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Abstract. Decoding neural responses from multimodal information sources, including 

electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), has the 

transformative potential to advance hybrid brain-computer interfaces (hBCIs). However, existing 

modest performance improvement of hBCIs might be attributed to the lack of computational 

frameworks that exploit complementary synergistic properties in multimodal features. This study 

proposes a multimodal data fusion framework to represent and decode synergistic multimodal 

motor imagery (MI) neural responses. We hypothesize that exploiting EEG nonlinear dynamics 

adds a new informative dimension to the commonly combined EEG-fNIRS features and will 

ultimately increase the synergy between EEG and fNIRS features toward an enhanced hBCI. The 

EEG nonlinear dynamics were quantified by extracting graph-based recurrence quantification 

analysis (RQA) features to complement the commonly used spectral features for an enhanced 

multimodal configuration when combined with fNIRS. The high-dimensional multimodal features 

were further given to a feature selection algorithm relying on the least absolute shrinkage and 

selection operator (LASSO) for fused feature selection. Linear support vector machine (SVM) was 

then used to evaluate the framework. The mean hybrid classification performance improved by up 

to 15% and 4% compared to the unimodal EEG and fNIRS, respectively. The proposed graph-

based framework substantially increased the contribution of EEG features for hBCI classification 

from 28.16% up to 52.9% when introduced the nonlinear dynamics and improved the performance 

by approximately 2%. These findings suggest that graph-based nonlinear dynamics can increase 

the synergy between EEG and fNIRS features for an enhanced MI response representation that is 

not dominated by a single modality.  

Keywords. Hybrid brain-computer interface (hBCI), multimodal data fusion, nonlinear dynamics, 

motor imagery (MI), graph-based feature extraction, recurrence quantification analysis (RQA) 
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1. Introduction 

The progress in acquiring multimodal neuroimaging data opens new frontiers in systematically 

discovering a discriminative multimodal representation of neural responses to convey users’ intent 

through hybrid brain computer interfaces (hBCIs). Incorporating multiple neural data sources, 

including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), into 

a hBCI framework expands the information content of the acquired neural signatures. This allows 

extracting a holistic multimodal electrical and vascular-hemodynamic representation of the 

underlying neural response across different spectral-temporal scales and has the potential of 

advancing BCI research. Traditionally, most motor imagery (MI) neural responses in BCI systems 

have been characterized using spectral analysis of EEG sensorimotor oscillatory variations in the 

μ (8–12 Hz) and β (13–25 Hz) frequency bands for communication in EEG-based MI-BCIs 

(Kübler et al. 2005; Pfurtscheller and Lopes Da Silva 1999). However, despite continuous research 

efforts, EEG-based MI-BCIs still fall far short of achieving satisfactory performance levels. This 

is likely attributable to several inherent limitations of EEG, including its complex nonstationary 

nature, its poor spatial resolution, low signal-to-noise ratio (SNR), and potential disease-specific 

abnormalities in patients’ electrical responses that impose additional challenges in extracting 

discriminative features from their MI responses (S. M. Hosni et al. 2019; Kasahara et al. 2012). 

Recently, fNIRS opened new horizons to characterize and decode the MI neural response for 

communication, with remarkably promising results for both healthy and patient populations (S M 

Hosni et al. 2020; Naseer and Hong 2015). fNIRS is an optical neuroimaging modality that 

measures changes in oxygenated (HbO2) and deoxygenated (HbR) hemoglobin concentrations on 

the cortical surface (Ayaz et al. 2013). Similar to EEG, fNIRS is a noninvasive, safe, portable, and 

cost-effective neuroimaging modality suitable for less restrictive recordings at patients’ bedside 

(Ayaz et al. 2013). With EEG’s instantaneous measure of neural activity, which complements 

fNIRS’ metabolic-based spatial specificity, and its robustness to various types of artifacts, EEG 

and fNIRS represent excellent candidates for simultaneous multimodal recording that capitalizes 

on their similarities and maximizes the benefits from their complementary features. However, to 

exploit the potential benefits of combining both modalities in a hybrid MI-BCI framework fully, 

systematic approaches are needed to characterize the fused EEG-fNIRS representation of the MI 

neural responses to ensure that the discriminative features that capture the underlying neural 

dynamics embedded in these multimodal signals are extracted completely, and translated 
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meaningfully into efficient means of communication (Ahn and Jun 2017; Deligani et al. 2021).  

To date, several MI-BCI studies have explored the combination of EEG with fNIRS to improve 

MI-BCI performance. Hybrid MI-BCI systems were first investigated in (Fazli et al. 2012) in 

which integrating fNIRS features with EEG spectral band-power features was suggested and 

enhanced the classification accuracy by 5% on average. However, in their study, the hybrid EEG-

fNIRS configuration was based upon “decision-level” fusion of both modalities, in which the 

unimodal features were fed into separate classifiers on an individual level and the final outcome 

was selected optimally based upon the union of both modalities through a meta-classifier (i.e., the 

final decision is based upon either EEG or fNIRS). Moreover, only the mean changes in HbO2 and 

HbR concentrations in fNIRS were used as fNIRS features, which did not capture the MI 

hemodynamic response temporal characteristics fully.  

Other studies have investigated “feature-level” fusion, in which EEG and fNIRS features are 

concatenated and selected optimally before training the classifier to provide a broader range of 

information (Buccino, Keles, and Omurtag 2016; Chiarelli et al. 2018; Khan, Hong, and Hong 

2014).This allows greater synergy between modalities as the classifier can learn a fused electrical-

hemodynamic representation of the MI neural response. For example, in (Buccino, Keles, and 

Omurtag 2016) slope indicators of HbO2 and HbR were combined with their mean to generate a 

set of features extracted from fNIRS signals and regularized common spatial patterns (RCSP) 

estimated separately for μ- and β-filtered EEG signals, which resulted in 85% and 92% 

classification accuracies for EEG and fNIRS, respectively, in a Movement-Rest recognition task. 

In their work, simple concatenation of EEG and fNIRS features achieved a 2% improvement in 

accuracy over fNIRS unimodal classification, and no feature selection strategy was used, as their 

feature set was small. A hybrid EEG-fNIRS configuration was proposed in (Khan, Hong, and Hong 

2014) to increase the number of control commands to four and eight commands, respectively. The 

control commands were decoded from ME tasks in EEG and mental arithmetic (MA) tasks in 

fNIRS. The MI features were extracted based upon the β-filtered EEG peak amplitudes, and only 

the mean values of HbO2 and HbR were used as fNIRS features. They reported high classification 

accuracies across subjects that ranged from a mean of 80-95%. However, the objective of their 

study was to increase the number of control commands, and hence, the classification accuracy was 

evaluated individually for each modality and each control command without considering EEG-

fNIRS data fusion. Chiarelli et al. (2018) achieved a significant 10% mean increase in performance 
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across subjects using multimodal EEG-fNIRS recording when compared to standalone modalities. 

The study used an advanced non-linear deep learning classification procedure to learn complex 

synergistic structures in the fused data on the feature-level. However, similar to previous studies, 

classical linear spectral power features were extracted from EEG, while only the mean HbO2 and 

HbR concentrations were extracted as fNIRS features. While the improvement in performance 

over unimodal classification was promising, the extracted fNIRS features did not capture the 

hemodynamic response’s temporal characteristics fully, which potentially degrades the unimodal 

classification accuracy and affects the fused EEG-fNIRS representation in the hBCI framework. 

In another study by Yin et al. (2015), a hybrid EEG-fNIRS framework was used to decode the 

force and speed of hand clenching to increase the number of classified commands in MI-BCI. The 

authors investigated the effect of broadening the information content within each modality on the 

classification accuracy of both the unimodal and fused levels. Band-power, amplitude, phase, and 

frequency features were extracted from μ and β frequency bands in EEG rather than relying solely 

on the classical band-power features, while the difference between HbO2 and HbR concentrations 

(HbD) was proposed as a single feature to increase the fNIRS classification accuracy. The mean 

classification accuracy improved by 18% over classical power features for EEG and 1% over 

individual HbO2 and HbR features. To optimize the fused EEG-fNIRS feature selection, a feature 

optimization method based upon joint mutual information was proposed to remove redundant 

information that might affect the classification accuracy. However, the improvement in the hybrid 

framework’s performance was 13% and 1% over unimodal fNIRS and EEG, respectively, when 

averaged over all subjects. To avoid a priori feature selection, deep learning was adopted in 

(Saadati, Nelson, and Ayaz 2020b) to extract the fused discriminative EEG-fNIRS representation 

directly and optimize classification performance. The decrease/increase in power spectral density, 

i.e., event-related de/synchronization (ERD/ERS) in the μ and β frequency bands were extracted 

as discriminative features for EEG, while only the mean HbO2 and HbR were extracted from 

fNIRS from all the recording channels. Promising hybrid performance improvements of 8% and 

18% were achieved over unimodal fNIRS and EEG, respectively. Nevertheless, a large EEG 

dataset was required in their study to apply such deep-learning techniques (Shin et al. 2018). 

In addition to the applications of EEG-fNIRS in MI-BCIs aforementioned, many studies have 

considered EEG-fNIRS feature-level fusion procedures to improve the performance in other hBCI 

applications. For example, Nguyen et al. (2017) classified driver drowsiness during long-term 
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simulated driving using combined EEG and fNIRS features and achieved a mean 5.5% 

improvement in accuracy when compared to single modality features. In (Saadati, Nelson, and 

Ayaz 2020a), a deep learning procedure was used to classify mental workload from temporal and 

spectral features extracted from fNIRS and EEG data with a mean improvement in classification 

of 8% and 23% over unimodal fNIRS and EEG features, respectively. EEG-fNIRS feature-level 

fusion was performed in (Al-Shargie, Tang, and Kiguchi 2017) using canonical correlation 

analysis (CCA) and resulted in 7.9% and 12.1% improved accuracy in a mental stress assessment 

problem over unimodal EEG and fNIRS, respectively. In (Deligani et al. 2021), the mutual 

information criterion was used as a powerful mathematical tool for feature selection to minimize 

the redundancy between high-dimensional multimodal EEG-fNIRS features to classify neural 

responses of a visuo-mental paradigm adopted from the P300 BCI speller application. The mutual 

information-based feature selection resulted in a 16% improvement in accuracy over hybrid 

classification with no feature selection, and 12% and 23% improvements over single modal 

classification using EEG and fNIRS, respectively. 

