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ABSTRACT: We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases,
when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into
the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl, mixtures (representative of
an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Whereas O; and Cl,
both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial
and final optical states of the LCs, we show that a 3-dimensional convolutional neural network (3D CNN) can extract feature infor-
mation that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl, species in mixtures
as well as to quantify their concentrations. Our analysis reveals that O detection is driven by the transition time over which the
brightness of the LC changes, while Cl, detection is driven by color fluctuations that develop late in the optical response of the LC.
We also show that we can detect the presence of Cl, even when the concentration of Os is orders of magnitude greater than the Cl,
concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces and LCs, and has the poten-
tial to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal

color fluctuations.

The development of new materials and methodologies for the
sensing of targeted chemical species has the potential to be
broadly useful in a range of contexts, including occupational
health,'? homeland security (toxic industrial chemicals),>* or
medicine (e.g., analysis of the breath).’ In particular, there re-
mains an unmet need for wearable sensors for human exposure
measurements and health monitoring,®” and light weight sen-
sors for autonomous aerial vehicles.> Additionally, although
metal oxide!®!* and electrochemical amperometric'* !¢ sensors
possess limits of detection that make them potentially suitable
for environmental monitoring, they are not approved for regu-
latory compliance testing by US regulatory agencies (the Envi-
ronmental Protection Agency and the Occupational Safety and
Health Administration) because they are not sufficiently stable
or reliable. Liquid crystals (LCs), which combine key proper-
ties of crystalline solids (long-range order) and isotropic liquids
(molecular mobility), are a promising class of chemoresponsive
materials for designing wearable/portable sensors (e.g., badges
for monitoring of exposure to toxic gases!’ and assays read out
using a smartphone'®). In this paper, we provide a methodolog-
ical advance towards the development of sensors based on LCs
that have attributes that may enable them to address the above-
described unmet needs.

LC-based sensors have been designed by exploiting changes
in the mesoscale organization of bulk LC phases (e.g., choles-
teric LCs and chemically sensitive chiral dopants) that are in-
duced by targeted chemical species.!”?> Alternatively, the LC
sensor design investigated in this work relies on the use of re-
active surfaces to trigger surface anchoring transitions of
LCs.235 Whereas the majority of past studies have analyzed
the average intensity of light passing through LC-based sensors,
here, we make an advance in methodology that involves ana-
lyzing the spatiotemporal optical responses of LCs to mixtures.
By using machine-learning methods, we show that information
embedded in the spatiotemporal optical response of the LC can
be used to identify targeted gas species within a mixture and to
quantify their concentrations. Additionally, we show that it is
possible to use machine learning to provide physical insights
into the processes that permit identification of targeted species
from a given optical response of the LC sensor. We use Cl, and
O3 as model chemical species to illustrate this methodology, but
the approach is broadly applicable to wide range of analytes as
well as potentially other classes of optical sensors.*® The capa-
bility to analyze mixtures of Cl, and Os is relevant to applica-
tions such as air quality monitoring in urban environments and
wastewater treatment facilities, where Cl, and O; are both
used.?7:38
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Past studies have used machine-learning methods to analyze
LC optical responses to single component gases but not mix-
tures. For example, so-called 2-dimensional convolutional neu-
ral networks (2D CNNs), which analyze the spatial patterns
generated by LC responses (X, y, independent of time), have
been used to extract information from LC responses to single
component gas streams.**** Alternatively, an ensemble of both
3D-CNNs (which analyze time-dependent spatial patterns (t, x,
y)) and 2D-CNNs with Long Short-Term Memory networks (a
class of CNNs that is well-suited to measurements of time se-
ries data) has also been reported for analysis of the dynamic op-
tical response of LC droplets to exposure to individual VOCs
(single-component gas streams).*! However, a disadvantage of
ensemble methods is that they prevent interpretation of the out-
put of the CNN in terms of physical mechanisms. Whereas
these prior studies focus on single component streams, a key
contribution contained in the work reported in this paper is the
design a 3D CNN (that we call LCNet) that extract features
from highly complex spatio-temporal color patterns that de-
velop during the LC system response to O3/Cl, mixtures. Alt-
hough these features are straightforward to identify in the LC
response to single gaseous species, the experiments reported in
this paper reveal that without use of CNNs, these space-time
features are difficult to quantify and detect in complex gaseous
mixtures.

