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Abstract. We examine actions of finite-dimensional pointed Hopf algebras on central
simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module
algebra structure.) In all examples considered, we show that the given Hopf algebra
does admit a faithful action on a central simple division algebra, and we construct such
a division algebra. This is in contrast to earlier work of Etingof and Walton, in which
it was shown that most pointed Hopf algebras do not admit faithful actions on fields.
We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum
groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an
example of non-Cartan type.

1. Introduction

This work is concerned with pointed Hopf actions on central simple division
algebras, in characteristic 0. It is an open question [10, Question 1.1] whether
or not an arbitrary finite-dimensional Hopf algebra can act inner faithfully on
such a division algebra. A conjecture of Artamonov also proposes that any finite-
dimensional Hopf algebra should act inner faithfully on the ring of fractions of a
quantum torus [7, Conjecture 0.1], and it is known that the parameters appearing
in such a quantum torus cannot (all) be generic [14, Theorem 1.8].

We focus here on examples, and consider exclusively pointed Hopf algebras with
abelian group of grouplikes. Such algebras are well-understood via the extensive
work of many authors, e.g. [18, 19, 4, 5].

Theorem 1.1. The following Hopf algebras admit an inner faithful Hopf action
on a central simple division algebra:

o Any bosonization H = B(V) x G of a Nichols algebra of a finite Cartan
type braided vector space via an abelian group G (as defined in [4]).

o The small quantum group uq,(g) of a semisimple Lie algebra g.

o Generalized small quantum groups u(D) such that the space of skew primi-
tives in u(D) generate Rep(G) (as a tensor category), where G is the group
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of grouplikes in u(D).
o Generalized Taft algebras T'(n,m,«), where m | n and « € C.

o The 64-dimensional Hopf algebra H = B(W) x Z/AZ, where W is the

2-dimensional braided vector space with braiding matrix :1 z }

In each of the examples appearing in Theorem 1.1, an explicit central simple
division algebra with an inner faithful action is constructed. We also consider in
each case whether the action we construct is Hopf-Galois.

As mentioned in the abstract, our results contrast with those of Etingof-Walton
[13, 15]. In [13] the authors show that any generalized Taft algebra T'(n,m, )
which admits an inner faithful action on a field is a standard Taft algebra T'(m, m, 0).
Although more general Cartan type algebras B(V) x G are not directly considered
in [13, 15], this restriction on Taft actions already obstructs actions of general
bosonizations B(V) x G, as each pair (g,v) of a grouplike g € G and (g, 1)-skew
primitive v € V generates a generalized Taft algebra in B(V) x G. Similarly, small
quantum groups outside of type A; were shown to not act inner faithfully on fields
in [13, 15].

Our methods are based on the observation that, for H a pointed Hopf algebra
with abelian group of grouplikes G, and @ a central simple division algebra with
an H-action, the skew primitives in H must act as inner skew derivations on
Q@ (see Theorem 3.1 and Lemma 6.3 below). Hence actions of H on a given @
are parametrized by a choice of a grading by the character group of G, and a
corresponding choice of a collection of elements in ) which solve certain universal
equations for (the skew primitives in) H.

The universal approach to Hopf actions we have just described is discussed in
more detail, at least in the case of coradically graded H, in Section 7.
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2. Preliminaries

2.1. Conventions

All algebras, vector spaces, etc. are over C. For a Hopf algebra H we let G(H)
denote the group of grouplike elements. Given a Hopf algebra H and a grouplike
g € G(H) we let Primy(H) denote the C-subspace of (g, 1)-skew primitives. We
take

Prim(H) = @4eqPrimy(H).

Given a finite-dimensional Hopf algebra H and H-module algebra A, we say that
A is H-Galois over its invariants A if, under the corresponding H*-coaction, A
is an H*-Galois extension of its coinvariants A% = AH"

2.2. The category YD(G)

We recall some standard notions, which can be found in [4] for example. The
category of Yetter-Drinfeld modules over a group G is the category of simultaneous



POINTED HOPF ACTIONS ON CENTRAL SIMPLE DIVISION ALGEBRAS
left G-representations and left kG-comodules V' which satisfy the compatibility

p(g-v) = (gv_19~") ® guo,

where g € G, v € V, and p(v) = v_1 ® vy denotes the kG-coaction. This category
is braided, with braiding

cvw VW WV, v@w— (vo1w) ® .

We will focus mainly on Yetter-Drinfeld modules over abelian GG, in which case the
action and coaction simply commute.

For algebras A and B in YD(G), we define the braided tensor product A®B as
the vector space A ® B with product

(a®b)- (' @b") = (a(b-1a")) ® (bod").

The object A®B is another algebra in YD(G) under the diagonal action and
coaction. We can also define the braided opposite algebra A22, which is the vector
space A with multiplication a -, b = (a_1b)ao.

A Hopf algebra in YD(G) is an algebra R in YD(G) equipped with a coalgebra
structure such that the comultiplication Ar : R — R®R is a map of algebras in
YD(G). Such an R should also come equipped with an antipode Sg : R — R which
is a braided anti-algebra and anti-coalgebra map satisfying Sg(r1)re = r1.Sgr(r2) =
e(r), for each r € R.

Definition 2.1. Given a Hopf algebra R in YD(G), the bosonization of R is the
smash product algebra R x G.

Any bosonization R x G is well-known to be a Hopf algebra with unique Hopf
structure (A, ¢, S) such that k[G] is a Hopf subalgebra, and on R C R x G we have

A(r) =ri(r2)-1 ® (r2)o, €(r) =e€r(r), S(r) = Skg)(r-1)Sr(r).
The bosonization operation is also referred to as the Radford biproduct, or Radford-
Majid biproduct, in the literature.

Lemma 2.2. Let A be an algebra in YD(G). Suppose R acts on A in such a way
that the action map R @ A — A is a morphism in YD(G) and

T (ab) = (T1 (7"2)71(1) ((7'2)017)

forr € R, a,b € A. Then A is a module algebra over the bosonization Rx G, where
G acts on A via the Yetter-Drinfeld structure and the R-action is unchanged.

Proof. This is immediate from the definition of the comultiplication on the bosoniza-
tion.

2.3. Hopf actions on division algebras

Recall that for a domain A which is finite over its center, we have the divi-
sion algebra Frac(A), which one can construct as the localization via the center
Frac(A) = Frac(Z(A)) ®z(a) A.
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Theorem 2.3 ([30, Theorem 2.2]). Suppose a Hopf algebra H acts on a do-
main A which is finite over its center. Then there is a unique extension of this
H-action to an action on the fraction division algebra Frac(A).

Remark 2.4. The result from [30] is significantly more general than what we
have written here. They show that an H-action extends to Frac(A), essentially,
whenever a reasonable algebra of fractions exists for A (with no reference to the
center).

When considering actions on division algebras, one can assess the Hopf-Galois
property for the extension Q¥ — @ via a rank calculation.

Theorem 2.5 ([9, Theorem 3.3]). Suppose a finite-dimensional Hopf algebra
H acts on a division algebra Q. Then Q is H-Galois over Q if and only if
rankgus Q = dimH .

2.4. Faithfulness of pointed Hopf actions

Recall that Primg,(H) denotes the subspace of (g,1)-skew primitives in a Hopf
algebra H, for g an arbitrary grouplike. Take Primg(H)’ to be the sum of all the
nontrivial eigenspaces for Primy(H) under the adjoint action of g.