Despite these considerable efforts to merge EEG with fNIRS for BCI applications, a significant 

gap remains before the benefits envisioned for multimodal hybrid techniques to achieve robust and 

desirable performance in practical environments can be obtained. This is likely attributable to the 

need of a methodological computational approach that optimizes the representation and selection 

of fused electrical and vascular-hemodynamic features in an integrative manner that exploits EEG 

and fNIRS’s unique properties from the multimodal high-dimensional features efficiently (Ahn 

and Jun 2017). This is crucial to ensure a synergistic multimodal representation that is not 

dominated by a single modality in a hBCI context and to avoid redundant information in the fused 

feature space that can potentially degrade classification performance (Yin et al. 2015). To realize 

this, a systematic approach is needed to characterize the underlying dynamics of the MI neural 

response fully within each single modality before exploiting their complementary synergistic 

features. This is considered a crucial step before the selection of discriminative fused features to 

ensure that the information content of the fused MI response representation in the feature space is 

maximized. However, an additional challenge related to overfitting is imposed due to the increased 

dimensionality of the multimodal feature vector resulting from concatenating multimodal features 

from multiple channels, together with the limited number of samples available from simultaneous 

EEG-fNIRS recordings (Lotte et al. 2007). To address this, various feature selection approaches 
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have been suggested for MI-BCIs. However, least absolute shrinkage and selection operator 

(LASSO) feature selection algorithms, which relies on obtaining a refined model of the data 

through compressing some regression coefficients while setting others to zero based on a defined 

penalty function, have demonstrated practicality and superiority for MI-BCIs compared to other 

methods, particularly for relatively small datasets where deep learning techniques cannot be 

adopted (Jiang et al. 2020). Therefore, Lasso is advantageous for processing biased estimates with 

complex data and retains the advantage of subset shrinkage (Jiang et al. 2020). 

In order to explore the underlying dynamics of MI responses within each single modality fully, 

the mean HbO2 and HbR concentrations may not be sufficient to characterize the MI hemodynamic 

response’s temporal dynamics completely. Including other statistical features can therefore 

broaden the information range of the hemodynamic feature space, and hence, improve the 

discrimination of fNIRS modality. Similarly, for EEG, the inherent complex nonstationary nature 

of the signals suggests investigating novel analysis methods to discriminate the MI response better 

beyond traditional linear spectral analysis features. Generally, from the perspective of nonlinear 

dynamics, the brain is a very complex dynamic system at all levels, from the nonlinear modeling 

of a single neuron’s burst patterns to the macroscopic measurement of the activity of large groups 

of neurons measured with EEG from the surface of the scalp (McKenna, McMullen, and 

Shlesinger 1994). Rooted in chaos theory and the nonlinear dynamic systems literature, the 

recurrence quantification analysis (RQA) approach is a powerful nonlinear analytic tool developed 

for chaotic time series. RQA has been applied successfully to measure numerous biological 

signals’ complexity, particularly when traditional techniques fail, including heart rate variability 

(Acharya, Chua, et al. 2011; Norbert Marwan et al. 2002; Zbilut, Thomasson, and Webber 2002) 

muscle (Bauer et al. 2017; Ikegawa et al. 2000), as well as epileptic EEG (Ngamga et al. 2016). 

Because they are more suitable for the analysis of short, noisy, and nonstationary time series, RQA 

complexity measures were proposed as a new way to analyze event-related potentials by 

identifying transitions in the brain process during surprising moments on a single trial level, rather 

than the traditional averaging of many trials, which emphasizes RQA’s robustness (Norbert 

Marwan and Meinke 2004). Complex system’s recurrent behavior involves transitions between 

periods of regularities to more complex irregular cycles, as well as chaos to chaos transitions 

(Norbert Marwan and Meinke 2004).  

Recent evidence from our group and others suggested that nonlinear RQA features are sensitive 
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to transitions between motor tasks and rest in EEG (Ismail Hosni et al. 2021; Pitsik et al. 2020). 

For example, in a previous study (Ismail Hosni et al. 2021), nonlinear RQA and graph-based 

features were evaluated for an EEG-based MI-BCI with a mean improvement of 5.8% when 

compared to commonly used linear spectral features. To date, nonlinear features have not been 

explored for hybrid MI-BCIs. Exploring these nonlinear properties of EEG will broaden the 

information range decoded from the MI response. In this respect, RQA and graph-based features 

may provide a novel dimension of characteristic nonlinear features for hybrid MI-BCIs. These 

features characterize the underlying nonlinear dynamics of the complex sensorimotor neural 

system and their corresponding graph-based topological information from the EEG time series 

observed during motor tasks.  

The goal of this study is to propose a systematic multimodal data fusion framework to represent 

and decode MI neural responses for hBCIs. The framework extracts high-dimensional multimodal 

linear and nonlinear features that expand the information content within the single modalities, and 

then adopts a fused feature selection strategy to identify discriminative synergistic EEG-fNIRS 

fused features to improve MI response discrimination. Our purpose is to extract a fused EEG-

fNIRS feature set that will unveil a unique complementary representation that is not primarily 

dominated by a single modality toward an enhanced MI neural classification. For this purpose, we 

propose to analyze the changes in the nonlinear dynamics and recurrence patterns underlying the 

MI-based EEG neural responses and extract graph-based nonlinear features as an additional 

information dimension to the commonly used EEG linear spectral band-power features. Further, 

we extract a set of statistical features for the temporal characterization of fNIRS MI responses. We 

hypothesize that the EEG nonlinear features will complement the commonly used EEG linear 

spectral features that characterize the sensorimotor oscillatory variations in the electrical MI 

response combined with fNIRS features that characterize the temporal characteristics of the 

hemodynamic MI response in a hybrid EEG-fNIRS BCI fashion. The fusion of the extracted 

multimodal features is evaluated to determine the effect of the proposed features on the 

improvement in hybrid EEG-fNIRS MI-BCI’s performance. In addition, a Fusion Level (FL) 

metric is proposed to quantify the balance of proportion of (EEG/fNIRS) feature contribution to 

the total number of selected fused feature set. This will evaluate the effect of the proposed features 

on extracting a synergistic multimodal representation that is not dominated by a single modality. 

Through the proposed analyses, we intend to investigate a new informative dimension to decode a 
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synergistic representation of MI neural signatures that will ultimately enhance hybrid MI-based 

BCI applications’ performance. Simultaneous EEG-fNIRS data were recorded from eight healthy 

participants as they performed a MI-Rest task. RQA analysis and complex network theory were 

used to extract the nonlinear dynamics within the μ and β frequency bands. Nonlinear graph-based 

RQA features were extracted from the recurrence plots (RPs) reconstructed from each μ- and β-

filtered one-dimensional EEG time series measured at each channel and its adjacency matrix 

reinterpretation. Spectral features were extracted using the mean power spectral density over the 

corresponding frequency bands. The fNIRS response’s temporal characteristics were captured 

fully using various features (i.e., slope, mean, maximum, variance, skewness, kurtosis, and the 

difference between the mean and minimum activity) extracted from fNIRS HbO2 and HbR. To 

overcome the challenge of high-dimensional multimodal feature vectors, we applied the LASSO 

algorithm to select the most informative fused features. Three types of EEG-fNIRS fused data 

were evaluated to analyze the effect of broadening the information content of the MI neural 

response on the performance of hybrid MI-BCI. The performance of the unimodal techniques was 

evaluated further for comparison through a 5-fold cross-validation procedure using a linear support 

vector machine (SVM).  

 

2. Materials and Methods 

A graphical illustration/flow diagram of the proposed computational multimodal framework is 

presented in Fig. 1, including the EEG and fNIRS data acquisition, the data preprocessing, and the 

multimodal feature fusion and classification procedure. 

2.1.  Data Acquisition, Participants, and Experimental Protocol 

EEG and fNIRS signals were recorded simultaneously using a single cap mounted with both EEG 

electrodes and fNIRS optodes. EEG was recorded from 13 Ag/AgCl electrodes (i.e., channels) 

referenced to the left earlobe and amplified using a g.USBamp amplifier (g.tec medical 

engineering). The signals were digitized at 256 Hz and zero-phase bandpass filtered (1–45 Hz). 

The EEG channels covered the pre-motor (FC3, FC4), primary motor (C1, C3, Cz, C2, C4), 

sensorimotor (CP1, CP3, CP2, CP4), and parietal (P3, P4) areas of the brain according to the 10–

5 system. An additional electrode was placed at FCz as the ground electrode. fNIRS data were 

recorded using NIRScout (NIRX Inc., NY, USA), with two near-infrared light wavelengths (760 
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nm and 850 nm) to acquire HbR and HbO2 responses. The fNIRS probe layout resulted in 14 

fNIRS channels covering the pre/frontal cortex in addition to the primary motor cortex. The signals 

were digitized at 15.6 Hz, and the optode montage was configured using 16 probes, 8 sources, and 

8 detectors, with a separation distance of ~3 cm to maintain acceptable signal quality and sensing 

depth Fig. 2-left shows a schematic head montage model of the EEG-fNIRS sensors layout to 

capture the electrical-hemodynamic MI response (Buccino, Keles, and Omurtag 2016; S M Hosni 

et al. 2020; S. M. Hosni et al. 2019) Data acquisition for EEG and fNIRS and the design of the MI 

paradigm were handled by BCI2000 software (Schalk et al. 2004) and NIRStar software (NIRX 

Inc., NY, USA). 