The LCNet architecture reported herein provides a frame-
work to analyze large amounts of video data that were generated
by performing high-throughput experiments with LCs. In
LCNet, a video capturing the LC response is represented as a
multi-channel 3D tensor (multi-dimensional array, see details in
Methods and Supporting Information (SI)) in which every chan-
nel is a 3D tensor that contains the space-time response of a
color channel. As such, the 3D CNN can simultaneously extract
features from space-time patterns for red (R), green (G), and
blue (B) channels and can capture dependencies between such
channels. The data representation used by the 3D CNN is com-
prehensive and prevents loss of key information that is encoded
in spatial, temporal, or color patterns. The feature information
extracted by the 3D CNN can be used in a wide variety of tasks
relevant to sensor performance such as classification (for de-
tecting the presence of a particular chemical species) and
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regression (for quantifying the concentrations of single or mul-
tiple chemical targets). Specifically, we show that LCNet can
predict the presence of O3 (accuracy of 99 + 1%) and Cl, (accu-
racy of 93 + 3%) in a gaseous mixture, where accuracy is de-
fined as = (number of samples in which an analyte is present is
classified as having an analyte present (true positive) + number
of samples in which an analyte is absent is classified as having
no analyte present (true negative)) / total number of samples x
100%. Notably, we show that such accuracies can be obtained
for gaseous environments that are dominated by O3 (with con-
centrations that are three orders of magnitude higher than those
of Cl,). This indicates that LCNet can effectively identify sub-
tle signatures that are present in the LC responses. Moreover,
we show that LCNet can predict the concentration of O3 and Cl,
in a mixture and that it generalizes to concentrations not in-
cluded in the training procedure.

We have also equipped LCNet with so-called saliency anal-
ysis techniques that identify the spatial and temporal character-
istics of the LC response that contain information about the
mixture composition. This analysis allows us to gain key in-
sights that can inform the design of LC systems and that can
help us understand physical phenomena underlying the LC re-
sponse (see SI for more details on saliency analysis).* Specifi-
cally, we use saliency analysis to reveal specific features of the
optical response that are critical in detecting O3 and Cl, in mix-
tures. For instance, we find that the response time of brightness
is the critical feature that enables O3 sensing, while space-time
color dynamics is the critical feature that enables Cl, sensing.
Additionally, our results reveal that the presence of Cl, in a mix-
ture (even at low concentrations) influences the response dy-
namics, and that color fluctuations triggered by Cl, persist even
after brightness has saturated. This result indicates that Cl, can-
not be easily detected in mixtures using optical response fea-
tures that ignore color. Our analysis also reveals that the A*
channel in the L*A*B color space provides an informative de-
scriptor that facilitates the analysis of color dynamics and thus
quantification of Cl, concentration in mixtures. These results
demonstrate that machine learning provides new approaches to
the design of LC-based sensors that can analyze complex mix-
tures.
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Figure 1. (a) Optical micrographs (top view, crossed polarizers) of 5CB hosted in copper grids (lateral size of each grid square is 285 um)
on surfaces decorated with 15+3 pmol/mm? Mn(ClO4)2 recorded 0, 30, 60, 70 and 90 seconds after initial exposure to 5+1 ppm O3 gas at
20% RH, or 0, 300, 480, 600 and 840 seconds after initial exposure to 5+0.2 ppm Cl2 gas at 20% RH. Below the optical images is a repre-
sentation (side view) of the homeotropic (perpendicular) orientation of SCB hosted in a copper grid before gas exposure (initial state), and
the planar (parallel) orientation of S5CB after gas exposure (final state). Blue ellipses represent SCB molecules (the mesogen). (b) Visualiza-
tion of interference colors created by white light illumination when liquid crystals transition from homeotropic to planar orientation (inter-
ference colors are a result of liquid crystal birefringence and tilt angle). Pure O3 triggers a continuous anchoring transition, resulting in a
continuous evolution of interference colors. Pure Clz triggers a discontinuous anchoring transition, resulting in a “jump” in interference
colors.
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EXPERIMENTAL MATERIALS AND METHODS

