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Abstract: We construct log-modular quantum groups at even order roots of unity,
both as finite-dimensional ribbon quasi-Hopf algebras and as finite ribbon tensor cat-
egories, via a de-equivariantization procedure. The existence of such quantum groups
had been predicted by certain conformal field theory considerations, but constructions
had not appeared until recently. We show that our quantum groups can be identified with
those of Creutzig-Gainutdinov-Runkel in type A1, and Gainutdinov-Lentner-Ohrmann
in arbitrary Dynkin type. We discuss conjectural relations with vertex operator alge-
bras at (1, p)-central charge. For example, we explain how one can (conjecturally)
employ known linear equivalences between the triplet vertex algebra and quantum
sl2, in conjunction with a natural PSL2-action on quantum sl2 provided by our de-
equivariantization construction, in order to deduce linear equivalences between “ex-
tended” quantum groups, the singlet vertex operator algebra, and the (1, p)-Virasoro
logarithmic minimal model. We assume some restrictions on the order of our root of
unity outside of type A1, which we intend to eliminate in a subsequent paper.
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1. Introduction

This paper concerns the production of certain non-semisimple “non-degenerate” quan-
tum groups at even order roots of unity. In order to highlight the issues we mean to
address in this work, let us consider the case of quantum sl2.

We have the standard small quantum group, or quantum Frobenius kernel, uq(sl2) in
Lusztig’s divided power algebra Uq(sl2) [47,48], i.e. the Hopf subalgebra generated by
E , F , and K . It has been shown that, at arbitrary even order q, the Hopf algebra uq(sl2)
admits no quasitriangular structure [34,44]. This is in contrast to the odd order case,
where the small quantum group is always quasitriangular. Indeed, this quasitriangular
property holds, in a certain sense, at all parameters except for even order roots of unity.

From another perspective, it is known that there is a linear equivalence between repre-
sentations of the small quantum group uq(sl2) and representations of a certain strongly-
finite vertex operator algebra–the triplet VOA [3,28,36,43,55]. Hence rep uq(sl2) appar-
ently admits some braided tensor structure, via the logarithmic tensor theory of Huang,
Lepowsky, and Zhang [39,40] (cf. [35, Conjecture 5.7]). So, one may conclude that
there is some error in the definition of the Hopf structure on quantum sl2 at an even
order root of unity which, after it has been remedied, will reproduce the CFT-inspired
tensor structure as the natural tensor structure on rep uq(sl2) induced by the coproduct
on uq(sl2) (see e.g. [16,26,34,36]).

This slippage between representation theory and conformal field theory is not unique
to type A1, although the corresponding conformal field theories are not well-developed
outside of type A1. One expects, in the conclusion, that there is an appropriate correction
to the definition of the small quantum group uq(g), for an arbitrary simple Lie algebra
g over C and even order q, under which the category rep uq(g) is braided, and even
log-modular (cf. [4, Conjecture 3.2]). To be clear about our terminology:

Definition 1.1. ([17]) A log-modular tensor category C is a finite, non-degenerate, rib-
bon tensor category.

One could refer to such categories simply as modular tensor (as opposed to fusion)
categories, although we would like to draw a distinction between our quantum group
categories and those of, say, [5,60]. By non-degenerate we mean that C is braided and
maximally non-symmetric, in the precise sense of Definition 2.1 below.

In the present work we examine the issues discussed above from a representation
theoretic, and tensor categorical, perspective. In particular, we clarify how one can
correct the apparent “singular” behaviors of quantum groups at even order roots of
unity by employing representation theoretic techniques. We discuss the relevance of our
findings from a conformal field theory perspective in Sect. 1.2 below, and discuss other
recent constructions of log-modular quantum groups in Sect. 1.1.

Let us consider an almost simple algebraic group G, over C, and the associated
category of quantum group representations

repGq =
{
Finite-dimensional representations of Lusztig’s divided power
algebraUq(g) which are graded by the character lattice X of G

}
.
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In the above expression g is the Lie algebra of G, and q is always an even order root of
unity. The category repGq admits a canonical ribbon (braided) structure, and Lusztig’s
quantum Frobenius yields a braided tensor embedding Fr : repG∨ → repGq which
has Müger central image, where G∨ is a specific almost simple dual group to G (see
Sect. 5).

We focus in the introduction on the simply-connected case, as results become sporadic
away from the weight lattice. However, in the body of the text we deal with arbitrary
almost simple G.
Theorem 1.2. (6.6, 7.1, 8.2) Let G be simply-connected and suppose that the character
lattice for G is strongly admissible at (even order) q. Then the de-equivariantization

(repGq)G∨ :=
{
Finitely presented FrO(G∨)− modules in repGq

}
has the canonical structure of a finite, non-degenerate, ribbon tensor category. That is
to say, (repGq)G∨ is a log-modular tensor category.

We note that outside of the simply-connected setting the de-equivariantization
(repGq)G∨ may fail to be ribbon, although it is always finite and non-degenerate. We
explain our “strongly admissible” condition in detail below. Let us say for now that
SL2 has strongly admissible character lattice at arbitrary q, and that outside of type A1
this basically means that 4 divides the order of q. (See Sect. 3.1). We call (repGq)G∨
the log-modular quantum Frobenius kernel for repGq , at even order q, or simply the
log-modular kernel.

From the perspective of this work, the de-equivariantization (repGq)G∨ is the canon-
ical form for the small quantum group at even order q. However, we show at Proposi-
tion 7.3 that (repGq)G∨ admits an algebraic incarnation as the representation category
of a ribbon quasi-Hopf algebra uMq (G). As a consequence of Proposition 7.3 below, and
non-degeneracy of the de-equivariantization, we find that uMq (G) is in fact log-modular.

We describe the quasi-Hopf algebras uMq (G) in detail in Sect. 4. The formula for
the comultiplication in particular is given in Lemma 4.8. To identify with the above
discussion, one should take the simply-connected form uMq (Gsc) specifically as the error-
corrected version of uq(g).

The uMq (G) arrive to us as subalgebras in (a completion of) the corresponding divided
power algebra Uq(G). It is precisely the subalgebra generated by the elements Eα :=
KαEα and Fα , and the character group Z∨ for the quotient Z of the weight lattice by the
ord(q)/2-scaling of the root lattice. For the standard nilpotent subalgebras u+q , u−q ⊂
Uq(G), we provide in Lemma 4.5 a triangular decomposition

u−q ⊗ C[Z∨] ⊗ u+q
∼=→ uMq (G).

The quasi-Hopf structure on uMq (G) is not canonical, but depends on a choice of func-
tion ω : X × X → C

×, which essentially quantifies the failure of the algebra FrO(G∨)

to be central in the quantum function algebra Oq(G). We call ω a balancing function,
and its precise properties are described in Sect. 3.2. At the categorical level, however,
the tensor structure on rep uMq (G) is unique up to isomorphism, via the identification
with the canonical form (repGq)G∨ .
Theorem 1.3. (Sect. 4, 7.3) Let G be simply-connected with strongly admissible char-
acter lattice at (even order) q. There is a log-modular quasi-Hopf algebra uMq (G) which
admits a ribbon equivalence

f ibω : (repGq)G∨
∼→ rep uMq (G).
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The comultiplication and R-matrix for uMq (G) depend on a choice of balancing
function ω for G, but are unique up to braided tensor equivalence. The ribbon element
for uMq (G) is independent of the choice of balancing function.

For sl2, for example, the dual group to SL2 is SL∨2 = PSL2. In this case one finds that
uMq (SL2) is in fact the standard small quantum group uq(SL2) ⊂ Uq(SL2), with some
alternate choice of quasi-Hopf structure induced by its identification with the categorical
kernel (rep(SL2)q)PSL2 . We discuss this example in Sect. 4.4.

We note that Theorem 1.3 was obtained at the C-linear level, i.e. as a C-linear equiv-
alence, in earlier work of Arkhipov and Gaitsgory [11]. In particular, the definition of
the algebra uMq (G) was observed already in [11] (see also [5, §3.11]).

1.1. Identifications with the log-modular quantum groups of Creutzig et al. [16] and
Gainutdinov et al. [33]. Independent of the present paper, constructions of log-modular
quantum groups at even order roots of unity have appeared in work of Creutzig, Gain-
utdinov, and Runkel [16,34], in type A1, and in work of Gainutdinov, Lentner, and
Ohrmann [33] in arbitrary Dynkin type.

In [16] a quasi-Hopf algebra uφ
q (sl2) was produced via a local module construction.

The local module construction of [16] is motivated by certain CFT considerations and,
from our perspective, is essentially a de-equivariantization (see Sect. 10). We note that
the results of [16] followed earlier work of Gainutdinov and Runkel [34] in which the
authors produced the quasi-Hopf algebra uφ

i (sl2) for sl2 at parameter q = i , essentially
by hand.

In [33] the authors proceed via anAndruskiewitch-Schneider like approach (cf. [8,9]),
where the quantum groups uq(G) are produced as quotients of Drinfeld doubles of
Nichols algebras B(V ), with V an object in the braided category of representations of a
cocycle perturbed group algebra. So, V lives in a braided category which does not admit
a fiber functor in general, and the construction of B(V ) takes place in this category as
well.

As remarked in [33], all of the constructions of quantum groups from [16,33,34]
agree,when appropriate.Weprove in Sect. 10 that our quantumgroups uMq (G) agreewith
thoseofCreutzig,Gainutdinov,Runkel [16,34] andGainutdinov,Lentner,Ohrmann [33],
at the ribbon categorical level.

Remark 1.4. In addition to the production of certain small quantum groups, much of
the labors of [16,33,34,45] are directed towards producing and refining relationships
between quantum groups and vertex operator algebras/CFTs.

Remark 1.5. One point which is consistent across all of the references discussed above,
as well as the present work, is that the failure of the naïve quantum group uq(g) to admit
an R-matrix, in general, has to do with some defect in the Cartan part C[Z∨]. So, the
naïve quantum group and (what we call) the log-modular quantum group only differ due
to some alteration in the Cartan part.

1.2. Relevance for the “logarithmic Kazhdan-Lusztig equivalence” at (1, p)-central
charge. Take uMq (sl2) the simply-connected form uMq (SL2). We discuss here the situ-
ation in type A1, and fix q of order 2p. Some aspects of the story in arbitrary Dynkin
type are recalled in the concluding paragraphs.
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Aswe alluded to earlier, there is a conjectured equivalence of ribbon tensor categories

f p : rep uMq (sl2)
∼→ repWp,

where Wp is the triplet vertex operator algebra [3,30,43]. This conjecture was first
proposed in the paper [36], and it has been shown that such an equivalence f p exists at
the level ofC-linear categories [36,55]. (So,without the tensor product). It is conjectured
that the equivalence f p for the triplet algebra lifts to additional equivalences

repwt u
H
q (sl2)

∼→ rep〈s〉Mp, rep(SL2)q
∼→ repLM(1, p),

where uH
q (sl2) is the so-called unrolled quantum group, Mp is the singlet VOA, and

repLM(1, p) is a certain subcategory of the representations of the (1, p)-Virasoro
which we leave unspecified for the moment [13,15,18]. (See Sect. 11).

Here we are concerned with means of obtaining equivalences for the singlet and
Virasoro from the known additive equivalence f p for the triplet algebra. As we argue
in Sect. 11, this problem may be approached via considerations of certain natural PSL2
actions on rep uMq (sl2) and repWp. The action of PSL2 on repWp is well-established in
the CFT literature [1], while the action on rep uMq (sl2) is deduced from our construction
of the log-modular quantum group as a PSL2 de-equivariantization of rep(SL2)q .

Conjecture 1.6. (11.7) The linear equivalence f p : rep uMq (sl2)
∼→ repWp is PSL2-

equivariant, or can be chosen to be PSL2-equivariant.

A positive solution to Conjecture 11.7 would produce explicit functors

A : repZ uH
q (sl2)→ repMp, B : rep(SL2)q → repLM(1, p)

via the triplet equivalence f p.
Let us conclude with a short discussion of the situation in other Dynkin types. We

again take uMq (g) = uMq (Gsc) the simply-connected form. AnalogsWp(g) of the triplet
algebra in arbitrary Dynkin type were introduced in work of Feigin and Tipunin [26],
with the triplet Wp = Wp(sl2) recovered in type A1. These vertex operator algebras
are conjectured to be strongly finite [4]–and in particular C2-cofinite–although outside
of types A1 this conjecture remains completely open. One can see [29] for a specific
discussion of type B.

Supposing strong finiteness of the algebrasWp(g), it is additionally conjectured that
there is an equivalence of braided tensor categories rep uMq (g) → repWp(g) [33,45].
Lentner proposed [45, Conjecture 6.8 & 6.9] that the dual group G∨ acts naturally on
Wp(g) so that the invariants Wp(g)

G∨ are the associated W -algebra Wk(g) [25] at a
corresponding level k. Although we have clearly stacked up quite a few conjectures at
this point, we would suggest that the proposed G∨ action onWp(g) should correspond
to our action of G∨ on rep uMq (g), and that the representations of the big quantum group
repGq should be identified with a distinguished tensor subcategory in repWk(g), just
as in the type A1 case.
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2. Preliminaries

All algebraic structures (algebras, schemes, algebraic groups, categories, etc). are over
C. An algebraic group is an affine group scheme of finite type over C. The standing
conditions for this document are that q is a root of unity of even order 2l, with l positive,
and thatG is an almost simple algebraic group with strongly admissible character lattice
at q (defined in Sect. 3.1 below).

For any algebra A, we let rep A denote the category of finite-dimensional A-modules.
We let Rep A denote the category of A-modules which are the union of their finite-
dimensional submodules. We adopt a similar notation corep A and Corep A for comod-
ules over a coalgebra, but note that Corep A happens to be equal to the category of
arbitrary comodules here. For a C-linear category C we let IndC denote the corre-
sponding Ind-category, i.e. the completion of C with respect to filtered colimits, so that
Ind(rep A) = Rep A (resp. Ind(corep A) = Corep A) for example.