Eight healthy participants with no reported history of neurological disease attended two MI 

data recording sessions on separate days. Each session contained three runs separated by 

approximately 5 minutes of rest. During each run, subjects were instructed to respond to visual 

cues presented on-screen with either left-hand motor imagery when the cue appears on the left side 

of the screen; right-hand motor imagery when the cue appears on the right side of the screen; and 

resting when the cue appears in the middle of the screen (Fig. 2-right). Each run consisted of 20 

trials for each type of MI tasks randomly, with Rest trials in between (20 MI trials and 20 Rest 

trials per run). The resting cue was a green circle positioned in the middle of the screen to help 

them relax, allowing hemodynamic responses to return to baseline. None of the participants had 

previous BCI experience. The first session was used to familiarize the subjects with the task and 

the second session was used for data analysis.  

2.2.  Data Preprocessing 

Eye movement artifacts were removed from EEG data using the extended Infomax Independent 

Component Analysis (ICA) algorithm using the EEGLAB toolbox (Brunner, Delorme, and 

Makeig 2013). The artifact-free signal was then reconstructed after removing the predominant 

artifactual components identified by visual inspection. The data were then zero-phase bandpass 

filtered into the μ (8–12 Hz) and β (13–25 Hz) frequency bands for further analysis. EEG data 

were re-referenced offline using a common average reference (CAR) (McFarland et al. 1997). For 

fNIRS data, the modified Beer-Lambert Law was used to calculate changes in the concentrations 

of HbO2 and HbR using recorded alterations in the reflected light attenuation (Sassaroli and Fantini 

2004). fNIRS data were then band-pass filtered at 0.01-0.09 Hz to eliminate physiological noise 
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caused by respiration (~0.3 Hz), cardiac activities (~1 Hz), and Mayer waves (~0.1 Hz). As fNIRS 

signal quality can be heavily compromised by poor coupling of optodes to the head, due to optical 

interference from dense and heavily pigmented hair, the quality of the signal was automatically 

evaluated through the signal-to-noise-ratio (SNR) of each channel using NIRScout. Further, an 

exclusion criterion was considered based on a correlation threshold between HbO2 and HbR, 

indicating a high-level physiological motion artifact (Cui, Bray, and Reiss 2010). The running 

correlation between HbO2 and HbR was calculated for each channel, and if it exceeded a 0.5 

threshold, or was strictly −1, the channel was discarded. The data from both modalities (i.e., EEG 

and fNIRS) were segmented into 10-sec trials synchronized with the appearance of the visual 

stimulus cues (Rest/LMI/RMI). Individual MI trials that contained artifacts were automatically 

rejected based on subject-specific thresholds from both modalities. For MI vs. Rest classification, 

the trials were combined to form two sets with 60 trials for each condition of MI and Rest 

representing the two classes (i.e. 20 trials MI and 20 trials Rest for each run). 

2.3.  Data Analysis 

2.3.1. Linear Data Analysis 

For the EEG spectral features, the average power spectral density (PSD) was calculated using 

Welch's method from the filtered EEG signals giving PSD-μ and PSD-β extracted from each 

channel. This resulted in a total of 26 linear EEG spectral features extracted from each trial from 

all the 13 EEG channels from both frequency bands (Kübler et al. 2005). In order to capture the 

characteristics of the MI hemodynamic response fully, seven discriminative features were 

extracted from each HbO2 and HbR response, corresponding to MI and Rest trials (S M Hosni et 

al. 2020), including slope (SlopeHbO2, SlopeHbR), mean (MeanHbO2, MeanHbR), maximum 

(MaxHbO2, MaxHbR), variance (VarHbO2, VarHbR), skewness (SkewHbO2, SkewHbR), kurtosis 

(KurtHbR, KurtHbR), and the difference between the mean and the minimum (DMMHbO2, 

DMMHbR). This resulted in a total of 196 fNIRS features extracted from each trial from both 

HbO2 and HbR (i.e., seven features were extracted from each fNIRS concentration change from 

each of the 14 channels). The features were extracted from several window sizes as follows: 

Considering the high temporal resolution for EEG, [0-2], [0-5], and [0-10] sec post-stimulus 

windows were considered for each frequency band. For slower hemodynamic response in fNIRS, 

[0-5], [2-7], [4-9], and [0-10] sec post-stimulus windows were considered for both fNIRS 
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concentration variations. These windows were chosen based on the typical hemodynamic response 

pattern of rising HbO2 levels coupled with a decrease in HbR response approximately in the same 

time of the rise corresponding to an approximate hemodynamic response delay of 4 to 6 seconds 

relative to MI stimulus onset (S M Hosni et al. 2020). The optimized response windows were then 

selected for each modality based on the global peak of a nested 5-fold cross-validation 

classification procedure as explained in section 2.4.  

2.3.2. Graph-based Recurrence Quantification Analysis and Complex 

Network Features 

In order to approximate the nonlinear neural dynamics underlying the MI and Rest tasks within 

each μ and β frequency bands separately, the bandpass filtered one-dimensional EEG signal 

measured at each frequency band, each channel, and each 10-sec MI/Rest trial was projected to a 

multi-dimensional phase space based on Takens’ theorem of time-delay embedding (Norbert 

Marwan et al. 2007) using the following equation (Takens 1981): 

 𝑋𝑘 = (𝑥𝑘 , 𝑥𝑘+𝜏, … , 𝑥𝑘+(𝑚−1)𝜏)       

where 𝑋𝑘 is the reconstructed phase space vector based on the observation 𝑥𝑘 of the bandpass 

filtered EEG time series (𝑥1, 𝑥2, … , 𝑥𝐿), 𝐿 is the number of samples in the EEG time series, 𝜏 is 

the time delay, and 𝑚 is the embedding dimension. The time-delay parameter (𝜏) and the 

embedding dimension (𝑚) were estimated using the average mutual information (AMI) and the 

false nearest neighbor (FNN) methods respectively (Eckmann, Oliffson Kamphorst, and Ruelle 

1987). The time delay 𝜏 and the embedding dimension 𝑚, were directly calculated for μ and β 

frequency bands using only the training set of each of the 5 cross-validation folds as explained in 

section 2.4. The phase space reconstruction can be represented as an 𝑁 ×  𝑚 trajectory matrix 

𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑁 )𝑇 where 𝑁 =  𝐿 − (𝑚 − 1) is the number of states in time, and 𝐿 is the 

number of samples in the EEG time series. Next, the recurrence plots (RPs) were created to 

visualize and quantify the recurrence patterns of the 𝑚-dimensional phase space trajectory 𝑋 

corresponding to each trial within each frequency band in a 2-dimensional plot (Eckmann, Oliffson 

Kamphorst, and Ruelle 1987). RPs were constructed by considering an 𝜀-neighborhood of states 

in phase space as follows: 

 𝑅𝑃𝑖,𝑗(𝜀) = Θ(𝜀 − ‖𝑋𝑖 − 𝑋𝑗‖)     𝑖, 𝑗 = 1, … , 𝑁 (2) 
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where 𝑅𝑃 is the 𝑁 ×  𝑁 recurrence plot, 𝑁 is the number of states in time, Θ is the Heaviside 

function, 𝜀 is the recurrence threshold determining the size of the neighborhood in state space, 

‖∎‖ is the Euclidean norm, and 𝑋 is the reconstructed phase space vector. The recurrence exists 

when 𝑅𝑃𝑖,𝑗=1, (i.e., when the state space vectors at time 𝑖 and 𝑗 are within the same 𝜀-

neighborhood). The choice of the 𝜀-neighborhood threshold was based on previous studies’ 

recommendation and should not exceed 10% of the maximum phase space diameter (Norbert 

Marwan et al. 2007). Therefore, the value of 𝜀 was optimized for each participant by choosing 

from four different thresholds, namely 3%, 5%, 7%, and 10% of the maximum phase space 

diameter, for each frequency band, based on the global peak of a nested 5-fold cross-validation 

classification procedure as explained in section 2.4. The steps of the EEG nonlinear analysis can 

be visualized in Fig. 3 for a 30-sec Rest-MI-Rest task to illustrate the changes in the recurrence 

patterns across tasks as visualized in the RPs. 

 Features characterizing the recurrence patterns in each trial were extracted using graph-based 

RQA and complex network representations of the recurrence plots were reconstructed from each 

one-dimensional EEG time series measured at each channel. As it is common to find small 

distances between points in the reconstructed phase space that are close in time, the Theiler 

window in this study was set to a value of (𝑚 − 1)𝜏 so that only points that are farther than (𝑚 −

1)𝜏 from the diagonal were taken into account in the evaluation of the RQA measures (Javorka et 

al. 2009). 

The recurrence patterns were quantified using the vertical and diagonal line structures of the 

RPs using the nonlinear RQA features. 12 RQA features were extracted, namely, recurrence rate 

(RR), determinism (DET), the mean length of a diagonal line (LMEAN), the maximum length of a 

diagonal line (LMAX), the maximum vertical length (VMAX), the trapping time (TT), the laminarity 

(LAM), the entropy of diagonal line length distribution (ENTR), the entropy of vertical line length 

distribution (ENTRV), the recurrence time entropy (RTE), and the recurrence times of first type 

(RT1) and second type (RT2) (Norbert Marwan et al. 2007),(Webber, Jr. and Marwan 2015),(N. 

