and
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Washizawa similarly utilized Bayesian latency estima-
tion to improve P300 BCI performance [25].
Considering differences in latencies between experi-
mental paradigms which elicited P300 responses rather
than variability within participants using a single para-
digm, Iturrate and colleagues calculated the latency shift
between paradigms and then trained a classifier for one
paradigm using data from another, time-shifted to com-
pensate for the latency differences between the experi-
mental conditions [26]. They found that in cases of
insufficient training data from any given paradigm,
including latency-corrected training data from other
paradigms improved performance.

In recent years, data augmentation for BCIs has
gained attention as a strategy for improving perfor-
mance [27-32].The purpose of data augmentation is
to increase the size of the training data, and thereby
improve the reliability and generalizability of the clas-
sification algorithms. As electroencephalography
(EEG) data varies significantly between different parti-
cipants, many EEG classifiers are subject-specific,
though pooling data from multiple participants has
also been the focus of some research [17,32-34] with
a similar goal of improving generalizability and relia-
bility. Iturrate and colleagues collected data from mul-
tiple experimental paradigms that produced P300
responses, but with different latencies. Their transfer
of data between different experiments that evoke P300
responses similarly works toward the goal of improv-
ing generalizability and stability with limited training
data [26]. In other studies, the use of time shifted
epochs has supported the extraction of multiple seg-
ments per stimulus, providing a larger training data set
[31,35,36] or helping mitigate class imbalances [37].
For example, Kim and colleagues used a 100 ms shift
based on the results of a pre-analysis to find optimal
windows for classifying error-related potentials. Their
use of two epochs per event with different starting
times allowed for variation in when participants
detected errors and doubled the size of their data set
in a reinforcement learning method [36]. By requiring
both the shifted and unshifted epoch to be classified
correctly for the classification to be considered correct,
they additionally improved the reliability of any posi-
tive feedback. In their study, Kim and colleagues noted
an improvement with this data augmentation scheme
as compared to using a single epoch without augmen-
tation [36]. Sakai and colleagues compared several data
augmentation methods based on the time and ampli-
tude fluctuations associated with bio-signals such as
EEG, including set time shifts of £10 ms for all parti-
cipants, which tripled their training data sets while
considering potential latency variability [35]. Their

data augmentation protocol improved classification
performance, with greater improvements found when
the training set was smaller. Krell and colleagues simi-
larly considered several data augmentation methods,
including time-shifted data, for augmenting P300
training data [31]. They initially tested single time-
shifts as several factors, including both lag in the dis-
play and increases in workload, can lead to delayed
P300 latencies. The single time-shifts provided
improvements for some participants, but no single
time-shift was reported to be consistently helpful.
They then tested symmetrical time-shifts and reported
that £40 ms shifts increased the data set but did not
significantly affect performance [31]. In all three stu-
dies, unshifted epochs, beginning at the time of the
stimulus, were used alongside overlapping time-
shifted epochs extracted from the recorded EEG data.
These three studies sought to classify responses which
can vary in latency, and their use of time-shifted data
both increased the number of epochs available for
training and provided epochs with earlier and/or later
responses of interest [31,35,36]. As data augmentation
with time-shifted data provides time-shifted responses
in the training data, this augmentation approach pro-
vides additional latency variability that may improve
robustness to this same form of variability [27].

In this study we therefore proposed a correction
strategy that relied on latency jitter at multiple levels.
In particular, we proposed to improve classification
performance for P300 data longitudinally recorded
from people with ALS using both data augmentation
and jitter correction, tested offline. The data augmenta-
tion utilized time-shifted responses to both target and
non-target trials, with individualized time shifts based
on latency variations present in the training set. The
jitter correction procedure was also implemented
through allowing limited time-shifts of the epochs to
be classified. We quantified our performance improve-
ments through the use of a reference classifier using
neither data augmentation nor jitter correction. We
then investigated longitudinal relationships between
clinical measures, latency jitter, and BCI performance
in our participants with ALS.

2. Materials and methods
2.1. Participants

Six participants with ALS (age 57 + 15.7 years, 1 female)
were recruited for this study (see Table 1). All partici-
pants had at least some post-secondary education.
Participants other than ALS-01 had normal or corrected
to normal vision, while ALS-01 was in the late stages of
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Table 1. Demographic information for participants with amyotrophic lateral sclerosis (ALS).

Subject Time since Revised ALS Functional Rating Scale ALSFRS-R Bulbar Artificial Means of
Number Age Sex  diagnosis (years) (ALSFRS-R) (out of 48) Subscore Ventilation Communication
ALS-01 29 M 4 0 0 Yes No reliable means
ALS-02 55 M 1 4 0 Yes Eye-tracking
ALS-03 70 M 8 14 5 No Non-verbal sound
ALS-04 67 M 2 7 5 Yes Eye-tracking
ALS-05 69 F 11 23 1 No Verbal

ALS-06 52 M 3 22 12 No Verbal

Mean = SD 57.0 + 15.7 - 6.5 + 4.0 11.6 £ 9.5 5.5+5.2

locked-in syndrome with significant ocular impair-
ments. Participants were diagnosed with ALS
6.5 + 4.0 years prior to the start of the study and had
an average functional rating scale-revised (ALSFRS-R)
score of 11.6 £ 9.5, with a minimum score of 0 indicat-
ing no voluntary motor functions and complete depen-
dence on life-sustaining technologies including
mechanical ventilation and a maximum score of 48
indicating normal functioning [38]. Three participants
had gastrostomies as well as tracheostomies. ALS-01's
sole form of communication was an idiosyncratic and
error-prone yes/no pupil dilation his caregiver read
subjectively, which deteriorated over the course of the
recordings, losing reliability as a means of communica-
tion. Two other participants with artificial ventilation
(ALS-02 and 04) used eye-tracking devices to commu-
nicate. ALS-03 could still move his index finger and
make non-verbal sounds to sustain minimal communi-
cation. ALS-05 and 06 retained the ability to speak,
though ALS-05 had lost non-facial movement, and
ALS-06 could barely move a joystick with one hand.
Participants were tested in their homes or care centers.
The study protocol was approved by the Institutional
Review Board (IRB) of the University of Rhode Island
(URI), and all participants provided informed consent
or assent for the study and received financial
compensation.

