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Improving longitudinal P300-BCI performance for people with ALS using a data 
augmentation and jitter correction approach
Alyssa Hillary Zisk a, Seyyed Bahram Borgheai b, John McLinden b, Roohollah Jafari Deligani b 

and Yalda Shahriari a,b

aInterdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, –USA; bDepartment of Electrical, Computer, and Biomedical 
Engineering, University of Rhode Island, Fascitelli Center for Advanced Engineering, –USA Kingston, RI, USA

ABSTRACT
The P300 Brain-Computer Interface (BCI) is a well-established communication channel for severely 
disabled people. However, variation in P300 latency, or latency jitter, is both increased in people 
with amyotrophic lateral sclerosis (ALS) and negatively associated with BCI performance. In this 
study, we proposed an augmentation and correction (A/C) characterization scheme with data 
augmentation and correction for jitter, both relying on time-shifted responses with individualized 
parameters determined based on latency jitter. We tested this approach offline on longitudinal 
data collected from six participants with ALS. While our longitudinal analysis showed decreased BCI 
performance and increased latency jitter over time with both our proposed characterization 
scheme and conventional methods, our proposed A/C characterization scheme significantly 
improved character selection accuracy, required for usability, along with recall and F-scores, 
showing the effectiveness of our proposed approach. These results should inform further work 
on improving longitudinal BCI performance and reliability for people with ALS.
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1. Introduction

As people with amyotrophic lateral sclerosis (ALS) 
develop significant motor disability and lose voluntary 
motor control, including speech-related motor control 
[1], they frequently require tools for augmentative and 
alternative communication. Currently available tools 
including brain-computer interfaces (BCIs) support 
communication for people with ALS, but people with 
ALS have been reported to show reduced BCI perfor
mance in comparison to neurotypical users [2–6]. In 
addition, BCI users can experience substantial varia
tions in BCI performance within and across days [7– 
9]. Given these concerns, significant attention has been 
paid to both understanding the correlates of BCI per
formance and improving selection accuracy [10–15]. 
Much of this research is dedicated to understanding 
and improving BCIs based on the visual P300 response, 
a positive electrical deflection occurring 250–500 ms 
after an attended rare event [16,17]. In a longitudinal 
study of P300-based BCI home users, Shahriari and 
colleagues found that BCI performance was positively 
correlated with P200 amplitude, parietal alpha-band 
spectral power, and occipital beta-band spectral power, 
and that these measures were significantly increased for 
successful BCI sessions as compared to unsuccessful 

sessions. They also found BCI performance was nega
tively correlated with occipital delta-band power [9]. 
Mak and colleagues found that among participants 
with ALS, increased event-related potential (ERP) 
amplitudes and theta-band spectral power were asso
ciated with increased P300 BCI performance [18]. 
Geronimo and colleagues found that higher cognitive 
scores, including scores measuring attention, were asso
ciated with both increased P300 quality and BCI perfor
mance [6,19].

Trial to trial variation in P300 latency, known as 
latency jitter, has been found to be negatively associated 
with BCI performance in a mixed group of neurotypical 
participants and potential end-users [20], in neurotypi
cal participants [21,22], and in people with ALS [4]. For 
example, Zisk and colleagues recently determined that 
this latency jitter is elevated in people with ALS as 
compared to neurotypical controls [4], and latency jitter 
is a factor affecting BCI performance for people with 
ALS [4,20,23].

As studies have shown latency jitter can predict BCI 
performance [20,21], Mowla and colleagues used 
latency estimation and a secondary classifier to improve 
BCI performance, though they did not report an online 
implementation of this method [24]. Togashi and 
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Washizawa similarly utilized Bayesian latency estima
tion to improve P300 BCI performance [25]. 
Considering differences in latencies between experi
mental paradigms which elicited P300 responses rather 
than variability within participants using a single para
digm, Iturrate and colleagues calculated the latency shift 
between paradigms and then trained a classifier for one 
paradigm using data from another, time-shifted to com
pensate for the latency differences between the experi
mental conditions [26]. They found that in cases of 
insufficient training data from any given paradigm, 
including latency-corrected training data from other 
paradigms improved performance.

In recent years, data augmentation for BCIs has 
gained attention as a strategy for improving perfor
mance [27–32].The purpose of data augmentation is 
to increase the size of the training data, and thereby 
improve the reliability and generalizability of the clas
sification algorithms. As electroencephalography 
(EEG) data varies significantly between different parti
cipants, many EEG classifiers are subject-specific, 
though pooling data from multiple participants has 
also been the focus of some research [17,32–34] with 
a similar goal of improving generalizability and relia
bility. Iturrate and colleagues collected data from mul
tiple experimental paradigms that produced P300 
responses, but with different latencies. Their transfer 
of data between different experiments that evoke P300 
responses similarly works toward the goal of improv
ing generalizability and stability with limited training 
data [26]. In other studies, the use of time shifted 
epochs has supported the extraction of multiple seg
ments per stimulus, providing a larger training data set 
[31,35,36] or helping mitigate class imbalances [37]. 
For example, Kim and colleagues used a 100 ms shift 
based on the results of a pre-analysis to find optimal 
windows for classifying error-related potentials. Their 
use of two epochs per event with different starting 
times allowed for variation in when participants 
detected errors and doubled the size of their data set 
in a reinforcement learning method [36]. By requiring 
both the shifted and unshifted epoch to be classified 
correctly for the classification to be considered correct, 
they additionally improved the reliability of any posi
tive feedback. In their study, Kim and colleagues noted 
an improvement with this data augmentation scheme 
as compared to using a single epoch without augmen
tation [36]. Sakai and colleagues compared several data 
augmentation methods based on the time and ampli
tude fluctuations associated with bio-signals such as 
EEG, including set time shifts of ±10 ms for all parti
cipants, which tripled their training data sets while 
considering potential latency variability [35]. Their 

data augmentation protocol improved classification 
performance, with greater improvements found when 
the training set was smaller. Krell and colleagues simi
larly considered several data augmentation methods, 
including time-shifted data, for augmenting P300 
training data [31]. They initially tested single time- 
shifts as several factors, including both lag in the dis
play and increases in workload, can lead to delayed 
P300 latencies. The single time-shifts provided 
improvements for some participants, but no single 
time-shift was reported to be consistently helpful. 
They then tested symmetrical time-shifts and reported 
that ±40 ms shifts increased the data set but did not 
significantly affect performance [31]. In all three stu
dies, unshifted epochs, beginning at the time of the 
stimulus, were used alongside overlapping time- 
shifted epochs extracted from the recorded EEG data. 
These three studies sought to classify responses which 
can vary in latency, and their use of time-shifted data 
both increased the number of epochs available for 
training and provided epochs with earlier and/or later 
responses of interest [31,35,36]. As data augmentation 
with time-shifted data provides time-shifted responses 
in the training data, this augmentation approach pro
vides additional latency variability that may improve 
robustness to this same form of variability [27].