For finite-dimensional pointed H, and grH the associated graded algebra rel-
ative to the coradical filtration, we have that the nilpotence order of any g-
eigenvector = in the degree 1 portion Prim,(grH); is less than or equal to the
order of the associated eigenvalue. So we see that the map

Prim,(H)" — Prim,(H)/C(1 — g) = Prim,(grH ),

is an isomorphism. Now by the Taft-Wilson decomposition of the first portion of
the coradical filtration Fy H [31], we have

RH=C[Gla | @ h- Primy(H)' |, (1)
g,heG

where G = G(H).

Lemma 2.6. Let H be a finite-dimensional pointed Hopf algebra, and A be an
H-module algebra. Suppose that the G(H) action on A is faithful, and that for
each g € G(H) the map Primgy(H)" — Endy(A) is injective. Then the H-action
on A is inner faithful.

Proof. Take G = G(H). Suppose we have a factorization H — K — Endg(A4),
where 7 : H — K is a Hopf projection. By [27, Cor. 5.3.5] K is pointed as well.
By faithfulness of the G-action we have that 7| is injective. Furthermore, each
7|prim, (#1) 18 injective by hypothesis, and each Prim,(H)" maps to Primy(K)". By
the decomposition (1), where we replace H with K, we find that the restriction
FiH — F1K is injective. It follows that 7 is injective [21, Prop. 2.4.2], and
therefore an isomorphism.
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In the case in which the group of grouplikes G = G(H) is abelian, the entire
group G acts on each Primy(H), and we can decompose the sum of the primitive
spaces Prim(H) as

Cly @ Prim(H) = C|G] @ Prim(H)’,

where Prim(H)' is the sum of the nontrivial eigenspaces.

Corollary 2.7. Suppose H is finite-dimensional and pointed, with abelian group
of grouplikes. Then an action of H on an algebra A is inner faithful provided
G(H) acts faithfully on A and the restriction of the representation H — Endy(A)
to Prim(H)’ is injective.

Proof. We have Prim(H)' = @&,Prim,(H)’ in this case.

3. Actions of generalized Taft algebras
We consider for positive integers m < n, with m | n, the Hopf algebra

C(z,9)
(zm — a(l —g™),g" —1,gxg~! — qx)’

T(n,m,a) =

where ¢ is a primitive m-th root of 1. In the algebra T'(n,m,«) the element g is
grouplike and x is (g, 1)-skew primitive.

We apply Theorem 3.1 below to obtain actions of these Hopf algebras on central
simple division algebras. At a = 0, the division algebra we produce is the ring of
fractions of a quantum plane, while the division algebra we produce for T'(n,m, 1)
has a more intricate structure.

3.1. Generic actions of pointed Hopf algebras and Taft algebras

Let us take a moment to consider actions of pointed Hopf algebras in general,
before returning to the specific case of generalized Taft algebras.

We note that for a pointed Hopf algebra H each skew primitive z; determines
a Hopf embedding T'(n;,m;,a;) — H. An action of H on an algebra A is then
determined by an action of the group G(H) and compatible actions of the Hopf
subalgebras T'(n;, m;, ;) — H. We therefore study actions of the generalized Taft
algebras T'(n, m, a) in order to understand actions of pointed Hopf algebras more
generally.

The following result motivates most of our constructions, even when it is not
explicitly referenced. The proof is non-trivial and is given in Section 6.

Theorem 3.1. Suppose T'(n,m,a) acts on a central simple algebra A, and fix ¢
a primitive n-th root of 1 with (m = q. Let A = @I_yA; be the corresponding
decomposition of A into eigenspaces for the g-action, so that g acts as (' on A;.
Then there exists ¢ € A, /p, such that x-a = ca — ¢lelac for each (homogeneous)
a € A. Furthermore, this element c satisfies the commutativity relation

Ma — Cm\a\acm _ Oé(l _ leal)a (2)

for each homogeneous a € A.
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Conversely, if A = &I A; is a Z/nZ-graded central simple division algebra,
and ¢ € Ay, is such that c™a — ¢mlalgem = oz(Cm‘“| — 1)a for each homogeneous
a € A, then there is a (unique) action of the generalized Taft algebra T'(n,m, )
on A given by

g-a=C% and z-a=ca— (%ac

which gives A the structure of a T(n,m,a)-module algebra.

Now, for general H with abelian group of grouplikes, if H acts on a central
simple algebra A then we decompose A into character spaces A = @, A, for the
action of G. For each homogeneous (g;, 1)-skew primitive x; € H, with associated
character x;, we have the generalized Taft subalgebra T'(n;,m;,a;) — H. By
restricting the action, and considering Theorem 3.1, we see that each x; acts on A
as an operator

z; - a = ca— p(gi)ac;, forae Ay,

for an element ¢; € A,,. Hence the action of H is determined by a choice of a
GY-grading on A and a choice of elements ¢; € A,, satisfying relations (2) (as well
as all other relations for H). We return to this topic in Sections 6 and 7.

3.2. A Hopf-Galois action for generalized Taft algebras at a =0

Consider T'(n,m,0) as above, with ¢ a primitive m-th root of 1. It was shown
in [13] that this algebra admits no inner faithful action on a field when n > m.
We fix, for the remainder of the section, s = - and fix ¢ a primitive n-th root of
1 with ¢* = q.

Take K = C(u,v) and consider the cyclic algebra
Q(n,m) = Q¢c(n,m) := K{c,w)/(c" —u,w" — v, cw — Cwe).

The algebra Q(n,m) is a cyclic division algebra of degree n over K.

Proposition 3.2. The central simple division algebra Q(n,m) admits an inner
faithful T (n, m,0)-action which is uniquely specified by the values

gc=qc, grw=Cw, z-c=(1-gq)c®, z-w=0.

Furthermore, Q(n,m) is T(n,m,0)-Galois over its invariants Q(n,m)T(m-0),

Proof. The existence of the proposed inner faithful action follows by Theorem 3.1.
So we need only address the Hopf-Galois property. Take T' = T'(n, m,0) and define
[e,a). :=ca — (g - a)c for arbitrary a € Q(n, m).

As for the Hopf-Galois property, we consider the basis of monomials {ctw’ 7]_:10
for Q(n, m), considered as a vector space over the field K = C(u,v) = C(c™, w™).
The elements ¢ and w™ are both g-invariant and

ad¢(c)(c™) = ¢, ] =0, ad.(c)(w™) = [c,w"] =0.

So the degree s field extension K(c¢™) C Q(n,m) lies in the T-invariants. The
algebra Q(n,m) is free over K (¢™) on the left with basis

{ciwj:0§i<m,0§j<n}.
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Now, for a generic element

f= Y,  [fGpdw € Qnym)

0<i<m, 0<j<n

with the coefficients f(i,j) € K(c™) we have g - f = 37, - ¢ f(i, j)c'w’. So for
g-invariant f we have f = Z;’;Bl f(@)ctw™ =, Now applying z gives

m—1
- f Z 1_q z+1 s(mfi).
=0

So x - f = 0 requires f = f(0). This identifies the invariants Q(n, m)? with the
subfield K(c¢™). Hence Q(n,m) is free of rank mn = dimT over its invariants, and
we find that Q(n,m) is T-Galois.

Remark 3.3. One can give that algebra Q(n,m) the structure of an algebra in
the braided fusion category YD(G) of Yetter-Drinfeld modules for G, with braiding
structure c¢. The operation [—, —] is then the braided commutator in YD(G). We
will return to this point in Section 6.