Marwan 2013). In addition, two features from complex network theory, namely the global 

clustering coefficient (CC) and transitivity (T), were extracted from the adjacency matrix 

reinterpretation of the RP to include the topological characteristics of the recurrence patterns. The 

features were extracted from the RP corresponding with μ and β frequency bands separately using 

the following equations(Webber, Jr. and Marwan 2015). 
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 𝑅𝑅 =
100

𝑁2
∑ 𝑅𝑃𝑖,𝑗

𝑁
𝑖,𝑗=1  (3) 

where 𝑅𝑅 is the recurrence rate, which is a measure of the density of recurrence points in 𝑅𝑃, and 

𝑁 is the number of states. DET is a relative measure of the system’s regularity defined as the 

percentage of recurrence points forming diagonal structures with respect to all recurrence points 

in RP as follows:  

 𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 (4) 

where 𝑃(𝑙) is the frequency distribution of diagonal lines of length 𝑙, and 𝑙𝑚𝑖𝑛 = 2 is the length of 

the shortest diagonal (Norbert Marwan et al. 2007). LMAX is the maximum length of diagonal 

structures defined as follows: 

 𝐿𝑀𝐴𝑋 = max ({𝑙𝑖: 𝑖 = 1 … 𝑁𝑙}) (5) 

where 𝑙𝑖 is the length of diagonal line 𝑖, and 𝑁𝑙 is the total number of diagonal lines. LMEAN is 

the average diagonal line length defined as follows: 

 𝐿𝑀𝐸𝐴𝑁 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 (6) 

where 𝑃(𝑙) and 𝑙𝑚𝑖𝑛 = 2 remain as defined in the explanation of DET. LAM is the laminarity, 

representing the probability of occurrence of laminar states in the system defined as follows:  

 𝐿𝐴𝑀 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

 (7) 

where 𝑃(𝑣)  is the frequency distribution of vertical lines of length 𝑣, and 𝑣𝑚𝑖𝑛=2 is the length of 

the shortest vertical line  (Norbert Marwan and Meinke 2004). 𝑉𝑀𝐴𝑋 is the maximum length of 

vertical structures, i.e., the longest duration of the laminar states defined as follows: 

 𝑉𝑀𝐴𝑋 = max ({𝑣𝑖: 𝑖 = 1 … 𝑁𝑣}) (8) 

where 𝑣𝑖 is the length of vertical line 𝑖, and 𝑁𝑣 is the total number of vertical lines. TT represents 

the average length of vertical lines defined as follows: 

 𝑇𝑇 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 (9) 

where 𝑃(𝑣)  and 𝑣𝑚𝑖𝑛=2 is the same as explained for LAM. ENTR refers to the Shannon entropy 

and it is defined as a complexity measure of the deterministic diagonal line structures in the RP as 

follows: 

 𝐸𝑁𝑇𝑅 = − ∑ 𝑝(𝑙)ln 𝑝(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 (10) 

where 𝑝(𝑙)= 𝑃(𝑙)/𝑁𝑙 is the estimated probability of finding a diagonal line of length 𝑙. Similarly, 
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the ENTRV refers to the entropy of vertical lines, reflecting the complexity of the vertical lines 

structure, defined as follows: 

 

 𝐸𝑁𝑇𝑅𝑉 = − ∑ 𝑝(𝑣)ln 𝑝(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 (11) 

where 𝑝(𝑣)= 𝑃(𝑣)/𝑁𝑣 is the estimated probability of finding a vertical line of length 𝑣. 𝑅𝑇𝐸 is 

the recurrence time entropy, i.e., the entropy of the “white” (non-recurrent) vertical lines indicating 

recurrence times 𝑡𝑤defined as follows: 

 𝑅𝑇𝐸 = − ∑ 𝑝(𝑡𝑤) 𝑙𝑛 𝑝(𝑡𝑤)
𝑇𝑚𝑎𝑥
𝑡𝑤=1  (12) 

where 𝒑(𝒕𝒘) = 𝑷(𝒕𝒘)/𝑵𝒘 is the estimated probability of a recurrence time 𝒕𝒘, 𝑷(𝒕𝒘) is the 

distribution of recurrence times, and 𝑻𝒎𝒂𝒙 is the maximum recurrence time (Pitsik et al. 2020). 

The recurrence times of first type (𝑹𝑻𝟏) and second type (𝑹𝑻𝟐) are defined according to (Gao 

1999; Norbert Marwan et al. 2007) First, denote the set of points that are defined as  𝜺-

neighborhood recurrences of an arbitrary phase space vector 𝑿𝒊 as 𝕽𝒊={𝐗: ||𝐗 − 𝑿𝒊|| ⩽  ε}. The 

elements of this set correspond to the recurrence points 𝒋 of the 𝒊th column{𝑹𝒊,𝒋}𝒊,𝒋=𝟏
𝑵 of the RP. 

Then, the recurrence times of the first type are defined as follows: 

 {𝑅𝑇1𝑘 = 𝑗𝑘+1 − 𝑗𝑘}𝑘∈𝑁 (13) 

where 𝑅𝑇1𝑘 represent the recurrence times corresponding to the recurrence point j in ℜ𝑖, and 𝑘 is 

the recurrence point index from 1 to 𝑁. The recurrence times of the second type (i.e., Poincare 

recurrence times) are calculated after removing all consecutive recurrence points with 𝑅𝑇1𝑘 =

1 from the set ℜ𝑖. This results in a new set ℜ𝑖
′of remaining recurrence points 𝑗′. Then, the 

corresponding recurrence times are calculated as follows: 

 {𝑅𝑇2𝑘 = 𝑗𝑘+1
′ − 𝑗𝑘

′ }𝑘∈𝑁 (14) 

where 𝑅𝑇2𝑘 represent the recurrence times corresponding to the recurrence points 𝑗′ in ℜ𝑖
′ , and 

𝑘 is the recurrence point index from 1 to 𝑁 as previously explained. Hence, 𝑅𝑇2 measures 

vertically the time distance between the beginning of (vertically) subsequent recurrence structures 

in the RP (Norbert Marwan et al. 2007) 

To extract the topological characteristics of the trajectory in phase space, an undirected 

unweighted recurrence network whose elements are denoted by a binary adjacency matrix 

𝐴𝑖,𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁. 𝐴 is defined in terms of the associated RP as follows (Donner et al. 2011): 

 𝐴𝑖,𝑗 = 𝑅𝑃𝑖,𝑗 − 𝛿𝑖,𝑗 (15) 
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where 𝜹𝒊,𝒋 is the Kronecker delta. Each node of the network corresponds to an EEG sample in time, 

and edges are conveniently represented by the recurrence links based on the 𝜺-neighborhood in 

phase space (Donner et al. 2010). 𝑨𝒊,𝒋 = 𝟏 if vertex 𝒊 connects to vertex 𝒋, and 𝑨𝒊,𝒋 = 𝟎 if the edge 

(𝒊, 𝒋) does not exist, i.e., there is no recurrence of the system’s state at time 𝒊 and 𝒋. Since we 

considered a Theiler window in our study, the RP was regarded to be the adjacency matrix A for 

further analysis. From RP, two graph-based features were defined as follows (Norbert Marwan et 

al. 2009): 

 𝐶𝐶 = ∑
𝐶𝑣

𝑁
𝑁
𝑣=1  (16) 

where 𝐶𝐶 is the global clustering coefficient, introducing a new recurrence aspect of the RP as it 

represents the probability that two recurrences of any state are also neighbors, and 𝐶𝑣is the local 

clustering coefficient defined for each node 𝑣 (Norbert Marwan et al. 2009). Then, transitivity 𝑇 

which provides an effective measure of the global dimensionality of the underlying dynamical 

system is defined as follows (Feldhoff et al. 2013):  

 𝑇 =
∑ 𝐴𝑖,𝑗𝐴𝑗,𝑘𝐴𝑘,𝑖

𝑁
𝑖,𝑗,𝑘=1

∑ 𝐴𝑖,𝑗𝐴𝑘,𝑖
𝑁
𝑖,𝑗,𝑘=1

 (17) 

In summary, the nonlinear analysis resulted in a total of 364 nonlinear graph-based RQA and 

complex network features extracted from each EEG trial from both μ and β frequency bands (i.e., 

14 features were extracted from 2 frequency bands from each of the 13 channels) to quantify the 

nonlinear dynamics underlying the MI-Rest tasks. All RQA related computations were performed 

using custom MATLAB (R2016b) code adapted from the CRP Toolbox (N. Marwan 2013). The 

features were extracted from several window sizes, similar to linear EEG features, and the 

optimized response window was selected within each frequency band based on the global peak of 

a nested 5-fold cross-validation classification procedure as explained in section 2.4. The 

illustration of the sensitivity of the extracted graph-based RQA and complex network features to 

the transition from the background neuronal activity (Rest) to MI through a time-dependent 

quantification of the feature values during 30-sec Rest-MI-Rest task is shown in Fig. S.1 in the 

supplementary section.   

2.4.  Multimodal Feature Fusion and Classification Procedure 

To evaluate the effect of multimodal EEG-fNIRS fusion on classification performance and 
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investigate the effect of nonlinear features in complementing and increasing the synergy between 

both the linear PSD features in EEG and the characteristic temporal features in fNIRS, three types 

of EEG-fNIRS data fusion were evaluated; namely, EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS, 

and EEG (linear+nonlinear)-fNIRS. For comparison, the performance of each of the three types of 

extracted features, i.e., EEG (linear), EEG (nonlinear) and fNIRS, were individually evaluated on 

a unimodal level.  