In this study we therefore proposed a correction 
strategy that relied on latency jitter at multiple levels. 
In particular, we proposed to improve classification 
performance for P300 data longitudinally recorded 
from people with ALS using both data augmentation 
and jitter correction, tested offline. The data augmenta
tion utilized time-shifted responses to both target and 
non-target trials, with individualized time shifts based 
on latency variations present in the training set. The 
jitter correction procedure was also implemented 
through allowing limited time-shifts of the epochs to 
be classified. We quantified our performance improve
ments through the use of a reference classifier using 
neither data augmentation nor jitter correction. We 
then investigated longitudinal relationships between 
clinical measures, latency jitter, and BCI performance 
in our participants with ALS.

2. Materials and methods

2.1. Participants

Six participants with ALS (age 57 ± 15.7 years, 1 female) 
were recruited for this study (see Table 1). All partici
pants had at least some post-secondary education. 
Participants other than ALS-01 had normal or corrected 
to normal vision, while ALS-01 was in the late stages of 
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locked-in syndrome with significant ocular impair
ments. Participants were diagnosed with ALS 
6.5 ± 4.0 years prior to the start of the study and had 
an average functional rating scale-revised (ALSFRS-R) 
score of 11.6 ± 9.5, with a minimum score of 0 indicat
ing no voluntary motor functions and complete depen
dence on life-sustaining technologies including 
mechanical ventilation and a maximum score of 48 
indicating normal functioning [38]. Three participants 
had gastrostomies as well as tracheostomies. ALS-01′s 
sole form of communication was an idiosyncratic and 
error-prone yes/no pupil dilation his caregiver read 
subjectively, which deteriorated over the course of the 
recordings, losing reliability as a means of communica
tion. Two other participants with artificial ventilation 
(ALS-02 and 04) used eye-tracking devices to commu
nicate. ALS-03 could still move his index finger and 
make non-verbal sounds to sustain minimal communi
cation. ALS-05 and 06 retained the ability to speak, 
though ALS-05 had lost non-facial movement, and 
ALS-06 could barely move a joystick with one hand. 
Participants were tested in their homes or care centers. 
The study protocol was approved by the Institutional 
Review Board (IRB) of the University of Rhode Island 
(URI), and all participants provided informed consent 
or assent for the study and received financial 
compensation.

2.2. Experimental protocol

Each participant took part in 5–12 (9.5 ± 2.6) sessions of 
recording over 2.5–13.7 (10.9 ± 4.3) months. These 
sessions took place at least two weeks apart. Including 
preparation such as the application of gel to electrodes 
and impedance calibration, each session typically lasted 
2–2.5 hours. To familiarize participants with the BCI 
setup, including the recording protocol and the task, 
each participant took part in a single familiarization 
session before the main experimental recordings, in 
which they completed the same tasks without recording 
the data and could get clarification about the experi
mental tasks. Each session contained one run of 

a standard P300 spelling protocol, in which a 6 × 6 
matrix of characters containing letters and numbers 
was displayed to participants, with each row and col
umn intensified 10 times (i.e. 10 repetitions) per char
acter selection [10,39]. Intensifications lasted 93.75 ms 
and were separated by an inter-stimulus interval of 
62.5 ms. Participants copy-spelled 14 characters with 
4 second pauses between characters, counting intensifi
cations of their intended (target) character, without 
real-time feedback in each session.

2.3. Data acquisition

EEG data were recorded using a g.USBamp amplifier (g. 
tec Medical Technologies) with a 256 Hz sampling rate. 
Data were recorded from eight channels commonly 
used in P300 protocols, Fz*, Cz, P3, Pz, P4, PO7, PO8, 
and Oz [30]. However, as Fz was occupied by sensors for 
other studies recorded in the same session as the current 
experiment, it was replaced by the nearest available 
channel, FAF2, denoted as Fz*. All experimental proto
cols, data acquisition, and stimulus presentation were 
controlled using BCI2000 software [40].

2.4. Signal pre-processing

All analyses were conducted offline in MATLAB 
R2019a. EEG data were detrended and bandpass filtered 
at 0.5–30 Hz with a Hamming window-based zero- 
phase filter. For P300-based BCI applications, a 0– 
800 ms post-stimulus window is common [5–9,41,42], 
covering important ERP features including the P200, 
N200, P300, and late negativity [5,9]. Thus, to allow 
this typical 800 ms segment epoch to be shifted by up 
to 100 ms in either direction for use in classifier-based 
latency estimation (CBLE) [20], the data were segmen
ted into 1 s epochs, from 100 ms pre-stimulus to 900 ms 
post-stimulus epochs. From each of these epochs, 53 
time-shifted 800 ms sub-epochs per stimulus were 
extracted using an 800 ms moving window with a step 
size of one sample, ~3.9 ms at 256 Hz. These 800 ms 
sub-epochs were subject to a moving average procedure, 

Table 1. Demographic information for participants with amyotrophic lateral sclerosis (ALS).
Subject 
Number Age Sex

Time since 
diagnosis (years)

Revised ALS Functional Rating Scale 
(ALSFRS-R) (out of 48)

ALSFRS-R Bulbar 
Subscore

Artificial 
Ventilation

Means of 
Communication

ALS-01 29 M 4 0 0 Yes No reliable means
ALS-02 55 M 11 4 0 Yes Eye-tracking
ALS-03 70 M 8 14 5 No Non-verbal sound
ALS-04 67 M 2 7 5 Yes Eye-tracking
ALS-05 69 F 11 23 11 No Verbal
ALS-06 52 M 3 22 12 No Verbal
Mean ± SD 57.0 ± 15.7 - 6.5 ± 4.0 11.6 ± 9.5 5.5 ± 5.2 - -
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where each value was replaced by the local mean calcu
lated over a 13-sample moving window, and then down
sampled by a factor of 13, following the feature 
reduction procedure used in previous studies [20]. The 
downsampled sub-epochs from all channels were con
catenated and then treated as potential features for 
further classification. The true class labels were 1 for 
the sub-epochs extracted from the 1 s epochs around 
target stimuli and 0 for the sub-epochs extracted from 
the 1 s epochs around non-target stimuli.