3.3. An action for generalized Taft algebras at non-zero parameter «
By rescaling the skew primitive, we have a Hopf isomorphism T'(n, m, «) = T'(n,m, 1)
whenever « is nonzero. We wish to produce a central simple algebra and corre-
sponding action for T'(n,m, 1). Recall that we have fixed s = > and ¢ a primitive
n-th root of unity with ¢* = q.

Take K = C(w) and consider the polynomial p,, ,(X) = (X™ — 1)m — w over
K. We let L denote the splitting field of p,, ,,, over K. The field L is generated,
over K, by a choice of s-th root /w for w € K and solutions ¢; to the equation

—¢myw—-1=0,for1 <j<s.

We note that scalings of the ¢, by m-th roots of unity provide all n (distinct)
roots to our equation p, ,, € K[X]. Consider the automorphisms g; and o of L
over K defined by g;(c;) = ¢’¢; and o(c;) = cj41. (We abuse notation so that
Cs+1 = ¢1.) By comparing the degree of L over K with the order of the subgroup
of Autg (L) generated by the g; and o, one finds that the extension L/K is Galois
with Galois group

Gal(L/K) =(g; : 1 <i <) x (o) 2 (Z/mZ)° x L]sZ.

We consider the Ore extension L[t; o]. This algebra is a domain which is finite
over its center, since o is of finite order, and we take

Q = Frac(L[t; o]).

We produce below an action of T'(n, m,1) on Q.

We first extend the automorphism g|, = [[;_,¢; : L — L, ¢; — qc;, to an
automorphism ¢ : @ — @ such that g(t) = (t. We note that such an extension is
well-defined since (g|r)o = o(g|r). The automorphism g is order n, and we obtain
an action of Z/nZ = G(T'(n,m,1)) on Q.
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Lemma 3.4. Take Q as above, with the given Z/nZ-action. Then, at arbitrary
a € Q, each element c; € Q) satisfies

cla—(g"-a)c]" =(1-g")-a.

Proof. Take ¢ an s-th root of ¢ as above. It suffices to provide the relation on
L[t; o]. Any homogeneous element of L[t; o] may be written in the form bt", with
b € L. Note that ¢* — 1 = Tw!/* for each i, where 7 is a root of unity, and
o(w'/®) = (mw'/*. Note also that g™|;, = id;,. We therefore have

T ((e = )bt — (g™ bt (e — 1)) = wl/ bt — b(g™ -t )w/
_ wl/sbtr _ Cmrbtrwl/s
— btro_r(wl/s) _ Cmrbtrwl/s
=0.
Thus (¢f* — 1)y — (g™ - y)(cf* — 1) = 0 for all y € L[t;0]. The fact that (¢[* — 1)
commutes with 1 = yy~! implies that (c/* — 1) satisfies the same relation for all a
in the ring of fractions ). We rearrange to arrive at the desired equation.

Proposition 3.5. For any non-zero « € C, there is an inner faithful T (n,m, «)-
action on the central simple division algebra Q@ = Frac(L[t; o]). This action is not
Hopf-Galois.

Proof. We may assume o = 1. Recall s = n/m, G = G(T'(n,m, 1)) = (g), and ¢
be the give primitive n-th root of unity with * = ¢q. We provide a G-action on Q)
by letting g act as the above automorphism g¢(c¢;) = qc;, g(t) = (t. If we grade Q
as Q = 69?:_01 i, with g|g, = ¢+ —, then ¢; € Qs, and any choice ¢ = ¢; provides
an element which satisfies the equation

"a—(g"-a)™m=(1-g")-a

at each a € (). We therefore apply Theorem 3.1 to arrive at an explicit action of
T(n,m,1) on Q.

As for inner faithfulness, the fact that G acts faithfully on @ is clear, and the
fact that ad.(c) # 0 follows from the fact that ad.(c)(c) = (1 —q)c? # 0. Thus the
action of T'(n,m, 1) is inner faithful by Corollary 2.7.

As for the Hopf-Galois property, we consider the invariants L[t; o] and de-
compose L = EBZ:OlLkS, with g|z,. = ¢ - —. Then L = Ly[w], for arbitrary
nonzero w € L_g, and one calculates that the invariants is a polynomial ring
L[t;0]¢ = Lo[wt®]. Now we have

L[t; o] = Lo[wt®] - (@;;8&9) = Lo[wt®] - {w’:0<a<m, 0<b< s},
from which one can conclude
rank . ,c L[t; o] = sm.
Since o is order s, we have

Llt; U]G = Lolwt’] C Z(L[t; o)),
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and adc(c)|0jc = 0. Hence the G-invariants in L[t; o] is the entire T'(n,m, 1)-
invariants. We may write the fraction field as the localization

Q = Frac(L[t;0]) = Frac(L[t;U]G) ®Ljsole Llt; o]
to find that QT = Q¢ = Frac(L[t; 0]%) and
dimgr Q = dimge Q = sm < nm = dimT'(n, m, 1).
Hence the action is not Hopf-Galois, by Theorem 2.5.

4. Actions of graded finite Cartan type algebras

We consider a class of pointed Hopf algebras which generalize small quantum
Borel algebras. These are pointed, coradically graded, Hopf algebras of finite
Cartan type. We first recall the construction of these algebras, then provide cor-
responding central simple division algebras on which these Cartan type algebras
act inner faithfully.

4.1. Cartan type algebras (following [4])

Let V = C{x1,...,z0} be a braided vector space of diagonal type, with braiding
matrix [¢;;]. Rather, the coefficients ¢;; are such that cy v (x; ® ;) = ¢;jz; @ z;,
where cy,y is the braiding on V. We assume that the g;; are roots of unity so that
V € YD(G) for a finite abelian group G.

Following Andruskiewitsch and Schneider, we say V is of Cartan type if there
is an integer matrix [a;;] such that the coefficient ¢;; satisfy

Gijqji = Qi - (3)

We always suppose a;; = 2 and 0 < —a;; < ord(g;;) for distinct indices 4, j. We
say V is of finite Cartan type if the associated Nichols algebra B(V) is finite-
dimensional. We have the following fundamental result of Heckenberger.

Theorem 4.1 ([18, Theorem 1]). SupposeV is of Cartan type. Then the Nichols
algebra B(V') is finite-dimensional if and only if the associated matric [a;;] is of
finite type, i.e. if and only if [a;;] is the Cartan matriz associated to a semisimple
Lie algebra over C up to permutation of the indices.

Consider V of finite Cartan type, we have the associated root system &, with
basis {«;}; indexed by a homogeneous basis for V. Let I be the associated union
of Dynkin diagrams. We decompose ® into irreducible components

¢ = Hlem(r)q)]'

Throughout we assume the following two additional restrictions:

e ¢;; is of odd order.
® ¢;; is of order coprime to 3 when the associated component ®;, with a; € I,
is of type Gs.
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By [4, Lemma 2.3] we have that N; = ord(g;;) is constant for all ¢ with associated
simple roots a; in a given component of the Dynkin diagram. For v € CI);F we take
N, = Nj for any ¢ in component .

For finite Cartan type V and v € ® one has associated root vectors z,, which
are constructed via iterated braided commutators as in [3, 23].