2.2. Experimental protocol

Each participant took part in 5-12 (9.5 + 2.6) sessions of
recording over 2.5-13.7 (10.9 + 4.3) months. These
sessions took place at least two weeks apart. Including
preparation such as the application of gel to electrodes
and impedance calibration, each session typically lasted
2-2.5 hours. To familiarize participants with the BCI
setup, including the recording protocol and the task,
each participant took part in a single familiarization
session before the main experimental recordings, in
which they completed the same tasks without recording
the data and could get clarification about the experi-
mental tasks. Each session contained one run of

a standard P300 spelling protocol, in which a 6 x 6
matrix of characters containing letters and numbers
was displayed to participants, with each row and col-
umn intensified 10 times (i.e. 10 repetitions) per char-
acter selection [10,39]. Intensifications lasted 93.75 ms
and were separated by an inter-stimulus interval of
62.5 ms. Participants copy-spelled 14 characters with
4 second pauses between characters, counting intensifi-
cations of their intended (target) character, without
real-time feedback in each session.

2.3. Data acquisition

EEG data were recorded using a g.USBamp amplifier (g.
tec Medical Technologies) with a 256 Hz sampling rate.
Data were recorded from eight channels commonly
used in P300 protocols, Fz*, Cz, P3, Pz, P4, PO7, POS,
and Oz [30]. However, as Fz was occupied by sensors for
other studies recorded in the same session as the current
experiment, it was replaced by the nearest available
channel, FAF2, denoted as Fz*. All experimental proto-
cols, data acquisition, and stimulus presentation were
controlled using BCI2000 software [40].

2.4. Signal pre-processing

All analyses were conducted offline in MATLAB
R2019a. EEG data were detrended and bandpass filtered
at 0.5-30 Hz with a Hamming window-based zero-
phase filter. For P300-based BCI applications, a 0-
800 ms post-stimulus window is common [5-9,41,42],
covering important ERP features including the P200,
N200, P300, and late negativity [5,9]. Thus, to allow
this typical 800 ms segment epoch to be shifted by up
to 100 ms in either direction for use in classifier-based
latency estimation (CBLE) [20], the data were segmen-
ted into 1 s epochs, from 100 ms pre-stimulus to 900 ms
post-stimulus epochs. From each of these epochs, 53
time-shifted 800 ms sub-epochs per stimulus were
extracted using an 800 ms moving window with a step
size of one sample, ~3.9 ms at 256 Hz. These 800 ms
sub-epochs were subject to a moving average procedure,



4 A.H. ZISK ET AL.

where each value was replaced by the local mean calcu-
lated over a 13-sample moving window, and then down-
sampled by a factor of 13, following the feature
reduction procedure used in previous studies [20]. The
downsampled sub-epochs from all channels were con-
catenated and then treated as potential features for
further classification. The true class labels were 1 for
the sub-epochs extracted from the 1 s epochs around
target stimuli and 0 for the sub-epochs extracted from
the 1 s epochs around non-target stimuli.

2.5. Data analysis

Figure 1 provides an overview of our proposed data
analysis method, a characterization scheme including
data augmentation and jitter correction, hereafter called
augmentation/correction (A/C) characterization. In this
method, first, latency shifts were calculated on the train-
ing set using CBLE [20], providing a series of classifier
scores. Then, the training data was augmented with
time-shifted sub-epochs. The data augmentation para-
meters were determined based on the calculated latency
shifts from the training set. The allowable range of time
shifts to be used in the jitter correction procedure was
then determined over the training set. Throughout the
A/C process, stepwise linear discriminant analysis
(SWLDA) classifiers were used with typical parameters
for P300 speller applications: in each step, the most
significant feature for predicting if an epoch was
a target with p < 0.1 was added, and then if applicable
the least significant feature with p > 0.15 was removed,
up to a maximum of 60 included features or until no
features satisfied entry/removal criteria [41,42].
SWLDA classifiers were similarly used for all compar-
ison conditions. For all analysis conducted within the

training set, the training data were divided into five folds
of approximately equal size, by character. That is, clas-
sifiers were trained on four folds for application to the
fifth, and this procedure was repeated four more times
to test each fold once.

Then, on the test set, for each stimulus we extracted
all of the 800 ms sub-epochs with time shifts within the
range determined on the training set. These 800 ms sub-
epochs were fed to the final classifier, and the maximum
classifier score over the selected 800 ms sub-epochs
corresponding to a stimulus was retained as the score
for that stimulus to correct for latency jitter. These steps
are explained in more detail in sections 2.5.1-2.5.3.

To ensure that the proposed A/C approach could be
implemented in practical environments, for each parti-
cipant, data from prior sessions were used to predict
performance and determine correction parameters for
future sessions. Beginning with each participant’s third
session, session performances were evaluated by taking
that participant’s two prior sessions as the training set.
That is, first, classifiers were trained and parameters
were determined using data from each participant’s
first two sessions and then evaluated the data of their
third session as its test set; then classifiers were trained
on the second and third sessions to evaluate their fourth
session, and so forth. As 5-12 sessions were recorded
from each participant, we therefore had 3-10 training
sets and corresponding test sessions per participant, for
a total of 45 training sets and corresponding test ses-
sions over all 6 participants.