2.5. Data analysis

Figure 1 provides an overview of our proposed data 
analysis method, a characterization scheme including 
data augmentation and jitter correction, hereafter called 
augmentation/correction (A/C) characterization. In this 
method, first, latency shifts were calculated on the train
ing set using CBLE [20], providing a series of classifier 
scores. Then, the training data was augmented with 
time-shifted sub-epochs. The data augmentation para
meters were determined based on the calculated latency 
shifts from the training set. The allowable range of time 
shifts to be used in the jitter correction procedure was 
then determined over the training set. Throughout the 
A/C process, stepwise linear discriminant analysis 
(SWLDA) classifiers were used with typical parameters 
for P300 speller applications: in each step, the most 
significant feature for predicting if an epoch was 
a target with p < 0.1 was added, and then if applicable 
the least significant feature with p > 0.15 was removed, 
up to a maximum of 60 included features or until no 
features satisfied entry/removal criteria [41,42]. 
SWLDA classifiers were similarly used for all compar
ison conditions. For all analysis conducted within the 

training set, the training data were divided into five folds 
of approximately equal size, by character. That is, clas
sifiers were trained on four folds for application to the 
fifth, and this procedure was repeated four more times 
to test each fold once.

Then, on the test set, for each stimulus we extracted 
all of the 800 ms sub-epochs with time shifts within the 
range determined on the training set. These 800 ms sub- 
epochs were fed to the final classifier, and the maximum 
classifier score over the selected 800 ms sub-epochs 
corresponding to a stimulus was retained as the score 
for that stimulus to correct for latency jitter. These steps 
are explained in more detail in sections 2.5.1–2.5.3.

To ensure that the proposed A/C approach could be 
implemented in practical environments, for each parti
cipant, data from prior sessions were used to predict 
performance and determine correction parameters for 
future sessions. Beginning with each participant’s third 
session, session performances were evaluated by taking 
that participant’s two prior sessions as the training set. 
That is, first, classifiers were trained and parameters 
were determined using data from each participant’s 
first two sessions and then evaluated the data of their 
third session as its test set; then classifiers were trained 
on the second and third sessions to evaluate their fourth 
session, and so forth. As 5–12 sessions were recorded 
from each participant, we therefore had 3–10 training 
sets and corresponding test sessions per participant, for 
a total of 45 training sets and corresponding test ses
sions over all 6 participants.

2.5.1. Latency shift and latency jitter calculations
Figure 1 shows a schematic of how classifier score series 
and latency shifts were calculated over the training set. 
All calculations of classifier score series, latency shifts, 

Figure 1. The schematic illustrates the training process for the A/C characterization scheme with data augmentation and jitter 
correction. Latency shift and jitter calculation: A classifier was trained, time-shifted sub-epochs were classified, and the classifier 
scores for time-shifted sub-epochs were used to extract latency shifts for each stimulus. Data augmentation and parameter 
optimization: The latency shifts calculated were used to determine the constant symmetric shift, M, which was used to augment the 
training data. Parameters were optimized and a final SWLDA classifier was trained on the full augmented training data. Classification 
and jitter correction: The final SWLDA classifier was applied to the test data with jitter correction, and performance was evaluated.
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and latency jitter relied on classifier-based latency esti
mation (CBLE), as proposed by Thompson and collea
gues [20] and used in our prior investigation of latency 
jitter as well [4]. In CBLE, the sensitivity of a classifier to 
latency variability is used to estimate latency shifts for 
single trials using time-shifted data [20,21]. As a first 
step for CBLE, an SWLDA classifier was trained on the 
unshifted 0–800 ms sub-epochs from four fifths of the 
training set (5-fold training) using the true class labels of 
0 for sub-epochs corresponding to non-target stimuli 
and 1 for target stimuli. Then, for each stimulus in the 
fifth fold, the downsampled 800 ms sub-epochs, includ
ing all 53 time-shifted sub-epochs, were extracted and 
fed to the classifier. This resulted in 53 classifier scores, 
each of which is the post-probability that the shifted 
sub-epoch corresponded to a target stimulus. The time 
shift corresponding to the highest classifier score in the 
series was extracted as the ‘latency shift’ for that specific 
stimulus, recorded in milliseconds. This procedure was 
repeated five times, such that data from each fold was 
fed to a classifier trained on the other four folds, provid
ing a latency shift for each stimulus in the training set. 
Then, latency jitter was calculated as the variance of the 
latency shifts calculated through classifier-based latency 
estimation (vCBLE) for all target stimuli, similar to the 
procedure reported by Thompson and colleagues [20].

2.5.2. Data augmentation and parameter 
optimization
After extracting the latency shifts from all stimuli in the 
training set, the training data were augmented using 
symmetrically time-shifted data similar to the protocol 
in [35], but with an individualized adaptive time shift 
calculated using the latency shifts in the data (see 
Figure 1). First, the median of the absolute latency shifts 
was calculated over all target stimuli in the training set. 
This median, M, was used as the constant symmetric 
time shift to augment that training set. Specifically, an 
-M to -M + 800 ms sub-epoch and an M to M + 800 ms 
sub-epoch were extracted for each stimulus. This pro
cedure tripled the original training data (3x).

In addition, if the latency jitter in the training set was 
greater than 1000 ms2, then per-epoch data augmenta
tion was also performed based on individual, per- 
stimulus latency shifts to compensate for the excess 
latency variation in the training data. In this case, for 
all stimuli, both target and non-target, we additionally 
extracted the sub-epoch corresponding to the latency 
shift calculated for the stimulus in section 2.5.1. That is, 
for a stimulus with a calculated latency shift of S ms 
based on its classifier score series that reached its max
imum for the S to S + 800 ms sub-epoch, this S to 
S + 800 ms sub-epoch was also added to our training 

set. In cases where this additional sub-epoch was used, 
the number of sub-epochs extracted from the training 
set was quadrupled (4x), with the original 0–800 ms 
sub-epoch, two symmetrically time shifted sub-epochs 
(-M to -M + 800 ms and M to M + 800 ms), and a jitter 
corrected sub-epoch (S to S + 800 ms) corresponding to 
each stimulus.

Then, the range of time shifts used for jitter cor
rection was optimized. For jitter correction, each 
stimulus was assigned the maximum classifier score 
corresponding to a range of time-shifted sub-epochs. 
Out of all the possible ranges, the optimal range of 
time shifts to use for jitter correction was optimized 
using 5-fold cross-validation. For this purpose, a new 
SWLDA classifier, only used in determining the 
range of time shifts to be used in jitter correction, 
was trained on four folds of the augmented training 
data. As each new epoch added through the data 
augmentation procedure corresponds to one original 
stimulus, all additional epochs were assigned to the 
same fold as their corresponding stimulus and origi
nal 0–800 ms epoch.