Theorem 4.2 ([4, Theorem 5.1]). Suppose R = B(V) is of Cartan type, and
take N; = ord(qi;). Then R admits a presentation R = TV /I, where I is generated
by the relations

e (Nilpotence relations) x> for v € ®*;

e (g-Serre relations) ad.(z;)' =% (x;);

o Exceptional relations at low order g;;, which we do not list here (see [1, §

11.4)).

4.2. Actions of finite Cartan type algebras

We call a Hopf algebra H of (finite) Cartan type if H = B(V') x G for V of (finite)
Cartan type and G a finite abelian group. For a G x GV-homogeneous basis vectors
x; € V we write g; for the group element associated to z;, Ag(x;) = ;@ 1+ g,
and x; for the associated character Ad,(z;) = x:(g)x;-

Theorem 4.3. Take H = B(V) x G of finite Cartan type, and let [g;;] be the
braiding matriz for V.= C{x1,...,xe}. Let [a;;] be the matriz encoding the rela-
tions (3), and suppose that the x; are ordered so that [a;;] is block diagonal with
each block a standard Cartan matriz associated to a Dynkin diagram. Then for
any subset Y = {u1,...,u} C GV there is an H-action on the algebra

C<Cl7"'3697w13-"awt>

(cicj — gijcici, CkWm — tm (9k)Wmek 1 1 < j)

A(Y) =

and on the central simple division algebra Q(Y) = Frac(A(Y)). This action is
uniquely specified by the values on the generators

g-¢ =xi(g)ci, xj-ci=cjci — qjicici, g-wi = pr(g)wy, x-w, =0,

and is inner faithful if and only if the subset {x;}¢_, UY generates G".

The proof of Theorem 4.3 is given in Section 4.5. The main difficulty in pro-
ducing such an action is showing that the proposed action does in fact satisfy the
relations of H.

We note that the algebra Q(Y") is not H-Galois outside of type A;. This follows
by a rank calculation which we do not repeat here. In type A; we have produced
a Hopf-Galois action already in Proposition 3.2.

4.3. The pre-Nichols algebra

Let G be a finite abelian group. Take V in YD(G) of finite Cartan type, and fix
R = B(V). Consider a basis {z1,...,x¢} for V, with each x; homogeneous with
respect to the G x GV-grading. We take g; = deg(z;) and x; = deggv ().

Let [g;;] be the braiding matrix for V. We assume the orders ord(g;;) are odd,
and additionally that ord(g;;) is coprime to 3 in type Gi. We recall here some
work of Andruskiewitsch and Schneider.
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Theorem 4.4 ([4]). For R = B(V) of finite Cartan type, the algebra
RP™ := TV /(q-Serre relations, exceptional relations)

is a Hopf algebra in YD(G), with Hopf structure induced by the quotient TV —
RPre,

We refer to RP*® as the distinguished pre-Nichols algebra associated to R, fol-
lowing Angiono [6]. For H = R x G we call HP™ := RP' x G the ADK form of
H, in reference to Angiono, de Concini, and Kac.

As with the usual de Concini-Kac algebra, there is an action of the braid group
of RP*® which gives us elements z, = T, (z;) as in [3, 23].

Theorem 4.5 ([4, Theorem 2.6]). Let Z, be the subalgebra of RP™ generated

pre

by the powers JCZ,V”. The subalgebra Zy is a Hopf subalgebra in R

For an algebra B in YD(G) the total center Z;,:(B) of B is the maximal sub-
algebra for which the two diagrams

Z® B : B®Z B®Z ¢ Z® B

B B
cominute.

Proposition 4.6 ([4, Theorem 3.3]). Consider Zy in RP*®, and take ¢ = ¢gere gore.
(i) The restriction of the braiding ¢ to Zo@RP'® is an involution, i.e. ¢|z,gRrere =

(c|rrrecz,) "
(ii) The subalgebra Zy is contained in the total center of RP*®, Zy C Ziot(RP™®).

We note that in the case of the (classical) quantum De Concini-Kac-style Borel
UP% (b), the elements Eév " are actually central. However, in general this will not
be the case. One can view the centrality in the classical de Concini-Kac setting as
a consequence of the fact that | ENegUPK (b) happens to be the trivial swap.

4.4. Some technical lemmas
Lemma 4.7. The adjoint action of RP™ on itself factors through the quotient R.

Proof. Tt suffices to show that the adjoint action restricted to Zy C RP™ is trivial,
since the kernel of the projection RP™ — R is generated by the augmentation ideal
for Zy. For any (homogeneous) X € Zy and a € RP*® we have

ade(X)(a) = >_; Xal9i,)Xi,aS(Xi,)

= 2_i Xa(9i»)Xiz (deg(a ))Xi1S(Xi2)a (Prop. 4.6 (ii))
=X (gz )Xal(gi,) "' Xi, S(Xiy)a  (Prop. 4.6 (1))
(22 X0 S(Xi,))a

= e(X)a,

where in the above calculation g;, is the G-degree of X;, and x;, is the G¥-degree.
Hence ad.|z, factors through the counit, and the restriction of the adjoint action
to Zy is trivial, as desired.
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Let us order the basis of primitives Pyyq = {x;}; so that the matrix [a;;] is block
diagonal with each block a Cartan matrix of type A, D, E, etc. We take

Sord = TV/(adC(xz)(m]) i< ])

This is an algebra in YD(G). We let ¢; denote the images of the x; in Sorq.

Lemma 4.8. The projections TV — Sowqa factor to give an algebra projection
RP™® — Sorq in YD(G).

Proof. In S,.q we have adc(cj)(c}”ci) =(1- q;;Jraji)c;ﬁHci for ¢ < j, which implies
by induction

—aj;

—ai; 1—aj; m4a;;
adc(c;)' "% (ci) = ¢; Ve [J (1 g =0.

m=0

When R has no exceptional relations the above relation is sufficient to produce the
proposed surjection RP™ — S,.q4. In the case of exceptional relations, one checks
directly from the presentations of [1, Eq. 4.6, 4.13, 4.22, 4.27, 4.34, 4.41, 4.49] that
the relations ad.(c;)(c;), for 4 < j, imply all additional relations for RP™ as well.

4.5. Proof of Theorem 4.3

Proof of Theorem 4.3. Take S = Sorq. We have the adjoint action of RP™ on itself,
which induces an action of RP*® on the braided symmetric algebra S. Namely, the
adjoint action of RP™ is restricted from the bimodule structure on RP™, so that any
ideal (sub-bimodule) is an RP'-submodule under the adjoint action. We therefore
get an induced action on any algebra quotient.

Since the action of RP™ on itself factors through R, the induced action on S
also factors to give a well-defined action of R on S. The generators z; in this case
act as the adjoint operators ad(c;). We integrate the natural action of G as well
to get a well-defined action of H = R x (G, which gives S a well-defined H-module
algebra structure (see Lemma 2.2).

We note that the restriction of the action H — Endy(S) produces an embedding
V — Endy(S), where V' = R; is the space of primitives in R. To see this clearly,
note that for any linear combination v = Zl Kk;x;, and 7, maximal in the ordered
basis P,.q such that k;, # 0, we have

v- e, = kiade(c,)(ci,) = (1= i, ki, ¢;, # 0.

The action of H will however not be inner faithful in general, as G may not act
faithfully on S.