Linear SVM was used to evaluate performance for each subject using a nested 5-fold cross-

validation procedure to avoid biased estimation of the generalization error. To account for the high 

response variability in the neural data, hyper-parameter optimization was performed independently 

for each of the 5 outer-folds based on the global peak of the nested 5-fold cross-validation 

procedure (i.e., inner-folds) within each of the 5 outer-folds. The nonlinear RQA parameters (i.e., 

the time delay τ, the embedding dimension m, and the ε-neighborhood threshold) as well as the 

classification parameters (i.e., optimized response window and optimized number of selected 

features) were estimated and simultaneously optimized using only the training set of each of the 

outer-folds within the nested 5-fold cross-validation procedure. As the MI response dynamics vary 

across modalities (EEG/fNIRS), feature types (linear/nonlinear), and frequency bands for EEG, 

the response windows were optimized independently for EEG (linear), EEG (nonlinear) and fNIRS 

features. For unimodal EEG (linear/nonlinear) classification, three post stimulus windows were 

considered for the optimization testing for both the μ and β frequency bands ([0-2], [0-5], and [0-

10] sec). To do so, for each window, the features were extracted from the window corresponding 

to each band and then concatenated to constitute a single (linear/nonlinear) EEG feature vector 

containing all extracted features from all channels corresponding to the combined response 

windows. As each frequency band has its own separate dynamics, with the β frequency band being 

the higher of the two, combinations of longer μ-band response windows with shorter β-band 

response windows were also considered resulting in a total of six possible EEG (linear/nonlinear) 

combined response windows for optimization testing corresponding to the six combinations of μ 

and β response windows (μ[0-2] sec+β[0-2] sec, μ[0-5] sec+β[0-5] sec, μ[0-10] sec+β[0-10] sec, 

μ[0-5] sec+β[0-2]sec, μ[0-10] sec+β[0-2] sec, and μ[0-10] sec+β[0-5] sec). These response 

windows were considered in the hyper-parameter optimization of unimodal EEG (linear/nonlinear) 

classification and for the multimodal EEG-fNIRS classification. Due to the relatively slower 

dynamics of fNIRS, four possible response windows ([0-5], [2-7], [4-9], and [0-10] sec) were 
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considered for the nested 5-fold cross-validation optimization testing. The seven aforementioned 

fNIRS features were extracted from both HbO2 and HbR and then concatenated resulting in four 

possible combinations of fNIRS response windows (HbO2[0-5] sec+HbR[0-5] sec, HbO2[2-7] 

sec+HbR[2-7] sec, HbO2[4-9] sec+HbR[4-9] sec, and HbO2[0-10] sec+HbR[0-10] sec). In 

addition, for the unimodal EEG (nonlinear) classification, the time delay τ and the embedding 

dimension m were directly calculated for the μ and β frequency bands using only the training set 

of each of the 5 cross-validation outer-folds. However, the choice of ε for the nonlinear features 

extraction was simultaneously optimized with the choice of the response windows within the 

nested 5-fold cross validation procedure. This resulted in 96 possible unimodal nonlinear EEG 

feature vectors to be considered for optimization testing (6 response windows × 4 × 4 possible 

combinations of ε-neighborhood threshold for μ and β frequency bands).  

 For multimodal classification, the EEG (linear/nonlinear) feature vector was concatenated 

with the fNIRS feature vector for EEG (linear/nonlinear)-fNIRS feature fusion. Similarly, for EEG 

(linear+nonlinear)-fNIRS feature fusion, all of the extracted features were concatenated resulting 

in a single multimodal feature vector completely characterizing the linear and nonlinear EEG 

dynamics as well as the fNIRS temporal dynamics. For hyper-parameter optimization, all the 

possible combinations of multimodal feature vectors corresponding to all possible choices of 

combined multimodal response windows were considered. For EEG (linear)-fNIRS, 24 possible 

multimodal feature vectors corresponding to the multimodal response windows were considered 

within the nested 5-fold cross-validation procedure. The multimodal response windows were based 

on all the possible combinations of response windows within each modality (i.e., 6 EEG response 

windows × 4 fNIRS response windows = 24 multimodal response windows). As for the EEG 

(nonlinear)-fNIRS and the EEG (linear+nonlinear)-fNIRS hyper-parameter optimization, the 

choice of ε for the nonlinear features extraction was simultaneously optimized with the choice of 

the multimodal response windows, resulting in 384 possible multimodal feature vectors 

corresponding to all possible combinations of parameters (24 multimodal response windows × 16 

possible combinations of ε-neighborhood threshold for μ and β frequency bands= 384 multimodal 

feature vector).  

Due to the high dimensionality of the multimodal EEG-fNIRS feature vectors constructed 

using 26 EEG linear spectral features (PSD-μ  and PSD-β extracted from 13 EEG channels), 364 

EEG nonlinear features (14 μ and β nonlinear features extracted from 13 EEG channels), and 196 
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fNIRS temporal features (7 fNIRS features extracted from each of HbO2 and HbR from 14 fNIRS 

channels), fused feature selection represents a crucial step to ensure the selection of a 

discriminative fused EEG-fNIRS representation of the MI neural response. To do so, we adopted 

the LASSO feature selection scheme, which has been proven to exceed in performance for MI-

BCIs when compared to other feature selection methods especially for relatively small datasets 

(Jiang et al. 2020). Therefore, a fused multimodal electrical-vascular representation of the MI 

response was selected on a multimodal level from the aforementioned constructed high-

dimensional feature vectors. Similarly, for unimodal classification, discriminative features were 

selected using LASSO from the unimodal feature vectors to optimize the selected features within 

each unimodal technique. For all the constructed unimodal and multimodal feature vectors, the 

number of selected features was optimized within the nested 5-fold cross-validation procedure by 

considering different numbers of selected features from each feature vector (ranging from 5 

features to 23 features with steps of 2). Finally, the optimized classification results for each subject 

were averaged over all the 5 outer cross-validation folds and reported along with the results of the 

nested 5-fold cross-validation procedure for all types of unimodal and hybrid classifications.  

2.5.  Fusion Level Quantification 

In order to quantify the balance of proportion of (EEG/fNIRS) unimodal features in the three EEG-

fNIRS data fusion types, we define the Fusion Level (FL) percentage to be the ratio of the number 

of selected features from each modality as below:  

 𝐹𝐿 =
%𝑀𝑖𝑛−𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

%𝑀𝑎𝑥−𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 (18) 

where %𝑀𝑖𝑛 − 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 represents the smaller percentage of features contributed from 

either EEG or fNIRS to the total number of fused selected features and %𝑀𝑎𝑥 − 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

represents the larger percentage of features contributed from either EEG or fNIRS in the total 

number of fused selected features. The FL quantifies the balance of the contribution between both 

modalities such that a 100% FL indicates a perfectly balanced fusion (i.e., each modality 

contributed 50% of the selected fused features) and 0% indicates that one modality completely 

dominated the classification accuracy (i.e., equivalent to unimodal classification). 

3. Results 

In order to show the overall trend of the hyper parameter optimization for the unimodal feature 
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classification, Fig. 4 shows a series of bar plots comparing the optimized nested inner-loop 5-fold 

cross-validation accuracy averaged across the 5 outer-folds for the three types of unimodal features 

and different numbers of selected features for each subject. The plots show that performance of 

unimodal MI classification varies across modalities and feature types for each subject. As it is 

seen, for S-1, S-3, S-5, S-6, and S-7, the temporal fNIRS features outperformed both the linear and 

nonlinear EEG features. The nonlinear EEG features overall performed better than both linear EEG 

and fNIRS features for S-2 and S-4 and outperformed linear EEG features for almost all the 

participants except S-3 and S-8. However, the linear EEG features were the most discriminative 

for S-8. These plots highlight the importance of fully characterizing the hemodynamic fNIRS MI 

response with proper statistical features to improve the classification performance. Furthermore, 

the plots compare the nonlinear RQA and graph-based features to the linear PSD features, 

illustrating the discriminative ability of the nonlinear features for the majority of the participants. 

This emphasizes the importance of systematically characterizing the MI response dynamics across 

modalities and highlights the discriminative ability of the nonlinear recurrence patterns as a new 

informative dimension for MI EEG responses. The figure also illustrates the effect of hyper-

parameter optimization, particularly the number of selected features, on the classification accuracy 

for all modalities. This highlights the importance of accounting for the inter-subject variability 

commonly observed in neural responses. The details of the optimized parameters used for each of 

the 5 outer-folds for each subject are shown in Tables S.1, S.2, and S.3 in the supplementary 

section. 

 Table 1 shows the optimized unimodal classification performance for each subject, 

comparing the fNIRS, EEG (linear), and EEG (nonlinear) unimodal classification illustrating the 

optimized averaged 5-fold classification accuracy (outer-folds) and the median of the optimized 

number of selected features across folds for all feature types. The reported results are based on the 

optimized classification parameters for each fold (i.e., the response window, the number of 

selected features and the nonlinear RQA parameters if any) related to each subject’s MI neural 

response in each modality. As shown in Table 1, the obtained average accuracies were 

92.1%±6.5%, 81.2%±6.5%, and 85.8%±6.2% using fNIRS, EEG (linear) and EEG (nonlinear) 

features respectively. Overall, the classification outcomes show that the performance of fNIRS 

features is superior in discriminating the MI neural response when compared to EEG 

(linear/nonlinear) features with ~11% and ~6% average performance improvement over EEG 
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(linear) and EEG (nonlinear) features respectively. This highlights the important role of 

discriminative fNIRS features (i.e., statistical features of HbO2 and HbR) in classification accuracy 

and MI neural characterization. Moreover, the classification performance of the EEG (nonlinear) 

features indicates an overall average performance improvement of ~5% when compared to EEG 

(linear) features with an overall relatively higher number of selected features. This indicates that 

the complex nature of EEG signals, particularly MI responses, encompasses discriminative 

information beyond what is provided by EEG (linear) PSD features. These results support our 

principal hypothesis that EEG nonlinear graph-based RQA features can complement linear spectral 

features and fNIRS temporal features in a holistic fused representation for MI neural responses in 

order to improve the performance of MI classification in a hybrid BCI framework.  

 In order to show the overall trend of the hyper-parameter optimization for the hybrid 

multimodal classification, Fig. 5 shows a series of bar plots comparing the optimized nested inner-

loop 5-fold cross-validation accuracy across the 5 outer-folds for the three types of EEG-fNIRS 

data fusion with different numbers of selected features for each subject. The figure also illustrates 

the effect of the number of selected features on the classification accuracy of the fused EEG-fNIRS 

data. The details of the optimized parameters used for each of the 5 outer-folds and the frequency 

of selection of the features in the optimized classification performance for each subject are shown 

in Tables S.4, S.5, S.6, and Fig. S.2 in the supplementary section. Unlike the unimodal features, 

the differences between the performance of the three types of fusion are relatively closer; however, 

the EEG (nonlinear)-fNIRS and the EEG (linear+nonlinear)-fNIRS outperformed the EEG 

(linear)-fNIRS for most of the subjects, indicating a substantial contribution of nonlinear EEG 

features. This shows the effect of complementing the linear EEG spectral features with the 

nonlinear graph-based RQA features and the effect of incorporating the temporal hemodynamic 

fNIRS features on the fusion classification accuracy for all the subjects.  

