A Graph-Based Nonlinear Dynamic Characterization of Motor Imagery

Toward an Enhanced Hybrid BCI

Sarah M. 1. Hosni!, Seyyed. B. Borgheai', John McLinden', Shaotong Zhu?, Xiaofei Huang?,
Sarah Ostadabbas?, and Yalda Shahriari'*

1 Department of Electrical, Computer & Biomedical Engineering; University of Rhode Island
(URI), Kingston, R1 02881 USA; and? Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA 02115 USA.

* Corresponding author; E-mail: yalda_shahriari@uri.edu

Acknowledgment

This study was supported by the National Science Foundation (NSF-1913492, NSF-2006012) and
the Institutional Development Award (IDeA) Network for Biomedical Research Excellence

(P20GM103430).


mailto:yalda_shahriari@uri.edu

Abstract. Decoding neural responses from multimodal information sources, including
electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), has the
transformative potential to advance hybrid brain-computer interfaces (hBCIs). However, existing
modest performance improvement of hBCIs might be attributed to the lack of computational
frameworks that exploit complementary synergistic properties in multimodal features. This study
proposes a multimodal data fusion framework to represent and decode synergistic multimodal
motor imagery (MI) neural responses. We hypothesize that exploiting EEG nonlinear dynamics
adds a new informative dimension to the commonly combined EEG-fNIRS features and will
ultimately increase the synergy between EEG and fNIRS features toward an enhanced hBCI. The
EEG nonlinear dynamics were quantified by extracting graph-based recurrence quantification
analysis (RQA) features to complement the commonly used spectral features for an enhanced
multimodal configuration when combined with fNIRS. The high-dimensional multimodal features
were further given to a feature selection algorithm relying on the least absolute shrinkage and
selection operator (LASSO) for fused feature selection. Linear support vector machine (SVM) was
then used to evaluate the framework. The mean hybrid classification performance improved by up
to 15% and 4% compared to the unimodal EEG and fNIRS, respectively. The proposed graph-
based framework substantially increased the contribution of EEG features for hBCI classification
from 28.16% up to 52.9% when introduced the nonlinear dynamics and improved the performance
by approximately 2%. These findings suggest that graph-based nonlinear dynamics can increase
the synergy between EEG and fNIRS features for an enhanced MI response representation that is

not dominated by a single modality.
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1. Introduction

The progress in acquiring multimodal neuroimaging data opens new frontiers in systematically
discovering a discriminative multimodal representation of neural responses to convey users’ intent
through hybrid brain computer interfaces (hBCIs). Incorporating multiple neural data sources,
including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), into
a hBCI framework expands the information content of the acquired neural signatures. This allows
extracting a holistic multimodal electrical and vascular-hemodynamic representation of the
underlying neural response across different spectral-temporal scales and has the potential of
advancing BCI research. Traditionally, most motor imagery (MI) neural responses in BCI systems
have been characterized using spectral analysis of EEG sensorimotor oscillatory variations in the
i (8-12 Hz) and f (13-25 Hz) frequency bands for communication in EEG-based MI-BCls
(Kiibler et al. 2005; Pfurtscheller and Lopes Da Silva 1999). However, despite continuous research
efforts, EEG-based MI-BCls still fall far short of achieving satisfactory performance levels. This
is likely attributable to several inherent limitations of EEG, including its complex nonstationary
nature, its poor spatial resolution, low signal-to-noise ratio (SNR), and potential disease-specific
abnormalities in patients’ electrical responses that impose additional challenges in extracting
discriminative features from their MI responses (S. M. Hosni et al. 2019; Kasahara et al. 2012).
Recently, fNIRS opened new horizons to characterize and decode the MI neural response for
communication, with remarkably promising results for both healthy and patient populations (S M
Hosni et al. 2020; Naseer and Hong 2015). fNIRS is an optical neuroimaging modality that
measures changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentrations on
the cortical surface (Ayaz et al. 2013). Similar to EEG, fNIRS is a noninvasive, safe, portable, and
cost-effective neuroimaging modality suitable for less restrictive recordings at patients’ bedside
(Ayaz et al. 2013). With EEG’s instantaneous measure of neural activity, which complements
fNIRS’ metabolic-based spatial specificity, and its robustness to various types of artifacts, EEG
and fNIRS represent excellent candidates for simultaneous multimodal recording that capitalizes
on their similarities and maximizes the benefits from their complementary features. However, to
exploit the potential benefits of combining both modalities in a hybrid MI-BCI framework fully,
systematic approaches are needed to characterize the fused EEG-fNIRS representation of the MI
neural responses to ensure that the discriminative features that capture the underlying neural

dynamics embedded in these multimodal signals are extracted completely, and translated



meaningfully into efficient means of communication (Ahn and Jun 2017; Deligani et al. 2021).

To date, several MI-BCI studies have explored the combination of EEG with fNIRS to improve
MI-BCI performance. Hybrid MI-BCI systems were first investigated in (Fazli et al. 2012) in
which integrating fNIRS features with EEG spectral band-power features was suggested and
enhanced the classification accuracy by 5% on average. However, in their study, the hybrid EEG-
fNIRS configuration was based upon “decision-level” fusion of both modalities, in which the
unimodal features were fed into separate classifiers on an individual level and the final outcome
was selected optimally based upon the union of both modalities through a meta-classifier (i.e., the
final decision is based upon either EEG or fNIRS). Moreover, only the mean changes in HbO, and
HbR concentrations in fNIRS were used as fNIRS features, which did not capture the MI
hemodynamic response temporal characteristics fully.

Other studies have investigated “feature-level” fusion, in which EEG and fNIRS features are
concatenated and selected optimally before training the classifier to provide a broader range of
information (Buccino, Keles, and Omurtag 2016; Chiarelli et al. 2018; Khan, Hong, and Hong
2014).This allows greater synergy between modalities as the classifier can learn a fused electrical-
hemodynamic representation of the MI neural response. For example, in (Buccino, Keles, and
Omurtag 2016) slope indicators of HbO, and HbR were combined with their mean to generate a
set of features extracted from fNIRS signals and regularized common spatial patterns (RCSP)
estimated separately for u- and p-filtered EEG signals, which resulted in 85% and 92%
classification accuracies for EEG and fNIRS, respectively, in a Movement-Rest recognition task.
In their work, simple concatenation of EEG and fNIRS features achieved a 2% improvement in
accuracy over fNIRS unimodal classification, and no feature selection strategy was used, as their
feature set was small. A hybrid EEG-fNIRS configuration was proposed in (Khan, Hong, and Hong
2014) to increase the number of control commands to four and eight commands, respectively. The
control commands were decoded from ME tasks in EEG and mental arithmetic (MA) tasks in
fNIRS. The MI features were extracted based upon the S-filtered EEG peak amplitudes, and only
the mean values of HbO> and HbR were used as fNIRS features. They reported high classification
accuracies across subjects that ranged from a mean of 80-95%. However, the objective of their
study was to increase the number of control commands, and hence, the classification accuracy was
evaluated individually for each modality and each control command without considering EEG-

fNIRS data fusion. Chiarelli et al. (2018) achieved a significant 10% mean increase in performance



across subjects using multimodal EEG-fNIRS recording when compared to standalone modalities.
The study used an advanced non-linear deep learning classification procedure to learn complex
synergistic structures in the fused data on the feature-level. However, similar to previous studies,
classical linear spectral power features were extracted from EEG, while only the mean HbO> and
HbR concentrations were extracted as fNIRS features. While the improvement in performance
over unimodal classification was promising, the extracted fNIRS features did not capture the
hemodynamic response’s temporal characteristics fully, which potentially degrades the unimodal
classification accuracy and affects the fused EEG-fNIRS representation in the hBCI framework.
In another study by Yin et al. (2015), a hybrid EEG-fNIRS framework was used to decode the
force and speed of hand clenching to increase the number of classified commands in MI-BCI. The
authors investigated the effect of broadening the information content within each modality on the
classification accuracy of both the unimodal and fused levels. Band-power, amplitude, phase, and
frequency features were extracted from ¢ and f frequency bands in EEG rather than relying solely
on the classical band-power features, while the difference between HbO> and HbR concentrations
(HbD) was proposed as a single feature to increase the fNIRS classification accuracy. The mean
classification accuracy improved by 18% over classical power features for EEG and 1% over
individual HbO; and HbR features. To optimize the fused EEG-fNIRS feature selection, a feature
optimization method based upon joint mutual information was proposed to remove redundant
information that might affect the classification accuracy. However, the improvement in the hybrid
framework’s performance was 13% and 1% over unimodal fNIRS and EEG, respectively, when
averaged over all subjects. To avoid a priori feature selection, deep learning was adopted in
(Saadati, Nelson, and Ayaz 2020b) to extract the fused discriminative EEG-fNIRS representation
directly and optimize classification performance. The decrease/increase in power spectral density,
1.e., event-related de/synchronization (ERD/ERS) in the ¢ and f frequency bands were extracted
as discriminative features for EEG, while only the mean HbO; and HbR were extracted from
fNIRS from all the recording channels. Promising hybrid performance improvements of 8% and
18% were achieved over unimodal fNIRS and EEG, respectively. Nevertheless, a large EEG
dataset was required in their study to apply such deep-learning techniques (Shin et al. 2018).