Materials. Manganese (II) perchlorate hydrate and potas-
sium iodide were purchased from Sigma-Aldrich (Milwaukee,
WI). Fischer’s Finest glass slides and starch indicator 1% for
iodometric titration were purchased from Fischer Scientific
(Pittsburgh, PA). Absolute ethanol (anhydrous, 200 proof) was
purchased from Pharmco-AAPER (Brookfield, CT). All chem-
icals and solvents were of analytical reagent grade and were
used as received. Deionized water possessed a resistivity of at
least 18.2 MQ cm or greater. 5CB was purchased from Jiangsu
Hecheng Advanced Materials Co., Ltd (Jiangsu, China). Cl, in
nitrogen gas (purity of Cl, is 99.9% and purity of nitrogen is
99.998%) at a concentration of 10 ppm and nitrogen gas
(99.998% purity) were obtained from Airgas (Elmira, NY) and
used as received. Ozone gas was generated from an ozone gen-
erator (A2Z Ozone Inc., Louisville, KY). Sodium thiosulfate
was purchased from MilliporeSigma (Burlington, MA) for io-
dometric titration.

Formation of LC films supported on functionalized sur-
faces. Glass slides were rinsed with copious amounts of ethanol
and then dried under a stream of nitrogen. Metal ions were de-
posited onto the glass surfaces by spin coating ethanolic solu-
tions of 1.5 mM Mn(ClOy), at 3000 rpm for 30s (WS-400A-
6NPP/Lite, Laurell Technologies, North Wales, PA). The Mn
cation surface density was measured to be 15.2+2.6 pmol/mm?,
as determined by using inductively coupled plasma optical
emission spectrometry (ICP-OES, Perkin Elmer 4300)**. After
coating the surface with the metal salt, an 18 um-thick copper
transmission electron microscopy (TEM) grid (Electron Mi-
croscopy Sciences, Hatfield, PA) was placed on the metal-salt
surface. The TEM grid had an overall diameter of 3 mm and
was composed of square pores with lateral dimensions of 285
um. The grids were filled with 0.1 pL. of nematic 5CB using a
microcapillary. The excess LC was removed from the grids by
wicking the LC into an empty microcapillary tube.

Generation of gases. Os concentration within the gas stream
fed to the LC was controlled by changing the ratio of N, and
0O, in the gas input to an ozone generator; a schematic illustra-
tion is shown in the SI (Figure S1). A higher concentration of
0O, fed to the O3 generator produced a higher concentration of
O3 gas (up to a few hundred ppm) as determined by using io-
dometric titration. Detailed descriptions of iodometric titration
can be found in prior publications****. The diluted O3 concen-
tration was measured by using an O3 detector tube (Sensidyne,
St. Petersburg, FL). The stream of gas containing Cl, was
sourced from a certified cylinder containing 10 ppm Cl, in ni-
trogen and diluted with N to the desired concentrations. The
specific relative humidity of the gas stream fed to the LC was
controlled at 20% RH by passage of the gas through a portable
dew point generator (LI-610, LI-COR Biosciences, Lincoln,
NE).

Exposure of LC films to gaseous mixtures containing O3
and Cl.. LC samples hosted within the TEM grids supported
on the Mn(ClO4),-decorated surfaces were exposed to a stream
of Cl, or/and O3 within a flow cell that was constructed to direct
the gaseous flow across the LC samples while permitting ob-
servation of the samples through a polarized-light microscope
(CH40, Olympus, Melville, NY) (Figure 1a). A detailed de-
scription of the flow cell can be found in a prior publication®.
White light illumination was used in the microscopic observa-
tions (Philips 6V 30W G4 halogen bulb; Philips, Cambridge,
MA) and videos of the optical responses (crossed-polars, trans-
mission mode) of the LCs were recorded using a Canon T6i
camera (Canon U.S.A. Inc., Huntington, NY). The videos were