We have the additional action of H on Clw,, : p € Y] given simply by the Hopf
projection H — C[G] and the prescribed G-action on Clw, : p € Y], g-w, =
p(g)w,. This algebra is furthermore seen as an algebra in Y D(G) by giving it the
trivial G-grading. We let H act diagonally on the tensor product

Clw,:peY]®8S.
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Via the vector space equality
Clwy:peY]|@S=Clw,: peY|®S=A4

we get an H-action on A, which we claim gives it the structure of an H-module
algebra. To show this it suffices to show that the multiplication is G-linear and
R-linear independently.

The fact that the multiplication on A is a map of G-representations follows
from the fact that A is an algebra object in YD(G). For R-linearity it suffices to
show that the braiding ¢ : S ® Clw, : p € Y] = Clw, : p € Y] ® S is a map
of R-modules, since S and Clw,, : u € Y] are both R-module algebras in YD(G)
independently. However, this is clear as Clw,, : p € Y] is a trivial R-module. We
find that A is an H-module algebra, as proposed. We then get an induced action
of H on the fraction field @ = Frac(A) by Theorem 2.3.

The fact that the H-action on @ is inner faithful when Y generates GV follows
by Corollary 2.7, since the restrictions G — Endj(A4) and V' — Endj(A) are both
injective.

5. Actions for (generalized) quantum groups

We consider cocycle deformations of the Cartan type algebras considered in the
previous section. The primary example of such an algebra is the small quantum
group u,(g) associated to a simple Lie algebra and root of unity ¢g. However,
more generally, one has the pointed Hopf algebras u(D) of Andruskiewitsch and
Schneider. These algebras are determined by a combinatorial data D consisting of
a collection of Dynkin diagrams and a so-called linking data for these diagrams.

We produce actions of the Hopf algebras u(D) on central simple division alge-
bras which are constructed from their Angiono-de Concini-Kac form U (D). This
action is inner faithful if and only if the skew primitives in U(D), considered
as a representation of the grouplikes under the adjoint action, tensor generate
Rep(G(u(D))). In the case of a classical quantum group u,(g) we construct a
faithful action on a central simple algebra via quantum function algebras, without
imposing restrictions on the interactions of grouplikes and skew primitives.

5.1. Actions for u(D)

Let R = B(V) be of finite Cartan type. Take V in YD(QG) for some abelian G and
consider the bosonization H = R x G. Take a basis {z1,...,zs} for V consisting
of G x GV-homogeneous elements. Let g; be the G-degree of z;.

We can consider V as object in YD(Z?) and take

HP™ = RP™ x 7°.

Specifically, Z° has generators t;, we have the group map Z° — G, t; + g¢;, and
we let Z% act on V via this group map. We take each x; € V to be homogeneous
of Z9-degree t;.

Lemma 5.1. For R= B(V), and V of Cartan type as above, the algebra HP™ is
a domain which is finite over its center.
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Proof. Recall that RP* is finite over the subalgebra Zj, which is generated by the
N’Y

2~ and lies in the total braided center by Proposition 4.6. Hence RP'® is finite
over the central subalgebra Z{) generated by the powers xf,Xp(G). If we take II to be

the kernel of the projection Z? — G, it follows that HP™ is finite over Z} @ CI[II].

We show that HP™ is a domain. We first show that RP™ is a domain. Just
as in [11, §1.7, Proposition 1.7] (cf. [24, Lemma 2.4]), one can filter RP' via a
normal ordering on the positive roots for the root system associated to V' to get
that grRP™ is a skew polynomial ring generated by the x.. In particular, grRP*®
is a domain, and hence RP™ is a domain. By considering the Z’-grading on HP*®
given directly by the Z¢ factor, we see that HP™ is a domain as well.

We note that any Hopf 2-cocycle o : H ® H — C restricts to a Hopf 2-cocycle
on HP'® via the projection HP™ — H. Hence we can consider for any such o the
twist HP™® and Hopf projection HP™ — H,.

Lemma 5.2. Consider any 2-cocycle 0 : H @ H — C with trivial restriction
olaxa = 1. Then the following holds:

(i) The cocycle deformation HP*® is (still) a domain.
(i) HP™ is finite over its center.
(iti) The adjoint action of HP™ on itself factors through H,.

In the proof we consider the the left and right G-gradings on HP™, i.e. C[G]-
coactions, defined by the Hopf surjection HP** — C[G]. So, the comultiplication
on HP™ and aforementioned surjection induces the two coactions

HP™ — C[G] ® HP™® and HP™ — H™ & C[G).

Proof. (i) By considering the associated graded algebra with respect to the filtra-
tion on HP' induced by the grading on H?*®, and Lemma 5.1, we see that HP™ is
a domain. In particular, the multiplication on HE™ is given on G-bihomogenous
elements by

avb =0(gasgp)abo(gl,g;) + terms or lower degree
= ab + terms of lower degree,

where g, and g/, denote the left and right G-degrees of a bihomogeneous element
z. Hence the associated graded ring gr HP™ recovers HP™, which is a domain by
Lemma 5.1.

(i) Let TI be the kernel of the projection Z? — G, and take 2 = Zy x II. The
projection HP* — H restricted to 2 is just the counit. It follows that

O'|fg’®Hpre = U‘Hpre(g)y = €

and HP'™ = HP' as a Z-bimodule. In particular HE™ is a finite module over
Z. Since Z is finite over the central subalgebra generated by the kernel IT of the
projection Z¢ — G and the exp(G)-th powers of the generators for RP™, we see
that HP™ is finite over its center.

(iii) We note that the subalgebra 2 = Zy x II in HE™ is a Hopf subalgebra.
Since HP' = HP™ as a 2’-bimodule, it follows that the adjoint action of Z
on HP' is still trivial, by Proposition 4.7. The adjoint action of HY*® on HP'®
therefore restricts trivially to 2, and from the exact sequence 2 — HP' — H,
we see that the adjoint action factors through H,.
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Theorem 5.3. Suppose that V € YD(G) is of finite Cartan type, and that V
(tensor) generates Rep(G). Then for any 2-cocycle o of H = B(V) x G with
olexa = 1, the adjoint action of Hy on HP'™ is inner faithful. Consequently, the
induced action of H, on the central simple division algebra Frac(HE™) is inner
faithful.

Proof. The fact that V' generates Rep(G) implies that all characters for G ap-
pear in the decomposition of HP™ into simples, under the adjoint action. So G
acts faithfully on HP™. Triviality of the restriction o|gxa implies that the as-
sociated graded algebra grHP™ is the bosonization HP'®, where we filter as in
the proof of Lemma 5.2. Semisimplicity of C[G] then implies an isomorphism of
G-representations HP™ = HP™. So we see that G acts faithfully on H2*°.

All that is left is to verify that the restriction of the adjoint action H, —
Endc(H2™) to the space of nontrivial (g, 1)-skew primitives Prim,(H,)" is injec-
tive. Take v any such skew primitive and write v = anzo VU With v, nonzero
and having associated character x,,. By our construction of HP™, we may assume
each A(vpy,) = Uy @ 1+ t,, ® vy, for distinct basis elements t,,, € Z?. We have

v aavo = (1 — xo0(g))va + Z (vmvo — X0(9)vovm) mod Fy HP™.
0<m

This element is non-vanishing as xo(g) # 1 necessarily and v3 # 0, since HP™ is
a domain. In particular, applying A to v -4 vo and projecting onto Ct3 @ HP™
yields the non-zero term (1 — xo(g))va. It follows that v -4 vo is nonzero, and the
restriction of the adjoint action to each Primy(H, )’ is injective. Hence the adjoint
action of H, on HP™ is inner faithful by Lemma 2.6.