In addition to the applications of EEG-fNIRS in MI-BCIs aforementioned, many studies have
considered EEG-fNIRS feature-level fusion procedures to improve the performance in other hBCI

applications. For example, Nguyen et al. (2017) classified driver drowsiness during long-term



simulated driving using combined EEG and fNIRS features and achieved a mean 5.5%
improvement in accuracy when compared to single modality features. In (Saadati, Nelson, and
Ayaz 2020a), a deep learning procedure was used to classify mental workload from temporal and
spectral features extracted from fNIRS and EEG data with a mean improvement in classification
of 8% and 23% over unimodal fNIRS and EEG features, respectively. EEG-fNIRS feature-level
fusion was performed in (Al-Shargie, Tang, and Kiguchi 2017) using canonical correlation
analysis (CCA) and resulted in 7.9% and 12.1% improved accuracy in a mental stress assessment
problem over unimodal EEG and fNIRS, respectively. In (Deligani et al. 2021), the mutual
information criterion was used as a powerful mathematical tool for feature selection to minimize
the redundancy between high-dimensional multimodal EEG-fNIRS features to classify neural
responses of a visuo-mental paradigm adopted from the P300 BCI speller application. The mutual
information-based feature selection resulted in a 16% improvement in accuracy over hybrid
classification with no feature selection, and 12% and 23% improvements over single modal
classification using EEG and fNIRS, respectively.

Despite these considerable efforts to merge EEG with fNIRS for BCI applications, a significant
gap remains before the benefits envisioned for multimodal hybrid techniques to achieve robust and
desirable performance in practical environments can be obtained. This is likely attributable to the
need of a methodological computational approach that optimizes the representation and selection
of fused electrical and vascular-hemodynamic features in an integrative manner that exploits EEG
and fNIRS’s unique properties from the multimodal high-dimensional features efficiently (Ahn
and Jun 2017). This is crucial to ensure a synergistic multimodal representation that is not
dominated by a single modality in a hBCI context and to avoid redundant information in the fused
feature space that can potentially degrade classification performance (Yin et al. 2015). To realize
this, a systematic approach is needed to characterize the underlying dynamics of the MI neural
response fully within each single modality before exploiting their complementary synergistic
features. This is considered a crucial step before the selection of discriminative fused features to
ensure that the information content of the fused MI response representation in the feature space is
maximized. However, an additional challenge related to overfitting is imposed due to the increased
dimensionality of the multimodal feature vector resulting from concatenating multimodal features
from multiple channels, together with the limited number of samples available from simultaneous

EEG-fNIRS recordings (Lotte et al. 2007). To address this, various feature selection approaches



have been suggested for MI-BCIs. However, least absolute shrinkage and selection operator
(LASSO) feature selection algorithms, which relies on obtaining a refined model of the data
through compressing some regression coefficients while setting others to zero based on a defined
penalty function, have demonstrated practicality and superiority for MI-BCIs compared to other
methods, particularly for relatively small datasets where deep learning techniques cannot be
adopted (Jiang et al. 2020). Therefore, Lasso is advantageous for processing biased estimates with
complex data and retains the advantage of subset shrinkage (Jiang et al. 2020).

In order to explore the underlying dynamics of MI responses within each single modality fully,
the mean HbO, and HbR concentrations may not be sufficient to characterize the MI hemodynamic
response’s temporal dynamics completely. Including other statistical features can therefore
broaden the information range of the hemodynamic feature space, and hence, improve the
discrimination of fNIRS modality. Similarly, for EEG, the inherent complex nonstationary nature
of the signals suggests investigating novel analysis methods to discriminate the MI response better
beyond traditional linear spectral analysis features. Generally, from the perspective of nonlinear
dynamics, the brain is a very complex dynamic system at all levels, from the nonlinear modeling
of a single neuron’s burst patterns to the macroscopic measurement of the activity of large groups
of neurons measured with EEG from the surface of the scalp (McKenna, McMullen, and
Shlesinger 1994). Rooted in chaos theory and the nonlinear dynamic systems literature, the
recurrence quantification analysis (RQA) approach is a powerful nonlinear analytic tool developed
for chaotic time series. RQA has been applied successfully to measure numerous biological
signals’ complexity, particularly when traditional techniques fail, including heart rate variability
(Acharya, Chua, et al. 2011; Norbert Marwan et al. 2002; Zbilut, Thomasson, and Webber 2002)
muscle (Bauer et al. 2017; Ikegawa et al. 2000), as well as epileptic EEG (Ngamga et al. 2016).
Because they are more suitable for the analysis of short, noisy, and nonstationary time series, RQA
complexity measures were proposed as a new way to analyze event-related potentials by
identifying transitions in the brain process during surprising moments on a single trial level, rather
than the traditional averaging of many trials, which emphasizes RQA’s robustness (Norbert
Marwan and Meinke 2004). Complex system’s recurrent behavior involves transitions between
periods of regularities to more complex irregular cycles, as well as chaos to chaos transitions
(Norbert Marwan and Meinke 2004).

Recent evidence from our group and others suggested that nonlinear RQA features are sensitive



to transitions between motor tasks and rest in EEG (Ismail Hosni et al. 2021; Pitsik et al. 2020).
For example, in a previous study (Ismail Hosni et al. 2021), nonlinear RQA and graph-based
features were evaluated for an EEG-based MI-BCI with a mean improvement of 5.8% when
compared to commonly used linear spectral features. To date, nonlinear features have not been
explored for hybrid MI-BClIs. Exploring these nonlinear properties of EEG will broaden the
information range decoded from the MI response. In this respect, RQA and graph-based features
may provide a novel dimension of characteristic nonlinear features for hybrid MI-BCls. These
features characterize the underlying nonlinear dynamics of the complex sensorimotor neural
system and their corresponding graph-based topological information from the EEG time series
observed during motor tasks.

The goal of this study is to propose a systematic multimodal data fusion framework to represent
and decode MI neural responses for hBClIs. The framework extracts high-dimensional multimodal
linear and nonlinear features that expand the information content within the single modalities, and
then adopts a fused feature selection strategy to identify discriminative synergistic EEG-fNIRS
fused features to improve MI response discrimination. Our purpose is to extract a fused EEG-
fNIRS feature set that will unveil a unique complementary representation that is not primarily
dominated by a single modality toward an enhanced MI neural classification. For this purpose, we
propose to analyze the changes in the nonlinear dynamics and recurrence patterns underlying the
MI-based EEG neural responses and extract graph-based nonlinear features as an additional
information dimension to the commonly used EEG linear spectral band-power features. Further,
we extract a set of statistical features for the temporal characterization of fNIRS MI responses. We
hypothesize that the EEG nonlinear features will complement the commonly used EEG linear
spectral features that characterize the sensorimotor oscillatory variations in the electrical MI
response combined with fNIRS features that characterize the temporal characteristics of the
hemodynamic MI response in a hybrid EEG-fNIRS BCI fashion. The fusion of the extracted
multimodal features is evaluated to determine the effect of the proposed features on the
improvement in hybrid EEG-fNIRS MI-BCI’s performance. In addition, a Fusion Level (FL)
metric is proposed to quantify the balance of proportion of (EEG/fNIRS) feature contribution to
the total number of selected fused feature set. This will evaluate the effect of the proposed features
on extracting a synergistic multimodal representation that is not dominated by a single modality.

Through the proposed analyses, we intend to investigate a new informative dimension to decode a



synergistic representation of MI neural signatures that will ultimately enhance hybrid MI-based
BCI applications’ performance. Simultaneous EEG-fNIRS data were recorded from eight healthy
participants as they performed a MI-Rest task. RQA analysis and complex network theory were
used to extract the nonlinear dynamics within the ¢ and f frequency bands. Nonlinear graph-based
RQA features were extracted from the recurrence plots (RPs) reconstructed from each - and f-
filtered one-dimensional EEG time series measured at each channel and its adjacency matrix
reinterpretation. Spectral features were extracted using the mean power spectral density over the
corresponding frequency bands. The fNIRS response’s temporal characteristics were captured
fully using various features (i.e., slope, mean, maximum, variance, skewness, kurtosis, and the
difference between the mean and minimum activity) extracted from fNIRS HbO, and HbR. To
overcome the challenge of high-dimensional multimodal feature vectors, we applied the LASSO
algorithm to select the most informative fused features. Three types of EEG-fNIRS fused data
were evaluated to analyze the effect of broadening the information content of the MI neural
response on the performance of hybrid MI-BCI. The performance of the unimodal techniques was
evaluated further for comparison through a 5-fold cross-validation procedure using a linear support

vector machine (SVM).

2. Materials and Methods

A graphical illustration/flow diagram of the proposed computational multimodal framework is
presented in Fig. 1, including the EEG and fNIRS data acquisition, the data preprocessing, and the

multimodal feature fusion and classification procedure.