2.1. Basics on (braided) tensor categories. We refer the reader to [24], and in particular
[24, §4.1 & §8.1], for basics on tensor categories. Concisely, a tensor category (over C)
is a C-linear, abelian monoidal category which has duals, has a simple unit object 1, and
satisfies certain local finiteness conditions. Following [23], we call a tensor category
C finite if C has finitely many simples and enough projectives. This implies that C is
equivalent to the representation category of a finite-dimensional algebra, as a C-linear
abelian category.

A tensor functor between tensor categories is an exact C-linear monoidal functor. A
fiber functor for a tensor categoryC is a faithful tensor functor to Vect , F : C → Vect .
By an embedding F : D → C of tensor categories we mean a fully faithful tensor
functor for which F(D) is closed under taking subobjects inC .WhenD is a finite tensor
category this subobject closure property is a consequence of fully faithfulness [24, §6.3].
In the infinite setting there are fully faithful tensor functors which are not embeddings.

A braided tensor category is a tensor category C equipped with a family of natural
isomorphisms cV,W : V ⊗ W → W ⊗ V , at all V and W in C , which satisfies the
braid relations [24, Definition 8.1.1]. A braided tensor functor F : C → D is a tensor
functor which respects the braiding, in the sense that braidings fromC andD induce the
same maps F(V ) ⊗ F(W ) → F(W ) ⊗ F(V ). We write c2V,W for the double braiding
cW,V cV,W : V ⊗W → V ⊗W .

Definition 2.1. The Müger center of a braided tensor category C is the full tensor sub-
category of C consisting of all objects V for which the double braiding transformation
c2V,− : V ⊗ − → V ⊗ − is the identity. We call a braided tensor category C non-
degenerate if its Müger center is trivial, i.e. if any Müger central V is isomorphic to a
sum of the unit object V ∼= 1⊕r .

When C is finite, our definition of non-degeneracy, in terms of the Müger center, is
equivalent to all other reasonable notions of non-degeneracy [62].

We recall that a symmetric tensor category is one for which the double braiding
c2−,− is the identity, globally, and a Tannakian category is a braided tensor category C
which admits a braided fiber functor to Vect . Note that a Tannakian category must be
symmetric, although not all symmetric tensor categories are Tannakian. (For example,
the category sV ect of super vector spaces is non-Tannakian, as it has objects with self-
braiding −idV⊗V ).



Log-Modular Quantum Groups at Even Roots of Unity 779

Definition 2.2. A ribbon structure on a braided tensor category C is a choice of a family
of natural endomorphisms θV : V → V which satisfy (θV )∗ = θV ∗ and θV⊗W =
(θV ⊗ θW )c2V,W , for all V and W .

2.2. Almost simple algebraic groups. Let G be an almost simple algebraic group over
C, with root lattice Q andweight lattice P . Recall thatG is specified, up to isomorphism,
by its Lie algebra g = Lie(G) and choice of character lattice X between Q and P . The
character lattice appears abstractly as the group of maps from a maximal torus T ⊂ G
to Gm , X = HomAlgGrp(T, Gm). (By Gm we mean the multiplicative group C

∗ with its
standard algebraic group structure). For G of adjoint type we have X = Q, and for G
simply-connected X = P .

We let � = {α1, . . . , αn} denote the simple roots in X , and � ⊂ X denote the
collection of all roots. For each simple αi we have an associated integer di = dαi ∈{1, 2, 3} and diagonal matrix D = diag{d1, . . . , dn} for which D[ai j ] is symmetric,
where the ai j are the Cartan integers for G.

We have the Cartan pairing 〈 , 〉 : Q × Q → Z, defined by the Cartan integers
〈αi , α j 〉 = ai j . If we take r to be the group exponent of the quotient X/Q, then this
form extends to a unique Z[ 1r ]-valued form on X . We have a unique symmetrization
( , ) : X × X → Z[ 1r ] of the Cartan form on X defined by

(αi , α j ) = di 〈ai , a j 〉 = diai j .

We call this symmetrized form the (normalized) Killing form on X , since the induced
form on the complexification XC is identified with the standard Killing form on the dual
h∗ of the Cartan subalgebra h in g, up to scaling.

Remark 2.3. Note that the Cartan integer conventions for Lusztig [48,49] are transposed
relative to those of, say, Humphreys [41]. We follow Lusztig’s convention here, in order
to produce a consistency between our presentation and the works of Lusztig, so that
〈ai , a j 〉 = 2(ai , a j )/(ai , ai ) [49, Definition 2.2.1].

2.3. Exponentiation of the Killing form on X. Take again r to be the exponent of the
quotient X/Q, so that the Killing form on X takes values in Z[ 1r ]. For q an arbitrary
root of unity in C, with argument θ , we may take the r -th root r

√
q = exp(2π iθ/r). We

exponentiate the Killing form to arrive at the multiplicative form

	 : X × X → C
∗, 	(x, y) := ( r

√
q)r(x,y).

Since r(x, y) is an integer this form is well-defined. Having established this point, we
abuse notation throughout and write simply 	(x, y) = q(x,y).

2.4. Representations of the quantum group repGq and the divided power algebraUq(g).
Take q a root of unity of order 2l, let g be a simple Lie algebra over C, and for each root
γ ∈ � take

lγ := the minimal positive integer such that dγ lγ ∈ lN,

where dγ is the relative length |γ |2/|short root|2. Following [49, Chapter 35],we assume
additionally that lα > −〈α, β〉 at all pairs of distinct simple roots α, β. This condition
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is always satisfied in the simply-laced case, provided l is positive, but requires that l is
not too small outside of the simply-laced case.

Remark 2.4. One can require that the comparison lα > −〈α, β〉 holds only at those α

for which lα > 1. However, in applying this relaxation one should alter the definition of
uM
q (G) (Sect. 4) in accordance with [49, §35.4.1].

LetUq = Uq(g) be Lusztig’s divided power quantum group specialized at q [47,48],
with standard generators

Eα, Fα, Kα, E (lα)
α , F (lα)

α ,

(
Kα; 0
lα

)
, for all α ∈ �.

Here the Kα are grouplike, the Eα are (Kα, 1)-skew primitive, and the Fα are (1, K−1α )-
skew primitive. We let repGq denote the tensor subcategory in repUq(g) consisting of
objects V such that:

(a) V comes equipped with a grading by the character lattice, V = ⊕λ∈XVλ,
(b) For v ∈ Vλ the torus elements in Uq act by the corresponding eigenvalues,

Kα · v = q(α,λ)v and

(
Kα; 0
lα

)
· v =

(〈α, λ〉
lα

)
dα

v, where

(
a

b

)
dα

is theqdα − binomial.

Morphisms in repGq are Uq -linear maps which preserve the X -grading. (Obviously,
Uq = Uq(g) here). For the materials of Sect. 11, we would like to understand the nature
of repGq as a subcategory in repUq .

Proposition 2.5. The faithful tensor functor repGq → repUq is a tensor embedding.

The proof of the proposition will follow from Lemma 2.7 below.

Remark 2.6. Theanalogousmap repGq → repUq is an equivalence at simply-connected
G when q is of odd order. At even order q the functor of Proposition 2.5 is not essentially
surjective for G = SL2 (see Sect. 11.2), and thus not an equivalence, and we expect that
it is not an equivalence for any G at such q.

For simple α let fα ∈ P denote the corresponding fundamental weight in P , so that
( fα, β) = dβδα,β at simple β. Since X ⊂ P , we may write any element in X uniquely
as a linear combination of these fα , with coefficients in Z.

Consider V in repGq , and take a homogenous nonzero element v ∈ V . For simple
α ∈ � consider the unique integer 0 ≤ m′v(α) < ord(qdα ) so that Kαv = qdαm′v(α)v

and take

mv(α) =
{
m′v(α) if ord(qdα ) is odd or m′v(α) <

ord(qdα )
2

m′v(α)− ord(qdα )
2 else.

Let also n′v(α) ∈ Z be such that v lies in the n′v(α)-eigenspace for the action of
(Kα;0

lα

)
(cf. [46, Corollary 3.3]) and take

nv(α) =
{
n′v(α) if ord(qdα ) is odd
(−1)l(n′v(α)−1)n′v(α) else.

Finally, define �α = ord(qdα ) if the order of qdα is odd and ord(qdα )/2 otherwise
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Lemma 2.7. Consider homogenous v ∈ V , for V in repGq, and take mv(α), nv(α) ∈ Z

as above. Then the X-degree of v is given by the formula

deg(v) =
∑
α∈�

(mv(α) + (−1)mv(α)(ord(qdα )−1)�αnv(α)) fα. (1)

Proof. We may assume G is simply-connected, by way of the embedding from repGq
to the simply-connected form. Via the restriction functors Fα : repGq → rep(SL2)qdα
along the Hopf embeddings Uqdα (sl2) → Uq(g), which sends E , F , and K to Eα , Fα

and Kα , it suffices to consider the case G = SL2. Here the weight lattice is generated
by the single fundamental weight f = 1

2α. We note that ord(qdα ) may be odd, in which
case ord(qdα ) = �α , and make the analogous �α-demands as above in the definition of
rep(SL2)qdα . In any case, we take G = SL2 and allow q to be of possibly odd order.

Take v ∈ V of degree c f , for V in rep(SL2)q , and assume first that q is of even order
2�. Then we have

(
K ; 0
�

)
v =

(〈α, c f 〉
�

)
v =

(
c

�

)
v,

and by definition n′v =
(c
�

)
. We have directly that

(r
�

) = 0 when 0 ≤ r < � and
(
�
�

) = 1,
and also the general property

(
k� + a

�

)
= q−a�

(
k�

�

)
+ qk�

2
(
a

�

)
= (−1)a

(
k�

�

)
+ (−1)k�

(
a

�

)

(see [49, §1.3]). This gives
(k�

�

) = (−1)�(k−1)k by induction and (k�+r
�

) = (−1)r (−1)�(k−1)k
for 0 ≤ r < �. So, in total,

n′v =
(
c

�

)
= (−1)c−�� c

�
�(−1)�(n′v−1)�c

�
�.

The difference c − �� c
�
� is mv , since Kv = qcv. Hence

c = c − �� c
�
� + � c

�
�

= mv + (−1)mv (−1)�(n′v−1)�n′v = mv + (−1)mv �nv.

So we see deg(v) = c f = (mv + (−1)mv �nv) f , as claimed.
A similar, but easier, analysis yields the result for rep(SL2)q when q is of odd order.

Proof of Proposition 2.5. One sees from Lemma 2.7 that the X -grading on V in repGq
is completely recoverable from the action of the torus elements in Uq . Whence we find
that morphisms V → W in repUq between X -graded objects preserve the X -grading,
implying full faithfulness of the inclusion. Furthermore, for a v ∈ V in X -graded V we
may expand v in terms of the grading v = ∑

λ vλ and, by Lemma 2.7 we may take for
any λ ∈ X a torus element tλ ∈ Uq so that tλv = vλ. Hence any subobject V ′ ⊂ V in
repUq is X -graded as well. Whence the inclusion repGq → repUq is an embedding. ��
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2.5. The R-matrix for repGq. Let q be a root of unity of order 2l, as before. Recall our
notation 	 : X × X → C

× for the q-exponentiated Killing form. According to [49,
Chapter 32] the category repGq is braided by the operator

R = R+	−1 =
⎛
⎝ ∑

n:�+→Z≥0
cn(q)E (n1)

γ1
. . . E (nw)

γw
⊗ F (n1)

γ1
. . . F (nw)

γw

⎞
⎠ 	−1,

where the cn(q) are polynomials in q±1 with integer coefficients, {γ1, . . . , γw} is a
normal ordering of the positive roots, and up to first order we have

R =
(
1−

(∑
α∈�

(q − q−1)Eα ⊗ Fα

)
+ . . .

)
	−1.

This linear term actually specifies R entirely. The corresponding braiding on repGq is
given by

cV,W : V ⊗W → W ⊗ V,

cV,W (v ⊗ w) = swap(R · v ⊗ w)

= q−(deg v,degw) swap
(∑

n:�+→Z≥0 cn(q)E (n1)
γ1 . . . E (nw)

γw v ⊗ F (n1)
γ1 . . . F (nw)

γw w
)

,

where swap is the standard vector space symmetry, and v and w are taken to be homo-
geneous in the above expression. This braiding operation is well-defined as any object
in repGq is annihilated by sufficiently high powers of any Eγ , Fγ .

Remark 2.8. In [49], Lusztig’s “R-matrix” R′ is the reverse of our R-matrix, R′ = R21.
This is because the braiding employed in [49] is R′ ◦ swap, which is equal to swap ◦R.
We follow the convention of [24] with regards to R-matrices and braidings.

The following result is well-known, and we omit a formal proof.

Lemma 2.9. (cf. [14, §8.3C]) The coefficients cn(q) in the expression of the R-matrix
are such that cn(q) = 0 whenever nγ ≥ lγ for any γ ∈ �+.

Lemma 2.9 says that the R-matrix lives in a certain “torus extended small quantum
group” for G at q (denoted ûq below).

2.6. Algebras of global operators.

Definition 2.10. Let C be a locally finite C-linear category with fixed fiber functor
F : C → Vect . The algebra of global operators for C is the endomorphism ring
EndFun /C(F). For repGq ,we let Ûq(G)denote the associated algebra of global operators
(calculated with respect to the forgetful functor to Vect).

By EndFun /C(F) we mean the algebra of natural endomorphisms of the C-linear
functor F . Elements of this algebra are families of linear maps aV : FV → FV ,
defined at all V in C , which satisfy F(t)aV = aW F(t) for any map t : V → W in
C . In this subsection we expand upon the the construction of the algebra Ûq(G) for the
quantum group. We explain, in particular, that the algebra Ûq(G) is identified with the
completion of a familiar quantum group along a cofiltered system of ideals.
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For repGq we have Lusztig’s modified algebra U̇q(G) = ⊕
λ∈X Uq1λ [42, Section

1.2] (see also [49, Chapter 23 & 31]), which has rep U̇q(G) = repGq . To be clear,Uq1λ

is the cyclic module

Uq(g)/

(∑
α

Uq(Kα − q(α,λ)) +
∑
α

Uq(

(
Kα; 0
lα

)
−

(〈α, λ〉
lα

)
dα

)

)
,

and we let 1λ denote the corresponding cyclic generator. For a and b inUq of respective
Q-degrees μ and ν, the multiplication on the modified algebra is given by

(a1λ)(b1τ ) = ab1λ−ν1τ = δτ,λ−νab1τ .