We are particularly interested in the generalized quantum groups u(D) = u(D, A, )
of Andruskiewitsch and Schneider [4]. These algebras are determined by a collec-
tion of Dynkin diagrams and a “linking data” D = (D, A, u) between the Dynkin
diagrams. As far as the above presentation is concerned, we have

w(D) = (B(V) x Q) = H,

for a finite Cartan type V and a cocycle ¢ which restricts trivially to the group-
likes [25, Theorem A.1], [17, Theorem 3.3]. A direct application of Theorem 5.3
yields

Corollary 5.4. Suppose V € YD(G) is of finite Cartan type, and that V' generates
Rep(G). Then the generalized quantum group u(D) associated to any linking data
D admits an inner faithful action on a central simple division algebra.

Remark 5.5. The supposition that V' generates Rep(G) is a serious restriction.
For classical quantum groups u,(g), for example, the space of skew primitives gen-
erates Rep(G) if and only if ¢ is relatively prime to the determinant of the Cartan
matrix for g. For generalized Taft algebras T'(n, m, «), we have such generation if
and only if m = n.
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5.2. More refined actions for standard quantum groups

Let ¢ be an odd root of 1, g be a simple Lie algebra, and u,(g) be the corresponding
small quantum group. We assume additionally that the order of ¢ is coprime to 3
when g is of type Ga.

Proposition 5.6. There is an inner faithful action of u.(g) on Frac(04(G)),
where G is the simply-connected, semisimple, algebraic group with Lie algebra g.
Furthermore, this action is Hopf-Galois. In particular, uq(g) acts inner faithfully
on a central simple division algebra.

Proof. By definition, &,(G) is the finite dual of the Lusztig, divided powers, quan-
tum group U,(g). We have the action of U,(g), and hence of u,(g), on &,(G) by
left translation

z- fi=(ar flax)) for z € uy(g), f € 04(G).

This action is faithful as it reduces to a faithful action of u,(g) on the quotient

*

uq(g)*
The exact sequence C — u,(g) — Uy(g) — U(g) — C [22] gives an exact
sequence

C— O0G) = Oy(G) = ug(g)" — C.

(By an exact sequence C -+ A — B — C' — C we mean that A — B is a faithfully
flat extension with B ®4 C = C, and that A is the C-coinvariants in B.) The
subalgebra €(G) is central in 0,(G), and 0,(G) is finite over €(G). Furthermore,
O4(G) is a domain [8, II1.7.4]. So we take the algebra of fractions Frac(d,(G)) to
arrive at a central simple division algebra on which u,(g) acts inner faithfully.

As for the Hopf-Galois property, faithful flatness of ,(G) over &(G) implies
that 0,(G) is a locally free &(G)-module, and also &(G) = 0,(G)"s(®) [26, Theo-
rem 2.1]. From the equality Frac(&,(G)) = Frac(0(G))®4(c) O4(G) one calculates

rankprac(o(c)) Frac(0y(G)) = ranks(c) 04 (G) = dim(uy(g))

and Frac(0(G)) = Frac(€,(G))*a(®). Tt follows that the given extension is Hopf-
Galois by Theorem 2.5.

6. Proof of Theorem 3.1

We first establish some general information regarding skew derivations of central
simple algebras, then provide the proof of Theorem 3.1.

6.1. Bimodules in Yetter-Drinfeld categories and skew derivations

Given a field K we write YD (G) for the category of Yetter-Drinfeld modules over
the group algebra KG. We always assume K is of characteristic 0.

Lemma 6.1. Let A be an algebra in YDk (G). There is an equivalence of cat-
egories between the subcategory of A-bimodules in YDy (G) and right A, A-
modules in YD (G). This equivalence takes a bimodule M to the Yetter-Drinfeld
module M along with the right A?® . A-action m - (a ® b) := (m_1a)mqb.
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Proof. Straightforward direct check.

Recall that in characteristic 0, a finite-dimensional semisimple K-algebra A is
separable over K.

Lemma 6.2. Let G be an abelian group and A be an algebra in YD(G), which is
semisimple as a C-algebra. Let K be a central invariant subfield in A over which
A is finite. Then the algebra A is projective as an AP® . A-module.

Proof. Since G is abelian, the Yetter-Drinfeld structure on A is equivalent to a
G x GV-grading on A. Take G’ = G x GV. We claim that the map of bimodules
A®rg A — A, a®bw— ab, admits a homogeneous degree 0 section. To see this
one can take an arbitrary separability idempotent e and expands e = > 9.heG Eg,h
with each ey € Ay @k Ap. Take € = Zg eg,4-1- Since the multiplication on A
is homogeneous we see that m(e’) = 1. Furthermore, since the multiplication on
the right and left of A ® A preserves the grading, we see that ae’ = €’a for each
homogeneous a € A, and hence each a € A. So the map A - A®g A, 1 — €,
provides a degree 0 splitting of the multiplication map. By Lemma 6.1 we see that
the projection
AP, A— A, a®br ab

is split as well, and hence that A is projective over A2® . A.

Lemma 6.3. Take G abelian, and let A be a G-module central semisimple algebra.
Let K be a central invariant subfield over which A is finite, and let M be a K-
central A-bimodule in Rep(G). Then every K-linear, homogeneous, (g,1)-skew
derivation f: A — M, for g € G, is inner.

By homogeneous we mean the following: if we decompose A and M into char-
acter spaces A = ®,A,, M = @®,M,, then f(A,) C M,, for some fixed o € G".
So f is homogeneous of degree ¢ here. By an inner skew derivation we mean there
is c € M, so that f =[¢c,—].: a — (ca — (g-a)c).

Proof. Take 0 = degqv(f). We choose a non-degenerate form b : G x G — C*
and let GV act on A and M via the isomorphism f, : G¥ — G provided by
the form. Then we decompose A and M into character spaces A = ©,4, and
M = ®,M,, and the corresponding G-gradings A = ®4A4, and M = §4M, are
such that A; = A, and My, = M, for p with g = f(1). There is a unique shift
MTh] of the G-grading on M so that M, = (M]h]),. In this way A and M[h] are
objects in YDk (G), and M[h] is an A-bimodule in YD (G).

Consider M[h] as an A”2®,. A-module. As in [28, Proposition 3.3(1)], one can
show that

Extzg@K 4(A, M[h]) = {Skew derivations}/{Inner derivations}.

Since A is separable, this cohomology group vanishes. Hence we conclude that
each skew derivation of M is inner.

6.2. Proof of Theorem 3.1

We consider again the algebra T'(n, m, ). We will need the following result.
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Proposition 6.4 ([12, Proposition 3.9]). Suppose H is a finite-dimensional Hopf
algebra acting on an algebra A which is finite over its center. Then A is finite over
the invariant part of its center Z(A)H = Z(A)n AH.

From a G-module algebra A, an element ¢ € A;, and fixed g € G, we let
[e,—]c : A = A denote the endomorphism [¢, a]. := ca — (g - a)e. We now prove
Theorem 3.1.