Using this classifier, the optimal range of time shifts 
to use for jitter correction was determined using 5-fold 
cross-validation. The optimal range was selected out of 
a total of 27 possible ranges corresponding to the central 
1, 3, 5, . . ., 53 classifier scores distributed symmetrically 
around the score for the 0–800 ms epoch, ranging from 
no correction to the use of the entire classifier score 
series. These ranges provided maximum allowable 
time shifts of 0 ms, ±3.91 ms, ± 7.81 ms, . . . 
±101.56 ms, corresponding to intervals between data 
points recorded at 256 Hz. Limited time ranges were 
tested to partially mitigate the increased false positive 
rate caused by using the maximum classifier score, or 
maximum post-probability that an epoch corresponded 
to a target stimulus [20].

To determine the optimal range, each possible 
range was tested. To test a possible range of time 
shifts, for each stimulus (in the training set), classi
fier score series were calculated using classifiers 
trained on the augmented data. Then, the maximum 
classifier score corresponding to an epoch within the 
range being tested was retained as the final classifier 
score. That is, for each of the possible ranges of 
allowable time shifts, classifier scores and class labels 
were assigned to each stimulus in the training set 
using the classifier score series calculated for that 
stimulus. The score for the stimulus and range of 
allowable time shifts was the maximum score for the 
stimulus within that range, and the label was 
assigned according to this score. In effect, if any 
epoch within the allowable range of time shifts 
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would have been labeled as a target, then the stimu
lus was also labeled as a target. If not, then the 
stimulus was labeled as a non-target.

This was repeated for all possible ranges of allowable 
time shifts, and the range which maximized the average 
F-score ( 2�Precision�Recall

PrecisionþRecall ) over the five folds was selected 
as the optimal range for implementation on the test set.

2.5.3. Classification and jitter correction
The final SWLDA classifier trained on all five folds of 
the augmented training data and the selected jitter cor
rection range, shown in Figure 1, were then used both to 
classify data from the test session and to calculate 
latency jitter on the test session.

For jitter correction, the 800 ms sub-epochs within 
the time shift range determined in section 2.5.2 were 
extracted for each stimulus. These time-shifted sub- 
epochs were fed to the classifier, and the maximum 
score corresponding to each stimulus was retained for 
that stimulus. In addition, if this score was greater than 
0.5, meaning that at least one of the time-shifted sub- 
epochs corresponding to the stimulus was labeled 
a target, then the stimulus was accordingly labeled 
a target. All performance metrics with the A/C charac
terization procedure were then calculated using these 
scores and labels.

In addition to being used for jitter correction, 
classification of time-shifted sub-epochs was also 
used to calculate jitter using CBLE. For this purpose, 
the full classifier score series was calculated, using all 
53 time-shifted 800 ms sub-epochs. The time shift 
for the sub-epoch with the maximum classifier score 
over this entire range was recorded as the latency 
shift for that stimulus, then used to calculate vCBLE 
as in section 2.5.1.

2.5.4. Performance evaluation
Binary classification accuracy, precision, recall, F-score, 
and character selection accuracy were calculated as mea
sures of performance [43,44]. With TP, TN, FP, and FN 
respectively representing the number of stimuli that 
were classified as true positives (correct targets), true 
negatives (correct non-targets), false positives, and false 
negatives, we computed accuracy, precision, recall, and 
F-score as below: 

Binary Classification Accuracy¼
TP þ TN

TP þ TN þ FP þ FN 

Precision ¼
TP

TP þ FP 

Recall ¼
TP

TP þ FN 

F � score ¼
2 � Precision � Recall

Precision þ Recall 

The character with the highest summed classifier score 
over all repetitions of its row and its column was 
selected. Character selections were calculated for all 
possible numbers of repetitions, from 1 (only the first 
intensification of each row and column) through 10 (all 
10 intensifications of each row and column per charac
ter). For each number of repetitions, character selection 
accuracies were then calculated as the number of char
acters correctly selected from a test session divided by 
the 14 characters in each session.

Although row and column intensifications were con
sistently repeated 10 times per character selection in the 
recordings, theoretical utility values were also calculated 
for each number of repetitions as a measure of potential 
throughput. These theoretical utility values used the  

formula 2p� 1ð Þlog2 N� 1ð Þ

c , where p is the portion of   

characters spelled correctly, N is the number of possible 
selections (36), and c is the time to select a character, 
whether correctly or incorrectly [45,46]. Notably, this 
formula requires character accuracy to be at least 50% to 
achieve positive utility, as correcting errors would 
otherwise take infinite time. As intensifying each row 
and column once took 1.875 seconds and there was 
a 4 second pause between characters, the time to select 
a character was 4 + 1.875 r seconds, where r was the 
number of repetitions used. The maximum theoretical 
utility and the number of repetitions used to reach it was 
retained for each test session. For test sessions where the 
utility was uniformly 0 regardless of the number of 
repetitions used, the number of repetitions required 
was considered to be 10, the full number recorded.

In addition to calculating these performance 
metrics for our proposed A/C characterization 
scheme, we calculated them for two comparison con
ditions to test the A/C scheme. First, to compare our 
proposed A/C characterization scheme to conven
tional procedures, an SWLDA classifier was trained 
on the two training sessions without any data aug
mentation or jitter correction. This classifier was 
used as the reference classifier. Second, we validated 
our parameter selection methods by comparing the 
results of our proposed procedure to the results of 
data augmentation and jitter correction with random 
parameters explained in section 2.6.
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2.6. Statistical analysis

Statistical analyses other than the random parameter 
testing were conducted in R version 4.0.5 [47]. 
Differences between the proposed A/C characterization 
method and the reference classifier were investigated 
using paired t-tests comparing participant average 
metrics (n = 6). Per-stimulus performance metrics, spe
cifically binary classification accuracy, precision, recall, 
and F-score were averaged within participants. Character 
selection accuracy for each possible number of repeti
tions, from 1–10, was also averaged within participants, 
as was maximum theoretical utility. Participant average 
jitter, per-stimulus performance metrics, character selec
tion accuracy using all 10 repetitions, and maximum 
theoretical utility were compared between the proposed 
A/C characterization method and the reference classifier 
using Wilcoxon signed-rank tests [48].

We then tested for correlations between performance 
metrics and latency jitter for both classification methods 
using repeated measures correlations, (rrm), an analysis 
of covariance-based regression appropriate for measur
ing common (overall) intra-individual associations 
between measures with multiple non-independent 
observations per participant [49].

We further investigated associations between clinical 
measures and performance improvements from our 
proposed method. To do so, we tested for spearman 
correlations between participant-averages in selection 
accuracy improvements from our proposed A/C char
acterization procedure relative to the reference classifi
cation approach, and time since diagnosis, ALSFRS-R 
scores, and ALSFRS-R bulbar subscores. We also tested 
for correlations between selection accuracies using each 
method and clinical scores.