We write U̇q for the algebra U̇q(G) when no confusion will arise.

Remark 2.11. Colloquially, the torus in Uq(g) is absorbed by the idempotent 1λ in each
Uq1λ, and one is left only with the positive and negative subalgebras. The modified
algebra U̇q can then be thought of as Lusztig’s divided power algebra Uq(g), with the
toral portion replaced by the algebra of idempotents ⊕λ∈XC1λ. Note that the modified
algebra is formally non-unital, as the unit element

∑
λ∈X 1λ does not lie in U̇q .

The algebra Ûq is a pro-finite, linear topological Hopf algebra [24, §1.10], and we
may identify Ûq explicitly with the limit

Ûq = lim←−cof
U̇q/I (2)

where cof is the collection of cofinite ideals I in U̇q , i.e. ideals for which the quotient
U̇q/I is finite-dimensional.

For the moment, let us fix Ûq to be the limit (2), and denote the algebra of global
operators as EndFun /C(F), were F : repGq → Vect is the usual forgetful functor.

To elaborate on the claimed identification between ExtFun /C(F) and the limit (2),
note first that any cofinite ideal I is the annihilator of somefinite-dimensional U̇q -module
V . For any cofinite I and I ′, with corresponding modules V and V ′, we have the sum
V ⊕ V ′. The annihilator J of the sum in contained in both I and I ′, so that we have a
cofinite ideal J such that the twomaps U̇q → U̇q/I and U̇q → U̇q/I ′ factor through the
projection U̇q → U̇q/J . So we see that the collection of cofinite ideals cof is cofiltered
under inclusion, and the limit (2) is a cofiltered limit.

By construction, the action of U̇q on any finite-dimensional module V factors through
the completion U̇q → Ûq , and repGq is identified with the category of discrete finite-
dimensional Ûq -modules. That is, the category of finite-dimensional Ûq -modules which
are annihilated by the kernel of one of the structural projections Ûq → U̇q/I . For
any element a in the completion Ûq we have the associated natural endomorphism
a? = a · − ∈ EndFun /C(F) given by left multiplication by a, so that one obtains a
map of algebras Ûq → EndFun /C(F), a �→ a?. Furthermore, one can check that this
map is an isomorphism, as one has an explicit inverse. Indeed, any global operator b?
defines an element b ∈ Ûq via the limit b = lim←−cof

bU̇q/I (1) of the values of b? on

the generators 1 ∈ U̇q/I , at varied I , and one checks that the associations a �→ a?,
b? �→ b are mutually inverse. In this way we identify the algebra of global operators
EndFun /C(F) with the completion Ûq .
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For the Hopf structure, note that each reduced coproduct U̇q → U̇q/I ⊗ U̇q/J ,
a �→ a · (1⊗ 1), at cofinite I and J , has cofinite kernel K and so lifts to a map from the
completion �I,J : Ûq → U̇q/I ⊗ U̇q/J . These �I,J define, via the universal property
of the limit, the claimed coproduct Ûq → Ûq⊗̂Ûq . The counit for Ûq comes from the
action on the trivial representation, and the antipode is recovered from the duality on
repGq (cf. [54, Theorem 9.1.3]).

Now, we have the global operators Eα , Fα , E
(lα)
α , F (lα)

α , as well as the projection
operators 1λ for eachλ ∈ X , and these operators topologically generate Ûq . Furthermore,
any (infinite) sum

∑
λ∈X cλ1λ, cλ ∈ C, provides a well-defined global operator on

repGq . So, the product algebra
∏

λ∈X C1λ, which is identified with the collection of
arbitrary C-valued functions Fun(X, C) on X , is naturally realized as a subalgebra in
the algebra Ûq .

Remark 2.12. The completion Ûq is the linear dual of the finite dual (U̇q)
◦ [54,Definition

1.2.3], which has repGq = corep(U̇q)
◦.

2.7. Coherence of function algebras on groups. Recall that an algebra A is called co-
herent if the category of finitely presented A-modules is an abelian subcategory in
the category of arbitrary A-modules. We would like to work with general affine group
schemes at some points, and so include the following result.

Lemma 2.13. The algebra of global functions O(�) on any affine group scheme � is
coherent.

Proof. SinceO = O(�) is locally finite, as a coalgebra, we have thatO is the direct limit
(union) of its finitely generated, and hence Noetherian, Hopf subalgebrasO = lim−→α

Oα .
Since extensions of commutative Hopf algebras are (faithfully) flat [65, Theorem 5],
Oβ is flat over Oα when α ≤ β. It follows that O = lim−→α

Oα is coherent [38, Theorem
2.3.3].

3. Additional Structures on the Character Lattice

We introduce some basic structures on the character lattice, of a given almost simple
group, which are employed throughout this work. Below we consider an almost simple
algebraic group G with character lattice X , root lattice Q, and weight lattice P .

3.1. (Strongly) admissible lattices. Given an intermediate lattice Q ⊂ X ⊂ P between
the root lattice and weight lattice in a given Dynkin type, and q a 2l-th root of 1, we
define

XM := {x ∈ X : (x, y) ∈ lZ ∀ y ∈ X}.
This is a sublattice in X . Note that the restriction 	|XM×XM takes values {±1}.
Definition 3.1. We say the lattice X is admissible at q if 	(x, x) = 1 for all x ∈ XM.
We call X strongly admissible at q if the restriction 	|XM×XM is of constant value 1.
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This is a technical condition which, it turns out, determines the nature of the Müger
center of the quantumgroup repGq . In particular, the character lattice forG is admissible
if and only if theMüger center of repGq is Tannakian, and strongly admissible if and only
if the braiding on theMüger center in repGq is the trivial vector space symmetry. Rather,
the lattice is strongly admissible if and only if the given fiber functor repGq → Vect ,
which is not itself a braided tensor functor, restricts to a symmetric fiber functor on the
Müger center of repGq .

Lemma 3.2. Fix a Dynkin type with corresponding root and weight lattices Q and P
respectively. The following hold:

(1) The simply-connected lattice Xsc = P is admissible at arbitrary (even order) q in
all Dynkin types.

(2) The simply-connected lattice in types A1, i.e. the lattice forSL2, is strongly admissible
at arbitrary (even order) q.

(3) In types A>1, B, D, E, and G2, the simply-connected lattice Xsc is strongly admis-
sible if and only if 4 | ord(q).

(4) In type C>2, Xsc is strongly admissible if and only if 4 � ord(q), i.e. 2 appears with
multiplicity one in the prime decomposition of ord(q), or 8 | ord(q).

(5) In type F4, Xsc is strongly admissible if and only if 8 | ord(q).
(6) When 2 exp(P/Q) | l and q is of order 2l, all intermediate lattices Q ⊂ X ⊂ P are

admissible.
(7) The lattice for PSL2 is strongly admissible when 4 � ord(q) or 8 | ord(q), and

inadmissible otherwise.

Proof. Take 2l = ord(q). (1) In this case XM = Z{lαα : α ∈ �}, and we calculate for
an arbitrary element

(
∑

i ci liαi , l
∑

i ci liαi ) = l2i c
2
i (αi , αi ) + 2li l j

∑
i< j ci c j (αi , α j )

= 2lli c2i + 2ll j
∑

i< j ci c j 〈αi , α j 〉 ∈ 2lZ.

Whence we have admissibility. (2) Here we have XM = lQ = lZα, and the computation
(lα, lα) = 2l2 implies strong admissibility for SL2.

(3) In the simply-laced case we have XM = lQ and (la, lb) ∈ l2(a, b) for a, b ∈ Q.
When 2 | l this implies strong admissibility. When 2 � l if we take neighbors then
(lα, lβ) = l2 /∈ 2lZ, obstructing strong admissibility. In type Bn we find a similar
obstruction to strong admissibility when 2 does not divide l. When 2 | l and β is short
we have again (lαα, lβ) = l2〈α, β〉 ∈ 2lZ, and for the unique long γ ,

(lγ γ, lγ γ ) = llγ 〈γ, γ 〉 = 2llγ ∈ 2lZ.

So (XM, XM) ⊂ 2lZ and we have strong admissibility. For G2, with short root α and
long root γ ,

(lα, lα) = 2l2, (lγ γ, lα) = l2 or 3l2, (lγ γ, lγ γ ) = l2 or 3l2,

depending on if 3 | l or not, implying failure of strong admissibility when l is odd and
establishing strong admissibility when l is even.

(4) The Killing form on Q takes values in 2Z in type Cn . When l is odd lα = l for
all simple α, and XM = lQ. So (XM, XM) = l2(Q, Q) ∈ 2lZ in this case, and we have
strong admissibility. When l is even lα = l/2 for all long roots and lβ = l for the unique
short root β. When 4 | l this is sufficient to establish strong admissibility, and in the
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remaining case when 2 appears with multiplicity 1 in l we can take neighboring long
roots α and β to find (lαα, lββ) = lβl /∈ 2lZ. (5) One basically combines the arguments
for types B and C to observe the claim for F4, as we have both short neighbors and
long neighbors. We leave (6) and (7) to the interested reader, as they are just illustrative
examples.

3.2. Balancing functions.

Definition 3.3. A balancing function on the character lattice X for G, at a given param-
eter q, is a function ω : X × X → C

× with the following properties:

(a) ω is X -linear in the first coordinate.
(b) In the secondcoordinate,ω satisfies the XM-semilinearityω(a, a′+x) = q−(a,x)ω(a, a′),

for x ∈ XM.
(c) The restriction to XM × X is trivial, ω|XM×X ≡ 1.

Note that we may view ω as a map from the quotient (X/XM) × X satisfying the
prescribed (semi)linearities. Also, by strong admissibility, the function q−(−,x) is trivial
on XM, so that the conditions (b) and (c) are not in conflict.

Lemma 3.4. Every strongly admissible character lattice admits a balancing function.

Proof. Consider any set theoretic section s : Z = (X/XM) → X . Then each element
a ∈ X admits a unique expression a = x + sz with x ∈ XM and z ∈ Z , and we may
define the desired function ω by ω(a, a′) = ω(a, x + sz) := q−(a,x).

4. The Log-Modular Kernel as a quasi-Hopf Algebra

We provide explicit presentations of the quasi-Hopf kernels uMq (G), for almost simpleG
with strongly admissible character lattice X . We first introduce uMq (G) as an associative
algebra, then provide its quasi-Hopf structure, R-matrix, and ribbon element when ap-
plicable. We leave a proof of factorizability to Sect. 7.2. As we will see, the quasi-Hopf
structure on uMq (G) is not unique, but depends on a choice of balancing function on the
character lattice for G.

We note that the materials of this section are relatively independent of the materi-
als of the sections that follow. What we give here is a direct, algebraic, construction
of the log-modular kernel. In the remainder of the paper we provide both categorical
and representations theoretic (re)productions of this same object, and investigate some
consequences of these varying perspectives in Sect. 11.

4.1. The log-modular kernel as an associative algebra [11]. Consider again the linear
topological Hopf algebra Ûq(G) = lim←−cof

U̇q(G)/I of global operators for repGq ,

as in Sect. 2.6. We let Z denote the quotient Z = X/XM. As explained in Sect. 2.6,
arbitraryC-valued functions on X determine global operators on repG, so that characters
χ on Z in particular are identified with operators

∑
λ∈X χ(λ)1λ ∈ Ûq . We employ

the distinguished grouplikes Kα ∈ Fun(X, C) ⊂ Ûq below, which are precisely the
functions Kα : X → C

∗, λ �→ q(α,λ).
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Definition 4.1. Define uMq (G), as an associative algebra, to be the subalgebra in Ûq(G)

generated by the operators Eα := KαEα and Fα , for α simple, as well as the functions
C[Z∨] on the quotient Z .

One has relations between the characters Z∨ and the generators Eα , Fα as follows:
for χ ∈ Z∨ and any simple α we have

χEαχ−1 = χ(α)Eα, χFαχ−1 = χ−1(α)Fα,

and we have those relations between the E’s and F’s which are implied by the usual
quantum Serre relations [48, §1]. One can check that the Serre relations for the usual
positive elements Eα ∈ U̇q imply the exact same (Serre) relations for Eα . Only the
commutator relations forEα and Fβ are altered, due to the presence of Kα in the formula
Eα = KαEα . We claim, and prove in Lemma 4.5 below, that these relations provide a
complete list of relations for uMq (G).

Remark 4.2. Note that the distinguished grouplikes Kα do not lie in Z∨ ⊂ Fun(X, C) in
general. For example, for SL(N ) at N > 2 we have XM = lQ and q(α,lβ) = q−l = −1
whenever α and β are neighbors, so that Kα does not satisfy the required vanishing on
XM . However, the squares K 2

α always lie in Z∨.

Remark 4.3. The algebra uM
q (G) is the same as the algebra of [11], given there as the

algebra of coinvariants in Ûq with respect to the quantum Frobenius (see Sect. 5.1), and
rep uMq (G) is the category kCG1 of [5, §3.11].

Let u̇q denote the subalgebra in U̇q generated by the idempotents 1λ and the elements
Eα1λ, Fα1λ, for arbitrary λ ∈ X and simple α. This is the modified small quantum
group, and its representations rep u̇q are X -graded vector spaces with operators Eα and
Fα , α ∈ �, which satisfy the quantum Serre relations.

Wemay consider the cofinite completion ûq , i.e. the algebra of endomorphisms of the
fiber functor for rep u̇q . By considering the ideals IN in u̇q generated by the idempotents
{1λ : |λ| ≥ N }, N ≥ 0, one can calculate directly that the completed algebra is simply
the product

ûq = lim←−
N

u̇q/IN =
∏
λ∈X

uq1λ.

Here the uq1λ are defined as in Sect. 2.6, with uq the subalgebra ofUq generated by the
Eα , Fα , and all toral elements.

Lemma 4.4. The restriction functors repGq → rep u̇q is surjective (in the sense of [24]).

We employ in the proof a certain basic understandings of dominant weights, and the
lattice XM , from Sect. 5. We have elected to reference the necessary results from Sect. 5
when appropriate, rather than delay the proof.

