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Abstract: We construct log-modular quantum groups at even order roots of unity,
both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor cat-
egories, via a de-equivariantization procedure. The existence of such quantum groups
had been predicted by certain conformal field theory considerations, but constructions
had not appeared until recently. We show that our quantum groups can be identified with
those of Creutzig-Gainutdinov-Runkel in type A1, and Gainutdinov-Lentner-Ohrmann
in arbitrary Dynkin type. We discuss conjectural relations with vertex operator alge-
bras at (1, p)-central charge. For example, we explain how one can (conjecturally)
employ known linear equivalences between the triplet vertex algebra and quantum
sly, in conjunction with a natural PSLj-action on quantum sl provided by our de-
equivariantization construction, in order to deduce linear equivalences between “ex-
tended” quantum groups, the singlet vertex operator algebra, and the (1, p)-Virasoro
logarithmic minimal model. We assume some restrictions on the order of our root of
unity outside of type A1, which we intend to eliminate in a subsequent paper.

Contents

1. Introduction . . . . ... ... . ... ... 774
2. Preliminaries . . . . . . . . .. ... 778
3. Additional Structures on the Character Lattice . . . ... ... .. .... 784
4. The Log-Modular Kernel as a quasi-Hopf Algebra . . . . ... ... ... 786
5. Quantum Frobenius and the Miiger Center of tepG, . . . . . . ... ... 792
6. Tensor Properties and Finiteness of (rep Gg)gv . . . . . . . . . .. .. .. 794
7. Quasi-fiber Functors and the Ribbon Structure . . . . .. ... ... ... 796
8. Rational (De-)equivariantization and Non-degeneracy . . . . . ... ... 798
9. Revisitingthe Odd Order Case . . . . . . ... ... ... ........ 801

This work was supported by NSF Postdoctoral Research Fellowship DMS-1503147


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04012-2&domain=pdf
http://orcid.org/0000-0002-2669-3859

774 C. Negron

10. Identifications with Quantum Groups of Creutzig et al. and Gainutdinov et al. 802
11. Relations Between Quantum Groups and (1, p) Vertex Operator Algebras. 805
A. Appendix A: Details on Rational (De-)equivariantization . . . . . . . . . . 808

1. Introduction

This paper concerns the production of certain non-semisimple “non-degenerate” quan-
tum groups at even order roots of unity. In order to highlight the issues we mean to
address in this work, let us consider the case of quantum sl,.

We have the standard small quantum group, or quantum Frobenius kernel, u, (s1>) in
Lusztig’s divided power algebra U, (sl2) [47,48], i.e. the Hopf subalgebra generated by
E, F,and K. It has been shown that, at arbitrary even order ¢, the Hopf algebra u, (s[2)
admits no quasitriangular structure [34,44]. This is in contrast to the odd order case,
where the small quantum group is always quasitriangular. Indeed, this quasitriangular
property holds, in a certain sense, at all parameters except for even order roots of unity.

From another perspective, it is known that there is a linear equivalence between repre-
sentations of the small quantum group u, (sl2) and representations of a certain strongly-
finite vertex operator algebra—the triplet VOA [3,28,36,43,55]. Hence rep u, (sl2) appar-
ently admits some braided tensor structure, via the logarithmic tensor theory of Huang,
Lepowsky, and Zhang [39,40] (cf. [35, Conjecture 5.7]). So, one may conclude that
there is some error in the definition of the Hopf structure on quantum sl, at an even
order root of unity which, after it has been remedied, will reproduce the CFT-inspired
tensor structure as the natural tensor structure on rep u, (sl>) induced by the coproduct
on u,(sh) (see e.g. [16,26,34,36]).

This slippage between representation theory and conformal field theory is not unique
to type A1, although the corresponding conformal field theories are not well-developed
outside of type A. One expects, in the conclusion, that there is an appropriate correction
to the definition of the small quantum group u, (g), for an arbitrary simple Lie algebra
g over C and even order ¢, under which the category rep u,(g) is braided, and even
log-modular (cf. [4, Conjecture 3.2]). To be clear about our terminology:

Definition 1.1. ([17]) A log-modular tensor category % is a finite, non-degenerate, rib-
bon tensor category.

One could refer to such categories simply as modular tensor (as opposed to fusion)
categories, although we would like to draw a distinction between our quantum group
categories and those of, say, [5,60]. By non-degenerate we mean that % is braided and
maximally non-symmetric, in the precise sense of Definition 2.1 below.

In the present work we examine the issues discussed above from a representation
theoretic, and tensor categorical, perspective. In particular, we clarify how one can
correct the apparent “singular” behaviors of quantum groups at even order roots of
unity by employing representation theoretic techniques. We discuss the relevance of our
findings from a conformal field theory perspective in Sect. 1.2 below, and discuss other
recent constructions of log-modular quantum groups in Sect. 1.1.

Let us consider an almost simple algebraic group G, over C, and the associated
category of quantum group representations

en G — Finite-dimensional representations of Lusztig’s divided power
PLg = algebra U, (g) which are graded by the character lattice X of G | °
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In the above expression g is the Lie algebra of G, and ¢ is always an even order root of
unity. The category rep G, admits a canonical ribbon (braided) structure, and Lusztig’s
quantum Frobenius yields a braided tensor embedding Fr : rep G¥ — rep G, which
has Miiger central image, where GV is a specific almost simple dual group to G (see
Sect. 5).

We focus in the introduction on the simply-connected case, as results become sporadic
away from the weight lattice. However, in the body of the text we deal with arbitrary
almost simple G.

Theorem 1.2. (6.6, 7.1, 8.2) Let G be simply-connected and suppose that the character
lattice for G is strongly admissible at (even order) q. Then the de-equivariantization

(rep Gy)gv = {Finitely presented Fr 0'(G") — modules inrep Gq}

has the canonical structure of a finite, non-degenerate, ribbon tensor category. That is
to say, (rep G4)gv is a log-modular tensor category.

We note that outside of the simply-connected setting the de-equivariantization
(rep G4)gv may fail to be ribbon, although it is always finite and non-degenerate. We
explain our “strongly admissible” condition in detail below. Let us say for now that
SL, has strongly admissible character lattice at arbitrary ¢, and that outside of type A;
this basically means that 4 divides the order of q. (See Sect. 3.1). We call (rep G4)gv
the log-modular quantum Frobenius kernel for rep G, at even order ¢, or simply the
log-modular kernel.

From the perspective of this work, the de-equivariantization (rep G4) v is the canon-
ical form for the small quantum group at even order g. However, we show at Proposi-
tion 7.3 that (rep G;)gv admits an algebraic incarnation as the representation category
of a ribbon quasi-Hopf algebra qu(G). As a consequence of Proposition 7.3 below, and
non-degeneracy of the de-equivariantization, we find that ul(y[(G) is in fact log-modular.

We describe the quasi-Hopf algebras ug’l(G) in detail in Sect. 4. The formula for
the comultiplication in particular is given in Lemma 4.8. To identify with the above
discussion, one should take the simply-connected form ul(}’[ (Gyc) specifically as the error-
corrected version of u, (g).

The ug/l (G) arrive to us as subalgebras in (a completion of) the corresponding divided
power algebra U, (G). It is precisely the subalgebra generated by the elements E, :=
Ky Eq and F,, and the character group Z" for the quotient Z of the weight lattice by the
ord(q)/2-scaling of the root lattice. For the standard nilpotent subalgebras u}, u, C
U, (G), we provide in Lemma 4.5 a triangular decomposition

u; ®CIZ 1@ ul > ud(G).
The quasi-Hopf structure on ug/l (G) is not canonical, but depends on a choice of func-

tionw : X x X — C*, which essentially quantifies the failure of the algebra Fr &(G")
to be central in the quantum function algebra &, (G). We call w a balancing function,
and its precise properties are described in Sect. 3.2. At the categorical level, however,
the tensor structure on rep ugfl(G) is unique up to isomorphism, via the identification
with the canonical form (rep G4)gv.

Theorem 1.3. (Sect. 4, 7.3) Let G be simply-connected with strongly admissible char-
acter lattice at (even order) q. There is a log-modular quasi-Hopf algebra ug/[(G) which
admits a ribbon equivalence

fib? : (rep Gy)gv S rep qu(G)-
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The comultiplication and R-matrix for ug/[(G) depend on a choice of balancing
function o for G, but are unique up to braided tensor equivalence. The ribbon element
for ug/I(G) is independent of the choice of balancing function.

For sl;, for example, the dual group to SL» is SL; = PSL,. In this case one finds that
ug/[(SLz) is in fact the standard small quantum group u,(SL2) C U, (SL3), with some
alternate choice of quasi-Hopf structure induced by its identification with the categorical
kernel (rep(SL2)4)psL,. We discuss this example in Sect. 4.4.

We note that Theorem 1.3 was obtained at the C-linear level, i.e. as a C-linear equiv-
alence, in earlier work of Arkhipov and Gaitsgory [11]. In particular, the definition of
the algebra ulqw(G) was observed already in [11] (see also [5, §3.11]).

1.1. Identifications with the log-modular quantum groups of Creutzig et al. [16] and
Gainutdinov et al. [33]. Independent of the present paper, constructions of log-modular
quantum groups at even order roots of unity have appeared in work of Creutzig, Gain-
utdinov, and Runkel [16,34], in type Aj, and in work of Gainutdinov, Lentner, and
Ohrmann [33] in arbitrary Dynkin type.

In [16] a quasi-Hopf algebra u?(s[z) was produced via a local module construction.
The local module construction of [16] is motivated by certain CFT considerations and,
from our perspective, is essentially a de-equivariantization (see Sect. 10). We note that
the results of [16] followed earlier work of Gainutdinov and Runkel [34] in which the
authors produced the quasi-Hopf algebra u? (slp) for sl, at parameter g = i, essentially
by hand.

In [33] the authors proceed via an Andruskiewitch-Schneider like approach (cf. [8,9]),
where the quantum groups u,(G) are produced as quotients of Drinfeld doubles of
Nichols algebras B(V), with V an object in the braided category of representations of a
cocycle perturbed group algebra. So, V lives in a braided category which does not admit
a fiber functor in general, and the construction of B(V) takes place in this category as
well.

As remarked in [33], all of the constructions of quantum groups from [16,33,34]
agree, when appropriate. We prove in Sect. 10 that our quantum groups ug/[ (G) agree with
those of Creutzig, Gainutdinov, Runkel [16,34] and Gainutdinov, Lentner, Ohrmann [33],
at the ribbon categorical level.

Remark 1.4. In addition to the production of certain small quantum groups, much of
the labors of [16,33,34,45] are directed towards producing and refining relationships
between quantum groups and vertex operator algebras/CFTs.

Remark 1.5. One point which is consistent across all of the references discussed above,
as well as the present work, is that the failure of the naive quantum group u, (g) to admit
an R-matrix, in general, has to do with some defect in the Cartan part C[Z"]. So, the
naive quantum group and (what we call) the log-modular quantum group only differ due
to some alteration in the Cartan part.

1.2. Relevance for the “logarithmic Kazhdan-Lusztig equivalence” at (1, p)-central
charge. Take u};’[(ﬁlz) the simply-connected form ug/[(SLz). We discuss here the situ-
ation in type Ay, and fix ¢ of order 2p. Some aspects of the story in arbitrary Dynkin
type are recalled in the concluding paragraphs.
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As we alluded to earlier, there is a conjectured equivalence of ribbon tensor categories

fpirep ug/[(slz) = repW,,

where W, is the triplet vertex operator algebra [3,30,43]. This conjecture was first
proposed in the paper [36], and it has been shown that such an equivalence f), exists at
the level of C-linear categories [36,55]. (So, without the tensor product). It is conjectured
that the equivalence f), for the triplet algebra lifts to additional equivalences

rep,,; uf(ﬁ[g) = rep sy Mp, rep(SLa), = rep LM(1, p),

where uf (slp) is the so-called unrolled quantum group, M, is the singlet VOA, and
rep LM(1, p) is a certain subcategory of the representations of the (1, p)-Virasoro
which we leave unspecified for the moment [13,15,18]. (See Sect. 11).

Here we are concerned with means of obtaining equivalences for the singlet and
Virasoro from the known additive equivalence f), for the triplet algebra. As we argue
in Sect. 11, this problem may be approached via considerations of certain natural PSL,
actions on rep ug/l(s [2) and rep W,,. The action of PSL; on rep W, is well-established in

the CFT literature [1], while the action on rep ug/l(s [5) is deduced from our construction
of the log-modular quantum group as a PSL; de-equivariantization of rep(SL2),.

Conjecture 1.6. (11.7) The linear equivalence f, : rep ug’l(s[z) > repW,, is PSL,-
equivariant, or can be chosen to be PSLs-equivariant.

A positive solution to Conjecture 11.7 would produce explicit functors
A :repy uf(s[z) — repM,, B:rep(SLy), — rep LM(1, p)

via the triplet equivalence f.

Let us conclude with a short discussion of the situation in other Dynkin types. We
again take ug’[(g) = ug’l(Gsc) the simply-connected form. Analogs W), (g) of the triplet
algebra in arbitrary Dynkin type were introduced in work of Feigin and Tipunin [26],
with the triplet W, = W, (sl») recovered in type A;. These vertex operator algebras
are conjectured to be strongly finite [4]—-and in particular Ca-cofinite—although outside
of types Aj this conjecture remains completely open. One can see [29] for a specific
discussion of type B.