recorded at ISO 400 and 1/30 shutter speed (29.97 frames/sec-
ond) with a resolution of 1920x1080. The gas fed to the flow
cell was maintained at room temperature (approximately
23°C). The flow rate of each gas stream was controlled using a
series of rotameters (Aalborg Instruments and Control, Orange-
burg, NY). The total flow rate was maintained at 1200 mL/min
at atmospheric pressure. For gas mixtures, Cl, and Oz gases
with designed concentrations were mixed before being deliv-
ered to the flow cell. We explored gas mixtures containing four
Os concentrations (650+20, 100+10, 5+1, and 1.5+0.2 ppm)
and three Cl, concentrations (5+0.2, 2+0.08, and 1+0.04 ppm)
(see SI for additional details). These concentrations were se-
lected for two reasons. First, these gas compositions generated
LC responses that were indistinguishable to the eye (Figure
1b). Second, these gas compositions generated LC responses
that were not measurably different when quantified using pre-
vious metrics of LC response such as the average intensity of
transmitted light (see discussion below in the context of Figure
4). In addition, we also deliberately explored mixtures contain-
ing a swamping concentration of one species (O3) to challenge
the ability of LCNet to quantify mixtures under more demand-
ing conditions. However, the effect of no exposure data is dis-
cussed in the SI. In total, we explored sixteen concentrations
with at least three videos per condition. In each video, we rec-
orded the anchoring transitions of LCs that were confined
within 32 square grids (each with dimensions of 285 um x 285

pm).

COMPUTATIONAL METHODS

Data Preparation. Video data of the LC-filled TEM grids
were used to analyze LC responses to different gaseous envi-
ronments (Figure 1). The responses of the LC systems are rep-
resented as multi-channel 3D tensors (Figure 2), which is the
data representation required by 3D CNNs. To obtain this rep-
resentation, we split the TEM grid into 12 square grids, as
shown in Figure 2 and in the ST (Figure S3 and S4). Each grid
square is defined as a chemoresponsive LC system; for each
square, we capture an image (48x48) every 1 sec and stack
them chronologically into a tensor. The tensor of each square
thus has three dimensions, corresponding to space (directions
x, ¥) and time (¢). The response times of the LC systems under
different gaseous environments were found to differ signifi-
cantly (as detailed below in text accompanying Figure 4). To
obtain a consistent data representation, each video was cropped
to obtain a total of #=720 seconds because the LC responded to
all mixture concentrations within /=700 seconds (as detailed
below in Figure 4). As such, each grid square generates a 3D
tensor of dimension 48x48x120. Another important aspect of
the response data collected is that it is recorded in RGB format;
as such, each image contains three channels (intensity fields for
red, green, and blue). Each grid square thus generates a 3-chan-
nel, 3D tensor. This data representation is complex but com-
prehensive because it simultaneously captures space, time, and
color information of the LC responses. It is important to high-
light that the response of each grid square contains a significant
amount of data; specifically, each 3-channel, 3D tensor con-
tains 829,440 data entries. We will refer to each entry as a
voxel, which represents a point in space-time. A voxel is a 3D
generalization of a pixel (a point in a 2D space). The dataset
studied contains a total of 948 LC system responses (with 96 to
384 responses (augmented grid videos) for every gaseous mix-
ture concentration, see details in Table S1). Each of these re-
sponses generates a dataset that is input to the LCNet and is
paired with two real-valued scalar outputs (labels), denoted Co;



and Cc;; (wWhich represent the concentration of O3 and Cl, in the
gaseous environment).

3D Convolution Neural Network Architecture (LCNet).
The main hypothesis driving our work is that space-time re-
sponses of LC systems encode significant information that en-
ables the detection of O; and Cl, in gaseous mixtures and the
prediction of their concentrations. Methods previously reported
in the literature characterize these responses by using de-
scriptors that might fail to capture important information. For
instance, the response time of the brightness (spatially-aver-
aged) has been used to detect and measure analyte concentra-
tion*?4%47_ In this work, we develop a 3D CNN that we call
LCNet; this ML architecture aims to systematically capture
spatial, temporal, and color features of LC responses.