Proof. The surjective image of repGq in rep u̇q is the smallest subcategory in rep u̇q
which contains the image of repGq and is closed under taking subobjects and quotients.
This subcategory is closed under duality in rep u̇q and, since the tensor product on rep u̇q
is biexact, it is also closed under taking tensor products. That is to say, the surjective
image is an embedded tensor subcategory in rep u̇q . We have proposed that the surjective
image of repGq is all of rep u̇q .
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We let L(λ) denote the simple in repGq of highest (dominant) weight λ ∈ X+ [46,
Proposition 6.4]. We have the Steinberg module St = L((l − 1)ρ), which is simple,
self-dual, and projective in repGq . The image of St in rep u̇q remains projective [7,
Theorem 4.3]. We claim now that all simples in rep u̇q appear as subquotients of simples
in repGq . Simples in rep u̇q are determined by their highest weights L (ν), which are
now associated to arbitrary elements ν ∈ X , and so we see thatL (λ) is a quotient L(λ)

for any dominant λ. When μ ∈ XM , the simpleL (μ) is 1-dimensional.
The lattice XM is itself the character lattice of a certain dual group to G, and

(XM)+ = XM ∩ X+ (see Sect. 5.1). Since, XM is generated by its dominat weights
(see Proposition 5.4), we find that L (μ) is in the surjective image of repGq whenever
μ ∈ XM. Since XM contains some positive multiple of all the fundamental weights
we have that all λ ∈ X are in the XM-orbit of the dominant weights X+. Rather,
X = XM + X+, and since each 1-dimensional L (μ) is a tensor unit we obtain

Irrep(u̇q) = {L (ν) : ν ∈ X} = {L (μ)⊗L (λ) : μ ∈ XM, λ ∈ X+}.
So all of the simples are in the surjective image of repGq in rep u̇q . By tensoring with the
projective St , we find further that the surjective image contains a projectiveP(ν)which
surjects onto each simpleL (ν). By considering composition series, it follows that each
object V in rep u̇q admits a surjectionP → V from a projective in the surjective image
of repGq . Hence the surjective image is all of rep u̇q .

Lemma 4.4 says, equivalently, that the completion ûq → Ûq of the inclusion u̇q →
U̇q is injective [61, Lemma 2.2.13]. Since the subalgebra uMq ⊂ Ûq lies in ûq , we may

replace Ûq with ûq in our analysis of the linear structure of uMq .
In the following Lemma we consider u+q(G) as the subalgebra of ûq generated by the

Eα , and let u−q (G) denote the subalgebra generated by the Fα .

Lemma 4.5. The subalgebra u+q(G) (resp. u−q (G)) in uMq (G) has the expected presenta-
tion, with generatorsEα (resp. Fα) and the quantumSerre relations of [48]. Furthermore,
multiplication provides a triangular decomposition

u−q (G)⊗ C[Z∨] ⊗ u+q(G)
∼=→ uMq (G). (3)

Proof. The Serre relations for u+q(G) imply that u+q has a spanning set in terms of ordered
monomials in the root vectors Eγ [48]. The algebra u+q has precisely these relations if
and only if the root vector monomials provide a basis for this algebra. However, this
follows by the (topological) basis of ûq in terms of monomials in the root vectors [49,
§31.1.2, 36.2.1]. A similar argument establishes the desired result for u−q .

As for the triangular decomposition, the commutator relations between the Eα and
Fβ imply that the map (3) is surjective, and injectivity follows again by the basis of ûq
in terms of monomials in root vectors.

4.2. The quasi-Hopf structure on uMq (G) via a balancing function. We introduce a (fam-
ily of) quasi-Hopf structure(s) on uMq (G), determined by a choice of balancing function
for the character lattice X .We refer the unfamiliar reader to [51] for details on quasi-Hopf
algebras, or any other standard reference.
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Fix abalancing functionω,with pointwise inverseω−1.Wehaveω(1, ∗) = ω(∗, 1) =
1, and hence ω defines a (non-Drinfeld) twist

ω =
∑

λ,μ∈X
ω(λ,μ)1λ ⊗ 1μ ∈ Fun(X, C)⊗̂ Fun(X, C) ⊂ Ûq⊗̂Ûq .

Whence we may twist in the usual fashion to obtain a new quasi-Hopf algebra Ûω
q with

the same (linear topological) algebra structure, comultiplication

∇ := ω−1�(−)ω

and associator

φ := (1⊗ ω)−1(1⊗�)(ω)−1(�⊗ 1)(ω)(ω ⊗ 1).

We have also the normalized antipode (Sω, 1, β), where

Sω(x) = τ−1S(x)τ, β = (
∑
λ∈X

ω−1(λ,−λ)1λ)τ =
∑
λ

ω−1(λ,−λ)ω−1(λ, λ)1λ,

and τ =∑
λ∈X ω(−λ, λ)1λ =∑

λ ω−1(λ, λ)1λ. We will establish the following.

Proposition 4.6. The subalgebra uMq (G) is a quasi-Hopf subalgebra in Ûω
q , for any

choice of ω. The formula for the comultiplication ∇ on uMq (G) is as described in
Lemma 4.8 below.

We choose a section s : Z → X and identify Z with its image in X in the formulas
below. We can understand φ and β as functions from X3 and X respectively. We have

φ : X3 → C,
φ(a, b, c) = ω−1(b, c)ω(a + b, c)ω−1(a, b + c)ω(a, b)

= ω(a, c)ω−1(a, b + c)ω(a, b).

By linearity of ω in the first component, and XM-semilinearity in the second component
we see that

φ(a + x, b, c) = φ(a, b + x, c) = φ(a, b, c + x) = φ(a, b, c) for x ∈ XM.

So φ is constant on XM-cosets in each component, and thus is identified with a function
from the quotient Z3,

φ : Z3 → C, φ(z, z′, z′′) = ω(z, z′′)ω−1(z, z′ + z′′)ω(z, z′).

One also observes directly that β is constant on XM-cosets to find that it is identified with
a function on Z , β(z) = ω−1(z,−z)ω−1(z, z). This information implies the following.

Lemma 4.7. Let 1z ∈ C[Z∨] denote the idempotent associated to an element z ∈ Z. We
have φ ∈ C[Z∨]⊗3 ⊂ uMq (G)⊗3 and β ∈ C[Z∨]. Specifically,

φ =
∑
z∈Z

ω(z, z′′)ω−1(z, z′ + z′′)ω(z, z′)1z ⊗ 1z′ ⊗ 1z′′ , β =
∑
z∈Z

ω−1(z, z)ω−1(z,−z)1z .
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Let us define for γ ∈ X functions Lγ , Lγ : X → C by

Lγ (λ) := q−(γ,λ)ω(γ, λ), Lγ (λ) := ω(λ, γ ).

These functions are constant on XM-cosets and hence provide elements inC[Z∨] ⊂ uMq .
We define also the interior product

ιγ φ : X2 → C, ιγ φ(λ, μ) := φ(λ,μ, γ ).

This function is also constant on XM-cosets so that ιγ φ ∈ C[Z∨]⊗2.
Lemma 4.8. In Ûω

q we have ∇(ξ) = ξ ⊗ ξ for all ξ ∈ Z∨,

∇(Eα) = Eα ⊗ L−1α + ι−αφ−1L−αK
2
α ⊗ Eα,

and ∇(Fα) = Fα ⊗ Lα + ιαφ−1Lα ⊗ Fα.

Furthermore, uMq (G) is stable under the application of the antipode Sω.

Proof. The equality∇(ξ) = ξ⊗ξ follows from the fact that ω commutes with elements
in Z∨. Now, once calculates directly

∇(Eα) = ω−1�(Eα)ω

=
∑

λ,μ∈X
ω−1(λ + α,μ)ω(λ, μ)Eα1λ ⊗ Kα1μ + ω−1(λ, μ)ω(λ, μ− α)1λK

2
α ⊗ 1μEα

=
∑
λ,μ

q(α,μ)ω−1(α, μ)Eα1λ ⊗ 1μ + φ−1(λ, μ,−α)L(λ)1λK
2
α ⊗ 1μEα

= Eα ⊗ L−1α + ι−αφ−1L−αK
2
α ⊗ Eα.

Similarly,

∇(Fα) = ω−1�(Fα)ω

=
∑
λ,μ

q−(α,μ)ω−1(λ− α,μ)ω(λ, μ)Fα1λ ⊗ 1μ + ω−1(λ, μ)ω(λ, μ + α)1λ ⊗ 1μFα

=
∑
λ,μ

q−(α,μ)ω(α, μ)Fα1λ ⊗ 1μ + φ−1(λ, μ, α)Lα(λ)1λ ⊗ 1μFα

= Fα ⊗ Lα + ιαφ−1Lα ⊗ Fα.

For the antipose we have Sω(ξ) = ξ ,

Sω(Eα) = − (∑
λ∈X q−(λ,α)ω(λ, λ)ω(λ− α, λ− α)

)
K−2α Eα,

Sω(Fα) = − (∑
λ∈X q(λ,α)ω(λ, λ)ω−1(λ + α, λ + α)

)
Fα.

One can check directly that these coefficients are constant on XM-cosets in X , and hence
lie in C[Z∨].

We can now prove the proposition.

Proof of Proposition 4.6. Follows from Lemmas 4.7 and 4.8.
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4.3. The ribbon structure on uMq (G). Fix ω a balancing function, as above. We have the

standard R-matrix Rω = ω−121 Rω for the twisted algebra Ûω
q . The following lemma is

verified by straightforward computation.

Lemma 4.9. The R-matrix Rω lies in uMq (G)⊗uMq (G), and hence provides uMq (G)with
a quasitriangular structure.

By categorical considerations [24, §8.9], theDrinfeld elements for Ûω
q , and hence u

M
q ,

is given by the formula τ−1S(τ )u, where u is the Drinfeld element for Ûq . The pivotal
structure on Ûq , which is given by multiplication by the grouplike Kρ where ρ =∑

γ∈�+ γ , provides a pivotal structure for the twist Ûω
q , which is given by multiplication

by τ−1S(τ )Kρ . Hence the ribbon element for Ûω
q is

vω = τ−1S(τ )Kρ(τ−1S(τ )u)−1 = Kρu
−1 = v,

where v is untwisted ribbon element for the quantum group. (We use the fact that τ is
in Fun(X, C) and hence commutes with u).

When X is the simply-connected lattice, so that XM = lQ, it is easy to see that
Kρ ∈ Z∨. More generally, Kρ is in Z∨ whenever Kρ |XM ≡ 1. Since τ is a function on
X , S(τ ) = τ−1 and τ−1S(τ ) = τ−2. This element τ−2 is constant on XM-cosets and
hence in C[Z∨]. Thus the pivotalizing element τ−1S(τ )Kρ for Ûω

q lies in uMq whenever
Kρ |XM ≡ 1.

Proposition 4.10. Suppose that X is the simply-connected lattice, or that Kρ |XM ≡ 1.
Then for any choice of balancing function, the induced quasi-Hopf structure on uMq (G)

naturally extends to a ribbon structure under which the ribbon element v is just the
standard ribbon element for the large quantum group Ûq .

If one considers the example (PSL2)q , we see that Kρ |XM ≡ 1 when l is odd, since
XM = lQ in this case, and Kρ |XM is not identically 1 when 4 | l, as XM = l

2Q and
Kρ( l2α) = −1. So the induced ribbon structure on uMq (G) is not exclusive to the simply-
connected case, but fails to hold in general.We continue our discussion of quantumPSL2
in Sect. 10.4.

Of course, as a quasi-Hopf algebra, the definition of uMq (G) depends on a choice of
balancing function ω. However, by Proposition 7.3 below, the braided tensor category
rep uMq (G) is independent of choice of balancing function, up to braided equivalence
and ribbon equivalence when applicable. We find in Corollary 8.2 that uMq (G), with
R-matrix as above, is in fact factorizable, and hence log-modular.

4.4. The log-modular kernel for sl2. Consider uMq (sl2) := uMq (SL2). The character

K = Kα : Xsc → C, K (λ) = q(λ,α), is of constant value 1 on XM = lZα. Hence
K ∈ uMq (sl2), and therefore E = K−1E is in uMq (sl2). Therefore

uMq (sl2) =
{
the standard subalgebra in Uq(sl2) generated by
the E, F, and K , as an associative algebra

}
.

So we see that uMq (sl2) simply consists of a new choice of comultiplication, associator,
and ribbon structure, on the usual small quantum group in Uq(sl2).
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5. Quantum Frobenius and the Müger Center of rep Gq

We now turn our attention from the quasi-Hopf algebra uMq (G) to the canonical form
(repGq)G∨ highlighted in the introduction. In this section and all following section, q is
a root of unity of even order 2l and G is an almost simple algebraic group with strongly
admissible character lattice X at q.

5.1. The quantumFrobenius. Define the dual groupG∨ toG at q to be the almost simple
algebraic group with the following Cartan data:

• The character lattice for G∨ is XM.
• The simple roots for G∨ are �∨ := {liαi : αi ∈ �}
• The Cartan integers are given by a∨i j = ai j

li
l j
.

When all di divide l the group G∨ is of Langlands dual type to G, and G∨ is exactly the
Langlands dual when G is additionally simply-connected. When the di do not divide l
the dual group G∨ is of the same Dynkin type as G.

For the algebra U̇q = U̇q(G) = ⊕
λ∈X Uq1λ of [49, Chapter 23 & 31], which has

rep U̇q = repGq , we have the quantum Frobenius map

Fr∗ : U̇q(G) → U̇(G∨),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Eα �→ 0
Fα �→ 0
E (lα)

α �→ eα

F (lα)
α �→ fα

1λ �→ 1λ if λ ∈ XM, 0 else,

which is a surjective map of quasi-triangular Hopf algebras [49, Theorem 35.1.9]. We
note that U̇∨ = U̇(G∨) recovers classical representations for the dual group rep U̇∨ =
repG∨.