2.1. Data Acquisition, Participants, and Experimental Protocol

EEG and fNIRS signals were recorded simultaneously using a single cap mounted with both EEG
electrodes and fNIRS optodes. EEG was recorded from 13 Ag/AgCl electrodes (i.e., channels)
referenced to the left earlobe and amplified using a g.USBamp amplifier (g.tec medical
engineering). The signals were digitized at 256 Hz and zero-phase bandpass filtered (1-45 Hz).
The EEG channels covered the pre-motor (FC3, FC4), primary motor (C1, C3, Cz, C2, C4),
sensorimotor (CP1, CP3, CP2, CP4), and parietal (P3, P4) areas of the brain according to the 10—
5 system. An additional electrode was placed at FCz as the ground electrode. fNIRS data were
recorded using NIRScout (NIRX Inc., NY, USA), with two near-infrared light wavelengths (760



nm and 850 nm) to acquire HbR and HbO, responses. The fNIRS probe layout resulted in 14
fNIRS channels covering the pre/frontal cortex in addition to the primary motor cortex. The signals
were digitized at 15.6 Hz, and the optode montage was configured using 16 probes, 8 sources, and
8 detectors, with a separation distance of ~3 cm to maintain acceptable signal quality and sensing
depth Fig. 2-left shows a schematic head montage model of the EEG-fNIRS sensors layout to
capture the electrical-hemodynamic MI response (Buccino, Keles, and Omurtag 2016; S M Hosni
et al. 2020; S. M. Hosni et al. 2019) Data acquisition for EEG and fNIRS and the design of the MI
paradigm were handled by BCI2000 software (Schalk et al. 2004) and NIRStar software (NIRX
Inc., NY, USA).

Eight healthy participants with no reported history of neurological disease attended two MI
data recording sessions on separate days. Each session contained three runs separated by
approximately 5 minutes of rest. During each run, subjects were instructed to respond to visual
cues presented on-screen with either left-hand motor imagery when the cue appears on the left side
of the screen; right-hand motor imagery when the cue appears on the right side of the screen; and
resting when the cue appears in the middle of the screen (Fig. 2-right). Each run consisted of 20
trials for each type of MI tasks randomly, with Rest trials in between (20 MI trials and 20 Rest
trials per run). The resting cue was a green circle positioned in the middle of the screen to help
them relax, allowing hemodynamic responses to return to baseline. None of the participants had
previous BCI experience. The first session was used to familiarize the subjects with the task and

the second session was used for data analysis.
2.2. Data Preprocessing

Eye movement artifacts were removed from EEG data using the extended Infomax Independent
Component Analysis (ICA) algorithm using the EEGLAB toolbox (Brunner, Delorme, and
Makeig 2013). The artifact-free signal was then reconstructed after removing the predominant
artifactual components identified by visual inspection. The data were then zero-phase bandpass
filtered into the u (8-12 Hz) and f (13-25 Hz) frequency bands for further analysis. EEG data
were re-referenced offline using a common average reference (CAR) (McFarland et al. 1997). For
fNIRS data, the modified Beer-Lambert Law was used to calculate changes in the concentrations
of HbO, and HbR using recorded alterations in the reflected light attenuation (Sassaroli and Fantini

2004). fNIRS data were then band-pass filtered at 0.01-0.09 Hz to eliminate physiological noise
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caused by respiration (~0.3 Hz), cardiac activities (~1 Hz), and Mayer waves (~0.1 Hz). As fNIRS
signal quality can be heavily compromised by poor coupling of optodes to the head, due to optical
interference from dense and heavily pigmented hair, the quality of the signal was automatically
evaluated through the signal-to-noise-ratio (SNR) of each channel using NIRScout. Further, an
exclusion criterion was considered based on a correlation threshold between HbO» and HbR,
indicating a high-level physiological motion artifact (Cui, Bray, and Reiss 2010). The running
correlation between HbO; and HbR was calculated for each channel, and if it exceeded a 0.5
threshold, or was strictly —1, the channel was discarded. The data from both modalities (i.e., EEG
and fNIRS) were segmented into 10-sec trials synchronized with the appearance of the visual
stimulus cues (Rest/LMI/RMI). Individual MI trials that contained artifacts were automatically
rejected based on subject-specific thresholds from both modalities. For MI vs. Rest classification,
the trials were combined to form two sets with 60 trials for each condition of MI and Rest

representing the two classes (i.e. 20 trials MI and 20 trials Rest for each run).

2.3. Data Analysis
2.3.1. Linear Data Analysis

For the EEG spectral features, the average power spectral density (PSD) was calculated using
Welch's method from the filtered EEG signals giving PSD-u and PSD-§ extracted from each
channel. This resulted in a total of 26 linear EEG spectral features extracted from each trial from
all the 13 EEG channels from both frequency bands (Kiibler et al. 2005). In order to capture the
characteristics of the MI hemodynamic response fully, seven discriminative features were
extracted from each HbO; and HbR response, corresponding to MI and Rest trials (S M Hosni et
al. 2020), including slope (SlopeHbO2, SlopeHbR), mean (MeanHbO,, MeanHbR), maximum
(MaxHbO», MaxHbR), variance (VarHbO», VarHbR), skewness (SkewHbO», SkewHbR), kurtosis
(KurtHbR, KurtHbR), and the difference between the mean and the minimum (DMMHbO-,
DMMHDR). This resulted in a total of 196 fNIRS features extracted from each trial from both
HbO; and HbR (i.e., seven features were extracted from each fNIRS concentration change from
each of the 14 channels). The features were extracted from several window sizes as follows:
Considering the high temporal resolution for EEG, [0-2], [0-5], and [0-10] sec post-stimulus
windows were considered for each frequency band. For slower hemodynamic response in fNIRS,

[0-5], [2-7], [4-9], and [0-10] sec post-stimulus windows were considered for both fNIRS
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concentration variations. These windows were chosen based on the typical hemodynamic response
pattern of rising HbO: levels coupled with a decrease in HbR response approximately in the same
time of the rise corresponding to an approximate hemodynamic response delay of 4 to 6 seconds
relative to MI stimulus onset (S M Hosni et al. 2020). The optimized response windows were then
selected for each modality based on the global peak of a nested 5-fold cross-validation

classification procedure as explained in section 2.4.

2.3.2. Graph-based Recurrence Quantification Analysis and Complex

Network Features

In order to approximate the nonlinear neural dynamics underlying the MI and Rest tasks within
each u and f frequency bands separately, the bandpass filtered one-dimensional EEG signal
measured at each frequency band, each channel, and each 10-sec MI/Rest trial was projected to a
multi-dimensional phase space based on Takens’ theorem of time-delay embedding (Norbert

Marwan et al. 2007) using the following equation (Takens 1981):

Xk = (xk; X+t ---:xk+(m—1)T) (1)

where X, is the reconstructed phase space vector based on the observation xj; of the bandpass
filtered EEG time series (xq, x5, ..., X;), L is the number of samples in the EEG time series, T is
the time delay, and m is the embedding dimension. The time-delay parameter (7) and the
embedding dimension (m) were estimated using the average mutual information (AMI) and the
false nearest neighbor (FNN) methods respectively (Eckmann, Oliffson Kamphorst, and Ruelle
1987). The time delay 7 and the embedding dimension m, were directly calculated for x and S
frequency bands using only the training set of each of the 5 cross-validation folds as explained in
section 2.4. The phase space reconstruction can be represented as an N X m trajectory matrix
X = (X1, Xz...,Xy )T where N = L — (m — 1) is the number of states in time, and L is the
number of samples in the EEG time series. Next, the recurrence plots (RPs) were created to
visualize and quantify the recurrence patterns of the m-dimensional phase space trajectory X
corresponding to each trial within each frequency band in a 2-dimensional plot (Eckmann, Oliffson
Kamphorst, and Ruelle 1987). RPs were constructed by considering an e-neighborhood of states
in phase space as follows:

12



where RP is the N X N recurrence plot, N is the number of states in time, ® is the Heaviside
function, ¢ is the recurrence threshold determining the size of the neighborhood in state space,
||m|| is the Euclidean norm, and X is the reconstructed phase space vector. The recurrence exists
when RP; j=1, (i.c., when the state space vectors at time iand j are within the same e-
neighborhood). The choice of the e-neighborhood threshold was based on previous studies’
recommendation and should not exceed 10% of the maximum phase space diameter (Norbert
Marwan et al. 2007). Therefore, the value of € was optimized for each participant by choosing
from four different thresholds, namely 3%, 5%, 7%, and 10% of the maximum phase space
diameter, for each frequency band, based on the global peak of a nested 5-fold cross-validation
classification procedure as explained in section 2.4. The steps of the EEG nonlinear analysis can
be visualized in Fig. 3 for a 30-sec Rest-MI-Rest task to illustrate the changes in the recurrence

patterns across tasks as visualized in the RPs.

Features characterizing the recurrence patterns in each trial were extracted using graph-based
RQA and complex network representations of the recurrence plots were reconstructed from each
one-dimensional EEG time series measured at each channel. As it is common to find small
distances between points in the reconstructed phase space that are close in time, the Theiler
window in this study was set to a value of (m — 1)t so that only points that are farther than (m —
1)t from the diagonal were taken into account in the evaluation of the RQA measures (Javorka et
al. 2009).