2.5.1. Latency shift and latency jitter calculations

Figure 1 shows a schematic of how classifier score series
and latency shifts were calculated over the training set.
All calculations of classifier score series, latency shifts,

Classifier score series
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Figure 1. The schematic illustrates the training process for the A/C characterization scheme with data augmentation and jitter
correction. Latency shift and jitter calculation: A classifier was trained, time-shifted sub-epochs were classified, and the classifier
scores for time-shifted sub-epochs were used to extract latency shifts for each stimulus. Data augmentation and parameter
optimization: The latency shifts calculated were used to determine the constant symmetric shift, M, which was used to augment the
training data. Parameters were optimized and a final SWLDA classifier was trained on the full augmented training data. Classification
and jitter correction: The final SWLDA classifier was applied to the test data with jitter correction, and performance was evaluated.



and latency jitter relied on classifier-based latency esti-
mation (CBLE), as proposed by Thompson and collea-
gues [20] and used in our prior investigation of latency
jitter as well [4]. In CBLE, the sensitivity of a classifier to
latency variability is used to estimate latency shifts for
single trials using time-shifted data [20,21]. As a first
step for CBLE, an SWLDA classifier was trained on the
unshifted 0-800 ms sub-epochs from four fifths of the
training set (5-fold training) using the true class labels of
0 for sub-epochs corresponding to non-target stimuli
and 1 for target stimuli. Then, for each stimulus in the
fifth fold, the downsampled 800 ms sub-epochs, includ-
ing all 53 time-shifted sub-epochs, were extracted and
fed to the classifier. This resulted in 53 classifier scores,
each of which is the post-probability that the shifted
sub-epoch corresponded to a target stimulus. The time
shift corresponding to the highest classifier score in the
series was extracted as the Tatency shift’ for that specific
stimulus, recorded in milliseconds. This procedure was
repeated five times, such that data from each fold was
fed to a classifier trained on the other four folds, provid-
ing a latency shift for each stimulus in the training set.
Then, latency jitter was calculated as the variance of the
latency shifts calculated through classifier-based latency
estimation (vCBLE) for all target stimuli, similar to the
procedure reported by Thompson and colleagues [20].

2.5.2. Data augmentation and parameter
optimization

After extracting the latency shifts from all stimuli in the
training set, the training data were augmented using
symmetrically time-shifted data similar to the protocol
in [35], but with an individualized adaptive time shift
calculated using the latency shifts in the data (see
Figure 1). First, the median of the absolute latency shifts
was calculated over all target stimuli in the training set.
This median, M, was used as the constant symmetric
time shift to augment that training set. Specifically, an
-M to -M + 800 ms sub-epoch and an M to M + 800 ms
sub-epoch were extracted for each stimulus. This pro-
cedure tripled the original training data (3x).

In addition, if the latency jitter in the training set was
greater than 1000 ms?, then per-epoch data augmenta-
tion was also performed based on individual, per-
stimulus latency shifts to compensate for the excess
latency variation in the training data. In this case, for
all stimuli, both target and non-target, we additionally
extracted the sub-epoch corresponding to the latency
shift calculated for the stimulus in section 2.5.1. That is,
for a stimulus with a calculated latency shift of § ms
based on its classifier score series that reached its max-
imum for the § to $ + 800 ms sub-epoch, this S to
S + 800 ms sub-epoch was also added to our training
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set. In cases where this additional sub-epoch was used,
the number of sub-epochs extracted from the training
set was quadrupled (4x), with the original 0-800 ms
sub-epoch, two symmetrically time shifted sub-epochs
(-M to -M + 800 ms and M to M + 800 ms), and a jitter
corrected sub-epoch (S to § + 800 ms) corresponding to
each stimulus.

Then, the range of time shifts used for jitter cor-
rection was optimized. For jitter correction, each
stimulus was assigned the maximum classifier score
corresponding to a range of time-shifted sub-epochs.
Out of all the possible ranges, the optimal range of
time shifts to use for jitter correction was optimized
using 5-fold cross-validation. For this purpose, a new
SWLDA classifier, only used in determining the
range of time shifts to be used in jitter correction,
was trained on four folds of the augmented training
data. As each new epoch added through the data
augmentation procedure corresponds to one original
stimulus, all additional epochs were assigned to the
same fold as their corresponding stimulus and origi-
nal 0-800 ms epoch.

Using this classifier, the optimal range of time shifts
to use for jitter correction was determined using 5-fold
cross-validation. The optimal range was selected out of
a total of 27 possible ranges corresponding to the central
1,3,5,..., 53 classifier scores distributed symmetrically
around the score for the 0-800 ms epoch, ranging from
no correction to the use of the entire classifier score
series. These ranges provided maximum allowable
time shifts of 0 ms, £3.91 ms, + 7.81 ms,
+101.56 ms, corresponding to intervals between data
points recorded at 256 Hz. Limited time ranges were
tested to partially mitigate the increased false positive
rate caused by using the maximum classifier score, or
maximum post-probability that an epoch corresponded
to a target stimulus [20].

To determine the optimal range, each possible
range was tested. To test a possible range of time
shifts, for each stimulus (in the training set), classi-
fier score series were calculated using classifiers
trained on the augmented data. Then, the maximum
classifier score corresponding to an epoch within the
range being tested was retained as the final classifier
score. That is, for each of the possible ranges of
allowable time shifts, classifier scores and class labels
were assigned to each stimulus in the training set
using the classifier score series calculated for that
stimulus. The score for the stimulus and range of
allowable time shifts was the maximum score for the
stimulus within that range, and the label was
assigned according to this score. In effect, if any
epoch within the allowable range of time shifts
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would have been labeled as a target, then the stimu-
lus was also labeled as a target. If not, then the
stimulus was labeled as a non-target.

This was repeated for all possible ranges of allowable
time shifts, and the range which maximized the average
F-score (2xPrecisionxRecall y (yar the five folds was selected

Precision+Recall
as the optimal range for implementation on the test set.

2.5.3. Classification and jitter correction

The final SWLDA classifier trained on all five folds of
the augmented training data and the selected jitter cor-
rection range, shown in Figure 1, were then used both to
classify data from the test session and to calculate
latency jitter on the test session.