Remark 5.1. For SL2 and Sp2n at odd l the quantumFrobenius actually lands in the quasi-
classical algebra U̇∨−1. However, one can rescale the generators to obtain an identification
U̇∨−1 = U̇∨ in these particular cases. The important point in the strongly admissible
setting is the identical vanishing of the R-matrix for rep U̇∨±1 which implies that the
forgetful functor rep U̇∨±1 → Vect is symmetric, and hence rep U̇∨±1 is directly identified
with representations of an algebraic group via Tannakian reconstruction [21,53].

Restricting along the quantum Frobenius Hopf map yields a braided tensor embed-
ding

Fr : repG∨ → repGq ,

which we also call the quantum Frobenius. There is a third form of the quantum Frobe-
nius, which is that of a Hopf inclusion to the quantum function algebra Fr∗ : O(G∨) →
Oq(G), whereOq(G) = coend(repGq → Vect) = HomCont (Ûq , C). One then recov-
ers the categorical Frobenius by corestriction corepO(G∨) → corepOq(G).

To ease notation we generally write O for O(G∨) and Oq for Oq(G).

Remark 5.2. The algebra Oq is presumably the quantum function algebra of [48,50].
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5.2. The quantum Frobenius and the Müger center of repGq. We aim to prove the
following result.

Theorem 5.3. The quantum Frobenius Fr : repG∨ → repGq is an equivalence onto
the Müger center of repGq.

In order to prove the theorem we recall some basic representation theoretic facts.
Recall that a weight λ ∈ X is called dominant if 〈α, λ〉 ≥ 0 for all α ∈ �. Equivalently,
we may employ the Killing form to find that λ is dominant if and only if (α, λ) ≥ 0 for
all α. We let X+ denote the set of dominant weights in X .

By a standard analysis, the simples in repGq are classified up to isomorphism by
their highest weights. Given a weight λ ∈ X which appears as a highest weight for some
object in repGq , and hence as the highest weight of some simple, we let L(λ) denote
the corresponding simple.

Proposition 5.4. Forany simple L(λ) in repGq, the correspondingweightλ is dominant.
Furthermore, the map IrrepGq → X+, L(λ) �→ λ, is a bijection.

Proof. One proceeds exactly as in the proof of [46, Proposition 6.4].

The following lemma is, without doubt, well-known and classical.

Lemma 5.5. The dominant weights X+ span X.

Proof. Enumerate the simple roots � = {α1, . . . , αn} and define S j to be the set of
x ∈ X with (αi , x) = 0 for all i < j , and (α j , x) > 0. Elements of Si are exactly
those elements which have an expression in terms of fundamental weights in which the
coefficients of fi are 0, for all i < j , and the coefficient of f j is positive. Note that
S j �= ∅, since P/X is finite, and hence some power of each fundamental weight lies in
X .

For each 1 ≤ j ≤ n take x j ∈ S j with minimal pairing with α j , (α j , x j ) =
min{(α j , x) : x ∈ S j }. By replacing x j with a sum x j +

∑
k> j ck xk we may assume

additionally that each x j is dominant. Now, for arbitrary λ ∈ X with (αi , λ) = 0 for
all i < j , our minimality assumption on x j implies that there is some c j (λ) ∈ Z with
(α j , λ− c j (λ)x j ) = 0. Whence we see, by induction, that for any λ ∈ X one can take a
difference λ−∑

i ci (λ)xi so that (α j , λ−∑
i ci (λ)xi ) = 0 for all j . By non-degeneracy

of theKilling formon the rationalization XQ we seeλ =∑
i ci (λ)xi . Hence {x1, . . . , xn}

provides a dominant spanning set for X .

We can now prove our theorem.

Proof of Theorem 5.3. The image of the quantum Frobenius Fr : repG∨ → repGq is
the subcategory tensor generated by the simples L(λ) with λ ∈ (XM)+. One sees this
directly from the definition of the associated surjection U̇q → U̇∨ and the classification
of simples for U̇∨.

We note that for any extension W of objects V and V ′ in the image of repG∨, the
X -grading onW is necessarily a grading by XM. That is to say,Wλ = 0 for all λ /∈ XM.
This implies that Ei , Fi : W → W are trivial operators. (One needs to use strong
admissibility of X here when l = 2 in types B and C , and l = 3 in type G2). Hence
the action of U̇q on W factors through the Frobenius U̇q → U̇∨. Rather, W is in the
image of repG∨, and we see that the image of repG∨ is closed under extension. We can
describe this image simply as the collection of V in repGq with X -grading induced by
a XM-grading.
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Now, take L(λ) a simple in theMüger center of repGq , and let vλ be a highest weight
vector for L(λ). Then for all μ ∈ X+ we have for the double braiding

R21R : L(λ)⊗ L(μ) → L(λ)⊗ L(μ), vλ ⊗ vμ �→ q−2(λ,μ)vλ ⊗ vμ + lower degree terms.

Triviality of this operation demands 2(λ, μ) ∈ 2lZ, and hence that (λ, μ) ∈ lZ. Since
this holds for all simples L(μ) in repGq , we find (λ, X+) ⊂ lZ. Since X is spanned by
dominant weights, by Lemma 5.5, we conclude λ ∈ XM. So we see that all simples in
the Müger center lie in the image of the repG∨.

Finally, for arbitrary V in the Müger center we find that all of its simple composition
factors lie in repG∨, since the Müger center is closed under subquotients. As the image
of repG∨ is closed under extension in repGq , it follows that V is in repG∨. ��

6. Tensor Properties and Finiteness of (rep Gq)G∨

We begin by recalling the notion of de-equivariantization [11,22]. We maintain our
assumption that the base field is C for consistency, although many of the results are
characteristic independent. By a corepresentation we always mean a right corepresen-
tation.

6.1. De-equivariantization and faithful flatness. Let � be an affine group scheme and
F : rep� → C be a central embedding into a tensor category C . That is, F is a
pair of an embedding F0 : rep� → C and a choice of lift to the Drinfeld center
F1 : rep� → Z(C ). Such a lift F1 simply specifies a family of half-braidings γV,W :
F0(V )⊗W → W ⊗ F0(V ) for objects V in rep�. This family is required to be natural
in V . We abuse notation throughout and write simply F(V ) for the image of an object
V in rep� under a central embedding F .

The central embeddings of interest to us come from braided tensor functors, in which
case the central structure is implicit. Namely, the braiding on C specifies a section
C → Z(C ) of the forgetful functor Z(C ) → C . One uses this section to provide any
functor into C with a canonical central structure.

For any central embedding F : rep� → C we have the algebra object FO =
FO(�) in the Ind-category IndC . We can therefore consider FO-modules in IndC .
Each FO-module becomes a bimodule via the half braiding γO,−.

Definition 6.1. A module M over an algebra object A in IndC is called finitely pre-
sented if there are objects V0 and V1 inC for which there is an exact sequenceA ⊗V1 →
A ⊗ V0 → M , where the A ⊗ Vi are given the free left A -action.

Given a central embedding F : rep�→ C , we define the de-equivariantization C�

as

C� := {The category of finitely presented FO −modules in IndC } .
This category is naturally additive, enriched over C, and monoidal under the tensor
product ⊗FO (cf. [22]).

Definition 6.2. We say a central embedding F is faithfully flat if the resulting de-
equivariantization C� is rigid. We call F locally finite if the de-equivariantization C�

is a locally finite category.
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Taken together, F is faithfullyflat and locallyfinite if andonly if the de-equivariantiza-
tion (C�,⊗FO ) is a tensor category. Implicit in our locally finite definition is the proposal
thatC� is abelian. Since the de-equivariantization functor dE : C → C�, V �→ O⊗V ,
is left adjoint to the forgetful functor C� → IndC , we see that the forgetful functor is
left exact. It follows that the abelian structure on C� must be the one inherited from C .
That is to say, C� is abelian if and only if FO is a coherent algebra in IndC , and local
finiteness of F therefore implies coherence of FO (cf. Lemma 2.13).

6.2. Faithful flatness for Hopf inclusions. Let O be a commutative Hopf algebra and
O → A be a Hopf inclusion. Suppose that this inclusion comes equipped with a function
R : O ⊗ A→ C which is trivial on O ⊗O and induces a lift corepO → Z(corep A) of
the corestrictionmap corepO → corep A. So, R is a “half R-matrix”. Take� = SpecO .

For corep A, the Ind-category is simply the category of arbitrary corepresentations
Corep A. We consider the category OM

A of relative Hopf modules which are finitely
presented over O [54]. We have directly OM

A = (corep A)�. If this category is rigid,
then the forgetful (monoidal) functor

(corep A)� → (O-bimod,⊗O )

necessarily preserves duals. Since a bimodule overO is dualizable if and only if it is pro-
jective on the left and on the right, it follows that each object in the de-equivariantization
(corep A)� is projective over O in this case. Conversely, if each object in (corep A)� is
projective over O then we have the duals

M∨ = Hommod-O (M,O) and ∨M = HomO-mod(M,O) (4)

with actions of the topological Hopf algebra A∗, i.e. A-coactions, defined by

f ·l χ := (m �→ f1χ(S( f2)m)) and f ·r χ :=
(
m �→ f1χ(S−1( f2)m)

)

respectively. The following is basically a result of Masuoka and Wigner.

Lemma 6.3. ([52, Corollary 2.9]) Take K to be the coalgebra C⊗O A given by taking
the fiber at the identity of �. In the above context, the following are equivalent:

(a) The category (corep A)� is rigid.
(a′) The embedding F : rep�→ corep A is faithfully flat.
(b) The extension O → A is faithfully flat.
(c) Taking the fiber at the identity C⊗O − : (corep A)� → corep K is an equivalence

of C-linear categories.

In this case F is also locally finite, A is coflat over K , andO is equal to the K -coinvariants
O = AK .

Proof. First note that (a) and (a′) are equivalent, by definition. In [52] the authors employ
the categoryOM

A of arbitraryHopfmodules, andprove an infinite analogof the proposed
equivalence, with (corep A)� replaced with OM

A and corep K replaced with Corep K .
So we are left with the task of translating between the finite and infinite settings.

We have OM
A = Ind OM

A and recover OM A as the category of compact objects
in OM

A (cf. Lemma 8.4 below). One can use this identification to equate (a)–(c) via [52,
Corollary 2.9]. Supposing (a)–(c), coflatness of A over K follows by [65, Theorem 1], as
does the equality O = AK . Additionally, (corep A)� is locally finite in this case as it is
equivalent to the locally finite category corep K , so that F is locally finite by definition.
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Remark 6.4. It is proposed in [11, Proposition 3.12] that an arbitrary extension O → A
of a commutative Hopf algebra is faithfully flat. While the result is correct [37], there
are some problems with the proof given in [11]. So we have avoided direct reference to
this result.

6.3. Faithful flatness of the quantum Frobenius. One can argue exactly as in [11, §3.9],
where some slightly different restrictions on q and G are involved, to find that the linear
dual of uMq (G) is the fiberC⊗O Oq of the quantum function algebraOq at 1 ∈ G∨. They
show further that the quantum Frobenius Fr : repG∨ → repGq is, in our language,
faithfully flat.

Theorem 6.5. ([11, Theorem 2.4]) The functor C ⊗O − : (repGq)G∨ → rep uMq (G)

given by taking the fiber at the identity of G∨ is a C-linear equivalence.

We apply Lemma 6.3 to obtain

Corollary 6.6. Thede-equivariantization (repGq)G∨ , with its naturalC-enrichedmonoidal
structure ⊗O(G∨), is a finite tensor category.

Proof. All is clear save for the finiteness of (repGq)G∨ . But this just follows from the
fact that the equivalent category rep uMq (G) is finite.

7. Quasi-fiber Functors and the Ribbon Structure

We note that the braiding on repGq induces a unique braiding on (repGq)G∨ so that
the de-equivariantization functor dE : repGq → (repGq)G∨ , V �→ O ⊗ V , is a map
of braided tensor categories [22, Proposition 4.22]. This braiding is given simply by

cM,N : M ⊗O N → N ⊗O M, m ⊗ n �→ swap(R · m ⊗ n).

We consider (repGq)G∨ as a braided tensor categorywith this induced braiding through-
out the remainder of this document.

7.1. The ribbon structure on (repGq)G∨ . We employ the duals (4) to give (repGq)G∨
an explicit rigid structure. For ρ the sum of the positive roots, ρ = ∑

γ∈�+ γ ∈ X , the
global operator Kρ provides repGq with a canonical pivotal structure. Specifically, the
natural linear isomorphisms

pivV : V → V ∗∗, v �→ Kρ · evv,

provide an isomorphism of tensor functors id → (−)∗∗. The pivotal structure on repGq

induces a canonical ribbon structure with ribbon element v = Kρu−1, where u ∈ Ûq is
the Drinfeld element [14, Corollary 8.3.16].

Lemma 7.1. When G is simply-connected, or more generally when Kρ |XM ≡ 1, there is
a unique ribbon structure on (repGq)G∨ so that the de-equivariantization functor from
repGq is a map of ribbon categories.
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Proof. Supposing such a ribbon structure exists, uniqueness follows from the fact that
the de-equivariantization map is surjective. So we must establish existence. It suffices to
provide a pivotal structure on (repGq)G∨ so that the de-equivariantization functor dE
preserves the pivotal structure. Such a pivotal structure is given explicitly by

piv′M : M → M∨∨, m �→ Kρ · evm .

The piv′M are O-linear as the image of Kρ in Û∨, which is just the restriction Kρ |XM, is
identically 1 in this case. (Otherwise, piv′ twists theO-action by the translation Kρ ·−).
The piv′M are isomorphisms because each M is finite and projective over O , and hence
reflexive.

7.2. Quasi-fiber functors and the ribbon equivalence to uMq (G). For an O-bimodule
M we let Msym denote the the symmetric O-bimodule with action specified by the left
O-action on M .

Lemma 7.2. Fix a balancing function ω for the character lattice of G. For M and N in
(repGq)G∨ , the maps

T̃ ω
M,N : Msym ⊗O Nsym → M ⊗O N , m ⊗ n �→ ω(degm, deg n)m ⊗ n,

are well-defined O-linear isomorphisms which are natural in each factor. Taking the
fiber at the identity gives a natural isomorphism

T ω
M,N : (C⊗O M)⊗C (C⊗O N )→ C⊗O (M ⊗O N ), m̄ ⊗ n̄ �→ ω(degm, deg n)m ⊗ n.