 Table 2 shows the optimized hybrid multimodal classification performance for each subject, 

comparing the EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS, and EEG (linear+nonlinear)-fNIRS 

types of hybrid classification. In this table, the optimized averaged 5-fold classification accuracy 

(outer-folds) and the median of the optimized number of selected features across folds for all 

feature types are shown. The reported results are based on the optimized classification parameters 

for each fold (i.e., the hybrid response windows, the number of fused selected features and the 

nonlinear RQA parameters if any) related to each subject’s MI neural response in each type of 
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fusion.  

 As shown in Table 2 the obtained average accuracies were 93.8%±5.4%, 96.1%±3.5%, and 

96.1%±3.5% using EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS and EEG (linear+nonlinear)-

fNIRS fused features respectively. This shows the discrimination ability of the nonlinear EEG 

features in complementing the fNIRS features when compared to the linear PSD features. Overall, 

the classification outcomes show that the hybrid EEG-fNIRS multimodal classification performs 

better than the unimodal (EEG/fNIRS) classification. Fusing linear EEG features to fNIRS features 

improved performance by ~2% over fNIRS and ~13% over EEG (linear) alone. Fusing EEG 

(nonlinear) with fNIRS features improved the performance by 4% over fNIRS and ~10% over 

EEG (nonlinear) features, while fusing EEG (linear), EEG (nonlinear), and fNIRS features 

achieved the same accuracy as EEG (nonlinear)-fNIRS and improved the performance by 4%, 

~15% and ~10% over fNIRS, EEG (linear), and EEG (nonlinear) features respectively. This 

highlights the importance of decoding the hemodynamic fNIRS response features fully, in addition 

to complementing the classical EEG features with nonlinear features for improved performance of 

hBCIs for MI classification. In order to show the level of contribution of EEG features for each 

type of EEG-fNIRS fusion, Table 2 shows the percentage of EEG features contributing to the total 

number of selected fused multimodal features in EEG (linear)-fNIRS, EEG (nonlinear)-fNIRS, 

and EEG (linear+nonlinear)-fNIRS averaged across the 5 folds for each subject. The contribution 

of EEG linear features in EEG (linear)-fNIRS data fusion was ~28% averaged over all subjects, 

whereas the contribution of EEG (nonlinear) features in EEG (nonlinear)-fNIRS data fusion was 

~50%. This highlights the synergetic complementary and discriminative relationship between the 

nonlinear EEG features and the temporal fNIRS features, which is also illustrated by the 

performance improvement achieved by combining them for data fusion (i.e., EEG (nonlinear)-

fNIRS achieved ~2% performance improvement over EEG (linear)-fNIRS with an increased 

contribution of EEG features). Incorporating all feature types in EEG (linear+nonlinear)-fNIRS 

data fusion resulted in an increased contribution of EEG features to ~53% averaged over all 

subjects with the same classification performance compared to EEG (nonlinear)-fNIRS data 

fusion.  

 Fig. 6 illustrates the fusion level (FL) quantification of each type of EEG-fNIRS data fusion. 

The figure compares the proportion of EEG/fNIRS features’ balance across the fusion types and 

illustrates the classification accuracy corresponding to each FL (on top of each bar plot). This 
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figure illustrates the synergetic and complementary relationship between the fused EEG and fNIRS 

modalities by quantifying the balance percentage of their fusion in relation to hybrid classification 

accuracy. For all subjects, the FL for EEG (linear)-fNIRS data fusion was the least among all the 

other data fusion types. This indicates that adding the EEG (nonlinear) features as proposed results 

in an increased complementarity between EEG and fNIRS features, contributing to classification 

improvement. For most subjects the increased FL resulted in an increase in the classification 

accuracy. This highlights the importance of EEG-fNIRS complementary features for performance 

improvement; however, it further emphasizes the importance of feature-level fusion by employing 

a feature selection scheme to identify an optimized discriminative set of fused features from the 

high dimensional multimodal feature set without redundancy or contrast of information, and hence 

an optimal FL for performance improvement. Specifically, for S-3, the maximum classification 

accuracy was 100% for EEG (linear)-fNIRS data fusion with a FL of ~14%. This indicates that for 

this subject this classification accuracy was dominated by one modality rather than a result of the 

data fusion complementary improvement. However, EEG (nonlinear)-fNIRS and EEG 

(linear+nonlinear)-fNIRS data fusion achieved ~99% accuracy with ~69% and ~63% FL 

respectively for the same subject.  

Fig. 7 compares the optimum unimodal (EEG/fNIRS) classification accuracy for each subject 

with the optimum hybrid classification accuracy. The plot indicates that the optimum hybrid 

multimodal classification performs better than the optimum unimodal classification for all subjects 

which supports the main hypothesis of this study. For subjects S-3 and S-7, 100% accuracy was 

achieved using unimodal classification, and the optimum multimodal classification did achieve the 

same 100% classification accuracy. 

4. Discussion 

Characterizing neural responses from multiple neuroimaging sources is important in BCI research, 

as it introduces complementary characteristic features from various neural perspectives to improve 

decoding and performance. However, current hybrid BCIs that rely on MI fall short of their true 

potential for multiple reasons, including the absence of systematic data fusion frameworks that 

characterize the MI neural response dynamics within each modality fully to reveal their 

complementary synergistic aspects, as well as the need to select the discriminative fused features 

from high-dimensional multimodal feature vectors properly. This study proposed an EEG-fNIRS 
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data fusion framework to decode and represent MI neural dynamics for a binary hBCI 

classification task fully. The framework relies on exploiting the underlying linear and nonlinear 

dynamics of neural responses across modalities and provides a comprehensive set of high-

dimensional electrical-vascular multimodal features. A set of graph-based RQA features 

characterized the nonlinear recurrence patterns underlying the electrical MI neural response in the 

μ and β spectral bands were characterized in phase space to complement the commonly used linear 

ERD/ERS spectral band-power features. The fNIRS-based MI response was characterized using a 

set of statistical features to quantify the morphological variations in the MI hemodynamic temporal 

response. Through the fused feature selection strategy adopted and the selection of the most 

discriminative subset of complementary features from all of the features evaluated, the proposed 

framework improved the hybrid MI-BCI’s mean classification performance by approximately 

15%, 10%, and 4% over the unimodal EEG (linear), EEG (nonlinear), and fNIRS features, 

respectively. Interestingly, the performance when EEG (linear+nonlinear)-fNIRS features were 

fused was similar to EEG (nonlinear)-fNIRS data fusion on average over all subjects, which 

indicates that including the EEG linear features in addition to the EEG (nonlinear) and fNIRS 

features did not increase the performance. This suggests an overall discriminative nature of the 

nonlinear dynamics of EEG when combined with the temporal hemodynamics features of the 

fNIRS response. However, it also indicates that the data fusion and fused feature selection scheme 

adopted select the most discriminative complementary fused features across modalities and feature 

types successfully, as, although there was an increase in feature dimensionality and potential 

redundant information, the performance did not degrade when compared to EEG (nonlinear)-

fNIRS fusion.  

 Our findings suggest that the proper characterization of the underlying dynamics within each 

modality improved the performance of MI-BCI classification on the unimodal level and provided 

a comprehensive set of features with which to decode the response on a multimodal level 

systematically through the proposed multimodal data fusion framework. Moreover, the accuracy 

improvement was also realized by relying on hyper-parameter optimization, including the number 

of selected discriminative features, to account for the inter- and intra-subject variations commonly 

observed in neural responses. Our results indicate that optimizing the number of synergistic 

multimodal features can contribute toward an enhancement of hybrid BCI performance. The 

proposed framework and optimization approaches can be implemented based on BCI system 
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calibration sessions commonly used in the BCI field.  

 On the unimodal level, our results highlight the important role of discriminative fNIRS 

features (i.e., statistical features of HbO2 and HbR) in classification accuracy and MI neural 

characterization. Moreover, the classification performance of the EEG (nonlinear) features 

indicates an overall average performance improvement of ~5% when compared to EEG (linear) 

features with an overall relatively higher number of selected features (Table 1). This indicates that 

the complex nature of EEG signals, particularly MI responses, encompasses discriminative 

information beyond what is provided by EEG (linear) PSD features. These results support our 

principal hypothesis that EEG nonlinear graph-based RQA features can complement linear spectral 

features and fNIRS temporal features in a holistic fused representation for MI neural responses in 

order to improve the performance of MI classification in a hybrid BCI framework. 

  Particularly for fNIRS, extracting a set of statistical features to characterize the MI 

hemodynamic response had a remarkable effect on the performance of the unimodal fNIRS 

approach. Based upon the hyper-parameter optimization trends of the unimodal features overall 

(Fig. 4) and the corresponding final results (Table 1), fNIRS performance was higher than that of 

EEG (linear and nonlinear) for most of the subjects. The unimodal fNIRS results indicated an 

~11% improvement in performance compared to EEG (linear) features and ~6% compared to EEG 

(nonlinear). This highlights the discriminative power of the statistical fNIRS temporal features 

when compared with EEG spectral features and EEG graph-based nonlinear features. These results 

are consistent with previous findings that increasing the number of statistical features used to 

characterize the hemodynamic response and investigating the optimum feature combination 

influences classification accuracy substantially (Hong et al. 2017; Hong, Khan, and Hong 2018; S 

M Hosni et al. 2020; Naseer et al. 2016; Naseer and Hong 2013, 2015; Qureshi et al. 2017). For 

example, in (Naseer and Hong 2013), adding the slope of the fNIRS signal to the signal mean, as 

well as confining the response window, improved the classification accuracy significantly. In 

another study, Naseer et al. (2016) highlighted the importance of investigating the optimal feature 

combination to improve fNIRS classification performance. Their study considered all possible 

two- and three-feature combinations of signal slope, mean, variance, peak, kurtosis, and skewness, 

and they concluded that signal mean and peak was the optimum feature combination for their 

dataset. Qureshi et al. (Qureshi et al. 2017) investigated multiple two-feature combinations of the 

same set of statistical features to improve classification. Their results suggested that the signal 
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mean and skewness is an optimal feature combination. In (S M Hosni et al. 2020), Hosni et al. 

investigated two to eight possible feature combinations to optimize MI classification performance. 