Latency jitter and performance metrics were also 
investigated longitudinally. We utilized repeated mea
sures correlations to investigate common trends across 
participants. To understand possible changes in perfor
mance over time, repeated measures correlations com
bining information from all participants were 
investigated between the number of days since the first 
session and latency jitter, as well as the number of days 
since the first session and all performance metrics. As 
prior studies have noted variations in long-term trends 
between participants, we additionally tested for spear
man correlations between character selection accuracies 
and days since their first session within each participant 
to consider inter-individual differences in trends.

In addition to the statistical analyses of the proposed A/ 
C scheme and reference classifier, we tested the effective
ness of our selected parameters with a Monte Carlo experi
ment to determine how likely similar improvements would 

be to occur by chance [50,51]. To do so, random para
meters, specifically symmetric time shift, use or nonuse of 
per-stimulus augmentation, jitter correction range, were 
selected and performance metrics calculated 1000 times, 
with individually randomized parameters for each training 
set and corresponding test session, in alignment with the 
individually determined parameters for each training set 
and corresponding test set in the A/C characterization 
scheme. Specifically, three parameters were randomized 
in each case: 1) the constant symmetric time shift (M), 
which could theoretically vary between ±3.91 ms and 
±101.56 ms, with 26 possible values (±3.91 ms, ± 
7.81 ms, . . . ±101.56 ms, corresponding to intervals 
between data points recorded at 256 Hz); 2) a binary 
variable (yes or no) representing whether or not data 
augmentation was additionally performed based on per- 
stimulus latency shifts; and 3) the range of time shifts used 
for jitter correction, which could vary from 0 ms (no jitter 
correction) to ±101.56 ms, with 27 possible allowable 
ranges (originally optimized with 5-fold cross-validation; 
randomized here). That is, for each training set and corre
sponding test session, there were a total of 1404 (=26*2*27) 
possible parameter combinations. As parameters were 
individually determined for each training set and corre
sponding test session (45 training sets and corresponding 
test sessions), there were therefore 140445 possible para
meter combinations over the entire study’s data.

For each of the 1000 randomly selected parameter sets, 
we classified each test session’s data using an SWLDA 
classifier trained on the training set augmented with the 
randomly selected parameters, with jitter correction using 
the randomly selected time shift range. Performance 
metrics from the proposed A/C characterization method 
were then also compared to performance metrics from 
the Monte Carlo experiment testing jitter augmentation 
and data correction with random parameters. Within 
each of the 1000 random parameter sets, these perfor
mance metrics were then averaged over all sessions for 
each participant, and then the participant averages were 
averaged to yield overall performance metrics. This pro
cess yielded 1000 sets of overall performance metrics, one 
for each random parameter set. The proportion of ran
dom parameter sets for which classification with data 
augmentation and jitter correction outperformed the pro
posed A/C characterization method with algorithmically 
determined parameters was then calculated.

3. Results

Average target and non-target responses at channel Cz 
from a representative session for each participant are 
shown in Figure 2. As visible in the figure, the extent to 
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which ERP features such as the P200, N200, and P300 
are visibly present in the average target response varied 
between participants.

3.1. Augmentation and correction quantification

The symmetric shifts used for data augmentation and 
ranges of allowable time shifts for jitter correction var
ied between participants and sessions, as did latency 
jitter. For each participant, the minima, maxima, 
means, and standard deviations of their determined A/ 
C parameters and calculated latency jitters over all their 
recorded sessions are reported in Table 2. The sym
metric shifts used for data augmentation varied between 
±11.72 ms and ±58.59 ms, though shifts greater than 
±30 ms were only selected for ALS-01, who was both the 
participant in the locked-in state and the participant 
with the highest average latency jitter. The selected 
ranges of allowable time shifts used for jitter correction 
ranged from 0 (no allowable time shift) to ±101.56 ms, 
though ranges greater than ±55 ms were also only 
selected for the participant in the locked-in state. The 

selected parameters for each combination of training 
and testing session numbers, specifically the symmetric 
shifts used in data augmentation, the relative size of the 
augmented training set compared to the original train
ing data (4x if per-epoch augmentation was used versus 
3x if not), and the time shift range, are available in Table 
A.1 for each participant and session.

3.2. Evaluation of the augmentation and correction 
scheme

Table 3 tabulates the individual results on all participant 
average measures evaluating the augmentation and cor
rection scheme. Character accuracy when using all 10 
repetitions was significantly (p = 0.031) higher with the 
A/C classifier at 75.69 ± 32.40% than with the reference 
classifier at 71.55 ± 32.33%. In particular these changes 
were 2.9%, 5.7%, 2.4%, 7.1%, 2.6%, and 4.1% for parti
cipants ALS-01 through ALS-06, respectively. The dif
ference between maximum theoretical utility with the 
A/C characterization scheme (16.49 ± 9.65 bit/min) and 
the reference classifier (13.54 ± 8.63 bit/min) was not 

Figure 2. Average target and non-target responses at channel Cz from a representative session for participants ALS-01 (a) through 
ALS-06 (f).

Table 2. Per-participant summary statistics for augmentation and correction (A/C) parameters and latency jitter.
Augmentation Shift (ms) Correction Window (ms) Jitter (ms2)

Participant Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

ALS-01 19.53 58.59 41.02 ± 11.83 0 101.56 40.23 ± 43.19 2915 4817 3843 ± 548
ALS-02 11.72 23.44 16.80 ± 3.71 7.81 54.68 23.44 ± 14.96 509 1807 999 ± 435
ALS-03 15.63 19.53 16.93 ± 2.26 7.81 19.53 13.02 ± 5.97 591 1345 939 ± 380
ALS-04 15.63 27.34 20.09 ± 4.18 27.34 46.88 36.38 ± 6.32 1035 3591 2037 ± 1144
ALS-05 11.72 19.53 15.14 ± 2.50 7.81 27.34 12.70 ± 7.16 557 2985 1381 ± 947
ALS-06 15.63 27.34 19.53 ± 4.51 7.81 50.78 27.34 ± 17.47 383 1524 1018 ± 378
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significant (p = 0.059). The reduction in repetitions 
required to maximize utility with the A/C scheme 
(5.67 ± 2.51) as compared to the reference classifier 
(6.67 ± 1.99) was also not significant (p = 0.058). As 
ALS-01 never reached the 50% character selection accu
racy required for utility to be positive [35], his utility 
was uniformly 0 and remained unchanged by our pro
cedure. However, ALS-02 through ALS-06 had average 
improvements in theoretical utility of 5.3, 1.9, 3.8, 3.7, 
and 3.0 bits/min, respectively. Binary classification 
accuracy, however, was significantly reduced 
(p = 0.031) with the A/C classifier at 83.29 ± 3.93% 
compared to the reference classifier at 84.55 ± 3.23% 
despite no significant change in precision (p = 0.562) 
and significant improvements in both recall and 
F-score. Specifically, the A/C classifier had 
a significantly (p = 0.031) higher recall of 
52.32 ± 25.33% than the reference classifier at 
43.53 ± 21.27%. The A/C classifier also provided a sig
nificantly (p = 0.031) higher F-score of 0.48 ± 0.21 than 
the reference classifier, at 0.45 ± 0.20.