The recurrence patterns were quantified using the vertical and diagonal line structures of the
RPs using the nonlinear RQA features. 12 RQA features were extracted, namely, recurrence rate
(RR), determinism (DET), the mean length of a diagonal line (LMEAN), the maximum length of a
diagonal line (LMAX), the maximum vertical length (VMAX), the trapping time (77), the laminarity
(LAM), the entropy of diagonal line length distribution (ENTR), the entropy of vertical line length
distribution (ENTRYV), the recurrence time entropy (R7TE), and the recurrence times of first type
(RT1I) and second type (R72) (Norbert Marwan et al. 2007),(Webber, Jr. and Marwan 2015),(N.
Marwan 2013). In addition, two features from complex network theory, namely the global
clustering coefficient (CC) and transitivity (7), were extracted from the adjacency matrix
reinterpretation of the RP to include the topological characteristics of the recurrence patterns. The
features were extracted from the RP corresponding with x and f frequency bands separately using

the following equations(Webber, Jr. and Marwan 2015).
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where RR is the recurrence rate, which is a measure of the density of recurrence points in RP, and
N is the number of states. DET is a relative measure of the system’s regularity defined as the
percentage of recurrence points forming diagonal structures with respect to all recurrence points
in RP as follows:

N
. 2=t

Pl
DET = min @

SUNTI0 @)
where P (1) is the frequency distribution of diagonal lines of length [, and L,,,;;, = 2 is the length of
the shortest diagonal (Norbert Marwan et al. 2007). LMAX is the maximum length of diagonal
structures defined as follows:

LMAX = max({l;:i=1.. N;}) (5)
where [; is the length of diagonal line i, and N; is the total number of diagonal lines. LMEAN is

the average diagonal line length defined as follows:

Sl PO
LMEAN = O] (6)

where P(l) and l,;;, = 2 remain as defined in the explanation of DET. LAM is the laminarity,
representing the probability of occurrence of laminar states in the system defined as follows:

N
_ EV:”min vP (V)

LAM = = (7
where P(v) is the frequency distribution of vertical lines of length v, and v,,,;,,=2 is the length of
the shortest vertical line (Norbert Marwan and Meinke 2004). VMAX is the maximum length of
vertical structures, i.e., the longest duration of the laminar states defined as follows:

VMAX = max({v;:i=1.. N,}) (8)
where v; is the length of vertical line i, and N,, is the total number of vertical lines. 77T represents

the average length of vertical lines defined as follows:

N
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where P(v) and v,,;,=2 is the same as explained for LAM. ENTR refers to the Shannon entropy
and it 1s defined as a complexity measure of the deterministic diagonal line structures in the RP as
follows:

ENTR = -3, . p(Dnp() (10)

where p(1)= P(l)/N, is the estimated probability of finding a diagonal line of length (. Similarly,
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the ENTRYV refers to the entropy of vertical lines, reflecting the complexity of the vertical lines

structure, defined as follows:

ENTRV = _Zg=vmin p(v)lnp(v) (11)
where p(v)= P(v)/N, is the estimated probability of finding a vertical line of length v. RTE is
the recurrence time entropy, i.e., the entropy of the “white” (non-recurrent) vertical lines indicating

recurrence times t,,defined as follows:

RTE = — %™ p(t,,) Inp(ty) (12)
where p(t,,) = P(t,)/N,, is the estimated probability of a recurrence time t,,, P(t,) is the
distribution of recurrence times, and Tmax is the maximum recurrence time (Pitsik et al. 2020).
The recurrence times of first type (RT1) and second type (RT2) are defined according to (Gao
1999; Norbert Marwan et al. 2007) First, denote the set of points that are defined as &-
neighborhood recurrences of an arbitrary phase space vector X; as R;={X: ||X -X l-|| < ¢}. The
elements of this set correspond to the recurrence points j of the ith column{R,-J}Ii\"Flof the RP.

Then, the recurrence times of the first type are defined as follows:

{RT1y = jk+1 — Jk}ken (13)
where RT1;, represent the recurrence times corresponding to the recurrence point j in R;, and k is
the recurrence point index from 1 to N. The recurrence times of the second type (i.e., Poincare
recurrence times) are calculated after removing all consecutive recurrence points with RT1;, =
1 from the set R;. This results in a new set R; of remaining recurrence points j’. Then, the
corresponding recurrence times are calculated as follows:

{RT2 = jir1 — JrIken (14)
where RT2,, represent the recurrence times corresponding to the recurrence points j' in R;’ , and
k is the recurrence point index from 1 to N as previously explained. Hence, RT2 measures
vertically the time distance between the beginning of (vertically) subsequent recurrence structures
in the RP (Norbert Marwan et al. 2007)

To extract the topological characteristics of the trajectory in phase space, an undirected
unweighted recurrence network whose elements are denoted by a binary adjacency matrix

Aij,i,j =1,...,N. Ais defined in terms of the associated RP as follows (Donner et al. 2011):
Ai,j = RPi,j - 6i,j (15)
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where §; ; is the Kronecker delta. Each node of the network corresponds to an EEG sample in time,
and edges are conveniently represented by the recurrence links based on the &-neighborhood in
phase space (Donner et al. 2010). A;; = 1 if vertex i connects to vertex j, and A;; = 0 if the edge
(i,j) does not exist, i.e., there is no recurrence of the system’s state at time i and j. Since we
considered a Theiler window in our study, the RP was regarded to be the adjacency matrix A4 for

further analysis. From RP, two graph-based features were defined as follows (Norbert Marwan et

al. 2009):

&

cCc=3,% (16)
where CC is the global clustering coefficient, introducing a new recurrence aspect of the RP as it
represents the probability that two recurrences of any state are also neighbors, and C,,is the local
clustering coefficient defined for each node v (Norbert Marwan et al. 2009). Then, transitivity T
which provides an effective measure of the global dimensionality of the underlying dynamical
system is defined as follows (Feldhoff et al. 2013):

N
Xijk=141jA] kAk,i
T = S
Xijk=141jAk,i

(17)

In summary, the nonlinear analysis resulted in a total of 364 nonlinear graph-based RQA and
complex network features extracted from each EEG trial from both x and f frequency bands (i.e.,
14 features were extracted from 2 frequency bands from each of the 13 channels) to quantify the
nonlinear dynamics underlying the MI-Rest tasks. All RQA related computations were performed
using custom MATLAB (R2016b) code adapted from the CRP Toolbox (N. Marwan 2013). The
features were extracted from several window sizes, similar to linear EEG features, and the
optimized response window was selected within each frequency band based on the global peak of
a nested 5-fold cross-validation classification procedure as explained in section 2.4. The
illustration of the sensitivity of the extracted graph-based RQA and complex network features to
the transition from the background neuronal activity (Rest) to MI through a time-dependent
quantification of the feature values during 30-sec Rest-MI-Rest task is shown in Fig. S.1 in the

supplementary section.
2.4. Multimodal Feature Fusion and Classification Procedure

To evaluate the effect of multimodal EEG-fNIRS fusion on classification performance and
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investigate the effect of nonlinear features in complementing and increasing the synergy between
both the linear PSD features in EEG and the characteristic temporal features in fNIRS, three types
of EEG-fNIRS data fusion were evaluated; namely, EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS,
and EEG (linear+nonlinear)-fNIRS. For comparison, the performance of each of the three types of
extracted features, i.e., EEG (linear), EEG (nonlinear) and fNIRS, were individually evaluated on
a unimodal level.

Linear SVM was used to evaluate performance for each subject using a nested 5-fold cross-
validation procedure to avoid biased estimation of the generalization error. To account for the high
response variability in the neural data, hyper-parameter optimization was performed independently
for each of the 5 outer-folds based on the global peak of the nested 5-fold cross-validation
procedure (i.e., inner-folds) within each of the 5 outer-folds. The nonlinear RQA parameters (i.e.,
the time delay 7, the embedding dimension m, and the e-neighborhood threshold) as well as the
classification parameters (i.e., optimized response window and optimized number of selected
features) were estimated and simultaneously optimized using only the training set of each of the
outer-folds within the nested 5-fold cross-validation procedure. As the MI response dynamics vary
across modalities (EEG/fNIRS), feature types (linear/nonlinear), and frequency bands for EEG,
the response windows were optimized independently for EEG (linear), EEG (nonlinear) and fNIRS
features. For unimodal EEG (linear/nonlinear) classification, three post stimulus windows were
considered for the optimization testing for both the x and f frequency bands ([0-2], [0-5], and [O-
10] sec). To do so, for each window, the features were extracted from the window corresponding
to each band and then concatenated to constitute a single (linear/nonlinear) EEG feature vector
containing all extracted features from all channels corresponding to the combined response
windows. As each frequency band has its own separate dynamics, with the f frequency band being
the higher of the two, combinations of longer u-band response windows with shorter f-band
response windows were also considered resulting in a total of six possible EEG (linear/nonlinear)
combined response windows for optimization testing corresponding to the six combinations of u
and p response windows (u[0-2] sect+f[0-2] sec, u[0-5] sec+p[0-5] sec, u[0-10] sec+p[0-10] sec,
1[0-5] sect+p[0-2]sec, u[0-10] sect+p[0-2] sec, and wu[0-10] sec+p[0-5] sec). These response
windows were considered in the hyper-parameter optimization of unimodal EEG (linear/nonlinear)
classification and for the multimodal EEG-fNIRS classification. Due to the relatively slower

dynamics of fNIRS, four possible response windows ([0-5], [2-7], [4-9], and [0-10] sec) were
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considered for the nested 5-fold cross-validation optimization testing. The seven aforementioned
fNIRS features were extracted from both HbO, and HbR and then concatenated resulting in four
possible combinations of fNIRS response windows (HbO»[0-5] sec+HbR[0-5] sec, HbO>[2-7]
sectHbR[2-7] sec, HbO,[4-9] sectHbR[4-9] sec, and HbO-[0-10] sectHbR[0-10] sec). In
addition, for the unimodal EEG (nonlinear) classification, the time delay 7 and the embedding
dimension m were directly calculated for the x« and f frequency bands using only the training set
of each of the 5 cross-validation outer-folds. However, the choice of ¢ for the nonlinear features
extraction was simultaneously optimized with the choice of the response windows within the
nested 5-fold cross validation procedure. This resulted in 96 possible unimodal nonlinear EEG
feature vectors to be considered for optimization testing (6 response windows X 4 X 4 possible

combinations of e-neighborhood threshold for 1 and f frequency bands).