Their findings suggested the importance of identifying subject-specific features, channels, and 

response windows of the fNIRS response to achieve optimal classification performance. The 

discrepancy in optimal feature combinations across subjects can be interpreted with respect to the 

variability identified commonly in fNIRS hemodynamic responses, and illustrates the need for a 

large number of statistical features to capture the potential subject-specific changes (Holper et al. 

2011; Hong et al. 2017; S M Hosni et al. 2020). Our proposed framework accounts for fNIRS MI 

responses’ subject-specific characteristics by capturing the temporal morphological variations in 

the hemodynamic response fully with a complete set of statistical features, and adopting hyper-

parameter optimization and feature selection to ensure that subject-specific discriminative features 

are identified to optimize performance. Notably, most fNIRS studies rely on channel selection 

approaches in addition to extracting discriminative features for classification (Al-Shargie et al. 

2016; S M Hosni et al. 2020; Hu et al. 2010; Li et al. 2017; von Lühmann et al. 2020; Santosa, 

Hong, and Hong 2014). In this study, the features extracted were aggregated across all of the 

recording channels, which eliminated the need to select channels and rely on the feature selection 

scheme adopted to identify a subject-specific discriminative feature set across channels. Given 

fNIRS features’ effect on a multimodal level, the multimodal results of fusing fNIRS features with 

EEG (linear) features improved the performance by ~13% and ~2% over unimodal EEG (linear) 

and unimodal fNIRS features, respectively. Although it is hard to make a direct comparison with 

the percentage of improvement of multimodal classification in other studies due to the differences 

in the number of extracted features, these results are consistent with those of previous studies and 

confirm that fNIRS is a unique modality that improves the performance of EEG in a hybrid MI-

BCI system, and is capable to achieve competitive improvements over unimodal EEG-based 

systems (Buccino, Keles, and Omurtag 2016; Chiarelli et al. 2018; Fazli et al. 2012; Saadati, 

Nelson, and Ayaz 2020b; Yin et al. 2015) Further, it highlights the importance of exploiting 

various features across modalities for complementary representation of MI neural responses. 

However, considering the relatively slight improvement in performance when compared to the use 

of unimodal fNIRS features raises a question with respect to the extent to which the fusion of EEG 

PSD features with fNIRS exploits the full potential improvement of combining both modalities in 

a hybrid MI-BCI context.  
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 By exploiting the discriminative features of the fNIRS MI response fully, an emerging 

challenge was to extract representative EEG dynamics that can complement the fNIRS features 

synergistically and yet to improve the performance on a multimodal level. This is especially 

important considering the challenging nature of classifying subject-specific neural responses to 

decode motor imagery signatures, particularly for severely disabled patients for whom BCI 

systems are originally designed. For these target groups, exploiting the neural information content 

fully from EEG and fNIRS is required to compensate for potential disease-related neural 

alterations that might affect one modality more than the other and to avoid relying on just one 

modality. To the best of our knowledge, this is the first study to propose nonlinear features for 

multimodal hybrid BCI applications that rely on EEG-fNIRS neuroimaging modalities. Here we 

demonstrated that by incorporating the nonlinear dynamics to complement the EEG linear PSD 

features, the proposed framework can expand the information content extracted from EEG 

successfully and achieve improved performance on the multimodal level with a high level of 

synergy between modalities. On a unimodal level, characterizing the MI neural response’s 

nonlinear dynamics influenced the classification results remarkably. Given the unimodal EEG 

nonlinear features, the unimodal results indicated an improvement in performance of ~5% when 

compared to EEG linear features. These results verify previous findings further and demonstrate 

that extracting nonlinear EEG features improves MI-BCI’s performance (Ismail Hosni et al. 2021). 

Our results are also consistent with those of Pitsik et al. (2020), who investigated  the feasibility 

of using RQA features to characterize the nonlinear dynamics of EEG motor execution responses. 

Their findings revealed an increase in predictability and determinism during motor execution 

coupled with a decrease in complexity and chaos which transitioned back to increased complexity 

and reduced regularity during the background neuronal dynamics in rest. This was similarly 

observed in our study illustrated in the time-dependent quantification of all the extracted nonlinear 

features (Fig. S.1 in the supplementary section). However, our study is the first to investigate RQA 

features’ ability to characterize motor imagery responses to improve BCI performance. Our 

findings confirmed the feasibility of using RQA features to characterize the neural responses that 

correspond with motor imagery, as they achieved improved classification performance for MI-

BCIs both on the unimodal and multimodal levels. The success of RQA in characterizing the 

nonlinear dynamics of transitions between MI and rest in EEG can be explained by several studies 

that investigated nonlinear techniques for EEG as a time series that derives from a nonlinear 
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dynamic system. For example, in (Norbert Marwan and Meinke 2004), Marwan et al. used RQA 

to identify chaos-chaos transitions in brain potentials that are caused by stimulus events in single-

trial event-related potential data. In (Acharya, Sree, et al. 2011), Acharya et al. quantified the 

nonlinear dynamics of EEG to classify epileptic EEG signals. Successfully RQA features could 

characterize the increase in regularity from “normal” EEG to “interictal” and then to “ictal” activity 

because of increased underlying rhythmicity. Recently, Baghdadi et al. (Baghdadi et al. 2021) 

suggested investigating the neuro-cognitive EEG responses to roughness stimuli using RQA. They 

used nonlinear analysis in their study, because the representation of texture features in cortical 

responses was proposed to follow a nonlinear model and RQA was found to characterize tactile 

sensations in EEG effectively.  

 Although EEG (nonlinear) features performed better than the EEG (linear) PSD features in 

our study, unimodal fNIRS features outperformed EEG (nonlinear) features (~7% improvement). 

This demonstrates further the importance of hemodynamic characteristics when decoding the MI 

neural response in addition to characterizing its nonlinear dynamics. Further, it highlights the 

importance of combining fNIRS with EEG-based BCIs to create an improved hybrid system. 

However, on a multimodal level, fusing the EEG (nonlinear) features with the fNIRS features 

improved the performance by ~10% and 4% compared to unimodal EEG (nonlinear) and fNIRS 

features, respectively. These findings demonstrate the advantage of adopting graph-based RQA 

features to discriminate the MI neural response both on the unimodal and multimodal levels. The 

overall hyper-parameter optimization trends of the multimodal fused features (Fig. 5) and the 

corresponding final results (Table 2) demonstrate a relatively higher performance for EEG 

(nonlinear)-fNIRS and EEG (linear+nonlinear)-fNIRS fused features compared to EEG (linear)-

fNIRS for most subjects. These results demonstrated the effect of incorporating the nonlinear 

dynamics of MI responses in the proposed computational framework to enhance performance.  

 Complementing EEG linear PSD features with the nonlinear graph-based features allowed 

more discriminative characteristics of the MI neural responses to be represented in the multimodal 

feature set, and thus, resulted in better performance overall on the multimodal level. The increased 

degree of contribution of the nonlinear EEG features in the EEG (nonlinear)-fNIRS fusion 

compared to the contribution of the linear features in EEG (linear)-fNIRS fusion support this result 

further (Table 2). This observation further highlights the synergetic complementary and 

discriminative relationship between the nonlinear EEG features and the temporal fNIRS features, 
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which is also illustrated by the slight performance improvement achieved by combining them for 

data fusion (i.e., EEG (nonlinear)-fNIRS achieved ~2% performance improvement over EEG 

(linear)-fNIRS with an increased contribution of EEG features). 

 Our fusion level (FL) quantification results revealed clearly a decrease in the proportion of 

EEG/fNIRS features’ balance in EEG (linear)-fNIRS fusion when compared to the other fusion 

types (Fig. 6). This indicates that for EEG (linear)-fNIRS fusion, the classification performance 

was dominated largely by fNIRS, given the smaller percentage of the EEG features’ contribution 

in the fused feature selection scheme of EEG (linear)-fNIRS fusion (Table 2). The nonlinear EEG 

feature’s increased percentage of contribution was illustrated in the increase of FL for the other 

fusion types (Fig. 6). This indicates that decoding and representing the underlying neural response 

appropriately can elucidate more synergistic dynamics and discriminative feature characteristics 

across modalities, and thus enhance classification performance at a hybrid level. Complementing 

EEG (linear) with EEG (nonlinear) features ensured that both EEG and fNIRS modalities are 

represented completely in the multimodal feature space, thus, providing an opportunity for 

increased synergy and complementarity between features for better performance. Overall, the 

inclusion of the discriminative EEG (nonlinear) features increased the FL for all subjects, which 

contributed to better performance for most participants (S-2, S-5, S-6, S-7, S-8). For the remaining 

subjects (S-1, S-3, and S-4), the increase in FL did not achieve the maximum performance. This 

is likely because of sub-optimal selection of the fused feature set, which emphasizes the 

importance of selecting a fused representative feature subset from the high-dimensional 

multimodal feature set properly to achieve improved performance.  