When fewer repetitions were used per character, the 
proposed A/C characterization scheme was still 
observed to provide improvements in character selec
tion accuracy as compared to the reference classifier, as 
shown in Figure 3. Character selection accuracy was 
improved by an average of 5.63% using the proposed 
A/C classifier as compared to the reference classifier 
over all numbers of repetitions and participants. Both 
initial selection accuracy and the extent of the improve
ment varied between participants. In particular, for 
ALS-01, character selection accuracy was improved by 
3.0% on average over all possible numbers of repeti
tions, though this improvement did not allow for suc
cessful BCI control due to poor initial performance.

For ALS-02, character selection accuracy was 
improved by an average of 8.6% over all possible num
bers of repetitions used. Character selection accuracy 
first reached an acceptable level (≥70% [40]), for ALS-02 
using at least five repetitions using the reference classi
fier at 72.9%, as compared to three repetitions using the 
proposed A/C classifier, at 77.1%. Averaged over all 
sessions, ALS-02 achieved a maximum utility of 22.7 
bit/min with the proposed A/C characterization scheme 
using 1–7 repetitions (mean 3.8 ± 1.8), as compared to 
17.5 bit/min with the reference classifier using 3–10 
repetitions (mean 5.3 ± 2.5).

For ALS-03, character selection accuracy was 
improved by an average of 3.1% over all numbers of 
repetitions, requiring at least four repetitions to reach 
acceptable accuracy with the reference classifier (81.0%) 
as opposed to three with the proposed A/C classifier 
(76.2%). Averaged over all sessions, ALS-03 achieved his 
maximum utility of 22.1 bit/min with 4–6 repetitions 
used (mean 4.7 ± 1.2) as compared to 20.3 bit/min using 
5–6 repetitions (mean 5.7 ± 0.6).

ALS-04 never reached acceptable character selection 
accuracy, but the proposed classifier improved selection 
accuracy by an average of 9.8% over all possible num
bers of repetitions. However, he achieved positive utility 
in several sessions, averaging 9.2 bit/min with 4–10 
repetitions (mean 7.4 ± 2.6) with the A/C characteriza
tion scheme as compared to 5.4 bit/min with 6–10 
repetitions (mean 8.2 ± 2.2).

For ALS-05, the average improvement in character 
selection accuracy over all numbers of repetitions was 
3.8%, first achieving an acceptable accuracy using 3 
repetitions at 75.0% with the proposed A/C character
ization scheme as opposed to 4 repetitions at 74.1% 
character selection accuracy with the reference classifier. 

Table 3. Average accuracy metrics for both reference and augmentation and correction (A/C) classification schemes for each 
participant. *significant at p < 0.05, Wilcoxon signed-rank test. Means and standard deviations (SD) are provided for each classification 
method.

Participant

Character Accuracy (%)* Utility (bit/min) Binary Accuracy (%)*

Reference A/C Reference A/C Reference A/C

ALS01 10.71 13.57 0 0 81.73 80.95
ALS02 87.14 92.86 17.46 22.76 85.14 83.77
ALS03 97.62 100.00 20.32 22.19 88.51 88.37
ALS04 60.20 67.35 5.39 9.23 79.78 76.94
ALS05 84.82 87.50 18.50 22.17 85.44 84.56
ALS06 88.78 92.86 19.57 22.59 86.68 85.20
Mean ± SD 71.55 ± 32.32 75.69 ± 32.40 13.54 ± 8.63 16.49 ± 9.65 84.55 ± 3.23 83.29 ± 3.93

Precision (%) Recall (%)* F-score*

Participant Reference A/C Reference A/C Reference A/C
ALS01 30.09 36.31 7.04 7.50 0.11 0.11
ALS02 55.42 52.96 58.93 72.86 0.56 0.60
ALS03 66.40 63.49 66.40 72.74 0.63 0.67
ALS04 46.37 46.39 30.00 38.27 0.33 0.36
ALS05 64.83 60.14 49.24 60.22 0.52 0.57
ALS06 66.40 60.82 52.55 62.35 0.57 0.59
Mean ± SD 54.92 ± 14.50 53.35 ± 10.43 43.53 ± 21.27 52.32 ± 25.33 0.45 ± 0.20 0.48 ± 0.21
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Averaged over all sessions, ALS-05’s achieved her max
imum utility with the A/C characterization scheme at 
22.2 bit/min with 2–7 repetitions (mean 4.0 ± 2.0), as 
compared to 18.5 bit/min with 2–10 repetitions (mean 
5.5 ± 3.0).

Over all possible numbers of repetitions, character 
selection accuracy was improved for ALS-06 by 5.4% 
using the A/C characterization scheme as compared to 
the reference classifier, first achieving an acceptable accu
racy using 3 repetitions at 78.6% with the proposed A/C 
characterization scheme as opposed to 4 repetitions at 
78.6% character selection accuracy with the reference clas
sifier. Averaged over all sessions, ALS-06’s utility was max
imized at 22.6 bit/min with the A/C characterization 

scheme, using 3–9 repetitions (mean 4.1 ± 2.2), as com
pared to 19.6 bit/min using 3–10 repetitions (mean 
5.3 ± 2.4) with the reference classifier.

Regardless of classification method, latency jitter 
was negatively associated with BCI performance. 
Using the proposed A/C characterization method, 
there were significant correlations between latency 
jitter and five performance metrics, specifically char
acter accuracy (rrm = −0.87, p < 0.001), utility (rrm 
= −0.73, p < 0.001), binary classification accuracy 
(rrm = −0.72, p < 0.001), precision (rrm = −0.58, 
p < 0.001), and F-score (rrm = −0.62, p < 0.001) indi
cating that as the latency jitter increased, that the 
proposed A/C method improved performance overall 

Figure 3. Average character selection accuracies at each number of repetitions used, over all participants (a) and for each participant 
(b-g) using both the reference (blue) and augmentation and correction (A/C; tan) classification schemes.
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but did not mitigate the negative relationship between 
jitter and performance. However, the correlation 
between latency jitter and recall using the proposed 
A/C characterization method was not significant (rrm 
= −0.16, p = 0.320). Using the reference classifier, 
latency jitter correlated significantly with character 
selection accuracy (rrm = −0.80, p < 0.001), utility 
(rrm = −0.73. p < 0.001), binary classification accuracy 
(rrm = −0.73, p < 0.001), precision (rrm = −0.72, 

p < 0.001), and F-score (rrm = −0.63, p < 0.001) but 
the negative trend was not significant for recall (rrm 
= −0.30, p = 0.057), for significant correlations with 
the same five performance metrics.