The natural isomorphism T ω provide the reduction C⊗O − : (repGq)G∨ → Vect with
the structure of a quasi-fiber functor f ibω : (repGq)G∨ → Vect.

Proof. Note that the reduction C ⊗O − : (repGq)G∨ → Vect is a faithful functor by
Theorem 6.5. So we need only show that T ω is a well-defined quasi-tensor functor to
see that it is a quasi-fiber functor. One simply checks, for f ∈ O andm⊗n ∈ M⊗O N ,
the formula

ω(degm + deg f, deg n) f m ⊗ n
= ω(degm, deg n) f m ⊗ n (balancing property (c))
= q−(deg f,degm)ω(degm, deg n)m ⊗ f n
= ω(degm, deg n + deg f )m ⊗ f n (balancing property (b))

to see that T̃ ω provideswell-defined, natural,morphisms from the tensor productMsym⊗O

Nsym . The inverse is constructed by a similar use of ω to see that T̃ ω is a natural iso-
morphism. The remaining claims of the lemma follow.

Thequasi-fiber functor f ibω is a linear equivalenceonto the subcategory rep uMq (G) ⊂
Vect , by Theorem 6.5, and hence induces a unique tensor structure on rep uMq (G) under
which the product is the linear tensor product. As one would expect, this tensor structure
is the one introduced in Sect. 4.
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Proposition 7.3. Give uMq (G) the quasitriangular quasi-Hopf structure provided by a

choice of balancing function ω, and give rep uMq (G) the corresponding braided tensor
structure. The functor

f ibω := {C⊗O −, T ω} : (repGq)G∨ → rep uMq (G)

is an equivalence of braided tensor categories. When Kρ |XM ≡ 1, f ibω is additionally
and equivalence of ribbon categories.

Proof. We have the diagram

repGq = rep Ûq
dE ��

{id,ω·−}
��

(repGq)G∨

f ibω

��
rep Ûω

q
restrict �� rep uMq ,

with all but f ibω having been established to be braided tensor functors, and ribbon when
applicable. By surjectivity of dE it follows that f ibω is a braided tensor functor, and
also a ribbon equivalence when applicable, by Theorem 6.5.

8. Rational (De-)equivariantization and Non-degeneracy

We provide rational analogs of the results of [22, Proposition 4.30, Corollary 4.31]. This
section can be seen as an elaboration on the materials of [19, §2.2] (cf. [11, §4.3]). What
we need is the following.

Theorem 8.1. Let � be an affine group scheme. Suppose that F : rep� → C is a
braided tensor embedding, which is additionally faithfully flat, locally finite, and has
Müger central image. Then the de-equivariantization C� is non-degenerate if and only
if F is an equivalence onto the Müger center of C .

Recall that a braided tensor categoryD is called non-degenerate if its Müger center is
trivial. Recall also that a log-modular tensor category is a finite, non-degenerate, ribbon
category. We call a ribbon quasi-Hopf algebra log-modular if its representation category
is log-modular.We observe our calculation of theMüger center of repGq at Theorem 5.3
to arrive at the following.

Corollary 8.2. (a) The de-equivariantization (repGq)G∨ , with its induced braiding, is
non-degenerate. If furthermore G is simply-connected, then (repGq)G∨ is canoni-
cally log-modular.

(b) The quasitriangular quasi-Hopf algebra uMq (G) is factorizable, and log-modular
when G is simply-connected.

We are left to prove Theorem 8.1. We have elected to give a completely general
presentation of (de-)equivariantization for tensor categories, in order to make precise
sense of the conjectural relations with vertex operator algebras discussed in Sect. 11.
However, to keep from distracting completely from our main program, we defer many
of the details to “Appendix A”.
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8.1. Rational actions on cocomplete categories. Let D be a cocomplete C-linear cate-
gory. For any commutative algebra S we let DS denote the S-linear category consisting
of objects X in D equipped with an S-action, S → EndD (X). Maps in DS are maps in
D which commute with the S-action. We note that this operation (?)S is functorial in
C-linear morphisms, so that aC-linear morphismD → D ′ induces a S-linear morphism
DS → D ′

S . If we have an algebra map k : S → T we restrict scalars to get a map of
linear categories k∗ : DT → DS .

Restriction has a left adjoint k∗ : DS → DT given by induction. Here we use
cocompleteness ofD to construct the induction T ⊗S X explicitly as the quotient of the
sum⊕a∈T Xa by the standard relations, where Xa is just a copy of X labeled by a ∈ T .

Let � be an affine group scheme with algebra of functions R = O(�). A rational
action of � on D , or simply an “action”, consists of the following information:

(a) A functor ψu : D → DR which is exact and commutes with colimits.
(b) A choice of coassociative isomorphism σ : �∗ψu

∼→ ψuψu of functors from D to
DR⊗R .

(c) A choice of isomorphism η : ε∗ψu
∼→ idD for the counit ε : R → C.

Given D with an action of � we define the category of equivariant objects D� as the
non-full subcategory of objects X inD equipped with a coaction ρX : X → ψu X which
is coassociative and counital, in the sense of the equalities

ψu(ρX )ρX = σX�∗ρX and ηXε∗ρX = idX .

Morphisms of equivariant objects are maps f : X → Y in D for which the diagram

ψu X
ψu f �� ψuY

X
f ��

ρX

��

Y

ρY

��

commutes.
Note that for D with a �-action we can change base along S-points t ∈ �(S),

t : Spec(S) → �, to obtain a compatible collection of mapsψt : D → DS . These maps
have induced compatible isomorphisms ψtψt ′ ∼= ψt ·t ′ , where for points t ∈ �(S) and
t ′ ∈ �(S′) we let t · t ′ = (t ⊗ t ′)� denote the product in �(S ⊗ S′). In particular each
element in the discrete group x ∈ �(C) acts via an equivalence ψx : D → D , and we
recover from the rational action of � an action of the discrete group �(C) on D , in the
usual sense of [22].

Remark 8.3. Our presentation of rational group actions on categories is adapted from
informal notes of D. Gaitsgory.

8.2. Rational group actions on tensor categories. A locally finite category D is ex-
plicitly not cocomplete, as all objects are required to be of finite length. In this case
we define DS only for coherent S, as the full subcategory of objects in (IndD)S with
a finite presentation unit∗V → unit∗W → X , where the V and W are in D and
unit∗ : IndD → (IndD)S in induction by the unit C → S. As a more practical check
for finite presentation we have
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Lemma 8.4. The subcategory DS ⊂ (IndD)S is exactly the subcategory of compact
objects in (IndD)S.

We provide a proof of the lemma in “Appendix A”. We employ these categories
DS and define a �-action on D just as above, and also the category D� of equivariant
objects. (Recall that the algebra of functions on an affine group scheme is itself coherent,
by Lemma 2.13).

When D is a finite tensor category each DS is monoidal under the product X ⊗S Y ,
which is given as the quotient of the product X ⊗ Y internal to D by the relations
s ⊗ 1 − 1 ⊗ s : X ⊗ Y → X ⊗ Y , for each s ∈ S. We say � acts on D , as a tensor
category, if the universal map ψu : D → DR is equipped with a monoidal structure
ψu(V )⊗R ψu(W ) ∼= ψu(V ⊗W ) which is compatible with the isomorphism σ , in the
sense that the two paths from ψu(V )⊗R ψu(W ) to ψuψu(V ⊗W ) agree. This implies
that for each S-point t ∈ �(S) the induced maps ψt : D → DS will all be monoidal
functors in a compatible manner.

Lemma 8.5. When D is a tensor category, any monoidal functor ψu : D → (IndD)R
has image in DR, and hence ψu defines a rational action �, provided ψu is exact and
commutes with colimits.

Proof. Monoidal functors preserve dualizable objects, and dualizable objects are com-
pact.

WhenD is braided, the base changeDS additionally admits a unique braiding so that
the induction functor unit∗ : D → DS is a braided tensor functor. Whence � can act on
D as a braided tensor category, in which case the action map ψu : D → DS is assumed
to be a braided monoidal functor.

For a (braided) tensor category D equipped with a � action, which respects the
(braided) tensor structure, the equivariantization D� is a non-full (braided) tensor sub-
category in D . The coaction on a product V ⊗W of equivariant objects is simply given

by the composite V ⊗W
ρV⊗ρW→ ψuV ⊗R ψuW ∼= ψu(V ⊗W ).

8.3. A summary of the details in “Appendix A”. FixC a tensor category with a faithfully
flat, locally finite, central embedding F : rep� → C . Fix also a tensor categoryD with
a rational action of �. There is a canonical �-action on the de-equivariantization C�,
given by the formula ψu(X) := R ⊗ X , and an obvious functor

can! : C ∼→ (C�)�, V �→ O ⊗ V,

which is shown to be a tensor equivalence at Proposition A.2. Similarly, there is a canon-
ical central embedding into the de-equivariantization rep� → D� and an equivalence

can! : D ∼→ (D�)�, W �→ ψu(W ),

as verified in Proposition A.6.
Suppose now that C is braided and that rep� → C has Müger central image.

Suppose additionally that D is braided and that the action of � respects the braiding.
We say a tensor subcategory W ⊂ D is �-stable if the restriction of the action functor
ψu : W → DR has image in WR . For such �-stable W we have an induced inclusion
of the equivariantizations W � ⊂ D�.
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Similarly, for any intermediate tensor subcategory rep� → K → C we have an
inclusion of the de-equivariantization K� → C�. Since C� is abelian FO is coherent
in C , and hence in K as well. So K� is abelian. Local finiteness of C� also implies
local finiteness of K�, and the fact that the duals of free objects in K� remain in K�

implies, by considering presentations, that the duals of all object inK� remain inK�.
So the intermediate inclusion rep� → K is faithfully flat and locally finite as well,
and K� is a tensor subcategory in C�.

One can deduce from obvious naturality properties of the equivalences can! and can!
the following proposition, just as in [22].

Proposition 8.6. (cf. [22, Proposition 4.30])De-/equivariantization provides a bijection
between the poset of isomorphism-closed intermediate tensor subcategories rep� →
K → C and isomorphism-closed �-stable tensor subcategories W → C�. This
bijection restricts to a bijection for braided (resp.Müger central) intermediate categories
in C and �-stable braided (resp. Müger central) subcategories in C�.

We prove Proposition 8.6 in Sect. A.3.

8.4. Proof of Theorem 8.1 and Corollary 8.2 from Proposition 8.6.

Proof of Theorem 8.1. Suppose that F : rep� → C is an equivalence onto the Müger
center of C . Then for any intermediate Müger central category rep� → K → C the
map rep� → K is an equivalence. By Proposition 8.6 it follows that for any Müger
central subcategoryW in C� the inclusion Vect ⊂ W is an equivalence. So the Müger
center of C� is trivial, and by definition C� is non-degenerate.

Conversely, if the Müger center of D = C� is trivial then we apply Proposition 8.6
again to find that for any central intermediate category rep�→ K → C the inclusion
from rep� toK is an equivalence. This holds in the particular case in whichK is the
Müger center of C , so that F is seen to be an equivalence onto the Müger center of C .

Proof of Corollary 8.2. (a) We already understand that (repGq)G∨ is finite, braided,
and ribbon when G is simply-connected, by Corollary 6.6 and Lemma 7.1. So we need
only establish non-degeneracy. But this follows immediately by Theorems 5.3 and 8.1.
Statement (b) follows from (a) and Proposition 7.3.

9. Revisiting the Odd Order Case

Let ξ be an odd order root of unity, and take � = ord(ξ). We return to the odd order
case to clarify the appearance of adjoint type groups in certain constructions related to
uξ (g) (e.g. [19]). Here we have uξ (g) as theHopf subalgebra in the usual divided power
algebra Uξ (g) generated by the Eα , Fα , and Kα (with K �

α = 1).

9.1. Construction of rep uξ (g) from repGξ . We only sketch the details, as the situation
is actually quite a bit easier to deal with than in the even order case.

LetG be of adjoint typewith Lie algebra g. Suppose � is coprime to the determinant of
the Cartan matrix for g and also the di (as is a standard assumption). This implies that the
form on the quotient Q/�Q = G(uξ )

∨ induced by the Killing form is non-degenerate.
So we see that QM = �Q in this case, and the quantum Frobenius Fr : repG → repGξ ,
which in this case involves no duality for G, is an equivalence onto the Müger center.
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(One verifies this just as in Theorem 5.3). So the de-equivariantization (repGξ )G is
non-degenerate, and in fact log-modular, by Theorem 8.1.

Now, in this case, the quantum Frobenius is associated to a Hopf inclusion Fr :
O(G) → Oξ (G) with central image, and for which the restrictions of the R-matrix to
O⊗Oξ andOξ ⊗O is identically 1. Taking the fiber then provides a linear equivalence

C⊗O − : (repGξ )G → rep uξ (g),

which is furthermore seen to be a braided tensor equivalence, via the strong centrality
properties of the quantumFrobenius. Sowe see that the construction of the standard small
quantum group at a root of unity of odd order is essentially an adjoint type construction,
as opposed to a simply-connected construction.

The above presentation is given in contrast to the original presentation of the quantum
Frobenius [46–48], which suggests that the small quantum group is principally a simply-
connected object. (Indeed, one can construct the small quantum group from the simply-
connected form of G, via the original quantum Frobenius [20, Theorem 7.2]).

Remark 9.1. Our comment here is specifically about the standard choice of grouplikes
for uξ (g) at odd order parameter. Namely, the choice of the grouplikes as the elementary
abelian �-group generated by the Kα . One can, of course, construct uξ (G) at arbitrary
G and ξ in accordance to the processes outlined in the present work. We would propose,
however, that the grouplikes should vary in a meaningful way with the choice of G and
ξ .

10. Identifications with Quantum Groups of Creutzig et al. and Gainutdinov et al.

We clarify that all current means of producing log-modular quantum groups at even
order roots of unity agree (at the ribbon categorical level). In particular, we identify our
quasi-Hopf algebras with those of [16,33]. We also provide a brief discussion of the
remarkable nature of small quantum PSL2, particularly at q = eπ i/4.