For jitter correction, the 800 ms sub-epochs within
the time shift range determined in section 2.5.2 were
extracted for each stimulus. These time-shifted sub-
epochs were fed to the classifier, and the maximum
score corresponding to each stimulus was retained for
that stimulus. In addition, if this score was greater than
0.5, meaning that at least one of the time-shifted sub-
epochs corresponding to the stimulus was labeled
a target, then the stimulus was accordingly labeled
a target. All performance metrics with the A/C charac-
terization procedure were then calculated using these
scores and labels.

In addition to being used for jitter correction,
classification of time-shifted sub-epochs was also
used to calculate jitter using CBLE. For this purpose,
the full classifier score series was calculated, using all
53 time-shifted 800 ms sub-epochs. The time shift
for the sub-epoch with the maximum classifier score
over this entire range was recorded as the latency
shift for that stimulus, then used to calculate vCBLE
as in section 2.5.1.

2.5.4. Performance evaluation

Binary classification accuracy, precision, recall, F-score,
and character selection accuracy were calculated as mea-
sures of performance [43,44]. With TP, TN, FP, and FN
respectively representing the number of stimuli that
were classified as true positives (correct targets), true
negatives (correct non-targets), false positives, and false
negatives, we computed accuracy, precision, recall, and
F-score as below:

TP + TN
Binary Classification Accuracy= *
TP + TN + FP + FN
. TP
Precision = ———
TP + FP

TP

Recall = ——
T IP I EN

2 X Precision x Recall

F — score = —
Precision + Recall

The character with the highest summed classifier score
over all repetitions of its row and its column was
selected. Character selections were calculated for all
possible numbers of repetitions, from 1 (only the first
intensification of each row and column) through 10 (all
10 intensifications of each row and column per charac-
ter). For each number of repetitions, character selection
accuracies were then calculated as the number of char-
acters correctly selected from a test session divided by
the 14 characters in each session.

Although row and column intensifications were con-
sistently repeated 10 times per character selection in the
recordings, theoretical utility values were also calculated
for each number of repetitions as a measure of potential
throughput. These theoretical utility values used the

formula w, where p is the portion of

characters spelled correctly, N is the number of possible
selections (36), and c is the time to select a character,
whether correctly or incorrectly [45,46]. Notably, this
formula requires character accuracy to be at least 50% to
achieve positive utility, as correcting errors would
otherwise take infinite time. As intensifying each row
and column once took 1.875 seconds and there was
a 4 second pause between characters, the time to select
a character was 4 + 1.875 r seconds, where r was the
number of repetitions used. The maximum theoretical
utility and the number of repetitions used to reach it was
retained for each test session. For test sessions where the
utility was uniformly 0 regardless of the number of
repetitions used, the number of repetitions required
was considered to be 10, the full number recorded.

In addition to calculating these performance
metrics for our proposed A/C characterization
scheme, we calculated them for two comparison con-
ditions to test the A/C scheme. First, to compare our
proposed A/C characterization scheme to conven-
tional procedures, an SWLDA classifier was trained
on the two training sessions without any data aug-
mentation or jitter correction. This classifier was
used as the reference classifier. Second, we validated
our parameter selection methods by comparing the
results of our proposed procedure to the results of
data augmentation and jitter correction with random
parameters explained in section 2.6.



2.6. Statistical analysis

Statistical analyses other than the random parameter
testing were conducted in R version 4.0.5 [47].
Differences between the proposed A/C characterization
method and the reference classifier were investigated
using paired t-tests comparing participant average
metrics (n = 6). Per-stimulus performance metrics, spe-
cifically binary classification accuracy, precision, recall,
and F-score were averaged within participants. Character
selection accuracy for each possible number of repeti-
tions, from 1-10, was also averaged within participants,
as was maximum theoretical utility. Participant average
jitter, per-stimulus performance metrics, character selec-
tion accuracy using all 10 repetitions, and maximum
theoretical utility were compared between the proposed
A/C characterization method and the reference classifier
using Wilcoxon signed-rank tests [48].

We then tested for correlations between performance
metrics and latency jitter for both classification methods
using repeated measures correlations, (r,,,), an analysis
of covariance-based regression appropriate for measur-
ing common (overall) intra-individual associations
between measures with multiple non-independent
observations per participant [49].

We further investigated associations between clinical
measures and performance improvements from our
proposed method. To do so, we tested for spearman
correlations between participant-averages in selection
accuracy improvements from our proposed A/C char-
acterization procedure relative to the reference classifi-
cation approach, and time since diagnosis, ALSFRS-R
scores, and ALSFRS-R bulbar subscores. We also tested
for correlations between selection accuracies using each
method and clinical scores.

Latency jitter and performance metrics were also
investigated longitudinally. We utilized repeated mea-
sures correlations to investigate common trends across
participants. To understand possible changes in perfor-
mance over time, repeated measures correlations com-
bining information from all participants were
investigated between the number of days since the first
session and latency jitter, as well as the number of days
since the first session and all performance metrics. As
prior studies have noted variations in long-term trends
between participants, we additionally tested for spear-
man correlations between character selection accuracies
and days since their first session within each participant
to consider inter-individual differences in trends.

In addition to the statistical analyses of the proposed A/
C scheme and reference classifier, we tested the effective-
ness of our selected parameters with a Monte Carlo experi-
ment to determine how likely similar improvements would
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be to occur by chance [50,51]. To do so, random para-
meters, specifically symmetric time shift, use or nonuse of
per-stimulus augmentation, jitter correction range, were
selected and performance metrics calculated 1000 times,
with individually randomized parameters for each training
set and corresponding test session, in alignment with the
individually determined parameters for each training set
and corresponding test set in the A/C characterization
scheme. Specifically, three parameters were randomized
in each case: 1) the constant symmetric time shift (M),
which could theoretically vary between +3.91 ms and
+101.56 ms, with 26 possible values (+3.91 ms, +
7.81 ms, ... £101.56 ms, corresponding to intervals
between data points recorded at 256 Hz); 2) a binary
variable (yes or no) representing whether or not data
augmentation was additionally performed based on per-
stimulus latency shifts; and 3) the range of time shifts used
for jitter correction, which could vary from 0 ms (no jitter
correction) to +101.56 ms, with 27 possible allowable
ranges (originally optimized with 5-fold cross-validation;
randomized here). That is, for each training set and corre-
sponding test session, there were a total of 1404 (=26*2%27)
possible parameter combinations. As parameters were
individually determined for each training set and corre-
sponding test session (45 training sets and corresponding
test sessions), there were therefore 1404* possible para-
meter combinations over the entire study’s data.