Proof of Theorem 3.1. Take G = G(T(n,m,«a)) = (g), and ¢ a primitive n-th
root of 1 with (/™ = q. We fix A a G-module central simple algebra, which we
decompose as A = @I ; A; so that g|a, = (*- —. We claim that, for an arbitrary
element ¢ € A, /,,, and any homogenous a € A, we have

[e, =T (a) = c™a — Cm“”acm. (4)

The skew commutator here employs the action of the generator g. The equality (4)

will imply the desired result, as for any T'(n, m, a)-action on A, which extends the

given action of G, we will have z-— = [c, —]. for some ¢ € A,,/,,, by Lemma 6.3. In

our application of Lemma 6.3 here we take K = Z(A)T. So we seek to prove (4).
We note that

qm(m_l)/Q _ qm/2 = —1 when m is even _ (_1)m+1
1 when m is odd '
So the desired relation (4) can be rewritten as
[07 _]:n(a) = Mg+ (_1)m<m\a|qm(m—1)/2acm. (5)

We have directly
m—1

e, 17(@) = ¢™a+ (~1)mCmlg D 2aem 13 (1 clelg D 2ad,(6)
=1

for coefficients w; € Q(¢). As explained at [2, Eq. A.8] [20, Eq. 4.44], these
coefficients w; can be calculated inductively to be the ¢-binomials w; = (Tl")q,

which all vanish for 0 < I < m. Hence we obtain the desired formula (5).

7. Coradically graded algebras and universal actions

Let us fix now a coradically graded, pointed Hopf algebra H with abelian group
of grouplikes. We may write H = B(V) x G, with G abelian and V' in YD(G). Fix
also a homogeneous basis {z; }; for V with respect to the G x GV-grading provided
by the Yetter-Drinfeld structure.

7.1. The universal algebra

We consider the (Hopf) free algebra TV in YD(G) as a module algebra over itself
under the adjoint action

@ *adj b:= aq ((ag)_lb)S((ag)o).
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Consider a presentation B(V) = TV/(ry,...,r;) with each r; homogeneous with
respect to the G x GV-grading, as well as the grading on TV by degree.
Define A,niv as the quotient

Auniv = AuniV(V) = TV/(TZ ‘adj @ - 1 < ) < l, ac TV)

We note that Ayniy is a connected graded algebra in YD(G), as all relations can be
taken to be homogeneous with respect to all gradings. Furthermore, the adjoint
action of the free algebra on itself induces an action of TV on Ayn,. We let ¢;
denote the image of z; € V in Auuiv.

Lemma 7.1. The adjoint action of TV on Auiv induces an action of B(V) on
Auniv. This action is specified on the generators by x;-a = [¢;, a]c := cia—(g;-a)c;.

Proof. Evident by construction.

Since each relation for B(V) in TV must act trivially on Ayniy we have imme-
diately

Corollary 7.2. For any r in the kernel of the projection TV — B(V'), and arbi-
trary a € TV, Auniv has the relation r -aq; @ = 0. In particular, the B(V')-module
algebra Ayniv 1s independent of the choice of relations for B(V).

Definition 7.3. For given V in YD(G), with G abelian, we call Ayniy(V) the
universal algebra for V.

We would like to construct from A,y central simple H-division algebras, and
therefore would like to develop means of understanding when A,,;, itself is finite
over its center.

Lemma 7.4. Suppose the kernel I of the projection TV — B(V') contains a right
coideal subalgebra Z C I such that

(a) % is a graded subalgebra in YD(G),
(b) Z is finitely generated and
(b) the quotient TV/(ZT) is finite-dimensional.

Then the algebra Auniv(V') is finitely presented and finite over its center.

Proof. Enumerate a homogeneous generating set {rq,...,r4} for Z. By homoge-
neous we mean homogeneous with respect to the G' x GV-grading as well as the
Z-grading. Define B=TV/(Z") =TV/(r1,...,rq) and A = TV/(r; aqja);, where
a runs over homogeneous elements in T'V. Note that B is a finite-dimensional Hopf
algebra in YD(G), by hypothesis, and surjects onto B(V'). Note also that A sur-
jects onto Auniv-

Take Ij, to be the ideal in T'V generated by the relations r; -aqj a for r; with
deg(r;) < k, and homogeneous a € TV. Let J; be the ideal generated by the
[riya]. = rsa — (ga)r; for r; with deg(r;) < k and a homogeneous, where g =
degy(r;). Since each [r;, —]. is a skew derivation, Jy is alternatively generated by
the relations [r;, ;Cj}c for varying ¢ and j. We would like to show I = J for all k.
We have I, = J; = 0.
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We have for each relation

Alr) =ri®@1+1@7i+ Y fn ® him,

where the f,, € #Z and the h,, € TV, and deg(fi), deg(hm) < deg(r;), since Z is
coideal subalgebra. Suppose we have I,_1 = Jy_; for some k. Then

I, = (ri -aqj a : deg(ri) = k)aerv + Ip—1 = (75 -aqj @ : deg(r;) = k)aerv + Ji—1,
and one also computes for r; of degree k,

Tiadj @ = [, a]c + Zm Xa(degg (hm)) fmaS(hm)

ra+ Xa(g)aS(n-) + Zm Xa(g)afms(hm) mod Jdeg(n-)—l
ria+ xa(9)a((ri)15((ri)2) — i)

= 7["¢CL *] Xa(9)ar;

where in the above computation degq(r;) = g and degqv (a) = xq- Hence I, = Ji
and, by induction, we have

(ri *adj @)ia = Ursole = UpsoJdk = ([ri, j]c )i -
The above identification provides a presentation
A=TV/([ri;ale)ia = TV/([ri, x5 )is- (7)

Let #Z' be the image of # in A. Via the relations (7) we see that %’ is the
quotient of a skew polynomial ring which is finite over its center, and also that
Z' is normal in A, in the sense that (#')TA = A(%')". Note that a bounded
below Z-graded module M over a Zxo-graded algebra T" with Ty = C is finitely
generated if and only if the reduction C®@p M is finite-dimensional. So we see that
A is finite over %', and hence finite over its center, as the reduction C @4 A = B
is finite-dimensional by hypothesis.

The center of Z’ is finite over (C[TEXP(G) : 1 <4 < d] and hence finitely generated.
In particular, the center of %’ is Noetherian. As A is finite over Z(%') it follows
that any ideal in A is finitely generated as well. Hence the kernel of the surjection
A — Ay is finitely generated, and we see that Ay, is finitely presented.

Remark 7.5. In the notation of Lemma 7.4, one can produce coideal subalgebras
in I C TV by considering, for example, subalgebras generated by coideals in TV
which are contained in I.

The most immediate way for the hypotheses of Lemma 7.4 to be satisfied is if
a generating set of relations for B(V') can, in its entirety, be chosen to generate a
coideal subalgebra in TV.
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Lemma 7.6. Suppose there is a choice of homogeneous relations {r1,...,rq} for
B(V) so that the subalgebra % generated by the r; in TV forms a coideal sub-
algebra. Then Auniv is finite over its center, and has a presentation Auniv =
TV/([ri, z5]e)ig-

The conditions for the theorem are met, for example, when the relations for
B(V) can be chosen to be primitive.

Proof. The fact that Ay is finite over its center follows by Lemma 7.4. The
presentation by skew commutators was already provided in the proof of Lemma 7.4.

In non-Cartan, diagonal, type the stronger hypotheses of Lemma 7.6 are not
always met. (There are certainly examples in which they are met, however. See
Section 7.3.) Indeed, one can show for some simple super-type algebras that Aypniy
does not have the desired commutator relations. In some more regular settings,
however, we expect that the conditions of Lemma 7.6 will be met. One can prove,
for example, that this occurs for the quantum Borel in small quantum sls at ¢ a
3-rd root of 1.