For multimodal classification, the EEG (linear/nonlinear) feature vector was concatenated
with the fNIRS feature vector for EEG (linear/nonlinear)-fNIRS feature fusion. Similarly, for EEG
(linear+nonlinear)-fNIRS feature fusion, all of the extracted features were concatenated resulting
in a single multimodal feature vector completely characterizing the linear and nonlinear EEG
dynamics as well as the fNIRS temporal dynamics. For hyper-parameter optimization, all the
possible combinations of multimodal feature vectors corresponding to all possible choices of
combined multimodal response windows were considered. For EEG (linear)-fNIRS, 24 possible
multimodal feature vectors corresponding to the multimodal response windows were considered
within the nested 5-fold cross-validation procedure. The multimodal response windows were based
on all the possible combinations of response windows within each modality (i.e., 6 EEG response
windows X 4 fNIRS response windows = 24 multimodal response windows). As for the EEG
(nonlinear)-fNIRS and the EEG (linear+nonlinear)-fNIRS hyper-parameter optimization, the
choice of ¢ for the nonlinear features extraction was simultaneously optimized with the choice of
the multimodal response windows, resulting in 384 possible multimodal feature vectors
corresponding to all possible combinations of parameters (24 multimodal response windows X 16
possible combinations of e-neighborhood threshold for ¢ and S frequency bands= 384 multimodal
feature vector).

Due to the high dimensionality of the multimodal EEG-fNIRS feature vectors constructed
using 26 EEG linear spectral features (PSD-u and PSD-f extracted from 13 EEG channels), 364

EEG nonlinear features (14 ¢ and f nonlinear features extracted from 13 EEG channels), and 196
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fNIRS temporal features (7 fNIRS features extracted from each of HbO> and HbR from 14 fNIRS
channels), fused feature selection represents a crucial step to ensure the selection of a
discriminative fused EEG-fNIRS representation of the MI neural response. To do so, we adopted
the LASSO feature selection scheme, which has been proven to exceed in performance for MI-
BClIs when compared to other feature selection methods especially for relatively small datasets
(Jiang et al. 2020). Therefore, a fused multimodal electrical-vascular representation of the MI
response was selected on a multimodal level from the aforementioned constructed high-
dimensional feature vectors. Similarly, for unimodal classification, discriminative features were
selected using LASSO from the unimodal feature vectors to optimize the selected features within
each unimodal technique. For all the constructed unimodal and multimodal feature vectors, the
number of selected features was optimized within the nested 5-fold cross-validation procedure by
considering different numbers of selected features from each feature vector (ranging from 5
features to 23 features with steps of 2). Finally, the optimized classification results for each subject
were averaged over all the 5 outer cross-validation folds and reported along with the results of the

nested 5-fold cross-validation procedure for all types of unimodal and hybrid classifications.
2.5. Fusion Level Quantification

In order to quantify the balance of proportion of (EEG/fNIRS) unimodal features in the three EEG-
fNIRS data fusion types, we define the Fusion Level (FLL) percentage to be the ratio of the number

of selected features from each modality as below:

%Min—Contribution
FL == (18)

%Max—Contribution

where %Min — Contribution represents the smaller percentage of features contributed from
either EEG or fNIRS to the total number of fused selected features and %Max — Contribution
represents the larger percentage of features contributed from either EEG or fNIRS in the total
number of fused selected features. The FL quantifies the balance of the contribution between both
modalities such that a 100% FL indicates a perfectly balanced fusion (i.e., each modality
contributed 50% of the selected fused features) and 0% indicates that one modality completely

dominated the classification accuracy (i.e., equivalent to unimodal classification).
3. Results

In order to show the overall trend of the hyper parameter optimization for the unimodal feature
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classification, Fig. 4 shows a series of bar plots comparing the optimized nested inner-loop 5-fold
cross-validation accuracy averaged across the 5 outer-folds for the three types of unimodal features
and different numbers of selected features for each subject. The plots show that performance of
unimodal MI classification varies across modalities and feature types for each subject. As it is
seen, for S-1, S-3, S-5, S-6, and S-7, the temporal {NIRS features outperformed both the linear and
nonlinear EEG features. The nonlinear EEG features overall performed better than both linear EEG
and fNIRS features for S-2 and S-4 and outperformed linear EEG features for almost all the
participants except S-3 and S-8. However, the linear EEG features were the most discriminative
for S-8. These plots highlight the importance of fully characterizing the hemodynamic fNIRS MI
response with proper statistical features to improve the classification performance. Furthermore,
the plots compare the nonlinear RQA and graph-based features to the linear PSD features,
illustrating the discriminative ability of the nonlinear features for the majority of the participants.
This emphasizes the importance of systematically characterizing the MI response dynamics across
modalities and highlights the discriminative ability of the nonlinear recurrence patterns as a new
informative dimension for MI EEG responses. The figure also illustrates the effect of hyper-
parameter optimization, particularly the number of selected features, on the classification accuracy
for all modalities. This highlights the importance of accounting for the inter-subject variability
commonly observed in neural responses. The details of the optimized parameters used for each of
the 5 outer-folds for each subject are shown in Tables S.1, S.2, and S.3 in the supplementary
section.

Table 1 shows the optimized unimodal classification performance for each subject,
comparing the fNIRS, EEG (linear), and EEG (nonlinear) unimodal classification illustrating the
optimized averaged 5-fold classification accuracy (outer-folds) and the median of the optimized
number of selected features across folds for all feature types. The reported results are based on the
optimized classification parameters for each fold (i.e., the response window, the number of
selected features and the nonlinear RQA parameters if any) related to each subject’s MI neural
response in each modality. As shown in Table 1, the obtained average accuracies were
92.1%+6.5%, 81.2%+6.5%, and 85.8%+6.2% using fNIRS, EEG (linear) and EEG (nonlinear)
features respectively. Overall, the classification outcomes show that the performance of fNIRS
features is superior in discriminating the MI neural response when compared to EEG

(linear/nonlinear) features with ~11% and ~6% average performance improvement over EEG
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(linear) and EEG (nonlinear) features respectively. Fhis—highlichts—the—important—role—of
mmm%%%%%ﬁea%w%eﬁ%ggﬂdﬁbwﬁfﬁ%%m

In order to show the overall trend of the hyper-parameter optimization for the hybrid
multimodal classification, Fig. 5 shows a series of bar plots comparing the optimized nested inner-
loop 5-fold cross-validation accuracy across the 5 outer-folds for the three types of EEG-fNIRS
data fusion with different numbers of selected features for each subject. The figure also illustrates
the effect of the number of selected features on the classification accuracy of the fused EEG-fNIRS
data. The details of the optimized parameters used for each of the 5 outer-folds and the frequency
of selection of the features in the optimized classification performance for each subject are shown
in Tables S.4, S.5, S.6, and Fig. S.2 in the supplementary section. Unlike the unimodal features,
the differences between the performance of the three types of fusion are relatively closer; however,
the EEG (nonlinear)-fNIRS and the EEG (linear+nonlinear)-fNIRS outperformed the EEG
(linear)-fNIRS for most of the subjects, indicating a substantial contribution of nonlinear EEG
features. This shows the effect of complementing the linear EEG spectral features with the
nonlinear graph-based RQA features and the effect of incorporating the temporal hemodynamic
fNIRS features on the fusion classification accuracy for all the subjects.

Table 2 shows the optimized hybrid multimodal classification performance for each subject,
comparing the EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS, and EEG (linear+nonlinear)-fNIRS
types of hybrid classification. In this table, the optimized averaged 5-fold classification accuracy
(outer-folds) and the median of the optimized number of selected features across folds for all
feature types are shown. The reported results are based on the optimized classification parameters
for each fold (i.e., the hybrid response windows, the number of fused selected features and the

nonlinear RQA parameters if any) related to each subject’s MI neural response in each type of
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fusion.