10.1. Toral construction of the log-modular kernel. Let u̇q = u̇q(G) be the subalgebra
in U̇q generated by the idempotents 1λ, λ ∈ X , and the elements Eα , Fα . The category
rep u̇q is a tensor category and we have the restriction functor repGq = rep U̇q →
rep u̇q . The R-matrix for repGq restricts to a global operator for u̇q , as does the pivotal
element Kρ , and rep u̇q is therefore ribbon.

The quantum Frobenius for U̇q restricted to u̇q has image equal to the (non-unital)
subalgebra C[1μ : μ ∈ XM] in U̇∨. Hence the quantum Frobenius restricts to a Müger
central tensor functor rep T∨ → rep u̇q . We can consider now the de-equivariantization
(rep u̇q)T∨ , and the map (rep u̇q)T∨ → rep uMq (G) given by taking the fiber at the
identity of T∨. Note that we have a diagram of C-linear functors

(repGq)G∨

O(T∨)⊗O (G∨) ����
���

���
���

C⊗O (G∨) �� rep uMq

(rep u̇q)T∨

C⊗O (T∨)

������������
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Proposition 10.1. The functor C ⊗O(T∨) − : (rep u̇q)T∨ → rep uMq (G) is a C-linear
equivalence, and becomes a braided tensor equivalence with the tensor compatibility
T ω as in Proposition 7.3. In the simply-connected case C ⊗O(T∨) − is furthermore a
ribbon equivalence.

Proof. The result at the abelian level appears in [11, Proof of Theorem 4.7]. The tensor
structure, and ribbon structure, are dealt with in exactly the same manner as in Proposi-
tion 7.3.

10.2. Identification with the log-modular quantum group of Creutzig et al. [16]. Take
uMq (sl2) to be the simply-connected form uMq (SL2). In [16,34] the authors construct

a log-modular quasi-Hopf algebra uφ
q (sl2) via local modules over an algebra � in the

braided tensor category of (weight graded) representations of the unrolled quantum
group repwt u

H
q (sl2). The category repwt u

H
q (g) is the category of C = XC-graded

vector spaces with actions of operators E and F which shift the grading appropriately
and satisfying the usual relations of the quantum group. Since rep u̇q(sl2) is the category
of X = Z[ 12α]-graded vector spaces with corresponding actions of E and F , we see that
there is a tensor embedding

rep u̇q(sl2)→ repwt u
H
q (sl2). (5)

The algebra � of [16] is the sum of all invertible representations supported on XM =
lQ, and is therefore identified with O(T∨) under the map (5). Furthermore, since all
indecomposable components of � = O(T∨) are invertible, any local module over � in
repwt u

H
q (sl2) must in fact centralize �.

Proposition 10.2. ([16, Proposition3.8])The centralizer of� = O(T∨) in repwt u
H
q (sl2)

is equal to rep u̇q(sl2).

The authors show further that there is an equivalence of categories between local,
finitely generated, modules over � in repwt u

H
q (sl2) and rep u

φ
q (sl2). Since � = O(T∨)

is Noetherian, this is the same as the category of finitely presented local �-modules in
repwt u

H
q (sl2), and by the above proposition we find

Theorem 10.3. ([16, Theorem 4.1]) There is an equivalence of ribbon categories
(rep u̇q(sl2))T∨  rep uφ

q (sl2).

Whence we have the following.

Corollary 10.4. There is an equivalence of ribbon categories rep uMq (sl2)  rep uφ
q (sl2).

Proof. Apply Proposition 10.1 and [16, Theorem 4.1].

Remark 10.5. To be precise, Creutzig, Gainutdinov, and Runkel employ an R-matrix of
the form 	R+, as opposed to R+	−1. This distinction is, however, utterly unimportant.
Specifically, the choice does no change the Müger center of repGq , the definition of
(repGq)G∨ as a tensor category, or the definition of uMq (G) as a quasi-Hopf algebra.
One simply has to change the R-matrix for uMq (G) by replacing our R for u̇q with the
R-matrix from [16], in the most naïve manner.
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10.3. Identification of the log-modular quantum groups of Gainutdinov et al. [33].
In [33], Gainutdinov, Lentner, and Ohrmann construct factorizable quantum groups
uq(g, X) for pairs of a simple Lie algebra g and choice of character lattice X . (This is
the same as a choice of almost simple algebraic group G). The uq(g, X) generalize the

quantum groups uφ
q (sl2) of [16,34]. Their construction is actually more general, and

allows for g to be a Lie super-algebra for example.
Let Y ⊂ X be the Kernel of the killing form 	 : X × X → C

×. We have Y ⊂ XM,
and the inclusion is generally not an equality. For example, for SL2 (or any simply-
connected group), Y = 2lQ while XM = lQ. We take T := Spec(C[Y ]), and have the
corresponding finite covering T∨ → T. Take also ȯq the finite dual (u̇q)◦. It follows
by Proposition 10.1 and Lemma 6.3 that ȯq is faithfully flat over O(T ), and O(T ) is
faithfully flat over O(T) [63, Theorem 3.1], so that ȯq is faithfully flat over O(T) via
the quantum Frobenius. Subsequently, taking the fiber at the identity provides a braided
tensor equivalence

C⊗O(T) − : (rep u̇q)T ∼→ rep u̇q(g, X/Y ), (6)

where u̇q(g, X/Y ) is the finite dimensional quasitriangular Hopf subalgebra in the cofi-
nite completion ûq generated by the character group C[(X/Y )∨] ⊂ Fun(X, C) ⊂ ûq
and the operators Eα and Fα . (See e.g. [10, Proposition 4.1]). This Hopf algebra is
furthermore ribbon when Kρ |Y ≡ 1.

The equivalence (6) sends the algebra O(T∨) in rep u̇q to C[XM/Y ], the algebra of
functions on the kernel of the projection T∨ → T. So the equivalence (6) restricts to a
braided equivalence

C⊗O(T) − : (rep u̇q)T∨ ∼→ (rep u̇q(g, X/Y ))XM/Y . (7)

By direct considerations of the definitions, both equivalences (6) and (7) are equivalences
of ribbon categories in the simply-connected case.

Proposition 10.6. There is an equivalence of braided categories rep uMq (G)
∼→

rep uq(g, X), which is additionally a ribbon equivalence at the simply-connected lattice.

Proof. It is shown in [33, Theorem 6.7] that rep uq(g, X) can be recovered as the de-
equivariantization (modularization) (rep u̇q(g, X/Y ))XM/Y . So the result follows by the
equivalence (7) and Proposition 10.1.

Remark 10.7. As was the case in Remark 10.5, there is an inconsequential difference in
the R-matrices employed in [33] and in the present study.

10.4. Some remarks on small quantum PSL2. Recall, from Lemma 3.2, that we have
a non-degenerate kernel for (PSL2)q exactly when q is a 2l-th root of 1 with l odd or
divisible by 4. Let us consider the case 4 | l. As usual, take P and Q to be the weight
and root lattices for sl2 respectively, and recall P = 1

2Q.
We can consider the torus forms u̇q(SL2) and u̇q(PSL2), and the braided embedding

rep u̇q(PSL2) → rep u̇q(SL2). The Müger center of rep u̇q(SL2) is the subcategory
VectlQ of lQ-graded vector spaces, while that of rep u̇q(PSL2) is Vectl P . So we have
the invertible simple L(lα/2) in rep u̇q(SL2) which descends to a simple χ = L̄(lα/2)
in the log-modular kernel rep uMq (SL2). This simple squares to the identity and has
centralizer equal to the image of rep(PSL2)q in rep uMq (SL2). Indeed, the subcategory
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generated by χ in rep uMq (SL2) is exactly the image of rep SL2 in rep uMq (SL2). Hence
small quantum PSL2 is identified with the de-equivariantization of the centralizer of χ

in rep uMq (SL2) by the copy of repZ/2Z generated by χ ,

rep uMq (PSL2) ∼= (〈χ〉′)〈χ〉.
By the remarks followingProposition4.10,we see that the ribbon structure on rep uMq (SL2)

does not induce a ribbon structure on rep uMq (PSL2).
In addition to this relationship with quantum SL2, rep uMq (PSL2) has another re-

markable property. As is explained in Sect. 11.1 below, simples in rep uMq (PSL2) are in
bijection with characters of the group Q/ l P . When l = 4, Q/4P = Q/2Q and we see
that rep uM

eπ i/4(PSL2) has exactly two simples. One can see directly that that the unique

non-trivial simple in rep uM
eπ i/4(PSL2) is of dimension 2, and hence non-invertible. As

far as we understand, rep uM
eπ i/4(PSL2) is the only known non-degenerate finite tensor

category with two simples, one of which is non-invertible.

11. Relations Between Quantum Groups and (1, p) Vertex Operator Algebras

For historical reasons we replace l with p in our notation, and take q to be a root of unit
of even order 2p.

11.1. Tensor generation of rep uMq (G) and repGq. Note that any uMq (G)-representation
V decomposes into character spaces ⊕z∈Z Vz for the action of the grouplikes C[Z∨].
Since V contains a simple representation for the non-negative subalgebra uM≥0, and the
Jacobson radical of uM≥0 is generated by theEi , we see that any representation V contains
a highest weight vector.

For any element z ∈ Z = (Z∨)∨ we have the Verma module M(z), and the unique
simple quotient L(z), constructed in the standard manner. Hence we have a bijection
between characters for the grouplikes and simples for uMq , z �→ L(z). The simple L(z)
has unique highest weight z.

Lemma 11.1. The category rep uMq (G) is tensor generated by the simples {L(z) : z ∈
Z}.
Proof. Note that since the associator φ for uMq lies in the coradical (uMq )0 = C[Z∨], we
can define a coradical filtration for uMq recursively via the wedge construction

(uMq )n+1 := ker

(
uMq

∇→ uMq ⊗ uMq →
uMq

(uMq )0
⊗ uMq

(uMq )n

)
.

This resulting filtration is exhaustive and ∇(uMn ) =∑
i+ j=n uMi ⊗ uMj .

Let D ⊂ rep uMq be the subcategory tensor generated by the simples. By Tannakian
reconstruction D is representations of a quotient quasi-Hopf algebra K of uMq , and the
inclusion D → rep uMq is given by restricting along the quotient uMq → K . Indeed,
K is the quotient of uMq by the collective annihilators of arbitrary products of simples
L(z1)⊗ . . .⊗ L(zr ).
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By considering the simples of uq(sl2) we see that for each α there is a simple L(zi )
on which Eα acts non-trivially. Hence the space of primitives maps injectiviely into
the endomorphism ring of the sum of simples EndC(⊕z∈Z L(z)), via the representation
map uMq → EndC(⊕z L(z)). Indeed, the representation map restricts to an injection on
the 1-st component of the coradical filtration (uMq )1 → EndC(⊕z L(z)). So we see that
the quasi-Hopf quotient uMq → K is injective on (uMq )1. It follows by induction, and

by considering the composite uMq
∇→ uMq ⊗ uMq → K/K0 ⊗ K/K0, that the quotient

uMq → K is injective and therefore an isomorphism [54, Theorem 5.3.1].

One can alternatively prove Lemma 11.1 in the simply-connected setting by noting
that rep uMq (G) admits a simple projective object [32].

Lemma 11.2. The category repGq is tensor generated by the simples {L(λ) : λ ∈ X+}.
Proof. Let K be the tensor subcategory generated by the simples in repGq . Since the
Müger center repG∨ is generated by its simples we see that the quantum Frobenius
has image in K ⊂ repGq . Since every object in rep uMq is seen to be the quotient
of an object from repGq , via finite presentation of objects in the equivalent category
(repGq)G∨ , for example, it follows that every simple in rep uMq is the quotient of a
simple from repGq . Hence the functor K → rep uMq has all of the simples for uMq
in its image, and by Lemma 11.1 this map is therefore surjective. It follows that the
de-equivariantizationKG∨ , which is an embedded tensor subcategory in (repGq)G∨ , is
mapped isomorphically to rep uMq under the fiber C⊗O − : KG∨ → rep uMq . So we see
that the inclusion K → repGq is an isomorphism, by Proposition 8.6.

11.2. Rephrasing a conjecture of Bushlanov et al.: representations of the (1, p)-log
minimal model. LetCp denote the subcategory of repUq(sl2) generated by the simples.
In [12] the authors explain that the category of representations for the divided power
algebra Cp admits a Z/2Z-grading

Cp = C +
p ⊕ C−p ,

and they conjecture a tensor equivalence betweenC +
p and the (1, p)-Virasoro logarithmic

minimal model. More specifically, if we let Lp = L(cp, 0) denote the (simple but non-
rational) Virasoro vertex operator algebra at central charge cp = 1 − 6(p − 1)2/p,
they conjecture an equivalence between C +

p and the full subcategory repLM(1, p) of
repLp additively generated by the indecomposable representations appearing in the
(1, p)-logarithmic minimal model LM(1, p) [57–59][12, Eq. 1.1].

Remark 11.3. The inclusion Cp → repUq(sl2) is presumably an equality, by the classi-
fication of indecomposables for Uq(sl2) [13]. The analogous result should hold outside
of type A1 by an analysis similar to [6, Theorem 9.12].

There is a distinguished invertible simple χ = Cv for Uq(sl2), on which K · v =
−v and Ev = E (p)v = Fv = F (p)v = 0. This special simple does not appear in
rep(SL2)q ⊂ repUq(sl2), as it is not graded by the character lattice. Furthermore, we
have

Irrep(rep(SL2)q) ∩ Irrep(χ ⊗ rep(SL2)q) = ∅.
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One directly compares actions on highest weight vectors of simples, elaborated on in [12,
Section 3.1], and employs the precise definition of C +

p in [12, Section 3.4], to see that
repGq = C +

p and χ ⊗ repGq = C−p . So we rephrase the conjecture of Bushlanov et al.

Conjecture 11.4. (Bushlanov et al. [12]) There is an equivalence of tensor categories
rep(SL2)q

∼→ repLM(1, p).

11.3. Connecting some conjectures at (1, p)-central charge. We consider the triplet
vertex operator algebra Wp and related singlet algebra Mp, with central charge cp [2,
3,31,43]. We have the sequence of vertex operator algebra extensions

Lp ⊂Mp ⊂Wp.