For each of the 1000 randomly selected parameter sets,
we classified each test session’s data using an SWLDA
classifier trained on the training set augmented with the
randomly selected parameters, with jitter correction using
the randomly selected time shift range. Performance
metrics from the proposed A/C characterization method
were then also compared to performance metrics from
the Monte Carlo experiment testing jitter augmentation
and data correction with random parameters. Within
each of the 1000 random parameter sets, these perfor-
mance metrics were then averaged over all sessions for
each participant, and then the participant averages were
averaged to yield overall performance metrics. This pro-
cess yielded 1000 sets of overall performance metrics, one
for each random parameter set. The proportion of ran-
dom parameter sets for which classification with data
augmentation and jitter correction outperformed the pro-
posed A/C characterization method with algorithmically
determined parameters was then calculated.

3. Results

Average target and non-target responses at channel Cz
from a representative session for each participant are
shown in Figure 2. As visible in the figure, the extent to
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Figure 2. Average target and non-target responses at channel Cz from a representative session for participants ALS-01 (a) through

ALS-06 (f).

which ERP features such as the P200, N200, and P300
are visibly present in the average target response varied
between participants.

3.1. Augmentation and correction quantification

The symmetric shifts used for data augmentation and
ranges of allowable time shifts for jitter correction var-
ied between participants and sessions, as did latency
jitter. For each participant, the minima, maxima,
means, and standard deviations of their determined A/
C parameters and calculated latency jitters over all their
recorded sessions are reported in Table 2. The sym-
metric shifts used for data augmentation varied between
+11.72 ms and +58.59 ms, though shifts greater than
130 ms were only selected for ALS-01, who was both the
participant in the locked-in state and the participant
with the highest average latency jitter. The selected
ranges of allowable time shifts used for jitter correction
ranged from 0 (no allowable time shift) to £101.56 ms,
though ranges greater than +55 ms were also only
selected for the participant in the locked-in state. The

selected parameters for each combination of training
and testing session numbers, specifically the symmetric
shifts used in data augmentation, the relative size of the
augmented training set compared to the original train-
ing data (4x if per-epoch augmentation was used versus
3x if not), and the time shift range, are available in Table
A.1 for each participant and session.

3.2. Evaluation of the augmentation and correction
scheme

Table 3 tabulates the individual results on all participant
average measures evaluating the augmentation and cor-
rection scheme. Character accuracy when using all 10
repetitions was significantly (p = 0.031) higher with the
A/C classifier at 75.69 + 32.40% than with the reference
classifier at 71.55 + 32.33%. In particular these changes
were 2.9%, 5.7%, 2.4%, 7.1%, 2.6%, and 4.1% for parti-
cipants ALS-01 through ALS-06, respectively. The dif-
ference between maximum theoretical utility with the
A/C characterization scheme (16.49 + 9.65 bit/min) and
the reference classifier (13.54 + 8.63 bit/min) was not

Table 2. Per-participant summary statistics for augmentation and correction (A/C) parameters and latency jitter.

Augmentation Shift (ms)

Correction Window (ms)

Jitter (ms®)

Participant Min Max Mean + SD Min Max Mean £ SD Min Max Mean £ SD
ALS-01 19.53 58.59 41.02 +11.83 0 101.56 40.23 +43.19 2915 4817 3843 + 548
ALS-02 11.72 23.44 16.80 + 3.71 7.81 54.68 23.44 + 14.96 509 1807 999 + 435
ALS-03 15.63 19.53 16.93 + 2.26 7.81 19.53 13.02 + 5.97 591 1345 939 + 380
ALS-04 15.63 27.34 20.09 + 4.18 27.34 46.88 36.38 + 6.32 1035 3591 2037 £ 1144
ALS-05 11.72 19.53 15.14 + 2.50 7.81 27.34 1270 + 7.16 557 2985 1381 + 947
ALS-06 15.63 27.34 19.53 + 4.51 7.81 50.78 2734 £17.47 383 1524 1018 + 378
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Table 3. Average accuracy metrics for both reference and augmentation and correction (A/C) classification schemes for each
participant. *significant at p < 0.05, Wilcoxon signed-rank test. Means and standard deviations (SD) are provided for each classification

method.
Character Accuracy (%)* Utility (bit/min) Binary Accuracy (%)*
Participant Reference A/C Reference A/C Reference A/C
ALSO1 10.71 13.57 0 0 81.73 80.95
ALS02 87.14 92.86 17.46 22.76 85.14 83.77
ALSO03 97.62 100.00 20.32 22.19 88.51 88.37
ALS04 60.20 67.35 539 9.23 79.78 76.94
ALS05 84.82 87.50 18.50 2217 85.44 84.56
ALS06 88.78 92.86 19.57 22.59 86.68 85.20
Mean + SD 71.55 + 32.32 75.69 + 32.40 13.54 £ 8.63 16.49 % 9.65 84.55 + 3.23 83.29 + 3.93
Precision (%) Recall (%)* F-score*