As shown in Table 2 the obtained average accuracies were 93.8%+5.4%, 96.1%+3.5%, and
96.1%=+3.5% using EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS and EEG (linear+nonlinear)-
fNIRS fused features respectively. This shows the discrimination ability of the nonlinear EEG
features in complementing the fNIRS features when compared to the linear PSD features. Overall,
the classification outcomes show that the hybrid EEG-fNIRS multimodal classification performs
better than the unimodal (EEG/fNIRS) classification. Fusing linear EEG features to fNIRS features
improved performance by ~2% over fNIRS and ~13% over EEG (linear) alone. Fusing EEG
(nonlinear) with fNIRS features improved the performance by 4% over fNIRS and ~10% over
EEG (nonlinear) features, while fusing EEG (linear), EEG (nonlinear), and fNIRS features
achieved the same accuracy as EEG (nonlinear)-fNIRS and improved the performance by 4%,
~15% and ~10% over fNIRS, EEG (linear), and EEG (nonlinear) features respectively. This
highlights the importance of decoding the hemodynamic fNIRS response features fully, in addition
to complementing the classical EEG features with nonlinear features for improved performance of
hBClIs for MI classification. In order to show the level of contribution of EEG features for each
type of EEG-fNIRS fusion, Table 2 shows the percentage of EEG features contributing to the total
number of selected fused multimodal features in EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS,
and EEG (linear+nonlinear)-fNIRS averaged across the 5 folds for each subject. The contribution

of EEG linear features in EEG (linear)-fNIRS data fusion was ~28% averaged over all subjects,

whereas the contribution of EEG (nonlinear) features in EEG (nonlinear)-fNIRS data fusion was

contributionof EEGfeatures)—Incorporating all feature types in EEG (linear+nonlinear)-fNIRS

data fusion resulted in an increased contribution of EEG features to ~53% averaged over all

subjects with the same classification performance compared to EEG (nonlinear)-fNIRS data
fusion.

Fig. 6 illustrates the fusion level (/L) quantification of each type of EEG-fNIRS data fusion.
The figure compares the proportion of EEG/fNIRS features’ balance across the fusion types and

illustrates the classification accuracy corresponding to each FL (on top of each bar plot). This
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figure illustrates the synergetic and complementary relationship between the fused EEG and fNIRS
modalities by quantifying the balance percentage of their fusion in relation to hybrid classification
accuracy. For all subjects, the FL for EEG (linear)-fNIRS data fusion was the least among all the
other data fusion types. This indicates that adding the EEG (nonlinear) features as proposed results
in an increased complementarity between EEG and fNIRS features, contributing to classification
improvement. For most subjects the increased FL resulted in an increase in the classification
accuracy. This highlights the importance of EEG-fNIRS complementary features for performance
improvement; however, it further emphasizes the importance of feature-level fusion by employing
a feature selection scheme to identify an optimized discriminative set of fused features from the
high dimensional multimodal feature set without redundancy or contrast of information, and hence
an optimal FL for performance improvement. Specifically, for S-3, the maximum classification
accuracy was 100% for EEG (linear)-fNIRS data fusion with a FL of ~14%. This indicates that for
this subject this classification accuracy was dominated by one modality rather than a result of the
data fusion complementary improvement. However, EEG (nonlinear)-fNIRS and EEG
(linear+nonlinear)-fNIRS data fusion achieved ~99% accuracy with ~69% and ~63% FL
respectively for the same subject.

Fig. 7 compares the optimum unimodal (EEG/fNIRS) classification accuracy for each subject
with the optimum hybrid classification accuracy. The plot indicates that the optimum hybrid
multimodal classification performs better than the optimum unimodal classification for all subjects
which supports the main hypothesis of this study. For subjects S-3 and S-7, 100% accuracy was
achieved using unimodal classification, and the optimum multimodal classification did achieve the

same 100% classification accuracy.
4. Discussion

Characterizing neural responses from multiple neuroimaging sources is important in BCI research,
as it introduces complementary characteristic features from various neural perspectives to improve
decoding and performance. However, current hybrid BCIs that rely on MI fall short of their true
potential for multiple reasons, including the absence of systematic data fusion frameworks that
characterize the MI neural response dynamics within each modality fully to reveal their
complementary synergistic aspects, as well as the need to select the discriminative fused features

from high-dimensional multimodal feature vectors properly. This study proposed an EEG-fNIRS
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data fusion framework to decode and represent MI neural dynamics for a binary hBCI
classification task fully. The framework relies on exploiting the underlying linear and nonlinear
dynamics of neural responses across modalities and provides a comprehensive set of high-
dimensional electrical-vascular multimodal features. A set of graph-based RQA features
characterized the nonlinear recurrence patterns underlying the electrical MI neural response in the
1 and f spectral bands were characterized in phase space to complement the commonly used linear
ERD/ERS spectral band-power features. The fNIRS-based MI response was characterized using a
set of statistical features to quantify the morphological variations in the MI hemodynamic temporal
response. Through the fused feature selection strategy adopted and the selection of the most
discriminative subset of complementary features from all of the features evaluated, the proposed
framework improved the hybrid MI-BCI’s mean classification performance by approximately
15%, 10%, and 4% over the unimodal EEG (linear), EEG (nonlinear), and fNIRS features,
respectively. Interestingly, the performance when EEG (linear+nonlinear)-fNIRS features were
fused was similar to EEG (nonlinear)-fNIRS data fusion on average over all subjects, which
indicates that including the EEG linear features in addition to the EEG (nonlinear) and fNIRS
features did not increase the performance. This suggests an overall discriminative nature of the
nonlinear dynamics of EEG when combined with the temporal hemodynamics features of the
fNIRS response. However, it also indicates that the data fusion and fused feature selection scheme
adopted select the most discriminative complementary fused features across modalities and feature
types successfully, as, although there was an increase in feature dimensionality and potential
redundant information, the performance did not degrade when compared to EEG (nonlinear)-
fNIRS fusion.

Our findings suggest that the proper characterization of the underlying dynamics within each
modality improved the performance of MI-BCI classification on the unimodal level and provided
a comprehensive set of features with which to decode the response on a multimodal level
systematically through the proposed multimodal data fusion framework. Moreover, the accuracy
improvement was also realized by relying on hyper-parameter optimization, including the number
of selected discriminative features, to account for the inter- and intra-subject variations commonly
observed in neural responses. Our results indicate that optimizing the number of synergistic
multimodal features can contribute toward an enhancement of hybrid BCI performance. The

proposed framework and optimization approaches can be implemented based on BCI system
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calibration sessions commonly used in the BCI field.

On the unimodal level, our results highlight the important role of discriminative fNIRS
features (i.e., statistical features of HbO, and HbR) in classification accuracy and MI neural
characterization. Moreover, the classification performance of the EEG (nonlinear) features
indicates an overall average performance improvement of ~5% when compared to EEG (linear)
features with an overall relatively higher number of selected features (Table 1). This indicates that
the complex nature of EEG signals, particularly MI responses, encompasses discriminative
information beyond what is provided by EEG (linear) PSD features. These results support our
principal hypothesis that EEG nonlinear graph-based RQA features can complement linear spectral
features and fNIRS temporal features in a holistic fused representation for MI neural responses in
order to improve the performance of MI classification in a hybrid BCI framework.

Particularly for fNIRS, extracting a set of statistical features to characterize the MI
hemodynamic response had a remarkable effect on the performance of the unimodal fNIRS
approach. Based upon the hyper-parameter optimization trends of the unimodal features overall
(Fig. 4) and the corresponding final results (Table 1), fNIRS performance was higher than that of
EEG (linear and nonlinear) for most of the subjects. The unimodal fNIRS results indicated an
~11% improvement in performance compared to EEG (linear) features and ~6% compared to EEG
(nonlinear). This highlights the discriminative power of the statistical fNIRS temporal features
when compared with EEG spectral features and EEG graph-based nonlinear features. These results
are consistent with previous findings that increasing the number of statistical features used to
characterize the hemodynamic response and investigating the optimum feature combination
influences classification accuracy substantially (Hong et al. 2017; Hong, Khan, and Hong 2018; S
M Hosni et al. 2020; Naseer et al. 2016; Naseer and Hong 2013, 2015; Qureshi et al. 2017). For
example, in (Naseer and Hong 2013), adding the slope of the fNIRS signal to the signal mean, as
well as confining the response window, improved the classification accuracy significantly. In
another study, Naseer et al. (2016) highlighted the importance of investigating the optimal feature
combination to improve fNIRS classification performance. Their study considered all possible
two- and three-feature combinations of signal slope, mean, variance, peak, kurtosis, and skewness,
and they concluded that signal mean and peak was the optimum feature combination for their
dataset. Qureshi et al. (Qureshi et al. 2017) investigated multiple two-feature combinations of the