LCNet is implemented in TensorFlow*®; a detailed explana-
tion of the inner mechanics and the full architecture is pre-
sented in the SI (Section S3). A simplified representation of the
operations performed in LCNet is shown in Figure 2; here, we
illustrate the creation of the tensor representation via stacking
of snapshots for each TEM square. LCNet uses two primary
computational operations, which are known as convolution op-
erations (filtrations) and max-pooling. Convolution operations
are the primary operation for extracting informative pat-
terns/signatures or morphologies from a given input in a 3D
CNN. In LCNet, each filter is a tensor of dimension 3x3x3;
each of these filters applies a pattern matching operation on a
3x3x3 neighborhood of each voxel. The filters are parameters
that can be learned to extract patterns that best match data. The
convolution of a filter with a voxel returns a single scalar value,
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which signifies the presence (high value) or absence (low
value) of the pattern that the filter is seeking to identify. In our
architecture, we refer to a set of these convolution operations
as the convolutional layer. A convolution operation over a ten-
sor will map the tensor into a filtered tensor of the same dimen-
sion; thus, a tensor that is passed through a convolutional layer
is mapped to multiple transformed tensors (one for each filter).
The convolution layer thus increases the amount of data pro-
cessed exponentially; as such, max-pooling layers are used to
reduce the dimension of the filtered tensors. In LCNet, the
max-pooling operation takes a 2x2x3 section of a filtered ten-
sor (containing 12 entries) and summarizes it into a single value
(the maximum value). This reduces the dimension of the ten-
sors created and distills important information extracted by the
filters. In LCNet, convolutional layers and max-pooling layers
are performed recursively. This recursion seeks to extract in-
formation at multiple space-time scales (local and global),
while summarizing information. The information extracted by
the convolutional layers is summarized in a stacked vector that
is fed to a fully-connected neural network. This network prop-
agates the feature information obtained from the convolution
and max-pooling layers through a sequence of perceptron lay-
ers. The parameters of these layers (weights and biases) are ad-
justed to match the model predictions to the experimental la-
bels (analyte type of concentrations). The fully-connected neu-
ral network can thus perform classification tasks (analyte de-
tection) or regression tasks (prediction of analyte concentra-
tion) based on feature information extracted from convolu-
tional and pooling layers.

Figure 2. (a) Schematic of machine learning workflow for data pre-processing, training, and prediction. The video data of each grid square
divided into 1-sec snapshots that are stacked into a 3D tensor containing three channels (red, green, and blue). This 3-channel, 3D tensor is
processed via convolutional filters and max pooling operations to extract information. The feature information obtained from convolution
and pooling is flattened into a single vector and then is fed into a fully-connected layer that detects Cl2 and O3 (classification) or predicts
their concentrations (regression). (b) Schematic diagram of training, validation, and testing procedures utilized to provide a statistically valid
estimate of the performance of the 3D CNN. The entire dataset is split into independent sets of testing, validation, and training videos. The
training and validation videos are used to optimize the parameters of the 3D CNN model. Predictions are then made on the testing videos in

order to estimate the accuracy of the model.