Participant Reference A/C Reference A/C Reference A/C
ALSO1 30.09 36.31 7.04 7.50 0.11 0.11
ALS02 55.42 52.96 58.93 72.86 0.56 0.60
ALS03 66.40 63.49 66.40 72.74 0.63 0.67
ALS04 46.37 46.39 30.00 38.27 033 0.36
ALSO05 64.83 60.14 49.24 60.22 0.52 0.57
ALS06 66.40 60.82 52.55 62.35 0.57 0.59
Mean + SD 54.92 + 14.50 53.35 +10.43 43.53 + 21.27 52.32 + 25.33 0.45 + 0.20 0.48 + 0.21

significant (p = 0.059). The reduction in repetitions
required to maximize utility with the A/C scheme
(5.67 £ 2.51) as compared to the reference classifier
(6.67 = 1.99) was also not significant (p = 0.058). As
ALS-01 never reached the 50% character selection accu-
racy required for utility to be positive [35], his utility
was uniformly 0 and remained unchanged by our pro-
cedure. However, ALS-02 through ALS-06 had average
improvements in theoretical utility of 5.3, 1.9, 3.8, 3.7,
and 3.0 bits/min, respectively. Binary classification
accuracy, however, was significantly reduced
(p = 0.031) with the A/C classifier at 83.29 + 3.93%
compared to the reference classifier at 84.55 + 3.23%
despite no significant change in precision (p = 0.562)
and significant improvements in both recall and
F-score. Specifically, the A/C classifier had
a significantly (p = 0.031) higher recall of
52.32 + 25.33% than the reference classifier at
43.53 + 21.27%. The A/C classifier also provided a sig-
nificantly (p = 0.031) higher F-score of 0.48 + 0.21 than
the reference classifier, at 0.45 + 0.20.

When fewer repetitions were used per character, the
proposed A/C characterization scheme was still
observed to provide improvements in character selec-
tion accuracy as compared to the reference classifier, as
shown in Figure 3. Character selection accuracy was
improved by an average of 5.63% using the proposed
A/C classifier as compared to the reference classifier
over all numbers of repetitions and participants. Both
initial selection accuracy and the extent of the improve-
ment varied between participants. In particular, for
ALS-01, character selection accuracy was improved by
3.0% on average over all possible numbers of repeti-
tions, though this improvement did not allow for suc-
cessful BCI control due to poor initial performance.

For ALS-02, character selection accuracy was
improved by an average of 8.6% over all possible num-
bers of repetitions used. Character selection accuracy
first reached an acceptable level (>70% [40]), for ALS-02
using at least five repetitions using the reference classi-
fier at 72.9%, as compared to three repetitions using the
proposed A/C classifier, at 77.1%. Averaged over all
sessions, ALS-02 achieved a maximum utility of 22.7
bit/min with the proposed A/C characterization scheme
using 1-7 repetitions (mean 3.8 + 1.8), as compared to
17.5 bit/min with the reference classifier using 3-10
repetitions (mean 5.3 £ 2.5).

For ALS-03, character selection accuracy was
improved by an average of 3.1% over all numbers of
repetitions, requiring at least four repetitions to reach
acceptable accuracy with the reference classifier (81.0%)
as opposed to three with the proposed A/C classifier
(76.2%). Averaged over all sessions, ALS-03 achieved his
maximum utility of 22.1 bit/min with 4-6 repetitions
used (mean 4.7 + 1.2) as compared to 20.3 bit/min using
5-6 repetitions (mean 5.7 £ 0.6).

ALS-04 never reached acceptable character selection
accuracy, but the proposed classifier improved selection
accuracy by an average of 9.8% over all possible num-
bers of repetitions. However, he achieved positive utility
in several sessions, averaging 9.2 bit/min with 4-10
repetitions (mean 7.4 + 2.6) with the A/C characteriza-
tion scheme as compared to 5.4 bit/min with 6-10
repetitions (mean 8.2 + 2.2).

For ALS-05, the average improvement in character
selection accuracy over all numbers of repetitions was
3.8%, first achieving an acceptable accuracy using 3
repetitions at 75.0% with the proposed A/C character-
ization scheme as opposed to 4 repetitions at 74.1%
character selection accuracy with the reference classifier.
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Figure 3. Average character selection accuracies at each number of repetitions used, over all participants (a) and for each participant
(b-g) using both the reference (blue) and augmentation and correction (A/C; tan) classification schemes.

Averaged over all sessions, ALS-05’s achieved her max-
imum utility with the A/C characterization scheme at
22.2 bit/min with 2-7 repetitions (mean 4.0 + 2.0), as
compared to 18.5 bit/min with 2-10 repetitions (mean
5.5 + 3.0).

Over all possible numbers of repetitions, character
selection accuracy was improved for ALS-06 by 5.4%
using the A/C characterization scheme as compared to
the reference classifier, first achieving an acceptable accu-
racy using 3 repetitions at 78.6% with the proposed A/C
characterization scheme as opposed to 4 repetitions at
78.6% character selection accuracy with the reference clas-
sifier. Averaged over all sessions, ALS-06’s utility was max-
imized at 22.6 bit/min with the A/C characterization

scheme, using 3-9 repetitions (mean 4.1 + 2.2), as com-
pared to 19.6 bit/min using 3-10 repetitions (mean
5.3 + 2.4) with the reference classifier.

Regardless of classification method, latency jitter
was negatively associated with BCI performance.
Using the proposed A/C characterization method,
there were significant correlations between latency
jitter and five performance metrics, specifically char-
acter accuracy (r,,, = —0.87, p < 0.001), utility (r,,,
= —0.73, p < 0.001), binary classification accuracy
(fym = —0.72, p < 0.001), precision (r,,, = —0.58,
p < 0.001), and F-score (r,,, = —0.62, p < 0.001) indi-
cating that as the latency jitter increased, that the
proposed A/C method improved performance overall
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Figure 4. Random parameter sets histograms, for character accuracy (a), utility (b), and F-score (c), as well as average performance
metrics over all participants using the proposed A/C characterization scheme (tan asterisks) and the reference classifier (blue asterisks).

but did not mitigate the negative relationship between
jitter and performance. However, the correlation
between latency jitter and recall using the proposed
A/C characterization method was not significant (r,,,
= -0.16, p = 0.320). Using the reference classifier,
latency jitter correlated significantly with character
selection accuracy (r,, = —0.80, p < 0.001), utility
(r/m = —0.73. p < 0.001), binary classification accuracy
(rym = —0.73, p < 0.001), precision (r,, = —-0.72,
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p < 0.001), and F-score (r,,, = —0.63, p < 0.001) but
the negative trend was not significant for recall (r,,,
= -0.30, p = 0.057), for significant correlations with
the same five performance metrics.