Supposing strong finiteness of the algebras W, (g), it is additionally conjectured that
there is an equivalence of braided tensor categories rep ug/l(g) — 1ep W) (g) [33,45].
Lentner proposed [45, Conjecture 6.8 & 6.9] that the dual group G" acts naturally on
Wp(g) so that the invariants V\/p(g)Gv are the associated W-algebra #(g) [25] at a
corresponding level k. Although we have clearly stacked up quite a few conjectures at
this point, we would suggest that the proposed G action on W, (g) should correspond
to our action of G on rep ug[(g), and that the representations of the big quantum group
rep G, should be identified with a distinguished tensor subcategory in rep #%(g), just
as in the type A; case.
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2. Preliminaries

All algebraic structures (algebras, schemes, algebraic groups, categories, etc). are over
C. An algebraic group is an affine group scheme of finite type over C. The standing
conditions for this document are that g is a root of unity of even order 21, with [ positive,
and that G is an almost simple algebraic group with strongly admissible character lattice
at g (defined in Sect. 3.1 below).

For any algebra A, we let rep A denote the category of finite-dimensional A-modules.
We let Rep A denote the category of A-modules which are the union of their finite-
dimensional submodules. We adopt a similar notation corep A and Corep A for comod-
ules over a coalgebra, but note that Corep A happens to be equal to the category of
arbitrary comodules here. For a C-linear category % we let Ind % denote the corre-
sponding Ind-category, i.e. the completion of € with respect to filtered colimits, so that
Ind(rep A) = Rep A (resp. Ind(corep A) = Corep A) for example.

2.1. Basics on (braided) tensor categories. We refer the reader to [24], and in particular
[24, §4.1 & §8.1], for basics on tensor categories. Concisely, a tensor category (over C)
is a C-linear, abelian monoidal category which has duals, has a simple unit object 1, and
satisfies certain local finiteness conditions. Following [23], we call a tensor category
€ finite if € has finitely many simples and enough projectives. This implies that €’ is
equivalent to the representation category of a finite-dimensional algebra, as a C-linear
abelian category.

A tensor functor between tensor categories is an exact C-linear monoidal functor. A
fiber functor for a tensor category % is a faithful tensor functor to Vect, F : € — Vect.
By an embedding F : 9 — % of tensor categories we mean a fully faithful tensor
functor for which F(2) is closed under taking subobjects in ¥". When ¥ is a finite tensor
category this subobject closure property is a consequence of fully faithfulness [24, §6.3].
In the infinite setting there are fully faithful tensor functors which are not embeddings.

A braided tensor category is a tensor category ¢ equipped with a family of natural
isomorphisms cy.w : V@ W — W ® V,atall V and W in ¢, which satisfies the
braid relations [24, Definition 8.1.1]. A braided tensor functor F' : € — & is a tensor
functor which respects the braiding, in the sense that braidings from % and & induce the
same maps F (V) ® F(W) - F(W) ® F(V). We write c%,,w for the double braiding
cwveyw VW = VW

Definition 2.1. The Miiger center of a braided tensor category % is the full tensor sub-
category of ¢ consisting of all objects V for which the double braiding transformation
c%, _:V®— — V ® — is the identity. We call a braided tensor category 6 non-
degenerate if its Miiger center is trivial, i.e. if any Miiger central V is isomorphic to a

sum of the unit object V = 197,

When ¥ is finite, our definition of non-degeneracy, in terms of the Miiger center, is
equivalent to all other reasonable notions of non-degeneracy [62].

We recall that a symmetric tensor category is one for which the double braiding
c%’f is the identity, globally, and a Tannakian category is a braided tensor category &
which admits a braided fiber functor to Vect. Note that a Tannakian category must be
symmetric, although not all symmetric tensor categories are Tannakian. (For example,
the category s Vect of super vector spaces is non-Tannakian, as it has objects with self-

braiding —idV®V )
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Definition 2.2. A ribbon structure on a braided tensor category % is a choice of a family
of natural endomorphisms 0y : V — V which satisfy (0y)* = Oy+ and Oygy =
(B ® Ow)cy - forall V and W.

2.2. Almost simple algebraic groups. Let G be an almost simple algebraic group over
C, withroot lattice Q and weight lattice P. Recall that G is specified, up to isomorphism,
by its Lie algebra g = Lie(G) and choice of character lattice X between Q and P. The
character lattice appears abstractly as the group of maps from a maximal torus 7 C G
to Gy, X = HompeGrp (T, Giy). (By Gy, we mean the multiplicative group C* with its
standard algebraic group structure). For G of adjoint type we have X = Q, and for G
simply-connected X = P.

We let A = {ay, ..., a,} denote the simple roots in X, and & C X denote the
collection of all roots. For each simple «; we have an associated integer d; = dy, €
{1, 2,3} and diagonal matrix D = diag{d;, ..., d,} for which Dla;;] is symmetric,
where the g;; are the Cartan integers for G.

We have the Cartan pairing {( , ) : Q X Q — Z, defined by the Cartan integers
(o, aj) = a;j. If we take r to be the group exponent of the quotient X/Q, then this
form extends to a unique Z[%]-valued form on X. We have a unique symmetrization

(,): XxX— Z[%] of the Cartan form on X defined by
(ai, aj) = dilai, aj) = d;aj.

We call this symmetrized form the (normalized) Killing form on X, since the induced
form on the complexification X¢ is identified with the standard Killing form on the dual
h* of the Cartan subalgebra b in g, up to scaling.

Remark 2.3. Note that the Cartan integer conventions for Lusztig [48,49] are transposed
relative to those of, say, Humphreys [41]. We follow Lusztig’s convention here, in order
to produce a consistency between our presentation and the works of Lusztig, so that
(ai,aj) = 2(a;, a;)/(a;, a;) [49, Definition 2.2.1].

2.3. Exponentiation of the Killing form on X. Take again r to be the exponent of the
quotient X/Q, so that the Killing form on X takes values in Z[%]. For g an arbitrary
root of unity in C, with argument 6, we may take the r-th root ;/g = exp(27mif/r). We
exponentiate the Killing form to arrive at the multiplicative form

Q:X x X —C* Qx,y) =Yg ™.

Since r(x, y) is an integer this form is well-defined. Having established this point, we
abuse notation throughout and write simply Q (x, y) = ¢®).

2.4. Representations of the quantum group rep G, and the divided power algebra U, (g).
Take g a root of unity of order 2/, let g be a simple Lie algebra over C, and for each root
y € ® take

l,, := the minimal positive integer such that d, [, € [N,

where d,, is the relative length |y |2 /|short root|?. Following [49, Chapter 35], we assume
additionally that l, > —{«, B) at all pairs of distinct simple roots «, . This condition
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is always satisfied in the simply-laced case, provided / is positive, but requires that [ is
not oo small outside of the simply-laced case.

Remark 2.4. One can require that the comparison /, > —(«, 8) holds only at those «
for which [, > 1. However, in applying this relaxation one should alter the definition of
ug’I(G) (Sect. 4) in accordance with [49, §35.4.1].

LetU; = U,(g) be Lusztig’s divided power quantum group specialized at g [47,48],
with standard generators

Ky 0

o

Ey, Fy, Ky, El®), Flo), ( ) foralla € A.

Here the K, are grouplike, the E, are (K, 1)-skew primitive, and the Fy, are (1, K, 1)-
skew primitive. We let rep G, denote the tensor subcategory in rep U, (g) consisting of
objects V such that:

(a) V comes equipped with a grading by the character lattice, V = @ycx Vi,
(b) For v € V) the torus elements in U, act by the corresponding eigenvalues,

Ky 0 JA . . .
Ko v=g“vand < ;‘ > SV = <(a >> v, Where<z> is theqd“ — binomial.
d d

o o

Morphisms in rep G, are Uj,-linear maps which preserve the X-grading. (Obviously,
U, = U, (g) here). For the materials of Sect. 11, we would like to understand the nature
of rep G, as a subcategory in rep U,,.

Proposition 2.5. The faithful tensor functor rep G, — rep Uy is a tensor embedding.
The proof of the proposition will follow from Lemma 2.7 below.

Remark 2.6. The analogous maprep G, — rep U, is anequivalence at simply-connected
G when q is of odd order. At even order g the functor of Proposition 2.5 is not essentially
surjective for G = SL; (see Sect. 11.2), and thus not an equivalence, and we expect that
it is not an equivalence for any G at such g.

For simple « let f, € P denote the corresponding fundamental weight in P, so that
(fa, B) = dpdy,p at simple B. Since X C P, we may write any element in X uniquely
as a linear combination of these f,, with coefficients in Z.

Consider V in rep G, and take a homogenous nonzero element v € V. For simple
o € A consider the unique integer 0 < m/ («) < ord(g%) so that K,v = qdam@("‘)v
and take

da
m', (ct) if ord(g%) is odd or m/,(ar) < 294

do
% else.

my(a) = {

m)y(e) —

Let also n,(«) € Z be such that v lies in the n/,(«)-eigenspace for the action of (KI‘L ‘0)
(cf. [46, Corollary 3.3]) and take

(@ if ord(g"*) is odd
ny(a) = (_l)l(n;,(d)—l)n:)(a) else.

Finally, define £, = ord(g%) if the order of ¢% is odd and ord(g%)/2 otherwise
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Lemma 2.7. Consider homogenousv € V, for V intep G4, and take my(a), ny(a) € Z
as above. Then the X-degree of v is given by the formula

deg(v) = Y (my(@) + (— )" @G g0 (@) f. (1)

aeA

Proof. We may assume G is simply-connected, by way of the embedding from rep G
to the simply-connected form. Via the restriction functors Fy, : rep G4 — rep(SL2)d
along the Hopf embeddings qua (sl) — U,(g), which sends E, F, and K to Ey, Fy
and K, it suffices to consider the case G = SL,. Here the weight lattice is generated
by the single fundamental weight f = %a. We note that ord (g% ) may be odd, in which
case ord(qda) = {4, and make the analogous £,-demands as above in the definition of
rep(SL2) a. . In any case, we take G = SL, and allow ¢ to be of possibly odd order.
Take v € V of degree cf, for V inrep(SL),, and assume first that g is of even order

2¢. Then we have
()= ()= ()
V= V= v,
14 14 14

and by definition n), = (§). We have directly that (;) = 0 when 0 < r < £ and (ﬁ) =1,
and also the general property

ké+a o ke 2[4\ _ . a k¢ ke[
( ¢ )_q <£>+" (f)‘( ”(z)*( Y (2)

(see[49, §1.31). This gives (%) = (=1)**®~Dibyinductionand (*§") = (—=1)" (= 1)**~ Dk
for 0 < r < £. So, in total,

n, = (Z) = <—1)C—”%J(—1)“"@—”L%J.

The difference ¢ — ¢ L%J is my, since Kv = g“v. Hence

c=c—Ll7]l+17]
=my + (=)™ (=)D = m, + (=1)" ln,.

So we see deg(v) = cf = (my + (—1)™¢ny) f, as claimed.
A similar, but easier, analysis yields the result for rep(SL;), when ¢ is of odd order.

Proof of Proposition 2.5. One sees from Lemma 2.7 that the X-grading on V inrep G
is completely recoverable from the action of the torus elements in U,. Whence we find
that morphisms V' — W in rep U, between X-graded objects preserve the X-grading,
implying full faithfulness of the inclusion. Furthermore, fora v € V in X-graded V we
may expand v in terms of the grading v = ), v, and, by Lemma 2.7 we may take for
any A € X a torus element 7, € U, so that f,v = v,. Hence any subobject V' C V in
rep U, is X-graded as well. Whence the inclusion rep G, — rep Uy is an embedding. O



782 C. Negron

2.5. The R-matrix for rep G,. Let g be aroot of unity of order 2/, as before. Recall our
notation 2 : X x X — C* for the g-exponentiated Killing form. According to [49,
Chapter 32] the category rep G is braided by the operator

R=R'Q'=| > ca@EM. . EM@F . FM Q!
n:®+t—Z=q
where the ¢,(g) are polynomials in ¢g*! with integer coefficients, {y1, ..., yw} is a

normal ordering of the positive roots, and up to first order we have

R = (1 - (Z(q —g¢ HYE, ®Fa> +> Q!
a€eA

This linear term actually specifies R entirely. The corresponding braiding on rep G is
given by

cyw: VW ->WeV,
cyw(v @ w) =swap(R-v Q@ w)
= q—(degv,deg ) swap (Zn:d)*—)Zzo C”(q)EJ(’rlll) : E}(’rul;w) ® F}S?l) t F)Elui,vuj)w> ’

where swap is the standard vector space symmetry, and v and w are taken to be homo-
geneous in the above expression. This braiding operation is well-defined as any object
in rep G, is annihilated by sufficiently high powers of any E,,, F),.

Remark 2.8. In [49], Lusztig’s “R-matrix” R’ is the reverse of our R-matrix, R’ = Ry;.
This is because the braiding employed in [49] is R’ o swap, which is equal to swap oR.
We follow the convention of [24] with regards to R-matrices and braidings.

The following result is well-known, and we omit a formal proof.

Lemma 2.9. (cf. [14, §8.3C]) The coefficients c,(q) in the expression of the R-matrix
are such that c,(q) = 0 whenever n,, > 1, for any y € ®*.

Lemma 2.9 says that the R-matrix lives in a certain “torus extended small quantum
group” for G at g (denoted U, below).