same set of statistical features to improve classification. Their results suggested that the signal
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mean and skewness is an optimal feature combination. In (S M Hosni et al. 2020), Hosni et al.
investigated two to eight possible feature combinations to optimize MI classification performance.
Their findings suggested the importance of identifying subject-specific features, channels, and
response windows of the fNIRS response to achieve optimal classification performance. The
discrepancy in optimal feature combinations across subjects can be interpreted with respect to the
variability identified commonly in fNIRS hemodynamic responses, and illustrates the need for a
large number of statistical features to capture the potential subject-specific changes (Holper et al.
2011; Hong et al. 2017; S M Hosni et al. 2020). Our proposed framework accounts for fNIRS MI
responses’ subject-specific characteristics by capturing the temporal morphological variations in
the hemodynamic response fully with a complete set of statistical features, and adopting hyper-
parameter optimization and feature selection to ensure that subject-specific discriminative features
are identified to optimize performance. Notably, most fNIRS studies rely on channel selection
approaches in addition to extracting discriminative features for classification (Al-Shargie et al.
2016; S M Hosni et al. 2020; Hu et al. 2010; Li et al. 2017; von Liihmann et al. 2020; Santosa,
Hong, and Hong 2014). In this study, the features extracted were aggregated across all of the
recording channels, which eliminated the need to select channels and rely on the feature selection
scheme adopted to identify a subject-specific discriminative feature set across channels. Given
fNIRS features’ effect on a multimodal level, the multimodal results of fusing fNIRS features with
EEG (linear) features improved the performance by ~13% and ~2% over unimodal EEG (linear)
and unimodal fNIRS features, respectively. Although it is hard to make a direct comparison with
the percentage of improvement of multimodal classification in other studies due to the differences
in the number of extracted features, these results are consistent with those of previous studies and
confirm that fNIRS is a unique modality that improves the performance of EEG in a hybrid MI-
BCI system, and is capable to achieve competitive improvements over unimodal EEG-based
systems (Buccino, Keles, and Omurtag 2016; Chiarelli et al. 2018; Fazli et al. 2012; Saadati,
Nelson, and Ayaz 2020b; Yin et al. 2015) Further, it highlights the importance of exploiting
various features across modalities for complementary representation of MI neural responses.
However, considering the relatively slight improvement in performance when compared to the use
of unimodal fNIRS features raises a question with respect to the extent to which the fusion of EEG
PSD features with fNIRS exploits the full potential improvement of combining both modalities in

a hybrid MI-BCI context.
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By exploiting the discriminative features of the fNIRS MI response fully, an emerging
challenge was to extract representative EEG dynamics that can complement the fNIRS features
synergistically and yet to improve the performance on a multimodal level. This is especially
important considering the challenging nature of classifying subject-specific neural responses to
decode motor imagery signatures, particularly for severely disabled patients for whom BCI
systems are originally designed. For these target groups, exploiting the neural information content
fully from EEG and fNIRS is required to compensate for potential disease-related neural
alterations that might affect one modality more than the other and to avoid relying on just one
modality. To the best of our knowledge, this is the first study to propose nonlinear features for
multimodal hybrid BCI applications that rely on EEG-fNIRS neuroimaging modalities. Here we
demonstrated that by incorporating the nonlinear dynamics to complement the EEG linear PSD
features, the proposed framework can expand the information content extracted from EEG
successfully and achieve improved performance on the multimodal level with a high level of
synergy between modalities. On a unimodal level, characterizing the MI neural response’s
nonlinear dynamics influenced the classification results remarkably. Given the unimodal EEG
nonlinear features, the unimodal results indicated an improvement in performance of ~5% when
compared to EEG linear features. These results verify previous findings further and demonstrate
that extracting nonlinear EEG features improves MI-BCI’s performance (Ismail Hosni et al. 2021).
Our results are also consistent with those of Pitsik et al. (2020), who investigated the feasibility
of using RQA features to characterize the nonlinear dynamics of EEG motor execution responses.
Their findings revealed an increase in predictability and determinism during motor execution
coupled with a decrease in complexity and chaos which transitioned back to increased complexity
and reduced regularity during the background neuronal dynamics in rest. This was similarly
observed in our study illustrated in the time-dependent quantification of all the extracted nonlinear
features (Fig. S.1 in the supplementary section). However, our study is the first to investigate RQA
features’ ability to characterize motor imagery responses to improve BCI performance. Our
findings confirmed the feasibility of using RQA features to characterize the neural responses that
correspond with motor imagery, as they achieved improved classification performance for MI-
BCIs both on the unimodal and multimodal levels. The success of RQA in characterizing the
nonlinear dynamics of transitions between MI and rest in EEG can be explained by several studies

that investigated nonlinear techniques for EEG as a time series that derives from a nonlinear
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dynamic system. For example, in (Norbert Marwan and Meinke 2004), Marwan et al. used RQA
to identify chaos-chaos transitions in brain potentials that are caused by stimulus events in single-
trial event-related potential data. In (Acharya, Sree, et al. 2011), Acharya et al. quantified the
nonlinear dynamics of EEG to classify epileptic EEG signals. Successfully RQA features could
characterize the increase in regularity from “normal” EEG to “interictal” and then to “ictal” activity
because of increased underlying rhythmicity. Recently, Baghdadi et al. (Baghdadi et al. 2021)
suggested investigating the neuro-cognitive EEG responses to roughness stimuli using RQA. They
used nonlinear analysis in their study, because the representation of texture features in cortical
responses was proposed to follow a nonlinear model and RQA was found to characterize tactile

sensations in EEG effectively.

Although EEG (nonlinear) features performed better than the EEG (linear) PSD features in
our study, unimodal fNIRS features outperformed EEG (nonlinear) features (~7% improvement).
This demonstrates further the importance of hemodynamic characteristics when decoding the MI
neural response in addition to characterizing its nonlinear dynamics. Further, it highlights the
importance of combining fNIRS with EEG-based BCIs to create an improved hybrid system.
However, on a multimodal level, fusing the EEG (nonlinear) features with the fNIRS features
improved the performance by ~10% and 4% compared to unimodal EEG (nonlinear) and fNIRS
features, respectively. These findings demonstrate the advantage of adopting graph-based RQA
features to discriminate the M1 neural response both on the unimodal and multimodal levels. The
overall hyper-parameter optimization trends of the multimodal fused features (Fig. 5) and the
corresponding final results (Table 2) demonstrate a relatively higher performance for EEG
(nonlinear)-fNIRS and EEG (linear+nonlinear)-fNIRS fused features compared to EEG (linear)-
fNIRS for most subjects. These results demonstrated the effect of incorporating the nonlinear
dynamics of MI responses in the proposed computational framework to enhance performance.

Complementing EEG linear PSD features with the nonlinear graph-based features allowed
more discriminative characteristics of the MI neural responses to be represented in the multimodal
feature set, and thus, resulted in better performance overall on the multimodal level. The increased
degree of contribution of the nonlinear EEG features in the EEG (nonlinear)-fNIRS fusion
compared to the contribution of the linear features in EEG (linear)-fNIRS fusion support this result
further (Table 2). This observation further highlights the synergetic complementary and

discriminative relationship between the nonlinear EEG features and the temporal fNIRS features,
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which is also illustrated by the slight performance improvement achieved by combining them for
data fusion (i.e., EEG (nonlinear)-fNIRS achieved ~2% performance improvement over EEG
(linear)-fNIRS with an increased contribution of EEG features).

——Our fusion level (FL) quantification results revealed clearly a decrease in the proportion of
EEG/fNIRS features’ balance in EEG (linear)-fNIRS fusion when compared to the other fusion
types (Fig. 6). This indicates that for EEG (linear)-fNIRS fusion, the classification performance
was dominated largely by fNIRS, given the smaller percentage of the EEG features’ contribution
in the fused feature selection scheme of EEG (linear)-fNIRS fusion (Table 2). The nonlinear EEG
feature’s increased percentage of contribution was illustrated in the increase of FL for the other
fusion types (Fig. 6). This indicates that decoding and representing the underlying neural response
appropriately can elucidate more synergistic dynamics and discriminative feature characteristics
across modalities, and thus enhance classification performance at a hybrid level. Complementing
EEG (linear) with EEG (nonlinear) features ensured that both EEG and fNIRS modalities are
represented completely in the multimodal feature space, thus, providing an opportunity for
increased synergy and complementarity between features for better performance. Overall, the
inclusion of the discriminative EEG (nonlinear) features increased the FL for all subjects, which
contributed to better performance for most participants (S-2, S-5, S-6, S-7, S-8). For the remaining
subjects (S-1, S-3, and S-4), the increase in FL did not achieve the maximum performance. This
is likely because of sub-optimal selection of the fused feature set, which emphasizes the
importance of selecting a fused representative feature subset from the high-dimensional
multimodal feature set properly to achieve improved performance.