The histograms of the random parameter testing for
character accuracy, utility, and F-score are illustrated in
Figure 4. All of randomly selected parameter sets pro-
vided all three measures lower than those achieved with
our proposed A/C characterization scheme. In addition,
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Note: each color indicates one participant.
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all the random parameter sets provided average binary
classification accuracy, precision, or recall lower than
those achieved with our proposed characterization
scheme. Similarly, all performance metrics except for
recall, were lower than for the reference classifier for all
1000 random parameter sets. However, recall with the
reference classifier was only higher than recall with 781
of the 1000 random parameter sets. These results indi-
cate that our parameter selection algorithm provides
higher performance than the use of random parameters
for data augmentation and jitter correction.

3.3. Clinical and longitudinal trends

Spearman correlations between participant average
character selection accuracies and clinical features, spe-
cifically age, time since diagnosis, ALSFRS-R scores, and
ALSFRS-R bulbar sub-scores, were not significant for
either classification method (p > 0.05). Spearman corre-
lations between average performance improvements
from the proposed A/C characterization scheme and
clinical scores were also not significant.

Repeated measures correlation plots for the longitu-
dinal analysis of character selection accuracy, and

Character accuracy decreased significantly over time
with both the proposed A/C characterization scheme
(r,m = —0.38, p = 0.016) and the reference classifier
(7;m = —0.40, p = 0.011), indicating a decrease in perfor-
mance over time using both approaches. Latency jitter
increased over time with both the A/C characterization
scheme (7, = 0.39, p = 0.011) and the reference classi-
fier (t,,,, = 0.46, p = 0.003), which aligns with both the
decrease in performance over time and negative associa-
tions between jitter and performance.

Single-participant longitudinal trends in character
selection accuracy are shown in Figure 6. Spearman
correlations between selection accuracy and the num-
bers of days since the first session were significant and
negative in ALS-01 for the reference classifier (p = —0.65,
p = 0.041) but not the proposed A/C characterization
scheme (p = —0.46, p = 0.177) indicating some long-
itudinal improvement in performance using our pro-
posed A/C characterization scheme. There was no
significant trend in performance over time with either
the A/C scheme (p = -0.04, p = 0.917) or the reference
classifier (p = —0.04, p = 0.919) for ALS-02. There was
similarly no significant trend with the proposed (p and
p both undefined) or reference (p = 0.87, p = 0.333)

latency jitter over time are shown in Figure 5.  classification schemes for ALS-03, for whom
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performance metrics were only extracted from three
sessions. For ALS-04, neither the correlation between
accuracy with the A/C scheme (p = —0.31, p = 0.504) nor
with the reference classifier (p = —0.39 p = 0.383) and
time since the first session was significant. Neither nega-
tive correlation was significant for ALS-05 (A/C
p = —0.35, p = 0.389; reference p = —0.58, p = 0.129) or
ALS-06 (A/C p = —0.50, p = 0.250; reference p = —0.50,
p = 0.257) indicating that longitudinal trends were not
typically significant on the individual level, though the
non-significant trends were generally toward decreasing
performance for both approaches.

4. Discussion

In this study, we proposed an augmented/corrected (A/
C) classification scheme that relies on latency variations
at two levels, using both data augmentation and jitter
correction procedures to improve P300-based BCI clas-
sification performance in people with ALS. Our pro-
posed approach demonstrated significantly improved
character selection accuracy and detection of target sti-
muli relative to classical reference SWLDA classifiers.
Classification performance improvements with EEG
data augmentation were reported to vary based on
both tasks and augmentation methods in a recent review
paper, though none of the papers covered by that review
specifically addressed P300 tasks [27]. However, prior
P300 studies have found some success with data aug-
mentation. For example, Krell and colleagues consid-
ered multiple augmentation methods and found
improvements similar to ours using a rotational data
augmentation scheme with P300 data. However, their
use of one consistent symmetric time-shift to augment
P300 data across all neurotypical participants, did not
find significant improvement, whereas we showed per-
formance improvements with the individualized time-
shifts used in our study [31]. Our proposed method,
comparatively, found larger and more consistent
improvements in selection accuracy than some prior
augmentation approaches with P300 data, and similar
improvements to one. Augmentation procedures simi-
lar to ours have been implemented in prior studies with
neurotypical participants, increasing the amount of
training data [31,35,36] and thereby improving perfor-
mance in the two non-P300 studies [35,36]. These prior
studies examined augmentation using constant time-
shifts across participants, while the current study deter-
mined individual time shifts for each subject separately.
Augmentation with symmetric time-shifts has also been
reported to improve performance in Sakai and collea-
gues’ study using data recorded during an intrinsic
motivation task with neurotypical participants [35].
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A constant but non-symmetric shift was also used to
improve feedback in the detection of error-related
potentials, again with neurotypical participants [36].
However, Krell and colleagues found no significant
effect on performance after augmenting P300 data
with symmetric time-shifts similar in size to the larger
selected shifts from the current study [31]. In this study,
we used individualized parameters rather than constant
parameters across all sessions or all participants, as
participants with ALS generally experience more latency
jitter than neurotypical controls (i.e. increased within-
subject variability in ALS), and as latency jitter can
significantly vary between participants with ALS (i.e.
between-subject variability in ALS) [4]. By individualiz-
ing the time-shifts used based on latency variations in
the data, utilizing the median absolute latency shift in
the training data for augmentation, we were able to both
increase the amount of training data and improve per-
formance. We also investigated changes in performance
over time to evaluate how our proposed method can
facilitate robust long-term use of the P300-based BCI
system. While our proposed classification procedure
improved performance overall, it could not completely
eliminate the decline in performance over time, likely
due to the inherent disease progression.