2.6. Algebras of global operators.

Definition 2.10. Let € be a locally finite C-linear category with fixed fiber functor
F . ¢ — Vect. The algebra of global operators for ¢ is the endomorphism ring
Endpurl jc(F).Forrep G, welet Uq (G) denote the associated algebra of global operators
(calculated with respect to the forgetful functor to Vect).

By Endpu ;c(F) we mean the algebra of natural endomorphisms of the C-linear
functor F. Elements of this algebra are families of linear maps ay : FV — FV,
defined at all V' in ¢, which satisfy F'(t)ay = aw F(t) forany map ¢ : V — W in
% . In this subsection we expand upon the the construction of the algebra U, (G) for the
quantum group. We explain, in particular, that the algebra ﬁq (G) is identified with the
completion of a familiar quantum group along a cofiltered system of ideals.
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For rep G, we have Lusztig’s modified algebra U, (G) = @, .y U, 15 [42, Section

1.2] (see also [49, Chapter 23 & 31]), which has rep Uq (G) =rep G,. Tobe clear, Uy 1,
is the cyclic module

Ky 0 s A
Uq(g)/<ZUq(Ka_q(a,)»))+ZUq((l )_((O‘l >>d ))s

and we let 1, denote the corresponding cyclic generator. For a and b in U, of respective
Q-degrees p and v, the multiplication on the modified algebra is given by

(aly)(bly) =abl; _,1; =8¢ vabl;.
We write U, for the algebra U, (G) when no confusion will arise.

Remark 2.11. Colloquially, the torus in U, (g) is absorbed by the idempotent 1, in each
U, 1., and one is left only with the positive and negative subalgebras. The modified
algebra Uq can then be thought of as Lusztig’s divided power algebra U, (g), with the
toral portion replaced by the algebra of idempotents @< x Cl1;. Note that the modified
algebra is formally non-unital, as the unit element ) _, .y 1, does not lie in Uy.

The algebra ﬁq is a pro-finite, linear topological Hopf algebra [24, §1.10], and we
may identify U, explicitly with the limit

U, =lim  U,/1 )

where cof is the collection of cofinite ideals / in ﬁq, i.e. ideals for which the quotient
Uq /1 is finite-dimensional.

For the moment, let us fix ﬁq to be the limit (2), and denote the algebra of global
operators as Endgy, yc(F), were F : rep G; — Vect is the usual forgetful functor.

To elaborate on the claimed identification between Extgy, /¢ (F) and the limit (2),
note first that any cofinite ideal / is the annihilator of some finite-dimensional Uq -module
V. For any cofinite I and I’, with corresponding modules V and V’, we have the sum
V @ V'. The annihilator J of the sum _in contgiined in bpth 1 ar_ld I’, so that we have a
cofinite ideal J such that the two maps U, — U, /I and U, — U, /I’ factor through the
projection ﬁq — Uq /J. So we see that the collection of cofinite ideals cof is cofiltered
under inclusion, and the limit (2) is a cofiltered limit.

By construction, the action of U, on any finite-dimensional module V' factors through
the completion Uq — ﬁq, and rep G is identified with the category of discrete finite-
dimensional ﬁq -modules. That is, the category of finite-dimensional ﬁq -modules which
are annihilated by the kernel of one of the structural projections ﬁq — Uq/ I. For
any element a in the completion ﬁq we have the associated natural endomorphism
ay = a - — € Endgyyc(F) given by left multiplication by a, so that one obtains a
map of algebras ﬁq — Endpun /c(F), a = as. Furthermore, one can check that this
map is an isomorphism, as one has an explicit inverse. Indeed, any global operator by
defines an element b € U, via the limit b = 1<ir_nw " qu / ; (1) of the values of b7 on

the generators 1 € Uq/ I, at varied I, and one checks that the associations a +— a9,
by +> b are mutually inverse. In this way we identify the algebra of global operators
Endgun /¢ (F) with the completion U,,.
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For the Hopf structure, note that each reduced coproduct Uq - U /1 ® lqu/ J,
a > a-(1®1),atcofinite I and J, has cofinite kernel K and so lifts to a map from the
completion Ay ; : Uq — Uq/ I® Uq/ J. These Arg define, via the universal property
of the limit, the claimed coproduct Uq — Uq ®Uq The counit for Uq comes from the
action on the trivial representation, and the antipode is recovered from the duality on
rep G, (cf. [54, Theorem 9.1.3]).

Now, we have the global operators E,, Fy, Eq (e) , Fy (la) , as well as the projection
operators 1, foreach A € X, and these operators topologlcally generate U . Furthermore,
any (infinite) sum erx cnly, ¢ € C, provides a well-defined global operator on
rep G. So, the product algebra [ [, .y C1;, which is identified with the collection of
arbitrary C-valued functions Fun(X, C) on X, is naturally realized as a subalgebra in
the algebra U,.

Remark 2.12. The completion ﬁq is the linear dual of the finite dual (Uq)o [54, Definition
1.2.3], which has rep G, = corep(Uy)°.

2.7. Coherence of function algebras on groups. Recall that an algebra A is called co-
herent if the category of finitely presented A-modules is an abelian subcategory in
the category of arbitrary A-modules. We would like to work with general affine group
schemes at some points, and so include the following result.

Lemma 2.13. The algebra of global functions O'(I1) on any affine group scheme 11 is
coherent.

Proof. Since & = O'(I1) is locally finite, as a coalgebra, we have that & is the direct limit
(union) of its finitely generated, and hence Noetherian, Hopf subalgebras & = l'i)na Oy.

Since extensions of commutative Hopf algebras are (faithfully) flat [65, Theorem 5],
Op is flat over 0, when o < B. It follows that ' = li_r)na O, is coherent [38, Theorem

2.3.3].

3. Additional Structures on the Character Lattice
We introduce some basic structures on the character lattice, of a given almost simple

group, which are employed throughout this work. Below we consider an almost simple
algebraic group G with character lattice X, root lattice Q, and weight lattice P.

3.1. (Strongly) admissible lattices. Given an intermediate lattice Q C X C P between
the root lattice and weight lattice in a given Dynkin type, and g a 2/-th root of 1, we
define

XM=(xeX:(x,y) €lZVyeX).
This is a sublattice in X. Note that the restriction Q| ym, xm takes values {£1}.

Definition 3.1. We say the lattice X is admissible at ¢ if Q(x, x) = 1 for all x € XM,
We call X strongly admissible at ¢ if the restriction 2| ym, ym is of constant value 1.
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This is a technical condition which, it turns out, determines the nature of the Miiger
center of the quantum group rep G . In particular, the character lattice for G is admissible
if and only if the Miiger center of rep G, is Tannakian, and strongly admissible if and only
if the braiding on the Miiger center inrep Gy is the trivial vector space symmetry. Rather,
the lattice is strongly admissible if and only if the given fiber functor rep G, — Vect,
which is not itself a braided tensor functor, restricts to a symmetric fiber functor on the
Miiger center of rep G ;.

Lemma 3.2. Fix a Dynkin type with corresponding root and weight lattices Q and P
respectively. The following hold:

(1) The simply-connected lattice X;c = P is admissible at arbitrary (even order) q in
all Dynkin types.

(2) The simply-connected lattice in types Ay, i.e. the lattice for SLy, is strongly admissible
at arbitrary (even order) q.

) Intypes A~1, B, D, E, and G, the simply-connected lattice X, is strongly admis-
sible if and only if 4 | ord(q).

(4) In type C=», X is strongly admissible if and only if 4 { ord(q), i.e. 2 appears with
multiplicity one in the prime decomposition of ord(q), or 8 | ord(q).

(5) In type Fu, Xy is strongly admissible if and only if 8 | ord(q).

(6) When 2exp(P/Q) | I and q is of order 21, all intermediate lattices Q C X C P are
admissible.

(7) The lattice for PSL, is strongly admissible when 4 1 ord(q) or 8 | ord(q), and
inadmissible otherwise.

Proof. Take 21 = ord(q). (1) In this case XM = Z{l,« : « € A}, and we calculate for
an arbitrary element

(Zi CiliOli, l Zi ciliai) = lizcl-z(a,', Ol,') + Zlilj Zi<j CiCj(Ol,', Otj)
=20lic} +211; Y, cicjlai, aj) € 217

Whence we have admissibility. (2) Here we have XM = [ Q = [Za«, and the computation

(la, la) = 217 implies strong admissibility for SL,.

(3) In the simply-laced case we have XM = [Q and (la, Ib) € 1%(a,b) fora,b € Q.
When 2 | / this implies strong admissibility. When 2 { [ if we take neighbors then
(la,18) = I*> ¢ 2I7Z, obstructing strong admissibility. In type B, we find a similar
obstruction to strong admissibility when 2 does not divide /. When 2 | / and 8 is short
we have again ([, [B) = l2(ot, B) € 217, and for the unique long y,

Uy, Lyy) =1y, y) =2ll, € 2lZ.

So (X M x M) C 217 and we have strong admissibility. For G, with short root o and
long root y,

(o, la) =212, (I, y,la) = 1> or 3%, (I,y,1,y) =1 or 3%,

depending on if 3 | / or not, implying failure of strong admissibility when / is odd and
establishing strong admissibility when [ is even.

(4) The Killing form on Q takes values in 2Z in type C,. When [ is odd [, = [ for
all simple o, and XM = 1Q. So (XM, XM) = [2(Q, Q) € 2IZ in this case, and we have
strong admissibility. When [ is even [, = [/2 for all long roots and /g = [ for the unique
short root 8. When 4 | [ this is sufficient to establish strong admissibility, and in the
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remaining case when 2 appears with multiplicity 1 in / we can take neighboring long
roots o and B to find (lycx, [gB) = gl ¢ 217Z. (5) One basically combines the arguments
for types B and C to observe the claim for F4, as we have both short neighbors and
long neighbors. We leave (6) and (7) to the interested reader, as they are just illustrative
examples.

3.2. Balancing functions.

Definition 3.3. A balancing function on the character lattice X for G, at a given param-
eter g, is a function w : X x X — C* with the following properties:

(a) w is X-linear in the first coordinate.

(b) Inthe second coordinate, w satisfies the XM-semilinearity w (a, a’+x) = ¢~ “Pw(a, a’),
for x e XM,

(c) The restriction to XM x X is trivial, | ym, y = 1.

Note that we may view w as a map from the quotient (X/XM) x X satisfying the
prescribed (semi)linearities. Also, by strong admissibility, the function g~ () is trivial
on XM so that the conditions (b) and (c) are not in conflict.

Lemma 3.4. Every strongly admissible character lattice admits a balancing function.

Proof. Consider any set theoretic section s : Z = (X/XM) — X. Then each element
a € X admits a unique expression a = x + sz with x € XM and z € Z, and we may
define the desired function w by w(a, a’) = w(a, x +sz7) = ¢~ *9.

4. The Log-Modular Kernel as a quasi-Hopf Algebra

We provide explicit presentations of the quasi-Hopf kernels u}}’l (G), for almost simple G

with strongly admissible character lattice X. We first introduce M (G) as an associative

algebra, then provide its quasi-Hopf structure, R-matrix, and rib%on element when ap-
plicable. We leave a proof of factorizability to Sect. 7.2. As we will see, the quasi-Hopf
structure on ug’I(G) is not unique, but depends on a choice of balancing function on the
character lattice for G.

We note that the materials of this section are relatively independent of the materi-
als of the sections that follow. What we give here is a direct, algebraic, construction
of the log-modular kernel. In the remainder of the paper we provide both categorical
and representations theoretic (re)productions of this same object, and investigate some
consequences of these varying perspectives in Sect. 11.

4.1. The log-modular kernel as an associative algebra [11]. Consider again the linear
topological Hopf algebra U, (G) = l(ian qu(G) /1 of global operators for rep G,
as in Sect. 2.6. We let Z denote the quotient Z = X/XM. As explained in Sect. 2.6,
arbitrary C-valued functions on X determine global operators onrep G, s0 that characters
x on Z in particular are identified with operators ), .y x (M) 1, € U,. We employ
the distinguished grouplikes K, € Fun(X,C) C ﬁq below, which are precisely the
functions K, : X — C*, A — q("")‘).
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Definition 4.1. Define qu(G), as an associative algebra, to be the subalgebra in ﬁq (G)
generated by the operators E, := Ky Ey and Fy, for « simple, as well as the functions
C[Z"] on the quotient Z.

One has relations between the characters ZV and the generators E, F, as follows:
for x € Z" and any simple & we have

XEox ' = x(@Es, xFux ' =x""@)F,,

and we have those relations between the E’s and F’s which are implied by the usual
quantum Serre relations [4}8, §1]. One can check that the Serre relations for the usual
positive elements E, € U, imply the exact same (Serre) relations for E,. Only the
commutator relations for E, and Fg are altered, due to the presence of K, in the formula
E, = Ky Ey. We claim, and prove in Lemma 4.5 below, that these relations provide a
complete list of relations for uz’I(G).

Remark 4.2. Note that the distinguished grouplikes K, do not lie in Z¥ C Fun(X, C) in
general. For example, for SL(N) at N > 2 we have X” = [Q and g@h) =gl =1
whenever « and § are neighbors, so that K, does not satisfy the required vanishing on
XM However, the squares K, 02[ always lie in ZV.

Remark 4.3. The algebra u(’y (G) is the same as the algebra of [11], given there as the
algebra of coinvariants in ﬁq with respect to the quantum Frobenius (see Sect. 5.1), and
rep ug/l(G) is the category 65, of [5, §3.11].