The histograms of the random parameter testing for 
character accuracy, utility, and F-score are illustrated in 
Figure 4. All of randomly selected parameter sets pro
vided all three measures lower than those achieved with 
our proposed A/C characterization scheme. In addition, 

Figure 4. Random parameter sets histograms, for character accuracy (a), utility (b), and F-score (c), as well as average performance 
metrics over all participants using the proposed A/C characterization scheme (tan asterisks) and the reference classifier (blue asterisks).

Figure 5. Longitudinal repeated measures correlation plots for character accuracy (left, a&c), and latency jitter (vCBLE, right, b&d). 
Note: each color indicates one participant.
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all the random parameter sets provided average binary 
classification accuracy, precision, or recall lower than 
those achieved with our proposed characterization 
scheme. Similarly, all performance metrics except for 
recall, were lower than for the reference classifier for all 
1000 random parameter sets. However, recall with the 
reference classifier was only higher than recall with 781 
of the 1000 random parameter sets. These results indi
cate that our parameter selection algorithm provides 
higher performance than the use of random parameters 
for data augmentation and jitter correction.

3.3. Clinical and longitudinal trends

Spearman correlations between participant average 
character selection accuracies and clinical features, spe
cifically age, time since diagnosis, ALSFRS-R scores, and 
ALSFRS-R bulbar sub-scores, were not significant for 
either classification method (p > 0.05). Spearman corre
lations between average performance improvements 
from the proposed A/C characterization scheme and 
clinical scores were also not significant.

Repeated measures correlation plots for the longitu
dinal analysis of character selection accuracy, and 
latency jitter over time are shown in Figure 5. 

Character accuracy decreased significantly over time 
with both the proposed A/C characterization scheme 
(rrm = −0.38, p = 0.016) and the reference classifier 
(rrm = −0.40, p = 0.011), indicating a decrease in perfor
mance over time using both approaches. Latency jitter 
increased over time with both the A/C characterization 
scheme (rrm = 0.39, p = 0.011) and the reference classi
fier (rrm = 0.46, p = 0.003), which aligns with both the 
decrease in performance over time and negative associa
tions between jitter and performance.

Single-participant longitudinal trends in character 
selection accuracy are shown in Figure 6. Spearman 
correlations between selection accuracy and the num
bers of days since the first session were significant and 
negative in ALS-01 for the reference classifier (ρ = −0.65, 
p = 0.041) but not the proposed A/C characterization 
scheme (ρ = −0.46, p = 0.177) indicating some long
itudinal improvement in performance using our pro
posed A/C characterization scheme. There was no 
significant trend in performance over time with either 
the A/C scheme (ρ = −0.04, p = 0.917) or the reference 
classifier (ρ = −0.04, p = 0.919) for ALS-02. There was 
similarly no significant trend with the proposed (ρ and 
p both undefined) or reference (ρ = 0.87, p = 0.333) 
classification schemes for ALS-03, for whom 

Figure 6. Longitudinal plots of single-session character selection accuracies over time for ALS-01 (a) through ALS-06 (f) using both the 
proposed augmentation and correction (A/C) classification (tan dots and lines) and the reference classification (blue dots and lines). 
Each dot represents the result from a single session. For dates where only one dot is visible, the character selection accuracies were the 
same with both methods.

12 A. H. ZISK ET AL.



performance metrics were only extracted from three 
sessions. For ALS-04, neither the correlation between 
accuracy with the A/C scheme (ρ = −0.31, p = 0.504) nor 
with the reference classifier (ρ = −0.39 p = 0.383) and 
time since the first session was significant. Neither nega
tive correlation was significant for ALS-05 (A/C 
ρ = −0.35, p = 0.389; reference ρ = −0.58, p = 0.129) or 
ALS-06 (A/C ρ = −0.50, p = 0.250; reference ρ = −0.50, 
p = 0.257) indicating that longitudinal trends were not 
typically significant on the individual level, though the 
non-significant trends were generally toward decreasing 
performance for both approaches.

4. Discussion

In this study, we proposed an augmented/corrected (A/ 
C) classification scheme that relies on latency variations 
at two levels, using both data augmentation and jitter 
correction procedures to improve P300-based BCI clas
sification performance in people with ALS. Our pro
posed approach demonstrated significantly improved 
character selection accuracy and detection of target sti
muli relative to classical reference SWLDA classifiers. 
Classification performance improvements with EEG 
data augmentation were reported to vary based on 
both tasks and augmentation methods in a recent review 
paper, though none of the papers covered by that review 
specifically addressed P300 tasks [27]. However, prior 
P300 studies have found some success with data aug
mentation. For example, Krell and colleagues consid
ered multiple augmentation methods and found 
improvements similar to ours using a rotational data 
augmentation scheme with P300 data. However, their 
use of one consistent symmetric time-shift to augment 
P300 data across all neurotypical participants, did not 
find significant improvement, whereas we showed per
formance improvements with the individualized time- 
shifts used in our study [31]. Our proposed method, 
comparatively, found larger and more consistent 
improvements in selection accuracy than some prior 
augmentation approaches with P300 data, and similar 
improvements to one. Augmentation procedures simi
lar to ours have been implemented in prior studies with 
neurotypical participants, increasing the amount of 
training data [31,35,36] and thereby improving perfor
mance in the two non-P300 studies [35,36]. These prior 
studies examined augmentation using constant time- 
shifts across participants, while the current study deter
mined individual time shifts for each subject separately. 
Augmentation with symmetric time-shifts has also been 
reported to improve performance in Sakai and collea
gues’ study using data recorded during an intrinsic 
motivation task with neurotypical participants [35]. 

A constant but non-symmetric shift was also used to 
improve feedback in the detection of error-related 
potentials, again with neurotypical participants [36]. 
However, Krell and colleagues found no significant 
effect on performance after augmenting P300 data 
with symmetric time-shifts similar in size to the larger 
selected shifts from the current study [31]. In this study, 
we used individualized parameters rather than constant 
parameters across all sessions or all participants, as 
participants with ALS generally experience more latency 
jitter than neurotypical controls (i.e. increased within- 
subject variability in ALS), and as latency jitter can 
significantly vary between participants with ALS (i.e. 
between-subject variability in ALS) [4]. By individualiz
ing the time-shifts used based on latency variations in 
the data, utilizing the median absolute latency shift in 
the training data for augmentation, we were able to both 
increase the amount of training data and improve per
formance. We also investigated changes in performance 
over time to evaluate how our proposed method can 
facilitate robust long-term use of the P300-based BCI 
system. While our proposed classification procedure 
improved performance overall, it could not completely 
eliminate the decline in performance over time, likely 
due to the inherent disease progression.