Our jitter correction procedure relying on the
maximum classifier score within a given allowable
range of time shifts to correct for latency variations
similarly improved selection accuracy. Considering
this latency variation has also shown improvement
in P300 classification metrics in some prior studies
[24,25], and denoising using a matrix representation
of single-trials supports both effective single-trial
latency detection and improved classification perfor-
mance [52]. Prior investigations involving classifier-
based latency estimation noted qualitatively that tak-
ing the maximum classifier score within a given
range of time-shifts as our study did, increased the
risk of false-positives, or detecting a P300 response
for non-target stimuli, but did not quantitatively
specify the size of this increase [20,24]. Rather than
using this maximum score, Mowla and colleagues
used a secondary classifier relying on a wavelet trans-
form of the classifier score series to improve perfor-
mance [24]. Here, by utilizing individualized
parameters in the current study, we successfully
improved character selection accuracy utilizing
these classifier score series without a secondary clas-
sifier despite some decrease in single-trial binary
classification accuracy from the aforementioned
increase in false-positives [20,24], which occurs as
taking the maximum score over a range increases
the final score for all stimuli, including non-targets.
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Our longitudinal analyses found that latency jitter
increased over time, and performance accordingly
decreased over time, using both the reference and pro-
posed A/C characterization methods, though perfor-
mance was improved overall with our proposed
method. While participants with ALS in the completely-
locked in state have not often been shown to successfully
use visual BCIs [2,3,53], prior longitudinal studies
which did not involve the completely locked-in state
have not typically found BCI performance to decrease
over time [7,9,54-56]. Several studies have, however,
shown significant day-to-day variation in performance
[9,54,56], which could affect investigations of long-term
performance changes depending on the analysis meth-
ods used. One prior study found no change over time
when comparing copy-spelling accuracies between the
first and last several sessions [55]. Sellers 2010 BCI for
home use study and Holz’s 2015 brain painting study
both used single-participant designs [7,54], while
another found long-term trends to vary between parti-
cipants [9]. Of our six participants, only one had
a significant decline in performance over the course of
the study when considered individually, two partici-
pants had consistently high performance throughout
the study, and three participants appeared to have
some decline in performance which did not reach sig-
nificance when considered individually. It is only by
considering common trends across participants with
repeated measures correlations that the significant nega-
tive trend was uncovered despite both day-to-day and
between-participant performance variabilities. BCIs can
successfully be used for a significant period of time [7,9],
but the consistent failure of current visual P300 BCIs in
the completely locked-in state [3,53] indicates that per-
formance must eventually decline, as we found to occur
in our present study.

Finally, while our tests of correlations between
latency jitter and performance metrics were not a key
feature of the study, they confirmed prior results both in
our lab [4] and in others work [20-22], namely that
increased latency jitter is associated with decreased
BCI performance. A classification method that can
reduce or eliminate this association, if possible, would
likely make BCI performance more robust. However,
our proposed method retained this association while
improving performance overall.

4.1. Limitations and future work

One limitation of this study, common to many BCI
studies of people with ALS, is the relatively low number
of participants, due in part both to the rareness of the
disease and the difficulties of recording from this

population. We therefore did not analyze differences
due to gender, though we did consider clinical features
in some analyses. The longitudinal recordings we
obtained from each participant, however, provide addi-
tional data points, mitigating some limitations related to
small sample sizes. While we report the average results
from a small number of participants, the proposed A/C
characterization method was tested on several sessions
of longitudinal recordings for each participant, making
these participant averages more robust. We additionally
used nonparametric statistical methods appropriate to
small sample sizes and data which are not normally
distributed. For the longitudinal investigation, our use
of repeated measures correlations, rather than sepa-
rately investigating long-term trends for each partici-
pant, increased power while maintaining statistical rigor
[49]. Future work could also include additional partici-
pants and recording sessions.

One potential confound when investigating longitu-
dinal trends is the variation in how much data is used to
train the classifier in our proposed A/C scheme, either
three or four times the original un-augmented training
set. However, the same trends were present with our
proposed A/C scheme and the reference classifier with
neither data augmentation nor jitter correction. We
therefore conclude the longitudinal trends we found
are not due to this variation, which was not a factor
with the reference classifier.

Another limitation to the current study is inherent to
CBLE, which defines a single latency shift for the entire
spatiotemporal ERP complex for each stimulus [20,21].
While Thompson’s tests with simulated data show the
efficacy of CBLE in reflecting P300 latency jitter [57],
future work could investigate latency variations between
different ERP components. Another facet of CBLE and
its use which could be investigated in the future is step
size. In our current study, as in Thompson’s work [20],
epochs were shifted in steps of one sample, allowing the
detection of very small latency shifts. Increasing the step
size, thereby reducing computational requirements,
may be possible without sacrificing the performance
improvements yielded by our A/C scheme. Future
work could investigate the effect of step size on perfor-
mance improvements and/or optimize step size for indi-
vidual BCI users.

Our analyses, while conducted offline, were designed
to be appropriate for real-life settings, with all training
and parameter selection procedures relying only on data
from prior sessions. This would be especially important
as practical environments would likely utilize informa-
tion from prior sessions and/or a short amount of data
from the same session to successfully implement in any
upcoming BCI experiment. The current study considers



jitter in a simple way relying on individualized para-
meters to ensure efficacy, and so future work could
include the real-time implementation of our proposed
A/C method.

5. Conclusion

In this work, we proposed an augmented/corrected
(A/C) classification procedure using both data aug-
mentation and jitter correction schemes to improve
P300-based BCI classification performance in people
with ALS. The proposed method demonstrated an
improvement in selection accuracy overall which did
not show any relationships with clinical features.
Considering common trends across participants, the
current work showed decreased BCI performance over
time, which was suggested by BCI inefficiency in the
completely locked-in state but not consistently
demonstrated in the past. When participants were
considered individually, however, longitudinal perfor-
mance trends varied and did not consistently show
decreases, which fits with prior studies. Despite
improving selection accuracy, our proposed method
did not fully eliminate the common downward trend
in performance over time.
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