Letu, denote the subalgebra in Uq generated by the idempotents 1, and the elements
Ey 1, Fyl,, for arbitrary A € X and simple «. This is the modified small quantum
group, and its representations rep u, are X-graded vector spaces with operators £, and
Fy, @ € A, which satisfy the quantum Serre relations.

We may consider the cofinite completion U, i.e. the algebra of endomorphisms of the
fiber functor for rep u,. By considering the ideals /y inu, generated by the idempotents
{1, : |A] = N}, N > 0, one can calculate directly that the completed algebra is simply
the product

iy =lima, /Iy = [ uqls.
N rex

Here the u, 1, are defined as in Sect. 2.6, with u,, the subalgebra of U, generated by the
Ey, F,, and all toral elements.

Lemma 4.4. The restriction functorsrep G, — rep Uy is surjective (in the sense of [24]).

We employ in the proof a certain basic understandings of dominant weights, and the
lattice XM, from Sect. 5. We have elected to reference the necessary results from Sect. 5
when appropriate, rather than delay the proof.

Proof. The surjective image of rep G4 in repuy, is the smallest subcategory in rep u,
which contains the image of rep G, and is closed under taking subobjects and quotients.
This subcategory is closed under duality in rep 1, and, since the tensor product on rep u,
is biexact, it is also closed under taking tensor products. That is to say, the surjective
image is an embedded tensor subcategory in rep ;. We have proposed that the surjective
image of rep G, is all of repu,.
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We let L(1) denote the simple in rep G, of highest (dominant) weight A € X [46,
Proposition 6.4]. We have the Steinberg module St = L((/ — 1)p), which is simple,
self-dual, and projective in rep G4. The image of St in repu, remains projective [7,
Theorem 4.3]. We claim now that all simples in rep i, appear as subquotients of simples
in rep G,. Simples in rep i, are determined by their highest weights .#(v), which are
now associated to arbitrary elements v € X, and so we see that £ (1) is a quotient L(A)
for any dominant A. When u € X, the simple .Z () is 1-dimensional.

The lattice XM is itself the character lattice of a certain dual group to G, and
(XMy* = XM N X* (see Sect. 5.1). Since, XM is generated by its dominat weights
(see Proposition 5.4), we find that .Z’(u) is in the surjective image of rep G, whenever
w € XM, Since XM contains some positive multiple of all the fundamental weights
we have that all A € X are in the XM-orbit of the dominant weights X*. Rather,
X = XM 4+ X, and since each 1-dimensional .Z (1) is a tensor unit we obtain

Trrep(i,) = (Z(v) :v e X} = (L) ® L) : ne XM, 1 e XT).

So all of the simples are in the surjective image of rep G, inrep u,. By tensoring with the
projective Sz, we find further that the surjective image contains a projective & (v) which
surjects onto each simple .Z(v). By considering composition series, it follows that each
object V in rep Ui, admits a surjection & — V from a projective in the surjective image
of rep G,. Hence the surjective image is all of repu,.

Lemma 4.4 says, equivalently, that the completion U, — Uq of the inclusion u; —
U is 1n]ectlve [61, Lemma 2.2.13]. Since the subalgebra u C U lies in U, we may
replace Uq with U, in our analysis of the linear structure of uM q

In the following Lemma we consider u;'(G) as the subalgebra of U, generated by the
E,, and let u, (G) denote the subalgebra generated by the Fy.

Lemma 4.5. The subalgebra u:;(G) (resp. u; (G))in ug/[(G) has the expected presenta-
tion, with generators Ey (resp. F, ) and the quantum Serre relations of [48). Furthermore,
multiplication provides a triangular decomposition

u; (G) ® CIZ21® u}(G) > ud(G). 3)

Proof. The Serre relations for ”Z (G) imply that u,‘; has a spanning set in terms of ordered
monomials in the root vectors E, [48]. The algebra u; has precisely these relations if
and only if the root vector monomials provide a basis for this algebra. However, this
follows by the (topological) basis of U, in terms of monomials in the root vectors [49,
§31.1.2, 36.2.1]. A similar argument establishes the desired result for iy -

As for the triangular decomposition, the commutator relations between the E, and
Fg imply that the map (3) is surjective, and injectivity follows again by the basis of U,
in terms of monomials in root vectors.

4.2. The quasi-Hopf structure on uM (G) via a balancing function. We introduce a (fam-

ily of) quasi-Hopf structure(s) on uM(G), determined by a choice of balancing function
for the character lattice X . We refer %e unfamiliar reader to [51] for details on quasi-Hopf
algebras, or any other standard reference.
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Fix abalancing function w, with pointwise inverse o L. Wehavew(l, *) = w(*, 1) =
1, and hence w defines a (non-Drinfeld) twist

o= Y ok wl,®Il, eFun(X,C)&Fun(X,C) C U,6U,.
rpeX

Whence we may twist in the usual fashion to obtain a new quasi-Hopf algebra ﬁ;’ with
the same (linear topological) algebra structure, comultiplication

Vi=o 'A(-)ow
and associator
¢ =130 '1®A) (@ (A’ DWW ]).

We have also the normalized antipode (S, 1, 8), where

P =17 'S, = o ' —D)T=) o ' G —De (L M),

reX s
andt =), yo(=A N, =), o~ (%, 1) 1;. We will establish the following.

Proposition 4.6. The subalgebra uquI(G) is a quasi-Hopf subalgebra in 0o, for any

choice of w. The formula for the comultiplication V on ug/[(G) is as described in
Lemma 4.8 below.

We choose a section s : Z — X and identify Z with its image in X in the formulas
below. We can understand ¢ and f as functions from X3 and X respectively. We have

. y3 #(a,b,c) = (b, c)w(a+b,c)o " (a,b+c)w(a,b)
SN — w(@, 0@ b+ (. b

¢

By linearity of w in the first component, and XM-semilinearity in the second component
we see that

¢a+x,b,c) =¢@,b+x,c)=¢(a,b,c+x)=¢(a,b,c) forx € xM.

So ¢ is constant on X M_cosets in each component, and thus is identified with a function
from the quotient Z 3

¢ . Z3 N (C, ¢(Z, Z,, Z//) — C()(Z, z”)w_l(z, Z/ +ZN)CD(Z, Z/).

One also observes directly that 8 is constant on X M-cosets to find that it is identified with
a function on Z, B(z) = ™' (z, —z2)w~!(z, ). This information implies the following.

Lemma 4.7. Let 1, € C[Z"] denote the idempotent associated to an element 7 € Z. We
have ¢ € C[ZV]®3 ¢ ul(;/I(G)Qb3 and B € C[ZV]. Specifically,

p=Y 0@ '@+ )11, =) oG o @ -

z€Z zeZ
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Let us define for y € X functions £,,, L, : X — C by
Ly =g "oy, ), LyG)=ol.y).

These functions are constant on XM-cosets and hence provide elements in C[ZY] C ug’l.
We define also the interior product

¢ X2 = C, oG 1) =0 1, y).
This function is also constant on XM-cosets so that 1,9 € ClZ V192,
Lemma 4.8. In U2 we have V(§) = & ® £ forall & € Z",
V(E) =Ea® Ly +1-0¢™ 'Lk ®Ea,
and V(Fy) = Fy ® Lo +10¢ 'Ly @ Fy.
Furthermore, ug/[(G) is stable under the application of the antipode S°.

Proof. The equality V(§) = £ ® & follows from the fact that @ commutes with elements
in Z". Now, once calculates directly

V(Ey) = 0 'AEy)w

= Y o' +a ot WEL, ® Kyly + o™ (h, o0, p— o) 1,K; @ 1,Eq
ApeX

=Y q¢“Po N, WE L @ 1, +¢7 (0, —e) LV, K ® 1,Eq
Al

=B, ® L +1 4p'L_oK2 QE,.
Similarly,
V(Fy) = 0 'A(Fy)w

=Y "o = o WFaly @ 1y + 07 O, oG, +a)l;, @ 1, F
A

=Y g Mol WFli® 1+ ¢ (k) La ()1, ® 1, Fy
A,

=Fy®Ly+10¢p 'Ly @ Fy.
For the antipose we have S®(¢) = &,

S9Eaw) = — (Xiex ¢ HYo, Vo —a, A — ) Ky *Eq,
S9Fy) = = (Xrex ¢* Y0, Do '+ a, A + ) Fy.

One can check directly that these coefficients are constant on XM-cosets in X, and hence
liein C[ZV].

We can now prove the proposition.

Proof of Proposition 4.6. Follows from Lemmas 4.7 and 4.8.



Log-Modular Quantum Groups at Even Roots of Unity 791

4.3. The ribbon structure on MI;/[(G). Fix w a balancing function, as above. We have the

standard R-matrix R® = o, llRa) for the twisted algebra ﬁ;‘l’ The following lemma is
verified by straightforward computation.

Lemma 4.9. The R-matrix R® lies in ul(y[(G) ® ulqv{(G), and hence provides ug/[(G) with
a quasitriangular structure.

M

o~ q K
is given by the formula 7 ~!S(z)u, where u is the Drinfeld element for U, . The pivotal
structure on U,, which is given by multiplication by the grouplike K, where p =
ZV co+ ¥V, provides a pivotal structure for the twist U?, which is given by multiplication

by 7 1S()K - Hence the ribbon element for ﬁ;’ is

By categorical considerations [24, §8.9], the Drinfeld elements for ﬁ“’, and hence u

v =t S(OK, e S(u) T = KpuT = v,

where v is untwisted ribbon element for the quantum group. (We use the fact that 7 is
in Fun(X, C) and hence commutes with u).

When X is the simply-connected lattice, so that xM — 1Q, it is easy to see that
K, € Z". More generally, K, is in Z" whenever K,|ym = 1. Since 7 is a function on
X, S(t) = ' and t7'S(z) = 2. This element t 2 is constant on XM_cosets and
hence in C[Z"]. Thus the pivotalizing element 7~ S(7) K p for UZ lies in ug/[ whenever
Kylxm = 1.

Proposition 4.10. Suppose that X is the simply-connected lattice, or that K,|xm = 1.
Then for any choice of balancing function, the induced quasi-Hopf structure on ug/l(G)
naturally extends to a ribbon structure under which the ribbon element v is just the
standard ribbon element for the large quantum group Uy.

If one considers the example (PSL),, we see that K,|ym = 1 when [ is odd, since
XM = ]Q in this case, and K,|xm is not identically 1 when 4 | [, as xM = %Q and

K, (%a) = —1. So the induced ribbon structure on qu (G) is not exclusive to the simply-
connected case, but fails to hold in general. We continue our discussion of quantum PSL,
in Sect. 10.4.

Of course, as a quasi-Hopf algebra, the definition of M (G) depends on a choice of
balancing function w. However, by Proposition 7.3 below, the braided tensor category
rep ug/[(G) is independent of choice of balancing function, up to braided equivalence

and ribbon equivalence when applicable. We find in Corollary 8.2 that ul(;’I(G), with
R-matrix as above, is in fact factorizable, and hence log-modular.

4.4. The log-modular kernel for sly. Consider ub'(sly) := u}!(SLy). The character

K =Ky, : Xse > C,K(A) = q(’x""), is of constant value 1 on XM = [Z«. Hence
K € u}(sl), and therefore E = K~ 'Eisin uy!(sly). Therefore

WM(sly) = the standard subalgebra in U, (sl>) generated by

q W'2) = the E, F, and K, as an associative algebra ’

So we see that Mg/[(ﬁ [>) simply consists of a new choice of comultiplication, associator,
and ribbon structure, on the usual small quantum group in U, (s12).
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5. Quantum Frobenius and the Miiger Center of rep G,

We now turn our attention from the quasi-Hopf algebra u}}’l(G ) to the canonical form
(rep G4) v highlighted in the introduction. In this section and all following section, g is
a root of unity of even order 2/ and G is an almost simple algebraic group with strongly
admissible character lattice X at g.

5.1. The quantum Frobenius. Define the dual group GV to G at g to be the almost simple
algebraic group with the following Cartan data:

e The character lattice for G is XM.
o The simple roots for GY are AY := {l;a; : a; € A}
e The Cartan integers are given by al.j. = ajj ll—’

J

When all d; divide [ the group G is of Langlands dual type to G, and G" is exactly the
Langlands dual when G is additionally simply-connected. When the d; do not divide /
the dual group G is of the same Dynkin type as G.

For the algebra U, = U, (G) = @/\ex U, 1;. of [49, Chapter 23 & 31], which has

rep Uq = rep G4, we have the quantum Frobenius map

Ey— 0
Fo—0
Fr* 1 U,(G) — UGY), { EL > eq
lo
Fo(z ) = fa
1, 1, ifx e XM, Oelse,

which is a surjective map of quasi-triangular Hopf algebras [49, Theorem 35.1.9]. We
note that UY = U(G") recovers classical representations for the dual group rep UY =
rep GY.

Remark 5.1. For SL; and Sp,,, at odd / the quantum Frobenius actually lands in the quasi-
classical algebra UXI . However, one can rescale the generators to obtain an identification
UXI = UY in these particular cases. The important point in the strongly admissible
setting is the identical vanishing of the R-matrix for rep Ull which implies that the

forgetful functor rep Ull — Vect is symmetric, and hence rep ﬁll is directly identified
with representations of an algebraic group via Tannakian reconstruction [21,53].