LCNet Training and Testing. A primary factor that deter-
mines the effectiveness of a 3D CNN is the training and corre-
sponding testing of the trained network (Figure 2). We note that
the datasets for exposure of LCs to a single gas are part of the
overall dataset. For example, as shown in Figure 2b, the data
for single gas exposure to O3 (when the concentration of Cl, is
zero; 1.5 ppm O3 and 0 ppm C) is part of the overall dataset.
The total dataset is randomly split into a training set, validation
set, and testing set. While the architecture of LCNet is prede-
termined (e.g., number of filters, number of layers, size of fil-
ters), the parameter values associated with the convolutional
layers (filters and biases) and fully-connected layers (weights
and biases) need to be learned from data via training and vali-
dation. The training and validation of LCNet provide the net-
work with a set of input tensors, taken from the training set, and
their corresponding output labels. The 3D CNN will then at-
tempt to predict the label from the input data and will compare
this prediction to the true experimental value of the output la-
bel. For presence classification, the label is the presence of O3
or Cl,. For concentration regression, the label contains the O3
and Cl, concentrations. We also implemented a sequential
classification approach to detemine the limit of detection of the
concentration of Oz and Cl, in the mixture. In the first step, we
performed concentration classification for O; for the range of
concentrations (0, 1.5, 5, 100 and 650 ppm) using the entire
dataset. In the second step, we classified the concentration of
Cl» (0, 1, 2 and 5 ppm) using the O3 concentration classified in
the first step. In this approach, the training label is the level of
O3 or Cl, concentration. The difference between the predicted
values and the experimental values is known as the error. The
3D CNN will then adjust its parameters (by minimizing a
loss/error function) to reduce the magnitude of the error. This
is done multiple times for every training input in order to min-
imize the total error for all the training inputs. Along with the
training set, the validation set is used to prevent overfitting of
the trained model. The validation set acts as a preliminary test-
ing set, allowing the model to be evaluated on the data it is be-
ing trained on as well as on a separate dataset that helps identify
the optimal model parameters. Once the network has been
trained, its generalizability is probed against a testing set. In
order to further improve the generalizability of the LCNet, we
perform a task known as k-fold cross-testing.* The data is split
into k subsets where k-1 subsets are used for training/validation
and / subset is used for testing. The training/validation and test-
ing are performed & times; each time a different subset is used
for testing and all other subsets are used for training/validation.
In our framework we use k=5; this gives a simple resampling
procedure that provides robust performance.*

RESULTS AND DISCUSSION

Responses of LC films to gaseous mixtures containing O3
and Cl.. We performed experimental measurements of the op-
tical response of LCs to mixtures of Cl, and O3 using nematic
5CB films supported on Mn(ClO4),-decorated surfaces. This
choice of experimental system was guided by prior studies (as
shown in Figure 1) that demonstrated that SCB responds to ei-
ther Cl, or O3 on these surfaces because both gases diffuse
through the LC to oxidize Mn?" (in the form of Mn(ClO4),) to
Mn*" (in the form of MnOy), a result confirmed by using Ra-
man spectroscopy®’ or powder X-ray diffraction.> The for-
mation of the MnO, on the surface weakens the binding of the
5CB molecules, thus resulting in an LC orientational transition
(Figure 1). The anchoring transition of the LC that is induced
by the surface reaction can be easily visualized by using optical
methods (e.g., by viewing the LC film using white light in

transmission mode between cross polarizers). Due to the bire-
fringence of LCs, changes in color and brightness are observed
to accompany orientational transitions. This sensor design prin-
ciple is illustrated on the left side of Figure 1a; when the LCs
exhibit homeotropic alignment, light is unable to pass through
crossed polarizers (transmissions mode) and the micrograph of
the LC film appears black. After exposure to a gaseous analyte,
the LCs reorient and alter the polarization of light traveling
through the film, resulting in complex space-time color re-
sponse patterns. The formation of the MnQO; is irreversible,
which generates an irreversible LC optical response, making
this system potentially suitable for use in sensors that alarm
upon exposure to a threshold concentration of gas or provide
measurements of cumulative exposure to a gas (e.g., dosime-
ters).>

U 158 8 3 1s 25 35

850 ppm O
+ 0 ppm Cl,

660 ppm O,
+1ppm Cl,

650 ppm O,
+2 ppm Cl,

650 ppm O,
+ 5 ppm Cl,

Figure 3. Optical micrographs (top view, crossed polarizers) of
5CB on surfaces decorated with 15+3 pmol/mm? Mn(ClO4): rec-
orded 0, 15, 18, 21, 25, 30 and 35 seconds after initial exposure to
the gas mixtures of 650£20 ppm O3 with 0, 1+0.04, 2+0.08 and
540.2 ppm Cl2 at 20% RH.