In general, the results of this study demonstrated that multimodal EEG-fNIRS classification
of MI neural responses performed better than relying solely on a single modality for all subjects
(Fig. 7). Even in the case when unimodal classification dominated the classification accuracy (S-
3 and S-7), increasing the number of features in multimodal classification did not degrade the
accuracy for at least one of the fusion types evaluated. Hence, a systematic approach to feature-
level fusion represents a crucial step to ensure robust classification performance, particularly with
the increased number of features when all feature types are fused. Our study adopted a fused
feature selection scheme based upon LASSO, which was supported by previous promising results,

particularly for MI-BCls and relatively small datasets (Jiang et al. 2020).
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4.1. Limitations & Future Directions

One of the current limitations of this study is the low number of subjects due to the relative
difficulty of recruiting human subjects for neural data recording sessions. This can affect the
interpretability of the mean as an informative performance metric considering the variability of
performance across subjects. Future work can consider addressing the challenge of neural response
variability commonly faced in BCI research, potentially by increasing the number of subjects,
including end users with severe motor impairment, and exploring other advanced methods, such
as deep learning-based approaches to model subject-specific neural response variability. One-of
the—eurrent-Hmitations—efthis—stadyAnother limitation is that the proposed framework did not
consider other feature selection schemes for feature-level fusion. Comparing various feature
selection algorithms was outside of the scope of this study; however, future work may consider
adopting other approaches, including those based upon mutual information to explore other
potential feature selection approaches to determine an optimal fused feature set (Deligani et al.
2021). Feature-level fusion allows synergistic complementary features across modalities to be
selected, which has an advantage over decision-level fusion because of the potential adverse effect
of cross-modality inconsistencies on the decision-level (Deligani et al. 2021; Wu et al. 2019).
Further, future work could consider an early-fusion level that investigates the joint analysis of both
modalities using approaches that represent the multimodal data in a joint representation space. For
example, emerging deep multimodal machine learning approaches might be adopted to explore the
possibility of capturing a data-driven, in-depth joint representation of the multimodal data that
does not require feature extraction and/or fused feature-level selection processes (Venugopalan et
al. 2021). In addition, future works need to be conducted to support our interpretations of the
proposed nonlinear feature extraction methods further as a new informative dimension to
understand better the neural characteristics that underlie motor imagery and enhance BCI
performance by validating the statistical nonlinearity in the dataset through a surrogate data
procedure. Analyzing the complex neural responses across different temporal scales encoded by
EEG and fNIRS hold a promising fertile ground for BCI and neuroscience research in general. The
amount of information that can be decoded from the latent dynamics of instantaneous EEG and
the synergy that exist between these dynamics and the relatively slower metabolic responses

encoded by fNIRS are relatively unexplored. Future work should consider studying the
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relationship between these decoded fused features with fine and gross motor skills to further

advance our understanding of the underlying neural dynamics of complex motor functions.

5. Conclusion

The proposed computational data fusion framework decoded a discriminative electrical-vascular
multimodal neural response representation of MI by complementing the EEG spectral features
with graph-based RQA features that quantify the nonlinear recurrence dynamics that underlie MI.
These new features showed an increased synergy and complementarity between EEG and fNIRS
modalities that enhanced the contribution of EEG features to the total number of multimodal
features as well as the MI-BCI performance. The most discriminative task-informative features
were identified through a multimodal fused feature selection scheme to address the computational
challenges of multimodal characterization of the underlying discriminative neural dynamics. The
performance evaluation revealed an average improvement of approximately 15%, 10%, and 4%
by fusing EEG (linear), EEG (nonlinear) and fNIRS features when compared to unimodal EEG
(linear), EEG (nonlinear), and fNIRS features respectively. On a unimodal level, the graph-based
RQA features and the fNIRS features, respectively, improved the performance by ~5% and ~11%
over the EEG spectral features, and demonstrated their discriminative strength. On a multimodal
level, the optimum hybrid performance of 96.1% was achieved using discriminative fused feature
selection from all feature types. This improved the conventional hybrid classification accuracy by
~2%, with a considerable increase in the contribution of EEG features to the total number of fused
features selected. This indicates an increased synergy between the nonlinear graph-based and
fNIRS features. These findings highlight the importance of characterizing the underlying neural
dynamics of the M1 neural response across modalities, and suggest that nonlinear graph-based and
fNIRS features are valuable information dimensions that can be exploited to improve hybrid MI-
BCI performance. Further, our results highlight the importance of fused feature selection schemes
and optimized fused discriminative feature sets for a systematic computational data fusion

framework.
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TABLES

TABLE 1: Optimized averaged 5-fold cross-validation accuracy for unimodal classification and
median of the optimized number of selected features across folds (maximum accuracy

corresponding to each subject indicated in bold).

Optimized  EEG  Optimized EEG Optimized

Participant  fNIRS #features (Linear) #features (Nonlinear) f#features

No. (median) (median) (median)
S-1 90.6 19 75.3 11 82.4 17
S-2 84.7 9 85.9 11 91.8 7
S-3 100.0 9 74.7 7 74.7 9
S-4 84.3 7 77.1 11 87.1 13
S-5 95.0 9 75.0 9 80.0 19
S-6 95.8 11 83.2 9 88.4 7
S-7 100.0 5 86.3 7 90.0 9
S-8 86.7 5 91.7 9 91.7 5

MeantSD  92.1+6.5 9.044.5 81.246.5 9.0+1.7 85.8+6.2 11.045.1
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Table 2: Optimized Averaged 5-fold Cross-validation Accuracy for Multimodal EEG-fNIRS

Fusion Classification and Median of the Optimized Number of Selected Features Across Folds

(maximum accuracy corresponding to each subject and each EEG-fNIRS fusion type indicated in

bold).
EEG Optimized %of EEG EEG Optimized  %of EEG EEG Optimized %of
Participant (linear)-  #features (linear) (nonlinear)- #features (nonlinear) | (linear + #features EEG
fNIRS (median) features fNIRS (median) features nonlinear)- (median) features
No. . R
Fusion Fusion SNIRS
Fusion
S-1 92.9 15 45.2 91.8 11 473 90.6 15 57.1
S-2 88.2 19 32.6 96.5 13 50.2 96.5 15 49.6
S-3 100.0 9 12.1 98.7 17 40.7 98.7 13 38.7
S-4 84.3 9 34.7 90.0 15 61.5 91.4 17 67.4
S-5 95.0 19 21.7 98.3 19 46.9 98.3 15 43.6
S-6 98.9 17 25.1 96.8 15 61.1 97.9 15 57.8
S-7 97.5 13 20.9 100.0 13 35.8 100.0 13 48.5
S-8 93.3 7 33.0 96.7 17 58.2 95.0 15 60.5
Mean+SD  93.845.4 13.5+4.8  28.16+10.3 96.1+£3.5 15+2.6 50.2+10.4 96.1+3.5 14.8+1.3 52.949.5
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FIGURE LEGENDS

Fig.1: Flow diagram of the proposed computational multimodal framework. The multimodal EEG
and fNIRS data are simultaneously recorded and independently preprocessed, then the multimodal
data is split into training (sub-training and validation) and test sets through a nested cross-

validation procedure for hyper-parameter optimization and performance evaluation.

Fig. 2: Left: The schematic head montage mode of the EEG-fNIRS sensor-layout for simultaneous
electrical-hemodynamic data acquisition. Right: The motor imagery (MI) task experimental

protocol.

Fig. 3: Visualization of the steps of nonlinear EEG analysis for a representative Rest-MI-Rest (30-
sec) task. (a) Representation of the one-dimensional EEG time series from a single channel band-
pass filtered in p (8-13 Hz) or B (13-25 Hz) bands used for the 3-dimensional reconstruction of
trajectory in phase space illustrated in (b). (c) Recurrence Plots (RPyyy) used to visualize and
quantify the recurrence patterns of the 3-dimensional phase space trajectory matrix
Xpyx3 calculated based on an &-neighborhood threshold of 5% of the maximum phase space

diameter.
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Fig. 4: Grand-averaged classification accuracy based on the optimized nested inner-loop 5-fold
cross validation accuracies across the 5 outer-folds to compare the overall trends of hyper
parameter optimization of the 3 types of unimodal features for each subject. The nested inner-loop
optimization was performed to optimize the classification parameters for each of the 5 outer-folds
(outer-loop) independently (see Table S.1, Table S.2, and Table S.3 in the supplementary section
for the details of the optimized parameters corresponding to each type of features for unimodal
classification). Each plot in this figure shows the average of the optimized nested 5-fold accuracies

averaged across the 5 outer folds for each unimodal (EEG/fNIRS) features for each subject.

Fig. 5: Grand-averaged classification accuracy based on the optimized nested inner-loop 5-fold
cross validation accuracies across the 5 outer-folds to compare the overall trends of hyper
parameter optimization of the 3 types of EEG-fNIRS data fusion for each subject. The nested
inner-loop optimization was performed to optimize the classification parameters for each of the 5
outer-folds (outer loop) independently (see Table S.4, Table S.5, and Table S.6 in the
supplementary section for the details of the optimized parameters corresponding to each fusion
type). Each plot in this figure shows the average of the optimized nested 5-fold accuracies averaged

across the 5 outer folds for each multimodal EEG-fNIRS type of data fusion for each subject.

Fig. 6: Bar plot showing the defined “Fusion Level” for each type of EEG-fNIRS data fusion (i.e.,
EEG (linear) - fNIRS, EEG (nonlinear) — fNIRS, and EEG (linear+nonlinear) — fNIRS) for each
subject. The figure shows the averaged 5-fold cross-validation classification accuracy” ACC” for

each fusion type on top of each bar.

Fig. 7: Comparison between the optimum unimodal (i.e., EEG-linear/EEG-nonlinear/fNIRS) and
the optimum multimodal (i.e., EEG (linear) - fNIRS/ EEG (nonlinear)-fNIRS/ EEG
(linear+nonlinear) - fNIRS) averaged 5-fold cross-validation classification accuracy for each

subject.
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