Restricting along the quantum Frobenius Hopf map yields a braided tensor embed-
ding
Fr:repG' — rep Gy,
which we also call the quantum Frobenius. There is a third form of the quantum Frobe-
nius, which is that of a Hopf inclusion to the quantum function algebra Fr, : 0(G") —
04(G), where 0,(G) = coend(rep G, — Vect) = Homcon (Uy, C). One then recov-

ers the categorical Frobenius by corestriction corep &(G") — corep 0y (G).
To ease notation we generally write & for ¢(G") and &, for 0,(G).

Remark 5.2. The algebra 0, is presumably the quantum function algebra of [48,50].
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5.2. The quantum Frobenius and the Miiger center of rep G,. We aim to prove the
following result.

Theorem 5.3. The quantum Frobenius Fr : rep G¥ — rep G, is an equivalence onto
the Miiger center of rep G.

In order to prove the theorem we recall some basic representation theoretic facts.
Recall that a weight A € X is called dominant if (&, A) > O for all « € A. Equivalently,
we may employ the Killing form to find that X is dominant if and only if («, A) > 0 for
all . We let X* denote the set of dominant weights in X.

By a standard analysis, the simples in rep G are classified up to isomorphism by
their highest weights. Given a weight A € X which appears as a highest weight for some
object in rep G4, and hence as the highest weight of some simple, we let L(A) denote
the corresponding simple.

Proposition 5.4. Forany simple L (1) inrep G, the corresponding weight ) is dominant.
Furthermore, the map Irrep G, — X*, L(A) — A, is a bijection.

Proof. One proceeds exactly as in the proof of [46, Proposition 6.4].
The following lemma is, without doubt, well-known and classical.
Lemma 5.5. The dominant weights X* span X.

Proof. Enumerate the simple roots A = {ay, ..., a,} and define §; to be the set of
x € X with (o;,x) = Oforalli < j, and (aj, x) > 0. Elements of S; are exactly
those elements which have an expression in terms of fundamental weights in which the
coefficients of f; are 0, for all i < j, and the coefficient of f; is positive. Note that
§; # ¥, since P/ X is finite, and hence some power of each fundamental weight lies in
X.

For each 1 < j < n take x; € §; with minimal pairing with «;, (aj,x;) =
min{(c«;, x) : x € §;}. By replacing x; with a sum x; + Zk>j CkXy We may assume
additionally that each x; is dominant. Now, for arbitrary A € X with (a;, A) = 0 for
all i < j, our minimality assumption on x; implies that there is some c;(A) € Z with
(aj, A —cj(X)x;) = 0. Whence we see, by induction, that for any A € X one can take a
difference A — ), ¢;(A)x; sothat (aj, A— Y, ¢;(A)x;) = Oforall j. By non-degeneracy
of the Killing form on the rationalization Xg we see A = Zi ci(M)x;.Hence {xq, ..., x,}
provides a dominant spanning set for X.

We can now prove our theorem.

Proof of Theorem 5.3. The image of the quantum Frobenius Fr : rep GY — rep G, is
the subcategory tensor generated by the simples L(A) with A € (X My+ One sees this
directly from the definition of the associated surjection Uq — UY and the classification
of simples for UY.

We note that for any extension W of objects V and V' in the image of rep GV, the
X-grading on W is necessarily a grading by X™. That is to say, W5, = O forall A ¢ XM,
This implies that E;, F; : W — W are trivial operators. (One needs to use strong
admissibility of X here when [ = 2 in types B and C, and / = 3 in type G»). Hence
the action of U, on W factors through the Frobenius U, — UY. Rather, W is in the
image of rep GV, and we see that the image of rep G is closed under extension. We can
describe this image simply as the collection of V in rep G, with X-grading induced by
a XM_grading.
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Now, take L () a simple in the Miiger center of rep G4, and let vy, be a highest weight
vector for L(A). Then for all © € X* we have for the double braiding

RyjR:L(A\)®L(w) - L(A) ®L(w), vy ®vy g 2My, & vy, + lower degree terms.

Triviality of this operation demands 2(A, i) € 2I7Z, and hence that (A, ©) € [Z. Since
this holds for all simples L(u) inrep G4, we find (A, X*) C IZ. Since X is spanned by
dominant weights, by Lemma 5.5, we conclude A € XM. So we see that all simples in
the Miiger center lie in the image of the rep GV .

Finally, for arbitrary V in the Miiger center we find that all of its simple composition
factors lie in rep GV, since the Miiger center is closed under subquotients. As the image
of rep GV is closed under extension in rep G, it follows that V is in rep G . O

6. Tensor Properties and Finiteness of (rep G4)gv

We begin by recalling the notion of de-equivariantization [11,22]. We maintain our
assumption that the base field is C for consistency, although many of the results are
characteristic independent. By a corepresentation we always mean a right corepresen-
tation.

6.1. De-equivariantization and faithful flatness. Let I be an affine group scheme and
F : repll — ¥ be a central embedding into a tensor category . That is, F is a
pair of an embedding Fy : repI1 — % and a choice of lift to the Drinfeld center
F :repIl — Z(%). Such a lift F; simply specifies a family of half-braidings yy w :
Fo(V)@ W — W ® Fy(V) for objects V in rep I1. This family is required to be natural
in V. We abuse notation throughout and write simply F (V) for the image of an object
V in rep IT under a central embedding F'.

The central embeddings of interest to us come from braided tensor functors, in which
case the central structure is implicit. Namely, the braiding on 4 specifies a section
€ — Z(€) of the forgetful functor Z(%¢) — % . One uses this section to provide any
functor into ¥ with a canonical central structure.

For any central embedding F : repI1 — % we have the algebra object F&O =
F (1) in the Ind-category Ind %’. We can therefore consider F'&-modules in Ind %
Each F 0-module becomes a bimodule via the half braiding y» _.

Definition 6.1. A module M over an algebra object .27 in Ind % is called finitely pre-
sented if there are objects V and V| in % for which there is an exact sequence &/ @ V| —
o/ @ Vo — M, where the o7 ® V; are given the free left ./'-action.

Given a central embedding F : rep [1 — %, we define the de-equivariantization 61
as

%1 := {The category of finitely presented F & — modules in Ind €’} .

This category is naturally additive, enriched over C, and monoidal under the tensor
product @ g (cf. [22]).

Definition 6.2. We say a central embedding F' is faithfully flat if the resulting de-
equivariantization 67y is rigid. We call F locally finite if the de-equivariantization 47
is a locally finite category.
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Taken together, F is faithfully flat and locally finite if and only if the de-equivariantiza-
tion (411, ® pe) is atensor category. Implicit in our locally finite definition is the proposal
that 417 is abelian. Since the de-equivariantization functor dE : € — 611,V > OQV,
is left adjoint to the forgetful functor 611 — Ind €, we see that the forgetful functor is
left exact. It follows that the abelian structure on 417 must be the one inherited from %'.
That is to say, 611 is abelian if and only if F & is a coherent algebra in Ind ¢, and local
finiteness of F therefore implies coherence of F & (cf. Lemma 2.13).

6.2. Faithful flatness for Hopf inclusions. Let € be a commutative Hopf algebra and
¢ — A be aHopf inclusion. Suppose that this inclusion comes equipped with a function
R: 0 ® A — C whichis trivial on ¢ ® ¢ and induces a lift corep & — Z(corep A) of
the corestriction map corep & — corep A. So, R is a “half R-matrix”. Take IT = Spec .

For corep A, the Ind-category is simply the category of arbitrary corepresentations
Corep A. We consider the category .4 of relative Hopf modules which are finitely
presented over ¢ [54]. We have directly 5.#* = (corep A)py. If this category is rigid,
then the forgetful (monoidal) functor

(corep A);1 — (O-bimod, R )

necessarily preserves duals. Since a bimodule over &' is dualizable if and only if it is pro-
jective on the left and on the right, it follows that each object in the de-equivariantization
(corep A) is projective over & in this case. Conversely, if each object in (corep A) is
projective over & then we have the duals

M"Y = Homy,g.0(M, ©) and ¥ M = Homg_mea(M, O) 4)

with actions of the topological Hopf algebra A*, i.e. A-coactions, defined by

Fh = me fix(S(m) and £y = (m fix(sT (fm))
respectively. The following is basically a result of Masuoka and Wigner.

Lemma 6.3. ([52, Corollary 2.9]) Take K to be the coalgebra C ® s A given by taking
the fiber at the identity of T1. In the above context, the following are equivalent:

(a) The category (corep A)yy is rigid.

(d') The embedding F : rep I1 — corep A is faithfully flat.

(b) The extension O — A is faithfully flat.

(c) Taking the fiber at the identity C ® 5 — : (corep A);; — corep K is an equivalence
of C-linear categories.

Inthis case F is also locally finite, A is coflat over K, and O is equal to the K -coinvariants
0 = AK.

Proof. Firstnote that (a) and (a") are equivalent, by definition. In [52] the authors employ
the category ;M of arbitrary Hopf modules, and prove an infinite analog of the proposed
equivalence, with (corep A)p replaced with M and corep K replaced with Corep K.
So we are left with the task of translating between the finite and infinite settings.

We have sM4 = Ind ;5.#* and recover ;.4 as the category of compact objects
in @’MA (cf. Lemma 8.4 below). One can use this identification to equate (a)—(c) via [52,
Corollary 2.9]. Supposing (a)—(c), coflatness of A over K follows by [65, Theorem 1], as
does the equality @ = AX. Additionally, (corep A)py is locally finite in this case as it is
equivalent to the locally finite category corep K, so that F is locally finite by definition.
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Remark 6.4. 1t is proposed in [11, Proposition 3.12] that an arbitrary extension & — A
of a commutative Hopf algebra is faithfully flat. While the result is correct [37], there
are some problems with the proof given in [11]. So we have avoided direct reference to
this result.

6.3. Faithful flatness of the quantum Frobenius. One can argue exactly asin [11, §3.9],
where some slightly different restrictions on g and G are involved, to find that the linear
dual of uquI (G) is the fiber C® 4 O of the quantum function algebra &, at 1 € G". They

show further that the quantum Frobenius Fr : rep GY — rep G, is, in our language,
faithfully flat.

Theorem 6.5. ([11, Theorem 2.4]) The functor C ® ¢ — : (rep G4)gv —> rep MI;/I(G)
given by taking the fiber at the identity of GV is a C-linear equivalence.

We apply Lemma 6.3 to obtain

Corollary 6.6. The de-equivariantization (rep G ) gv, with its natural C-enriched monoidal
structure @ g (Gv), is a finite tensor category.

Proof. All is clear save for the finiteness of (rep G4)gv. But this just follows from the
fact that the equivalent category rep ulc}’I(G) is finite.

7. Quasi-fiber Functors and the Ribbon Structure

We note that the braiding on rep G, induces a unique braiding on (rep G,)gv so that
the de-equivariantization functor dE : rep G, — (rep Gy)gv, V = O @ V,is a map
of braided tensor categories [22, Proposition 4.22]. This braiding is given simply by

cMN MRy N—> NQp M, mQ@ni> swap(R-m Q@ n).

We consider (rep G,) v as a braided tensor category with this induced braiding through-
out the remainder of this document.

7.1. The ribbon structure on (rep G4)gv. We employ the duals (4) to give (rep G4)gv
an explicit rigid structure. For p the sum of the positive roots, p = Zy cop+ Y € X, the
global operator K, provides rep G, with a canonical pivotal structure. Specifically, the
natural linear isomorphisms

pivy : V= V¥, vi> K, -evy,
provide an isomorphism of tensor functors id — (—)**. The pivotal structure on rep G

induces a canonical ribbon structure with ribbon element v = K pu_l, where u € Uy is
the Drinfeld element [14, Corollary 8.3.16].

Lemma 7.1. When G is simply-connected, or more generally when K ,|ym = 1, there is
a unique ribbon structure on (rep G4)gv so that the de-equivariantization functor from
rep G is a map of ribbon categories.
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Proof. Supposing such a ribbon structure exists, uniqueness follows from the fact that
the de-equivariantization map is surjective. So we must establish existence. It suffices to
provide a pivotal structure on (rep G4)gv so that the de-equivariantization functor d E
preserves the pivotal structure. Such a pivotal structure is given explicitly by

PR vV
pivyy M —> M, mi— K, -evy.

The piv), are O-linear as the image of K, in ﬁv, which is just the restriction K,|ywm, is
identically 1 in this case. (Otherwise, piv’ twists the &'-action by the translation K, - —).
The piv), are isomorphisms because each M is finite and projective over ¢, and hence
reflexive.

7.2. Quasi-fiber functors and the ribbon equivalence to uM(G). For an ¢-bimodule
M we let My, denote the the symmetric &-bimodule with action specified by the left
O-action on M.

Lemma 7.2. Fix a balancing function w for the character lattice of G. For M and N in
(rep G4)gv, the maps

Tﬁ’N t Myym @6 Nyym = M ®¢p N, m @ n — w(degm, degn)m @ n,

are well-defined O-linear isomorphisms which are natural in each factor. Taking the
fiber at the identity gives a natural isomorphism

Tyin (C®s M)Rc (CQ®p N) - C®p (M Q¢ N), m®n > o(degm, degn)m @n.

The natural isomorphism T provide the reduction C® o — : (rep G4)gv — Vect with
the structure of a quasi-fiber functor fib® : (rep Gg)gv — Vect.