Our jitter correction procedure relying on the 
maximum classifier score within a given allowable 
range of time shifts to correct for latency variations 
similarly improved selection accuracy. Considering 
this latency variation has also shown improvement 
in P300 classification metrics in some prior studies 
[24,25], and denoising using a matrix representation 
of single-trials supports both effective single-trial 
latency detection and improved classification perfor
mance [52]. Prior investigations involving classifier- 
based latency estimation noted qualitatively that tak
ing the maximum classifier score within a given 
range of time-shifts as our study did, increased the 
risk of false-positives, or detecting a P300 response 
for non-target stimuli, but did not quantitatively 
specify the size of this increase [20,24]. Rather than 
using this maximum score, Mowla and colleagues 
used a secondary classifier relying on a wavelet trans
form of the classifier score series to improve perfor
mance [24]. Here, by utilizing individualized 
parameters in the current study, we successfully 
improved character selection accuracy utilizing 
these classifier score series without a secondary clas
sifier despite some decrease in single-trial binary 
classification accuracy from the aforementioned 
increase in false-positives [20,24], which occurs as 
taking the maximum score over a range increases 
the final score for all stimuli, including non-targets.
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Our longitudinal analyses found that latency jitter 
increased over time, and performance accordingly 
decreased over time, using both the reference and pro
posed A/C characterization methods, though perfor
mance was improved overall with our proposed 
method. While participants with ALS in the completely- 
locked in state have not often been shown to successfully 
use visual BCIs [2,3,53], prior longitudinal studies 
which did not involve the completely locked-in state 
have not typically found BCI performance to decrease 
over time [7,9,54–56]. Several studies have, however, 
shown significant day-to-day variation in performance 
[9,54,56], which could affect investigations of long-term 
performance changes depending on the analysis meth
ods used. One prior study found no change over time 
when comparing copy-spelling accuracies between the 
first and last several sessions [55]. Sellers 2010 BCI for 
home use study and Holz’s 2015 brain painting study 
both used single-participant designs [7,54], while 
another found long-term trends to vary between parti
cipants [9]. Of our six participants, only one had 
a significant decline in performance over the course of 
the study when considered individually, two partici
pants had consistently high performance throughout 
the study, and three participants appeared to have 
some decline in performance which did not reach sig
nificance when considered individually. It is only by 
considering common trends across participants with 
repeated measures correlations that the significant nega
tive trend was uncovered despite both day-to-day and 
between-participant performance variabilities. BCIs can 
successfully be used for a significant period of time [7,9], 
but the consistent failure of current visual P300 BCIs in 
the completely locked-in state [3,53] indicates that per
formance must eventually decline, as we found to occur 
in our present study.

Finally, while our tests of correlations between 
latency jitter and performance metrics were not a key 
feature of the study, they confirmed prior results both in 
our lab [4] and in others work [20–22], namely that 
increased latency jitter is associated with decreased 
BCI performance. A classification method that can 
reduce or eliminate this association, if possible, would 
likely make BCI performance more robust. However, 
our proposed method retained this association while 
improving performance overall.

4.1. Limitations and future work

One limitation of this study, common to many BCI 
studies of people with ALS, is the relatively low number 
of participants, due in part both to the rareness of the 
disease and the difficulties of recording from this 

population. We therefore did not analyze differences 
due to gender, though we did consider clinical features 
in some analyses. The longitudinal recordings we 
obtained from each participant, however, provide addi
tional data points, mitigating some limitations related to 
small sample sizes. While we report the average results 
from a small number of participants, the proposed A/C 
characterization method was tested on several sessions 
of longitudinal recordings for each participant, making 
these participant averages more robust. We additionally 
used nonparametric statistical methods appropriate to 
small sample sizes and data which are not normally 
distributed. For the longitudinal investigation, our use 
of repeated measures correlations, rather than sepa
rately investigating long-term trends for each partici
pant, increased power while maintaining statistical rigor 
[49]. Future work could also include additional partici
pants and recording sessions.

One potential confound when investigating longitu
dinal trends is the variation in how much data is used to 
train the classifier in our proposed A/C scheme, either 
three or four times the original un-augmented training 
set. However, the same trends were present with our 
proposed A/C scheme and the reference classifier with 
neither data augmentation nor jitter correction. We 
therefore conclude the longitudinal trends we found 
are not due to this variation, which was not a factor 
with the reference classifier.

Another limitation to the current study is inherent to 
CBLE, which defines a single latency shift for the entire 
spatiotemporal ERP complex for each stimulus [20,21]. 
While Thompson’s tests with simulated data show the 
efficacy of CBLE in reflecting P300 latency jitter [57], 
future work could investigate latency variations between 
different ERP components. Another facet of CBLE and 
its use which could be investigated in the future is step 
size. In our current study, as in Thompson’s work [20], 
epochs were shifted in steps of one sample, allowing the 
detection of very small latency shifts. Increasing the step 
size, thereby reducing computational requirements, 
may be possible without sacrificing the performance 
improvements yielded by our A/C scheme. Future 
work could investigate the effect of step size on perfor
mance improvements and/or optimize step size for indi
vidual BCI users.

Our analyses, while conducted offline, were designed 
to be appropriate for real-life settings, with all training 
and parameter selection procedures relying only on data 
from prior sessions. This would be especially important 
as practical environments would likely utilize informa
tion from prior sessions and/or a short amount of data 
from the same session to successfully implement in any 
upcoming BCI experiment. The current study considers 
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jitter in a simple way relying on individualized para
meters to ensure efficacy, and so future work could 
include the real-time implementation of our proposed 
A/C method.

5. Conclusion

In this work, we proposed an augmented/corrected 
(A/C) classification procedure using both data aug
mentation and jitter correction schemes to improve 
P300-based BCI classification performance in people 
with ALS. The proposed method demonstrated an 
improvement in selection accuracy overall which did 
not show any relationships with clinical features. 
Considering common trends across participants, the 
current work showed decreased BCI performance over 
time, which was suggested by BCI inefficiency in the 
completely locked-in state but not consistently 
demonstrated in the past. When participants were 
considered individually, however, longitudinal perfor
mance trends varied and did not consistently show 
decreases, which fits with prior studies. Despite 
improving selection accuracy, our proposed method 
did not fully eliminate the common downward trend 
in performance over time.
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