7.2. Central simple division algebras via the universal algebra

Take Auniv = Auniv(V), as above, and H = B(V) x G. Consider any field K
with a G-action, which we consider as an algebra in YD(G) by taking the trivial
G-grading, and also as a trivial B(V)-module algebra. We may take the tensor
product K@ Auniv to get a well-defined B(V)-module algebra in YD(G) (cf. proof
of Theorem 4.3). Consider now any quotient

A(K,T) := KQAuniv/I

via a G-ideal I such that A(K,I) is a domain which is finite over its center. Since
B(V) acts by skew commutators on K® Aypiv, any such ideal will additionally be
an H = B(V) x G-ideal. In this case the ring of fractions

Q(K,I) := Frac(K®Auniv/I)

is a central simple division algebra on which B(V') acts faithfully, by [30, Theorem
2.9].

Definition 7.7. A pair (K,I) of a field K with a G-action and a prime G-ideal
I in K®Aupniv is called a pre-faithful pair if the quotient A(K, ) is finite over its
center. A pre-faithful pair is called faithful if the H-action on A(K,I) is inner
faithful.

Note that when A,y is finite over its center, A(K,I) is finite over its center
for any choice of K and I (see Lemmas 7.4 and 7.6). Also, there are practical
conditions on K and I which ensure that H acts inner faithfully on A(K,I). For
example, if the sum K @ V generates Rep(G) and the composition V. — Aypiv —
A(K, I) is injective then the H-action on A(K,I) is inner faithful.

In what follows we consider H-module structures on a given algebra () which are
induced by a B(V)-module structure in YD(G). An additional YD(G)-structure
on an H-module algebra @ consists only of a choice of an additional action of the
character group GV on @, which is compatible with the given H-action.
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Proposition 7.8. Suppose H = B(V)xG acts inner faithfully on a central simple
division algebra Q. Then

(1) @ admits an H-module algebra map f : Auniv — Q so that x;-a = [f(¢;), alc
for each xz; € Prim(H)" and a € Q.

(2) Q contains an H-division subalgebra of the form Q(K',I') for some pre-
faithful pair (K',I").

(8) If the H-action on Q is induced by a B(V)-module algebra structure in
YD(G), then Q contains an H-division subalgebra Q' over which @ is a
finite module, and which admits an embedding Q' — Q(K, I) into a division
algebra associated to a faithful pair. In particular, the existence of such @
impies the existence of a faithful pair for H.

Proof. (1) By Lemma 6.3 the z; act on Q) as skew derivations
z;-a = [cj,a]c = cja — (g; - a)c]

for some ¢} € Q of GV-degree x;. (Here (g;, x;) denotes the G x G-degree of z;
in B(V).) We claim that the assignment f(c;) = ¢} provides the necessary map
of (1). Indeed, the corresponding map F : TV — Q, F(z;) = ¢, is a well-defined
TV x G-module map, and factors through Ay,iy as any relation r for B(V) is such
that F(r-a) = r-F(a) = 0. So there is a well-defined G-algebra map f : Ayniy — @,
f(c;) = ¢, which commutes with the skew derivations x; - —, and is therefore a
map of H-module algebras.

(2) Take K’ to be a G-subfield in @ which is contained in the B(V)-invariants,
and which contains Z(Q)?. By Proposition 6.4 Q is finite over K’. The B(V)-
invariance of K’ tells us that all the ¢, € @, from (1), skew commute with K.
Hence the map f of (1) extends to f' : K'®Auniv — Q. Take I' = ker(f’) to
obtain the desired pre-faithful pair.

(3) Via the Yetter-Drinfeld structure on @, we may take each ¢, € @ of the
appropriate G x GV-degree (g;, x;). The map Auniy — @ is then a map in YD(G),
and inner faithfulness ensures that the composite V. — Ay — @ is injective.
(Otherwise homogeneous elements in the kernel would act trivially on Q.)

Take Q' = Q(K',I’) with K’ and I’ as in (2), and let S = Sym(W) where W
is a (finite-dimensional) G-representation such that W @ Q' generates Rep(G) as
a tensor category. If we take S as a trivial G-comodule, the diagonal H-action on
the tensor product S®Q’ gives it an H-module algebra structure. This algebra is
a domain which is finite over its center, and so we take the ring of fractions to get
a central simple algebra Q" = Frac(S®Q’) on which H-acts inner faithfully. If we
take K to be the image of the G-algebra Frac(S ® K”') in @”, and I the kernel of
the map KQAuniv — Q”, then we see Q" = Q(K, I).

Remark 7.9. We have a faithful braided functor YD(G) — YD(G x GV) so that
Hopf algebras in YD(G) are sent to Hopf algebras in YD(G'xG"), and an extension
of an H-action on @ to a B(V)-action in YD(G) is equivalent to an action of the
pointed algebra B(V) x (G x GV) on Q. So, in terms of the general question of
(non-)existence of actions of pointed, coradically graded, Hopf algebras on central
division algebras, one may deal only with actions of Nichols algebras in Yetter-
Drinfeld categories.
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In particular, the non-existence of a faithful pair (K, I) for a particularly patho-
logical braided vector space V' in some YD(G) would provide a negative resolution
to [10, Question 1.1]. One could also attempt to approach actions on quantum
tori [7, Conjecture 0.1] via Ayniy-

Proposition 7.8 is, of course, why we refer to Ayyiy as the universal algebra for
H.

7.3. A non-Cartan example

We provide a small example to illustrate the manner in which A,n.;, can be em-
ployed to obtain results outside of Cartan type. Consider Vo = C{x1,x2} the

2-dimensional braided vector space with braiding matrix [g;;] = [ :i \/@ ]
We take V3 as an object in YD(Z/4Z) with each of the x; homogeneous of degree
g, where g generates Z/4Z, and g - x1 = —x1, g - T2 = \/—1xy. Note that V5 is a
faithful Z/4Z-representation, and that V3 is not of Cartan type, as 1221 = —v/—1
is not in the orbit of ¢;; = —1.

By [29] (see also [16, Remark 2.13)), the Nichols algebra R = B(V3) has relations

2 =0, mg =0, adc(x1)*(z2) =0, adc(z2)?(z1) =0. (8)

One can check directly, or use the fact that 2% is primitive, to see that the rela-
tion 22 = 0 implies the relation ad.(z1)?(z2) = 0. Hence we have the minimal
presentation

B(Va) = Clar,x2)/ (27, w3, adc(22)*(21)).

One sees that each of the minimal relations for B(V3) is primitive in the tensor
algebra TV (see [3]). Hence the universal algebra in this case has relations given
by skew commutators

Auniv (Va) = Cley, e2)/([e3, eale, [e3, 1], [adc (e2)? (1), €ile)-

One checks directly that in the quotient algebra C;[cy, ca] = C{cy, c2)/([c1, c2]c) we
have
[c2,cale = [c3,¢1]c =0 and ad.(c2)*(c1) =0,

which implies [ad.(c2)?(c1),c¢i]e = 0. Hence we have the obvious quotient 7 :
Auniv(Va) — Cife1,c2]. The pair (C,ker(w)) is faithful, and so we produce a
central simple division algebra

Q(C, ker(m)) = Frac(C;[eq, ca])

on which the non-Cartan type graded Hopf algebra H = B(V3) x Z/47Z acts inner
faithfully.
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