Proof. Note that the reduction C ® g — : (rep G,)gv — Vect is a faithful functor by
Theorem 6.5. So we need only show that 7% is a well-defined quasi-tensor functor to
see that it is a quasi-fiber functor. One simply checks, for f € O andm ®n € M Q4 N,
the formula

w(degm +deg f,degn) fm @ n
= w(degm, degn) fm @ n (balancing property (c))
= g~ (e f.degm) o, (degm, degn)m ® fn
= w(degm,degn +deg fym Q@ fn (balancing property (b))

to see that 7 provides well-defined, natural, morphisms from the tensor product M ym®@g

Ngym. The inverse is constructed by a similar use of w to see that T is a natural iso-
morphism. The remaining claims of the lemma follow.

The quasi-fiber functor fib is alinear equivalence onto the subcategory rep ug/I (G) C
Vect, by Theorem 6.5, and hence induces a unique tensor structure on rep ug’[(G) under
which the product is the linear tensor product. As one would expect, this tensor structure
is the one introduced in Sect. 4.
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Proposition 7.3. Give qu(G) the quasitriangular quasi-Hopf structure provided by a

choice of balancing function w, and give rep ug’I(G) the corresponding braided tensor
structure. The functor

fib® :={C®g —. T} : (rep Gg)gv — repuy (G)

is an equivalence of braided tensor categories. When K ,|ym = 1, fib® is additionally
and equivalence of ribbon categories.

Proof. We have the diagram

rep G, =rep U, (rep Gg)gv

{id,a»}i lf‘ib‘“

s restrict
rep Uy rep ul,;/l,

with all but fib® having been established to be braided tensor functors, and ribbon when
applicable. By surjectivity of dE it follows that fib® is a braided tensor functor, and
also a ribbon equivalence when applicable, by Theorem 6.5.

8. Rational (De-)equivariantization and Non-degeneracy

We provide rational analogs of the results of [22, Proposition 4.30, Corollary 4.31]. This
section can be seen as an elaboration on the materials of [19, §2.2] (cf. [11, §4.3]). What
we need is the following.

Theorem 8.1. Let T1 be an affine group scheme. Suppose that F : repIl — % is a
braided tensor embedding, which is additionally faithfully flat, locally finite, and has
Miiger central image. Then the de-equivariantization 611 is non-degenerate if and only
if F is an equivalence onto the Miiger center of €.

Recall that a braided tensor category 2 is called non-degenerate if its Miiger center is
trivial. Recall also that a log-modular tensor category is a finite, non-degenerate, ribbon
category. We call a ribbon quasi-Hopf algebra log-modular if its representation category
is log-modular. We observe our calculation of the Miiger center of rep G, at Theorem 5.3
to arrive at the following.

Corollary 8.2.(a) The de-equivariantization (rep G4)gv, with its induced braiding, is
non-degenerate. If furthermore G is simply-connected, then (rep G4)gv is canoni-
cally log-modular.

(b) The quasitriangular quasi-Hopf algebra qu(G) is factorizable, and log-modular
when G is simply-connected.

We are left to prove Theorem 8.1. We have elected to give a completely general
presentation of (de-)equivariantization for tensor categories, in order to make precise
sense of the conjectural relations with vertex operator algebras discussed in Sect. 11.
However, to keep from distracting completely from our main program, we defer many
of the details to “Appendix A”.
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8.1. Rational actions on cocomplete categories. Let 2 be a cocomplete C-linear cate-
gory. For any commutative algebra S we let Zs denote the S-linear category consisting
of objects X in & equipped with an S-action, S — End ¢ (X). Maps in Zs are maps in
2 which commute with the S-action. We note that this operation (?)g is functorial in
C-linear morphisms, so that a C-linear morphism 2 — %’ induces a S-linear morphism
9s — Zg. If we have an algebra map k : § — T we restrict scalars to get a map of
linear categories k* : 1 — s.

Restriction has a left adjoint k. : Y5 — 9r given by induction. Here we use
cocompleteness of Z to construct the induction 7 ® s X explicitly as the quotient of the
sum @, Xa by the standard relations, where Xa is just a copy of X labeledbya € T.

Let IT be an affine group scheme with algebra of functions R = &(I1). A rational
action of IT on 2, or simply an “action”, consists of the following information:

(a) A functor ¢, : 9 — Pg which is exact and commutes with colimits.

(b) A choice of coassociative isomorphism o : Ay, = Y, Y, of functors from 2 to
DReR-
(c) A choice of isomorphism 7 : €.\, — idg for the counite : R — C.

Given 2 with an action of IT we define the category of equivariant objects Z'! as the
non-full subcategory of objects X in & equipped with a coaction px : X — v, X which
is coassociative and counital, in the sense of the equalities

Yu(px)px = oxAypx and nyepx =idy.
Morphisms of equivariant objects are maps f : X — Y in & for which the diagram

Yu f
YuX ————— Y

o] f &

X —— 7Y

commutes.

Note that for 2 with a IT-action we can change base along S-points t € TI(S),
t : Spec(S) — II, to obtain a compatible collection of maps v, : ¥ — Zs. These maps
have induced compatible isomorphisms ¥y, = .-, where for points ¢ € T1(S) and
t'eTI(S) weletr -1 = (t @ t')A denote the product in TT(S ® S’). In particular each
element in the discrete group x € I1(C) acts via an equivalence ¥, : ¥ — %, and we
recover from the rational action of IT an action of the discrete group IT(C) on 2, in the
usual sense of [22].

Remark 8.3. Our presentation of rational group actions on categories is adapted from
informal notes of D. Gaitsgory.

8.2. Rational group actions on tensor categories. A locally finite category Z is ex-
plicitly not cocomplete, as all objects are required to be of finite length. In this case
we define Zs only for coherent S, as the full subcategory of objects in (Ind Z)gs with
a finite presentation unit,V — unit,W — X, where the V and W are in & and
unit, : Ind 2 — (Ind 9)g in induction by the unit C — S. As a more practical check
for finite presentation we have
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Lemma 8.4. The subcategory 9s C (Ind @)y is exactly the subcategory of compact
objects in (Ind 2)5.

We provide a proof of the lemma in “Appendix A”. We employ these categories
Ps and define a TT-action on & just as above, and also the category 2" of equivariant
objects. (Recall that the algebra of functions on an affine group scheme is itself coherent,
by Lemma 2.13).

When Z is a finite tensor category each Zs is monoidal under the product X ®g Y,
which is given as the quotient of the product X ® Y internal to 2 by the relations
s —-1Qs:X®Y > XQ®Y,foreach s € S. We say I acts on &, as a tensor
category, if the universal map v, : 2 — g is equipped with a monoidal structure
Y, (V) Qg ¥, (W) = 9, (V ® W) which is compatible with the isomorphism o, in the
sense that the two paths from v, (V) ®g ¥, (W) to ¥, ¥, (V ® W) agree. This implies
that for each S-point ¢ € T1(S) the induced maps ¢, : ¥ — Zs will all be monoidal
functors in a compatible manner.

Lemma 8.5. When 2 is a tensor category, any monoidal functor ¥, : 9 — (Ind 2)g
has image in Zg, and hence , defines a rational action 11, provided \, is exact and
commutes with colimits.

Proof. Monoidal functors preserve dualizable objects, and dualizable objects are com-
pact.

When Z is braided, the base change Zs additionally admits a unique braiding so that
the induction functor unit, : 2 — Yy is a braided tensor functor. Whence IT can act on
2 as a braided tensor category, in which case the action map v, : 4 — s is assumed
to be a braided monoidal functor.

For a (braided) tensor category & equipped with a IT action, which respects the
(braided) tensor structure, the equivariantization & T is a non-full (braided) tensor sub-
category in 2. The coaction on a product V ® W of equivariant objects is simply given

by the composite V @ W VoW VuV @r YuW = ¥ (V@ W).

8.3. A summary of the details in “Appendix A”. Fix € atensor category with a faithfully
flat, locally finite, central embedding F : rep I1 — % . Fix also a tensor category & with
a rational action of IT. There is a canonical IT-action on the de-equivariantization 61y,
given by the formula v, (X) := R ® X, and an obvious functor

can' : € > (‘ﬁn)n, Ve OQRYV,

which is shown to be a tensor equivalence at Proposition A.2. Similarly, there is a canon-
ical central embedding into the de-equivariantization rep IT — 2! and an equivalence

cany : 7 — (2™, W ¥, (W),

as verified in Proposition A.6.

Suppose now that % is braided and that rep[1 — % has Miiger central image.
Suppose additionally that & is braided and that the action of IT respects the braiding.
We say a tensor subcategory % C & is I1-stable if the restriction of the action functor
Yy, W — Pg has image in #g. For such Il-stable % we have an induced inclusion
of the equivariantizations # 11 ¢ 2.
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Similarly, for any intermediate tensor subcategory rep [1 — % — % we have an
inclusion of the de-equivariantization 7 — %77. Since %71y is abelian F & is coherent
in €, and hence in J# as well. So %17 is abelian. Local finiteness of 67y also implies
local finiteness of .#17, and the fact that the duals of free objects in JZ71 remain in J#1y
implies, by considering presentations, that the duals of all object in .17 remain in JZ.
So the intermediate inclusion rep I1 — %" is faithfully flat and locally finite as well,
and #11 is a tensor subcategory in 4711.

One can deduce from obvious naturality properties of the equivalences can' and can,
the following proposition, just as in [22].

Proposition 8.6. (cf. [22, Proposition 4.30]) De-/equivariantization provides a bijection
between the poset of isomorphism-closed intermediate tensor subcategories rep I1 —
H — € and isomorphism-closed Tl-stable tensor subcategories W — ¢n. This
bijection restricts to a bijection for braided (resp. Miiger central) intermediate categories
in € and Tl-stable braided (resp. Miiger central) subcategories in 671.

We prove Proposition 8.6 in Sect. A.3.

8.4. Proof of Theorem 8.1 and Corollary 8.2 from Proposition 8.6.

Proof of Theorem 8.1. Suppose that F : rep [1 — ¥ is an equivalence onto the Miiger
center of ¢. Then for any intermediate Miiger central category rep [1 — %2 — % the
map rep [1 — 7 is an equivalence. By Proposition 8.6 it follows that for any Miiger
central subcategory # in 61 the inclusion Vect C # is an equivalence. So the Miiger
center of 67y is trivial, and by definition %7 is non-degenerate.

Conversely, if the Miiger center of 2 = %7y is trivial then we apply Proposition 8.6
again to find that for any central intermediate category rep [1 — % — % the inclusion
from rep I1 to . is an equivalence. This holds in the particular case in which %" is the
Miiger center of &, so that F is seen to be an equivalence onto the Miiger center of %'.

Proof of Corollary 8.2. (a) We already understand that (rep G4)¢v is finite, braided,
and ribbon when G is simply-connected, by Corollary 6.6 and Lemma 7.1. So we need
only establish non-degeneracy. But this follows immediately by Theorems 5.3 and 8.1.
Statement (b) follows from (a) and Proposition 7.3.

9. Revisiting the Odd Order Case

Let & be an odd order root of unity, and take £ = ord(§). We return to the odd order
case to clarify the appearance of adjoint type groups in certain constructions related to
ug (g) (e.g. [19]). Here we have ug (g) as the Hopf subalgebra in the usual divided power
algebra U (g) generated by the Ey, Fy, and K (with Kﬁ =1).

9.1. Construction of rep ug (g) fromrep G¢. We only sketch the details, as the situation
is actually quite a bit easier to deal with than in the even order case.

Let G be of adjoint type with Lie algebra g. Suppose £ is coprime to the determinant of
the Cartan matrix for g and also the d; (as is a standard assumption). This implies that the
form on the quotient 0/¢Q = G(ug)" induced by the Killing form is non-degenerate.
So we see that QM = ¢ Q in this case, and the quantum Frobenius Fr : rep G — rep G,
which in this case involves no duality for G, is an equivalence onto the Miiger center.
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(One verifies this just as in Theorem 5.3). So the de-equivariantization (rep G¢)g is
non-degenerate, and in fact log-modular, by Theorem 8.1.

Now, in this case, the quantum Frobenius is associated to a Hopf inclusion Fr :
0(G) — 0% (G) with central image, and for which the restrictions of the R-matrix to
0 ® U and O ® O is identically 1. Taking the fiber then provides a linear equivalence

C®p — : (repGeg)g — repus(g),

which is furthermore seen to be a braided tensor equivalence, via the strong centrality
properties of the quantum Frobenius. So we see that the construction of the standard small
quantum group at a root of unity of odd order is essentially an adjoint type construction,
as opposed to a simply-connected construction.

The above presentation is given in contrast to the original presentation of the quantum
Frobenius [46—48], which suggests that the small quantum group is principally a simply-
connected object. (Indeed, one can construct the small quantum group from the simply-
connected form of G, via the original quantum Frobenius [20, Theorem 7.2]).

Remark 9.1. Our comment here is specifically about the standard choice of grouplikes
for ug (g) at odd order parameter. Namely, the choice of the grouplikes as the elementary
abelian £-group generated by the K. One can, of course, construct ug (G) at arbitrary
G and £ in accordance to the processes outlined in the present work. We would propose,
however, that the grouplikes should vary in a meaningful way with the choice of G and

£,

10. Identifications with Quantum Groups of Creutzig et al. and Gainutdinov et al.

We clarify that all current means of producing log-modular quantum groups at even
order roots of unity agree (at the ribbon categorical level). In particular, we identify our
quasi-Hopf algebras with those of [16,33]. We also provide a brief discussion of the
remarkable nature of small quantum PSL,, particularly at ¢ = e™'/4.