There is an integrable sl2-action on Wp by vertex derivations, and the h-weight spaces
appearing inWp for this action are all even [1,27]. Rather, we have a PSL2 = SL∨2 -action
on Wp. Under this PSL2-action we have

Mp =WT∨
p and Lp =WPSL2

p ,

where T∨ is the 1-dimensional torus in PSL2 [16, Eq. 5.8]. Via this PSL2-action on
Wp, we obtain a PSL2-action on repWp and may consider the equivariantizations
(repWp)

PSL2 and (repW)T
∨
, which are simply the categories of Wp-representations

with compatible actions of PSL2 and T∨-respectively (or the associated Lie algebras if
one prefers). From this information we deduce the following.

Lemma 11.5. Taking invariants provides C-linear functors

A : (repWp)
T∨ → repMp, V �→ V T∨ ,

B : (repWp)
PSL2 → repLp, V �→ V PSL2 .

In considering the following conjecture, one should compare themaps of Lemma11.5
to the equivalence (−)R of Sect. A.1.

Conjecture 11.6. The functors A and B are fully faithful, A is an embedding, and B is
an equivalence onto repLM(1, p) ⊂ repLp.

There is a rather vast network of conjectures regarding the algebras Lp, Wp, and
Mp [13,15,18,36], of which we only recall a few. For Mp, it is conjectured that
some distinguished subcategory in repMp is a braided tensor category [16,18]. It is
also known that the category Wp is a braided tensor category [3,66]. Furthermore, the
PSL2-action on repWp should respect the braided tensor structure, so that the equivari-
antizations are also braided tensor categories. So we conjecture further that map A is a
braided tensor functors. Furthermore, the image of A should be the centralizer ofWp in
the tensor subcategory rep〈s〉Mp generated by the simples [16, Conjecture 1.4].

Wehave afinal conjecturewhich concerns theC-linear equivalences f p : rep uMq (sl2)→
repWp of [36,55].

Conjecture 11.7. The C-linear equivalence f p : rep uMq (sl2) → repWp is PSL2-
equivariant, or can be made to be so.



808 C. Negron

This conjecture can seemingly “just be checked”. However, the PSL2-action on
rep uMq (sl2) is not so straightforward (see [56, §9.1]). So, it may be preferable to first lift
the equivalence f p to an equivalence from the canonical form

Fp : (rep(SL2)q)PSL2

∼→ repWp.

At this level, the PSL2 action is fairly transparent on both sides.

Proposition 11.8. (cf. [16, Conjecture 1.4], [12]) Supposing Conjecture 11.7 is correct,
then we have natural C-linear functors

Ã : rep u̇q(sl2) → repMp and B̃ : rep(SL2)q → repLp.

If furthermore Conjecture 11.6 holds, Ã is an embedding and B̃ is an equivalence onto
repLM(1, p)

Proof. One simply transports the invariants functors through the equivalences

rep u̇q(sl2)
∼→ (rep uMq (sl2))

T∨ ∼=
11.7

(repWp)
T∨

and rep(SL2)q
∼→ (rep uMq (sl2))

PSL2 ∼=
11.7

(repWp)
PSL2

of Propositions A.2, 10.1, and Theorem 6.5.
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A. Appendix A: Details on Rational (De-)equivariantization

We cover the details needed to prove Proposition 8.6. As a first order of business let us
provide the proof of Lemma 8.4.

Proof of Lemma 8.4. The fact that any finitely presented object is compact follows from
the fact that free objects unit∗V , for V inD , are compact, and left exactness of the Hom
functor. Now, for arbitrary M in DS we may write M as the union M = lim−→α

M ′
α of

its finitely generated submodules M ′
α . For any finitely generated M ′ we may write the

kernel N of a projection unit∗V ′ = S⊗C V ′ → M ′ as a direct limit of finitely generated
modules N = lim−→β

Nβ and hence writeM ′ as a direct limit of finitely presented modules

M ′ = lim−→β
Mβ , with Mβ = S ⊗C V ′/Nβ . Thus we may write arbitrary M as a direct

limit M = lim−→κ
Mκ of finitely presented modules. Compactness of M implies that the

identity factors through some finitely presented Mκ , and hence M = Mκ .
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A.1. Equivariantization and the de-equivariantization. Suppose F : rep� → C is a
central embedding which is faithfully flat and locally finite. Take

R := O considered as a algebra object in rep� with trivial �− action.

We omit the prefix F and write simply write O and R for the images of these algebras
in C . We define the functor on the de-equivariantization

ψu : C� → (C�)R, ψuM := R ⊗ M,

whereO acts diagonally on eachψuM and R acts via the first component.More precisely,
we have the algebra map � : O → R ⊗ O in rep� given by comultiplication and act
naturally on ψuM via �. For finite presentation, one observes on free modules O ⊗ V
an easy isomorphism ψu(O ⊗ V ) ∼= unit∗(O ⊗ V ) in (C�)R , so that applying ψu to a
finite presentation for M , as an O-module, yields a finite presentation for ψuM over R.
We have the natural iosmorphism

ψuψu(V ) = R ⊗ (R ⊗ V ) ∼= (R ⊗ R)⊗ V = �∗ψu(V )

given by the associativity in C and the natural isomorphism ψuV ⊗(R⊗O) ψuW ∼=
ψu(V ⊗O W ) given by multiplication from R. Whence we have a canonical ratio-
nal action of � on the de-equivariantization C�, and can consider the corresponding
equivariantization (C�)�. Objects in this category are simply O-modules in C with a
compatible R-coaction.
Note that the R-coinvariants X R of an equivariant object X is a C -subobject in X , as it
is the preimage of 1⊗ X ⊂ R ⊗ X under the R-coaction. Whence we have the functor

(−)R : (C�)� → IndC , X �→ X R .

In addition, for any V in C the object can!(V ) = O ⊗ V can be given the O-action and
R-coaction from O . The coinvariants of can!(V ) is the subobject 1⊗ V , and the unital
structure on C provides a natural ismorphism ζ : (−)R ◦ can! ∼→ idC . We also have the
natural transformation γ : can! ◦(−)R → id(C�)� given by the O-action

γX : can!(X R) = O ⊗ X R → X.

Lemma A.1. The transformation γ is a natural isomorphism, and the coinvariants func-
tor (−)R has image in C .

Proof. We have the twisted comultiplication �S : R → O ⊗O , f �→ f1 ⊗ S( f2), and
can define the inverse γ−1X : X → O ⊗ X R as the composite

X
ρ→ R ⊗ X

�S⊗1→ O ⊗ O ⊗ X → O ⊗ X,

which one can check has image in O ⊗ X R and does in fact provide the inverse to γ ,
just as in the Hopf case [54]. To see that X R is in C , and not in IndC \C , we note that
X ∼= O ⊗ X R is of finite length in C� and that O ⊗− is exact, which forces X R to be
of finite length. Hence X R is in C .

Since both ζ and γ are isomorphisms we have directly

Proposition A.2. (cf. [11,22]) The functor can! : C → (C�)� is an equivalence of
monoidal (and hence tensor) categories.

Remark A.3. One can avoid all finiteness concerns by employing the Ind-category IndC
and the category of arbitrary modules O-ModIndC . Then, with the cocomplete theory
of Sect. 8.1, one can argue exactly as above to find that the functor can! : IndC →
(O-ModIndC )� is again an equivalence.
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A.2. De-equivariantizing the equivariantization. Let D be a tensor category equipped
with a rational action of �. There is a canonical embedding rep� → D� into the
equivariantization which identifies rep� with the preimage of Vect ⊂ D inD�, under
the forgetful functor. Indeed, the fact that the action map ψu : D → DR is monoidal
implies thatψu(1) = R, so that the restriction ofψu to the trivial subcategory Vect ⊂ D
is equated with the usual action of � on Vect , and hence Vect� = rep�.
We have the two algebrasO and R in rep�, the latter one being trivial, which are equated
under the composite rep� → D� → D , i.e. which are indistinguishable as objects in
D . Hence the counit O → 1, which is not a map in rep�, is a map in D , and for any
O-module in the equivariantization D� the reduction XO := 1⊗O X is a well-defined
object in D .
SinceO is trivial inD , andψu is a tensormap,we haveψu(O) = R⊗O . By the definition
ofO in rep� the equivariant structure is given by the comultiplication� : O → R⊗O .
HenceO acts naturally on each ψu(X) via the comultiplication, for anyO = R-module
X in D . So we can consider O-modules in D� as O = R-modules in D for which the
coaction X → ψu(X) is O-linear.
For any object V in D we consider V as a trivial O-module, and let O act on ψu(V )

diagonally. Each ψu(V ) then becomes an object in (D�)� via the “free” coaction,
ψu(V )→ ψuψu(V ) given by the unit of the (�∗,�∗)-adjunction

ψu
unit→ �∗�∗ψu

�∗σ→ ψuψu .

We have the reduction functor 1∗ : (D�)� → D , X �→ XO , and the free functor
can! : D → (D�)�, V �→ ψu(V ). There are natural transformations

ηV : ψu(V )O = 1∗ψu(V )
∼→ V, η : 1∗ ◦ can! ∼→ idD ,

and

ϑX : X → ψu(XO ), ϑ : id(D�)�
→ can! ◦1∗,

the former of which is simply given by the counit for ψu and the latter is given as the
composite X → ψu(X) → ψu(XO ) of the comultiplication and the application of ψu
to the reduction X → XO in D . The following is a consequence of the fact that each
object in (D�)� is finitely presented over O .

Lemma A.4. The transformation ϑ is a natural isomorphism if and only if it is a natural
isomorphism when applied to free modules O ⊗W, for W in D�.

Lemma A.5. An object X is 0 in (D�)� if and only if the fiber 1∗X is 0.

Proof. We may writeD = corepC for a coalgebra C , by Takeuchi reconstruction [64].
Then DR is just the category of corepresentations of the R-coalgebra CR which are
finitely presented over R. Now, for a finitely presented R-module M we understand that
M vanishes if and only if its fiber x∗M vanishes for each closed point x : Spec(K )→ �.
Let p(x) : OK → K be the corresponding ring map. Note that the reduction simply
takes the fiber at the identity.
Take M in (D�)� and suppose that 1∗M vanishes. Consider a closed point x ∈ �(K ).
By changing base to DK and �K we may assume that K is our base field, so that
x−1 · x = ε. Via the the coaction we find an isomorphism

M
ρM→ ψuM → p(x)∗ψuM = tx M, (8)
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where the last map is the counit of the (p(x)∗, p(x)∗)-adjunction, and t : �(K ) →
Aut(D) is the discrete action of �(K ).
Now, tx M has a canonical O = R-action via the functorial identification EndD (M) ∼=
EndD (tx M), and the fiber y∗M at a given K -point y vanishes if and only if the fiber
y∗(tx M) vanishes. If we let fx : R → R denote the automorphism given by left
translation by x then we see that (8) is an R-linear isomorphism fromM to the restriction
of tx M along fx . In particular, we have

0 = 1∗M ∼= 1∗(res fx tx M) = x∗(tx M),

which implies x∗M = 0. Since x was arbitrary, we see M = 0 if 1∗M = 0. Conversely,
the fiber at the identity obviously vanishes if M vanishes.

Proposition A.6. The functor can! : D → (D�)� is an equivalence of monoidal (and
hence tensor) categories. Furthermore, the embedding F : rep� → D� is faithfully
flat and locally finite

Proof. We prove that ϑ is an isomorphism on free modules. Take T = O ⊗ V consider
ϑT : T → ψu(V ). We extend to a right exact sequence T → ψu(V ) → M → 0. The
counital property for ψu implies that the fiber 1∗ϑ is identified with the identity on V .
By right exactness of the reduction we have 1∗M = 0, and hence the cokernel vanishes
by Lemma A.5.

We now extent ϑT to a left exact sequence T ′ p→ T
ϑT→ ψu(V )→ 0, with p amap from a

finite free module. (We need to use the fact thatψu(V ) is finitely presented to verify that
such an extension exists). Sinceψu is a monoidal functor it preserves duals [24, Exercise
2.10.6], it follows that ψu(V ) is dualizable in DR with dual ψu(V )∨ ∼= ψu(V ∗). Free
modules R ⊗W are also dualizable with dual R ⊗W ∗.
Note that 1∗ : (D�)� → D is a monoidal functor, and hence preserves duality as
well, so that 1∗(ϑ∨T ) is identified with the isomorphism (1∗ϑT )∗. So by the same argu-
ments employed above the dual ϑ∨T : ψu(V )∨ → T∨ is also surjective. Since the dual
composite

ψu(V )∨ → T∨ p∨→ (T ′)∨

is 0 we find that p∨ is 0. Since duality (−)∨ is an equivalence on the category of (left
and right) dualizable objects in (D�)�, it follows that p = 0. So ϑT is an isomorphism
for each free T . We now employ Lemma A.4 to find that can! is an equivalence. The
fact that D is a tensor category and that can! is an equivalence implies that F is both
faithfully flat and locally finite.

A.3. Proof of Proposition 8.6.

Proof of Proposition 8.6. Take D = C�. We have the de-equivariantization functor

C → D . For a sequence rep� → K
i→ K ′ → C we have the de-equivariantization

K�
i�→ K ′

� → D , withK� andK ′
� stable under the action of �. By the definition of

the equivalence of can!, in Sect. A.1, we find that there is a diagram

(K�)�
(i�)� �� (K ′

�)�

K

can! ∼
��

i �� K ′.

can! ∼
��
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Hence i is an equivalence if and only if i� is an equivalence, and thus
de-equivariantization (−)� defines an inclusion of the poset of (isomorphism-closed) in-
termediate categories�-Int(C ) = {rep� ⊂ K ⊂ C } to the poset�-Stab(D) = {W ⊂
D} of (isomorphism-closed) �-stable categories. A completely similar argument, using
can!, shows that equivariantizationW ⊂ D � W � ⊂ C defines an inclusion of posets
�-Stab(D) → �-Int(C ) which is inverse to (−)�.
Since de-/equivariantization under a central inclusion/braided action preserves braided

subcategories, and central subcategories, the above argument shows that this bijection
of posets restricts to a bijection for both braided and central subcategories as well.
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