 In general, the results of this study demonstrated that multimodal EEG-fNIRS classification 

of MI neural responses performed better than relying solely on a single modality for all subjects 

(Fig. 7). Even in the case when unimodal classification dominated the classification accuracy (S-

3 and S-7), increasing the number of features in multimodal classification did not degrade the 

accuracy for at least one of the fusion types evaluated. Hence, a systematic approach to feature-

level fusion represents a crucial step to ensure robust classification performance, particularly with 

the increased number of features when all feature types are fused. Our study adopted a fused 

feature selection scheme based upon LASSO, which was supported by previous promising results, 

particularly for MI-BCIs and relatively small datasets (Jiang et al. 2020).  
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4.1.  Limitations & Future Directions  

One of the current limitations of this study is the low number of subjects due to the relative 

difficulty of recruiting human subjects for neural data recording sessions. This can affect the 

interpretability of the mean as an informative performance metric considering the variability of 

performance across subjects. Future work can consider addressing the challenge of neural response 

variability commonly faced in BCI research, potentially by increasing the number of subjects, 

including end users with severe motor impairment, and exploring other advanced methods, such 

as deep learning-based approaches to model subject-specific neural response variability. One of 

the current limitations of this studyAnother limitation is that the proposed framework did not 

consider other feature selection schemes for feature-level fusion. Comparing various feature 

selection algorithms was outside of the scope of this study; however, future work may consider 

adopting other approaches, including those based upon mutual information to explore other 

potential feature selection approaches to determine an optimal fused feature set (Deligani et al. 

2021). Feature-level fusion allows synergistic complementary features across modalities to be 

selected, which has an advantage over decision-level fusion because of the potential adverse effect 

of cross-modality inconsistencies on the decision-level (Deligani et al. 2021; Wu et al. 2019). 

Further, future work could consider an early-fusion level that investigates the joint analysis of both 

modalities using approaches that represent the multimodal data in a joint representation space. For 

example, emerging deep multimodal machine learning approaches might be adopted to explore the 

possibility of capturing a data-driven, in-depth joint representation of the multimodal data that 

does not require feature extraction and/or fused feature-level selection processes (Venugopalan et 

al. 2021). In addition, future works need to be conducted to support our interpretations of the 

proposed nonlinear feature extraction methods further as a new informative dimension to 

understand better the neural characteristics that underlie motor imagery and enhance BCI 

performance by validating the statistical nonlinearity in the dataset through a surrogate data 

procedure. Analyzing the complex neural responses across different temporal scales encoded by 

EEG and fNIRS hold a promising fertile ground for BCI and neuroscience research in general. The 

amount of information that can be decoded from the latent dynamics of instantaneous EEG and 

the synergy that exist between these dynamics and the relatively slower metabolic responses 

encoded by fNIRS are relatively unexplored. Future work should consider studying the 
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relationship between these decoded fused features with fine and gross motor skills to further 

advance our understanding of the underlying neural dynamics of complex motor functions.  

 

5. Conclusion 

The proposed computational data fusion framework decoded a discriminative electrical-vascular 

multimodal neural response representation of MI by complementing the EEG spectral features 

with graph-based RQA features that quantify the nonlinear recurrence dynamics that underlie MI. 

These new features showed an increased synergy and complementarity between EEG and fNIRS 

modalities that enhanced the contribution of EEG features to the total number of multimodal 

features as well as the MI-BCI performance. The most discriminative task-informative features 

were identified through a multimodal fused feature selection scheme to address the computational 

challenges of multimodal characterization of the underlying discriminative neural dynamics. The 

performance evaluation revealed an average improvement of approximately 15%, 10%, and 4% 

by fusing EEG (linear), EEG (nonlinear) and fNIRS features when compared to unimodal EEG 

(linear), EEG (nonlinear), and fNIRS features respectively. On a unimodal level, the graph-based 

RQA features and the fNIRS features, respectively, improved the performance by ~5% and ~11% 

over the EEG spectral features, and demonstrated their discriminative strength. On a multimodal 

level, the optimum hybrid performance of 96.1% was achieved using discriminative fused feature 

selection from all feature types. This improved the conventional hybrid classification accuracy by 

~2%, with a considerable increase in the contribution of EEG features to the total number of fused 

features selected. This indicates an increased synergy between the nonlinear graph-based and 

fNIRS features. These findings highlight the importance of characterizing the underlying neural 

dynamics of the MI neural response across modalities, and suggest that nonlinear graph-based and 

fNIRS features are valuable information dimensions that can be exploited to improve hybrid MI-

BCI performance. Further, our results highlight the importance of fused feature selection schemes 

and optimized fused discriminative feature sets for a systematic computational data fusion 

framework.  
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TABLES 

TABLE 1: Optimized averaged 5-fold cross-validation accuracy for unimodal classification and 

median of the optimized number of selected features across folds (maximum accuracy 

corresponding to each subject indicated in bold). 

 

 

Participant 
No. 

fNIRS 
 

Optimized 
#features 
(median) 

EEG 
(Linear) 

 

Optimized 
#features 
(median) 

EEG 
(Nonlinear) 

 

Optimized 
#features 
(median) 

S-1 90.6 19 75.3 11 82.4 17 
S-2 84.7 9 85.9 11 91.8 7 
S-3 100.0 9 74.7 7 74.7 9 
S-4 84.3 7 77.1 11 87.1 13 
S-5 95.0 9 75.0 9 80.0 19 
S-6 95.8 11 83.2 9 88.4 7 
S-7 100.0 5 86.3 7 90.0 9 
S-8 86.7 5 91.7 9 91.7 5 

Mean±SD 92.1±6.5 9.0±4.5 81.2±6.5 9.0±1.7 85.8±6.2 11.0±5.1 
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Table 2: Optimized Averaged 5-fold Cross-validation Accuracy for Multimodal EEG-fNIRS 

Fusion Classification and Median of the Optimized Number of Selected Features Across Folds 

(maximum accuracy corresponding to each subject and each EEG-fNIRS fusion type indicated in 

bold).  

 

 

 

Participant 
No. 

EEG 
(linear)- 
fNIRS 
Fusion 

 

Optimized 
#features 
(median) 

%of EEG 
(linear) 
features 

EEG 
(nonlinear)- 

fNIRS 
Fusion 

Optimized 
#features 
(median) 

%of EEG 
(nonlinear) 

features 

EEG 
(linear + 

nonlinear)-
fNIRS 
Fusion 

Optimized 
#features 
(median) 

%of 
EEG 
features 

S-1 92.9 15 45.2 91.8 11 47.3 90.6 15 57.1 
S-2 88.2 19 32.6 96.5 13 50.2 96.5 15 49.6 
S-3 100.0 9 12.1 98.7 17 40.7 98.7 13 38.7 
S-4 84.3 9 34.7 90.0 15 61.5 91.4 17 67.4 
S-5 95.0 19 21.7 98.3 19 46.9 98.3 15 43.6 
S-6 98.9 17 25.1 96.8 15 61.1 97.9 15 57.8 
S-7 97.5 13 20.9 100.0 13 35.8 100.0 13 48.5 
S-8 93.3 7 33.0 96.7 17 58.2 95.0 15 60.5 

Mean±SD 93.8±5.4 13.5±4.8 28.16±10.3 96.1±3.5 15±2.6 50.2±10.4 96.1±3.5 14.8±1.3 52.9±9.5 
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FIGURE LEGENDS 

 

Fig.1: Flow diagram of the proposed computational multimodal framework. The multimodal EEG 

and fNIRS data are simultaneously recorded and independently preprocessed, then the multimodal 

data is split into training (sub-training and validation) and test sets through a nested cross-

validation procedure for hyper-parameter optimization and performance evaluation. 

 

Fig. 2: Left: The schematic head montage mode of the EEG-fNIRS sensor-layout for simultaneous 

electrical-hemodynamic data acquisition. Right: The motor imagery (MI) task experimental 

protocol. 

 

Fig. 3: Visualization of the steps of nonlinear EEG analysis for a representative Rest-MI-Rest (30-

sec) task. (a) Representation of the one-dimensional EEG time series from a single channel band-

pass filtered in μ (8-13 Hz) or β (13-25 Hz) bands used for the 3-dimensional reconstruction of 

trajectory in phase space illustrated in (b). (c) Recurrence Plots (𝑅𝑃𝑁×𝑁) used to visualize and 

quantify the recurrence patterns of the 3-dimensional phase space trajectory matrix 

𝑋𝑁×3 calculated based on an 𝜀-neighborhood threshold of 5% of the maximum phase space 

diameter. 
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Fig. 4: Grand-averaged classification accuracy based on the optimized nested inner-loop 5-fold 

cross validation accuracies across the 5 outer-folds to compare the overall trends of hyper 

parameter optimization of the 3 types of unimodal features for each subject. The nested inner-loop 

optimization was performed to optimize the classification parameters for each of the 5 outer-folds 

(outer-loop) independently (see Table S.1, Table S.2, and Table S.3 in the supplementary section 

for the details of the optimized parameters corresponding to each type of features for unimodal 

classification). Each plot in this figure shows the average of the optimized nested 5-fold accuracies 

averaged across the 5 outer folds for each unimodal (EEG/fNIRS) features for each subject. 

 

Fig. 5: Grand-averaged classification accuracy based on the optimized nested inner-loop 5-fold 

cross validation accuracies across the 5 outer-folds to compare the overall trends of hyper 

parameter optimization of the 3 types of EEG-fNIRS data fusion for each subject. The nested 

inner-loop optimization was performed to optimize the classification parameters for each of the 5 

outer-folds (outer loop) independently (see Table S.4, Table S.5, and Table S.6 in the 

supplementary section for the details of the optimized parameters corresponding to each fusion 

type). Each plot in this figure shows the average of the optimized nested 5-fold accuracies averaged 

across the 5 outer folds for each multimodal EEG-fNIRS type of data fusion for each subject.  

 

Fig. 6: Bar plot showing the defined “Fusion Level” for each type of EEG-fNIRS data fusion (i.e., 

EEG (linear) - fNIRS, EEG (nonlinear) – fNIRS, and EEG (linear+nonlinear) – fNIRS) for each 

subject. The figure shows the averaged 5-fold cross-validation classification accuracy” ACC” for 

each fusion type on top of each bar. 

 

Fig. 7: Comparison between the optimum unimodal (i.e., EEG-linear/EEG-nonlinear/fNIRS) and 

the optimum multimodal (i.e., EEG (linear) - fNIRS/ EEG (nonlinear)-fNIRS/ EEG 

(linear+nonlinear) - fNIRS) averaged 5-fold cross-validation classification accuracy for each 

subject. 
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