10.1. Toral construction of the log-modular kernel. Letu, = 1,(G) be the subalgebra
in U, generated by the idempotents 1;, A € X, and the elements E, Fy,. The category

repu, is a tensor category and we have the restriction functor rep G; = repU; —
repi,. The R-matrix for rep G, restricts to a global operator for u,, as does the pivotal
element K, and rep u, is therefore ribbon.

The quantum Frobenius for Uq restricted to 1, has image equal to the (non-unital)

subalgebra C[1, : u € X M7 in UV. Hence the quantum Frobenius restricts to a Miiger
central tensor functor rep 7" — repii,. We can consider now the de-equivariantization

(repugy)7v, and the map (repu,)rv — rep ug’I(G) given by taking the fiber at the
identity of 7"V. Note that we have a diagram of C-linear functors

C@ﬁ (G\/)
M
(rep G4)gv repu,

ﬁ(TVm ATV)

(repitg)7v
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Proposition 10.1. The functor C @ g(rvy — : (repuy)rv — rep ug’[(G) is a C-linear
equivalence, and becomes a braided tensor equivalence with the tensor compatibility
T* as in Proposition 1.3. In the simply-connected case C ® g(rvy — is furthermore a
ribbon equivalence.

Proof. The result at the abelian level appears in [11, Proof of Theorem 4.7]. The tensor
structure, and ribbon structure, are dealt with in exactly the same manner as in Proposi-
tion 7.3.

10.2. Identification with the log-modular quantum group of Creutzig et al. [16]. Take
ug/[(slz) to be the simply-connected form ug/[(SLz). In [16,34] the authors construct

a log-modular quasi-Hopf algebra u?(ﬁ[g) via local modules over an algebra A in the
braided tensor category of (weight graded) representations of the unrolled quantum
group rep,,, uf (slp). The category rep,,, uf (g) is the category of C = Xc-graded
vector spaces with actions of operators E and F' which shift the grading appropriately
and satisfying the usual relations of the quantum group. Since rep U, (sl>) is the category

of X = Z[%a]-graded vector spaces with corresponding actions of E and F, we see that
there is a tensor embedding

repily (slh) — rep,, u, (sh). 5)

The algebra A of [16] is the sum of all invertible representations supported on XM =
1Q, and is therefore identified with &'(T") under the map (5). Furthermore, since all
indecomposable components of A = &(T") are invertible, any local module over A in
rep,,, u ;’ (sl) must in fact centralize A.

Proposition 10.2. ([16, Proposition 3.8]) The centralizerof A = O(T") inrep,,, uf (slp)
is equal to rep u, (shp).

The authors show further that there is an equivalence of categories between local,

finitely generated, modules over A inrep,,, u ;{ (slp) and rep ug (slp). Since A = O(T"Y)
is Noetherian, this is the same as the category of finitely presented local A-modules in
rep,,, U f;’ (s12), and by the above proposition we find

Theorem 10.3. ([16, Theorem 4.1]) There is an equivalence of ribbon categories
(repuy (slp)) v ~ rep uf;(slz).

Whence we have the following.

Corollary 10.4. There is an equivalence of ribbon categories rep ug/l (slh) ~rep ug) (sh).
Proof. Apply Proposition 10.1 and [16, Theorem 4.1].

Remark 10.5. To be precise, Creutzig, Gainutdinov, and Runkel employ an R-matrix of
the form QR*, as opposed to R*Q~!. This distinction is, however, utterly unimportant.
Specifically, the choice does no change the Miiger center of rep G, the definition of
(rep G4)gv as a tensor category, or the definition of ulqw(G) as a quasi-Hopf algebra.
One simply has to change the R-matrix for ug/[(G) by replacing our R for u, with the
R-matrix from [16], in the most naive manner.



804 C. Negron

10.3. Identification of the log-modular quantum groups of Gainutdinov et al. [33].
In [33], Gainutdinov, Lentner, and Ohrmann construct factorizable quantum groups
g (g, X) for pairs of a simple Lie algebra g and choice of character lattice X. (This is
the same as a choice of almost simple algebraic group G). The u, (g, X) generalize the

quantum groups u?(slz) of [16,34]. Their construction is actually more general, and
allows for g to be a Lie super-algebra for example.

Let Y C X be the Kernel of the killing form Q : X x X — C*. We have Y ¢ XM,
and the inclusion is generally not an equality. For example, for SL, (or any simply-
connected group), ¥ = 2/Q while xM = 1Q. We take T := Spec(C[Y]), and have the
corresponding finite covering 7V — T. Take also 0, the finite dual (u,)°. It follows
by Proposition 10.1 and Lemma 6.3 that ¢, is faithfully flat over &(T'), and O(T) is
faithfully flat over &(T) [63, Theorem 3.1], so that o, is faithfully flat over &(T) via
the quantum Frobenius. Subsequently, taking the fiber at the identity provides a braided
tensor equivalence

C ®gt) — : (tepuy)t — repu, (g, X/Y), (6)

where u, (g, X/Y) is the finite dimensional quasitriangular Hopf subalgebra in the cofi-
nite completion U, generated by the character group C[(X/Y)"] C Fun(X,C) C 4,
and the operators E, and Fy. (See e.g. [10, Proposition 4.1]). This Hopf algebra is
furthermore ribbon when K, |y = 1.

The equivalence (6) sends the algebra &'(T") in rep i, to C[X My, the algebra of
functions on the kernel of the projection TV — T. So the equivalence (6) restricts to a
braided equivalence

C®gr) — : (repiy) v — (repiiy (g, X/¥))xm/y. (7)

By direct considerations of the definitions, both equivalences (6) and (7) are equivalences
of ribbon categories in the simply-connected case.

Proposition 10.6. There is an equivalence of braided categories rep ug/[(G) >
rep uq (g, X), which is additionally a ribbon equivalence at the simply-connected lattice.

Proof. 1t is shown in [33, Theorem 6.7] that rep u, (g, X) can be recovered as the de-
equivariantization (modularization) (rep (g, X/Y)) xm,y. So the result follows by the
equivalence (7) and Proposition 10.1.

Remark 10.7. As was the case in Remark 10.5, there is an inconsequential difference in
the R-matrices employed in [33] and in the present study.

10.4. Some remarks on small quantum PSL;. Recall, from Lemma 3.2, that we have
a non-degenerate kernel for (PSL>), exactly when g is a 2/-th root of 1 with / odd or
divisible by 4. Let us consider the case 4 | /. As usual, take P and Q to be the weight
and root lattices for sl respectively, and recall P = %Q.

We can consider the torus forms u, (SL») and u, (PSL>), and the braided embedding
repu, (PSLy) — repu,(SL>). The Miiger center of repu, (SLy) is the subcategory
Vect;p of [ Q-graded vector spaces, while that of repu,; (PSL3) is Vect;p. So we have
the invertible simple L(l/a/2) in rep u, (SL) which descends to a simple x = L(la /2)
in the log-modular kernel rep uS’I(SLz). This simple squares to the identity and has
centralizer equal to the image of rep(PSL3), in rep ug/l(SLz). Indeed, the subcategory
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generated by y in rep ug’[(SLz) is exactly the image of rep SL; in rep ug’I(SLz). Hence
small quantum PSL, is identified with the de-equivariantization of the centralizer of x
in rep ug/I(SLz) by the copy of rep Z/2Z generated by y,

repuy (PSL2) = ((x))(x)-

By the remarks following Proposition 4.10, we see that the ribbon structure on rep ug/l (SL»)
does not induce a ribbon structure on rep ug/I(PSLz).
In addition to this relationship with quantum SL,, rep ug/[ (PSL,) has another re-

markable property. As is explained in Sect. 11.1 below, simples in rep ug/{(PSLg) are in
bijection with characters of the group Q/IP. When!l =4, Q/4P = Q/2Q and we see
that rep uZI,,- ,2(PSL2) has exactly two simples. One can see directly that that the unique

non-trivial simple in rep ule\fl,i /

+(PSL») is of dimension 2, and hence non-invertible. As
far as we understand, rep “1:;[1;' ,2(PSLy) is the only known non-degenerate finite tensor

category with two simples, one of which is non-invertible.

11. Relations Between Quantum Groups and (1, p) Vertex Operator Algebras

For historical reasons we replace / with p in our notation, and take g to be a root of unit
of even order 2p.

11.1. Tensor generation of rep ug/[ (G) andrep G4. Note that any ug/l (G)-representation
V decomposes into character spaces @.cz V, for the action of the grouplikes C[Z"].
Since V contains a simple representation for the non-negative subalgebra ulzlo, and the
Jacobson radical of ulfo is generated by the E;, we see that any representation V contains
a highest weight vector.

For any element z € Z = (Z")" we have the Verma module M (z), and the unique
simple quotient L(z), constructed in the standard manner. Hence we have a bijection
between characters for the grouplikes and simples for ug’l, Z +— L(z). The simple L(z)
has unique highest weight z.

Lemma 11.1. The category rep ug/[(G) is tensor generated by the simples {L(z) : z €
Z}.
Proof. Note that since the associator ¢ for ugfl lies in the coradical ('42/[)0 =C[Z"], we

can define a coradical filtration for ug/' recursively via the wedge construction

M M
M MY Mo M Uy Uy
(W, Y1 :=ker (u, - u, Qu, — ® .
1 1 N (O T PO

This resulting filtration is exhaustive and V(unM) = Zi+j:n u%Vl ® uljvl
Let 2 C rep ug’l be the subcategory tensor generated by the simples. By Tannakian

reconstruction & is representations of a quotient quasi-Hopf algebra K of ug/[, and the

inclusion 4 — rep ug/[ is given by restricting along the quotient ug’l — K. Indeed,

M

K is the quotient of u,

Lz)®...Q L(z).

by the collective annihilators of arbitrary products of simples
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By considering the simples of u,(sl;) we see that for each « there is a simple L(z;)
on which E, acts non-trivially. Hence the space of primitives maps injectiviely into
the endomorphism ring of the sum of simples End¢ (6,7 L(z)), via the representation
map uz’l — Endc(®;L(z)). Indeed, the representation map restricts to an injection on

the 1-st component of the coradical filtration (ug/l)l — Endc(®;L(z)). So we see that
the quasi-Hopf quotient ug/l — K is injective on (ug’l)l. It follows by induction, and

. . . \% .
by considering the composite ug’l — ug/l ® ug/[ — K/Ko ® K/Kj, that the quotient

ug/[ — K is injective and therefore an isomorphism [54, Theorem 5.3.1].

One can alternatively prove Lemma 11.1 in the simply-connected setting by noting
that rep ug’[(G) admits a simple projective object [32].

Lemma 11.2. The category rep G, is tensor generated by the simples {L(X) : L € X*}.

Proof. Let J¢ be the tensor subcategory generated by the simples in rep G, . Since the
Miiger center rep G is generated by its simples we see that the quantum Frobenius
has image in .~ C rep G,. Since every object in rep ug" is seen to be the quotient
of an object from rep G, via finite presentation of objects in the equivalent category
(rep G4)gv, for example, it follows that every simple in rep ug/[ is the quotient of a

simple from rep G,. Hence the functor JZ2° — rep ugfl has all of the simples for ug/[
in its image, and by Lemma 11.1 this map is therefore surjective. It follows that the
de-equivariantization Zgv, which is an embedded tensor subcategory in (rep G4)gv, is
mapped isomorphically to rep ug/[ under the fiber C ®» — : Fgv — rep ug’l. So we see
that the inclusion .#~ — rep G, is an isomorphism, by Proposition 8.6.

11.2. Rephrasing a conjecture of Bushlanov et al.: representations of the (1, p)-log
minimal model. Let €, denote the subcategory of rep U, (s[2) generated by the simples.
In [12] the authors explain that the category of representations for the divided power
algebra ¢, admits a Z/2Z-grading

Cp =%, ®C,,

and they conjecture a tensor equivalence between %'+ and the (1, p)-Virasoro logarithmic
minimal model. More specifically, if we let £, = L(c,, 0) denote the (simple but non-
rational) Virasoro vertex operator algebra at central charge ¢, = 1 — 6(p — D%/ p,
they conjecture an equivalence between ‘5; and the full subcategory rep LM (1, p) of
rep £, additively generated by the indecomposable representations appearing in the
(1, p)-logarithmic minimal model LM(1, p) [57-59][12, Eq. 1.1].

Remark 11.3. The inclusion ¢}, — rep U, (sl») is presumably an equality, by the classi-
fication of indecomposables for Uy (s[2) [13]. The analogous result should hold outside
of type A1 by an analysis similar to [6, Theorem 9.12].

There is a distinguished invertible simple x = Cv for U,(sl>), on which K - v =
—vand Ev = EPv = Fv = FPy = 0. This special simple does not appear in
rep(SL2), C rep Uy (sl2), as it is not graded by the character lattice. Furthermore, we
have

Irrep(rep(SL2),) N Irrep(x ® rep(SL2),) = ¥.
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One directly compares actions on highest weight vectors of simples, elaborated onin [12,
Section 3.1], and employs the precise definition of %”; in [12, Section 3.4], to see that

repGy = %; and x ®rep G4 = ‘Kp_ . So we rephrase the conjecture of Bushlanov et al.

Conjecture 11.4. (Bushlanov et al. [12]) There is an equivalence of tensor categories
rep(SLy)g = rep LM(1, p).

11.3. Connecting some conjectures at (1, p)-central charge. We consider the triplet
vertex operator algebra VW, and related singlet algebra M ,, with central charge ¢, [2,
3,31,43]. We have the sequence of vertex operator algebra extensions

L, CTM,CW,.

There is an integrable sl>-action on WV, by vertex derivations, and the h-weight spaces
appearing in VW, for this action are all even [1,27]. Rather, we have aPSL;, = SL; -action
on W,,. Under this PSL;-action we have

Mp=WI" and £, = WESl2,

where TV is the 1-dimensional torus in PSL; [16, Eq. 5.8]. Via this PSL,-action on
W, we obtain a PSL-action on rep )V, and may consider the equivariantizations
(rep V\/p)PSL2 and (rep W), which are simply the categories of WV, -representations
with compatible actions of PSL, and TV -respectively (or the associated Lie algebras if
one prefers). From this information we deduce the following.

Lemma 11.5. Taking invariants provides C-linear functors

A (repV\/p)Tv —repM,, Vi VTV,
B: (repW,)P2 = rep L, Vi VL2,

In considering the following conjecture, one should compare the maps of Lemma 11.5
to the equivalence (—=)® of Sect. A.1.

Conjecture 11.6. The functors A and B are fully faithful, A is an embedding, and B is
an equivalence onto rep LM(1, p) C rep L,,.

There is a rather vast network of conjectures regarding the algebras £,, W,, and
M, [13,15,18,36], of which we only recall a few. For M, it is conjectured that
some distinguished subcategory in rep M, is a braided tensor category [16,18]. It is
also known that the category W, is a braided tensor category [3,66]. Furthermore, the
PSL;-action on rep W), should respect the braided tensor structure, so that the equivari-
antizations are also braided tensor categories. So we conjecture further that map A is a
braided tensor functors. Furthermore, the image of A should be the centralizer of W, in
the tensor subcategory rep ) M, generated by the simples [16, Conjecture 1.4].

We have a final conjecture which concerns the C-linear equivalences f, : rep qu (sh) —
rep W, of [36,55].

Conjecture 11.7. The C-linear equivalence f, : rep ug’[(ﬁb) — rep W, is PSL;-
equivariant, or can be made to be so.
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This conjecture can seemingly “just be checked”. However, the PSLj-action on
rep ug[(s [>) is not so straightforward (see [56, §9.1]). So, it may be preferable to first lift
the equivalence f), to an equivalence from the canonical form

F, : (tep(SL2),)psL, — rep W,
At this level, the PSL; action is fairly transparent on both sides.

Proposition 11.8. (cf. [16, Conjecture 1.4], [12]) Supposing Conjecture 11.7 is correct,
then we have natural C-linear functors

A :repu,(sh) — rep M, and B :rep(SL2)y — rep L.

If furthermore Conjecture 11.6 holds, A is an embedding and B is an equivalence onto

rep LM(1, p)

Proof. One simply transports the invariants functors through the equivalences
repity (sh) — (repu)l(shh)’” 1’157 (rep )T

and rep(SLy), — (rep ug/[(ﬁ[z))PSL2 11;7 (rep W,)PS12
of Propositions A.2, 10.1, and Theorem 6.5.
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A. Appendix A: Details on Rational (De-)equivariantization

We cover the details needed to prove Proposition 8.6. As a first order of business let us
provide the proof of Lemma 8.4.

Proof of Lemma 8.4. The fact that any finitely presented object is compact follows from
the fact that free objects unit, V, for V in &, are compact, and left exactness of the Hom
functor. Now, for arbitrary M in s we may write M as the union M = 1i_n)1a M/, of

its finitely generated submodules M/,. For any finitely generated M’ we may write the
kernel N of a projection unit, V' = S®c V' — M’ as adirect limit of finitely generated
modules N = h_r)n p Ng and hence write M as a direct limit of finitely presented modules
M = li_II)lﬁ Mg, with Mg = S ®c V’'/Ng. Thus we may write arbitrary M as a direct
limit M = li_n)lK M, of finitely presented modules. Compactness of M implies that the
identity factors through some finitely presented M,, and hence M = M,.
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A.l. Equivariantization and the de-equivariantization. Suppose F : repIl — € is a
central embedding which is faithfully flat and locally finite. Take

R := O considered as a algebra object in rep IT with trivial [T — action.

We omit the prefix F and write simply write &' and R for the images of these algebras
in %. We define the functor on the de-equivariantization

Wu :(gl_[ - (%H)Ra qu = R®M7

where ¢ acts diagonally on each ¥, M and R acts via the first component. More precisely,
we have the algebra map A : & — R ® O in rep I given by comultiplication and act
naturally on v, M via A. For finite presentation, one observes on free modules & ® V
an easy isomorphism ¥, (0 ® V) = unit, (0 ® V) in (611)g, so that applying v, to a
finite presentation for M, as an &-module, yields a finite presentation for v, M over R.
We have the natural iosmorphism

Yubu(V)=RQRQV)ERQR)®V = Ay (V)

given by the associativity in 4" and the natural isomorphism ¥,V ®rge) VuW =
Yu(V ®4 W) given by multiplication from R. Whence we have a canonical ratio-
nal action of IT on the de-equivariantization %7y, and can consider the corresponding
equivariantization (417)™. Objects in this category are simply ¢-modules in € with a
compatible R-coaction.

Note that the R-coinvariants X X of an equivariant object X is a % -subobject in X, as it
is the preimage of 1 ® X C R ® X under the R-coaction. Whence we have the functor

()R " > Ind¥, X — XK
In addition, for any V in % the object can'(V) = ¢ ® V can be given the ¢-action and
R-coaction from ¢. The coinvariants of can'(V) is the subobject 1 ® V, and the unital

structure on ¢ provides a natural ismorphism ¢ : (—)% o can’ S dy. We also have the
natural transformation y : can' o(—)% — idg)n given by the O-action

VX - can!(XR) —0® xR > x.
Lemma A.1. The transformation y is a natural isomorphism, and the coinvariants func-
tor (—)K has image in €.
Proof. We have the twisted comultiplication AS : R - 0 Q@ O, f — fi1 ® S(f»), and
can define the inverse yy V"X > 0@ xR as the composite

S
XA RrReox" 2 veooex > 0 X.

which one can check has image in ¢ ® X and does in fact provide the inverse to y,
just as in the Hopf case [54]. To see that X R isin €, and not in Ind € \%, we note that

X = 0 ® XR is of finite length in 671 and that & ® — is exact, which forces X R {0 be
of finite length. Hence XX is in €.

Since both ¢ and y are isomorphisms we have directly

Proposition A.2. (¢f. [11,22]) The functor can' : € — (6m)" is an equivalence of
monoidal (and hence tensor) categories.

Remark A.3. One can avoid all finiteness concerns by employing the Ind-category Ind €
and the category of arbitrary modules ¢-Modp,q¢. Then, with the cocomplete theory

of Sect. 8.1, one can argue exactly as above to find that the functor can' : Ind ¢ —
(O-Mody,g )™ is again an equivalence.
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A.2. De-equivariantizing the equivariantization. Let & be a tensor category equipped
with a rational action of IT. There is a canonical embedding rep [T — 2" into the
equivariantization which identifies rep IT with the preimage of Vect C 2 in 2™, under
the forgetful functor. Indeed, the fact that the action map v, : ¥ — g is monoidal
implies that 1, (1) = R, so that the restriction of ¥, to the trivial subcategory Vect C &
is equated with the usual action of IT on Vect, and hence Vect™ = rep I1.
We have the two algebras ¢ and R inrep I1, the latter one being trivial, which are equated
under the composite rep [T — 2™ — 9, i.e. which are indistinguishable as objects in
2. Hence the counit & — 1, which is not a map in rep I1, is a map in Z, and for any
0-module in the equivariantization 2" the reduction X, := 1 ®, X is a well-defined
object in 2.
Since O is trivial in 2, and ¥, is a tensor map, we have v, (0) = R® 0. By the definition
of 0 inrep IT the equivariant structure is given by the comultiplication A : & — RQ 0.
Hence & acts naturally on each v, (X) via the comultiplication, for any &' = R-module
X in 2. So we can consider ¢-modules in 2! as ¢ = R-modules in 2 for which the
coaction X — v, (X) is O-linear.
For any object V in 2 we consider V as a trivial &-module, and let & act on v, (V)
diagonally. Each v, (V) then becomes an object in (2™ via the “free” coaction,
Yu (V) = ¥, (V) given by the unit of the (A, A*)-adjunction

A A S Y.
We have the reduction functor 1* : (2 > 2, X — X ¢, and the free functor
cany : 7 — (2, V > Y, (V). There are natural transformations

v Y (Vg = 19, (V) > V, n: 1% ocan — idg,
and
Ox : X - Yu(Xp), ¥ :idgny, — canjol”,

the former of which is simply given by the counit for v, and the latter is given as the
composite X — v, (X) — ¥, (X ) of the comultiplication and the application of
to the reduction X — X in 2. The following is a consequence of the fact that each
object in (21 is finitely presented over ©.

Lemma A.4. The transformation ¥ is a natural isomorphism if and only if it is a natural
isomorphism when applied to free modules © ® W, for W in 2.

Lemma A.5. An object X is 0 in (2™ if and only if the fiber 1*X is 0.

Proof. We may write 9 = corep C for a coalgebra C, by Takeuchi reconstruction [64].
Then Zg is just the category of corepresentations of the R-coalgebra Cg which are
finitely presented over R. Now, for a finitely presented R-module M we understand that
M vanishes if and only if its fiber x* M vanishes for each closed point x : Spec(K) — TII.
Let p(x) : O — K be the corresponding ring map. Note that the reduction simply
takes the fiber at the identity.

Take M in (2™ and suppose that 1* M vanishes. Consider a closed point x € T1(K).
By changing base to Pk and I1x we may assume that K is our base field, so that
x~ 1. x = e. Via the the coaction we find an isomorphism

M2y M — p(x)puM =t M, (8)
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where the last map is the counit of the (p(x), p(x)*)-adjunction, and ¢ : T1(K) —
Aut(2) is the discrete action of IT(K).

Now, #, M has a canonical ¢ = R-action via the functorial identification End (M) =
End g (ty M), and the fiber y*M at a given K -point y vanishes if and only if the fiber
y*(ty M) vanishes. If we let fy : R — R denote the automorphism given by left
translation by x then we see that (8) is an R-linear isomorphism from M to the restriction
of 1, M along f. In particular, we have

0=1"M = 1"(res s, t M) = x™(tx M),

which implies x*M = 0. Since x was arbitrary, we see M = 0 if 1*M = 0. Conversely,
the fiber at the identity obviously vanishes if M vanishes.

Proposition A.6. The functor cany : 9 — (2 is an equivalence of monoidal (and
hence tensor) categories. Furthermore, the embedding F : rep 1 — 2" is faithfully
flat and locally finite

Proof. We prove that ¥ is an isomorphism on free modules. Take 7 = ¢ ® V consider
97 : T — v, (V). We extend to a right exact sequence T — v,(V) - M — 0. The
counital property for v, implies that the fiber 1*# is identified with the identity on V.
By right exactness of the reduction we have 1*M = 0, and hence the cokernel vanishes
by Lemma A.S.

We now extent 97 to a left exact sequence T’ 2T e Y, (V) — 0, with p amap from a
finite free module. (We need to use the fact that v, (V) is finitely presented to verify that
such an extension exists). Since ¥, is a monoidal functor it preserves duals [24, Exercise
2.10.6], it follows that v, (V) is dualizable in P with dual v, (V)Y = v, (V*). Free
modules R ® W are also dualizable with dual R @ W*.

Note that 1* : (Zm)™ — 2 is a monoidal functor, and hence preserves duality as
well, so that 1*(19)) is identified with the isomorphism (1*97)*. So by the same argu-
ments employed above the dual 9} : ¥, (V)Y — TV is also surjective. Since the dual
composite

Y (V) = TV 5 (1)
is 0 we find that p" is 0. Since duality (—)" is an equivalence on the category of (left
and right) dualizable objects in (2™, it follows that p = 0. So 97 is an isomorphism
for each free 7. We now employ Lemma A.4 to find that can; is an equivalence. The

fact that & is a tensor category and that can, is an equivalence implies that F is both
faithfully flat and locally finite.

A.3. Proof of Proposition 8.6.

Proof of Proposition 8.6. Take 2 = %11. We have the de-equivariantization functor
€ — 2. For asequence rep [1 — % s #' = € we have the de-equivariantization
0 n L — 2, with 11 and 2] stable under the action of I1. By the definition of

the equivalence of can', in Sect. A.1, we find that there is a diagram

i
Tt — gy

] |
can’ T” can’ T”

K ! A
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Hence i is an equivalence if and only if i is an equivalence, and thus
de-equivariantization (—)y defines an inclusion of the poset of (isomorphism-closed) in-
termediate categories IT-Int(6) = {rep[1 C % C ¥} to the poset [1-Stab(Z) = {# C
2} of (isomorphism-closed) I1-stable categories. A completely similar argument, using
cany, shows that equivariantization % C & ~ #'' C % defines an inclusion of posets
[1-Stab(2) — I1-Int(%’) which is inverse to (—)y.

Since de-/equivariantization under a central inclusion/braided action preserves braided
subcategories, and central subcategories, the above argument shows that this bijection
of posets restricts to a bijection for both braided and central subcategories as well.
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