To examine the responses of LC to mixtures of O3 and Cls,
we exposed 5CB on surfaces decorated with 15+3 pmol/mm?
Mn(ClOs), to O3-Cl, mixtures with 16 distinct compositions.
The gas mixtures contained four O; concentrations (650+20,
100+10, 541, and 1.5+0.2 ppm), and three Cl, concentrations
(5+0.2, 2+0.08, 1£0.04, and 0 ppm). Representative optical re-
sponses to mixtures of 650+20 ppm O3 and varying Cl, con-
centrations (0, 1+0.04, 2+0.08 and 5+0.2 ppm) at 20% RH are
presented in Figure 3. Inspection of Figure 3 reveals that all LC
responses share a common set of characteristics; specifically,
the optical response starts at 15 seconds and is complete after
35 seconds, and changes in LC interference colors accompany
the exposures (consistent with a continuous LC anchoring tran-
sition). We also observe that the dynamic response of the LC
to the gas mixtures containing 650420 ppm O3 and various con-
centrations of Cl, does not obviously vary with Cl, concentra-
tion. This result indicates that the optical response of the LC is
dominated by Os (Figure 3). This observation holds true for
other mixture compositions (100+10, 5+1, and 1.5+0.2 ppm O3
with 5£0.2, 2+0.08, and 1+£0.04 ppm Cl,), as seen in Figure 4.
Inspection of Figure 4 also reveals significant variability in the
dynamics of the LC optical responses, particularly at low O3
concentrations. This result indicates that temporal features will
likely not provide robust detection and prediction of Oz con-
centrations. Additionally, in Figure 3, we observe significant
variability in the spatial response patterns (for different grid
squares), indicating that it would be difficult to determine gas
concentrations from snapshots of the LC (which ignore tem-
poral information).
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Figure 4. Normalized intensity of polarized light transmitted
through 5CB supported on surfaces decorated with 15.2+2.6
pmol/mm? Mn(ClO4) exposed to the mixtures of O3 at 650+20,
100+10, 5+1 and 1.5+0.2 ppm and Cl. at (a) 0, (b) 1£0.04, (c)
2+0.08, and (d) 5+£0.2 ppm. The shaded area represents the stand-
ard deviation of the intensity at a given time. The response time
varies with O3 concentration, demonstrating that higher concentra-
tions of O3 result in faster response times. However, when the Cl2
concentration is varied there is no perceptible difference in the dy-
namic characteristics of the responses. This suggests that temporal
features can be used to detect and predict O3 but not Cla.

Detection and Concentration Prediction. After training,
we used LCNet to predict the concentrations of Cl, and O3 in
gas mixtures of the types described in Figure 3 and 4. The re-
sults for concentration predictions (regression) of ~300 test
samples using LCNet are shown in Figure 5 a and b. Inspection
of Figure 5a reveals that LCNet can predict O3 concentrations
with high accuracy, confirming that O3 triggers LC responses
that contain significant information.’? These results also show
that the accuracy of the prediction is not affected by Cl, con-
centration. The predictions for Cl, (Figure 5b) reveal that
LCNet can also distinguish Cl, concentrations (even in the
presence of high concentrations of O3). However, it is also evi-
dent that accuracy is not as high as that obtained for Os3; this
indicates that Cl, triggers optical responses in the LC that are
less informative. This conclusion is confirmed by species iden-
tification results (classification; Figure 5c and d). Specifically,
we found that LCNet provides a true-positive accuracy of 97%
for Cl,, but has a 76% true-negative rate, equal to a false-neg-
ative rate of 24% (Figure 5d). The results highlight that it is
difficult to detect Cl, from optical responses of LCs to gas mix-
tures.

From the regression plot for the prediction of O3 or Cl,
concentration in Figure 5a or b, we found that 100 ppm O; or 2
ppm Cl, cannot be reliably distinguished from 0 ppm. To
improve the limit of detection of O3 and Cl, in the mixtures, we
used a sequential classification approach. In the first step, we
classified the O3 concentration (for the range of concentrations
of 0, 1.5, 5, 100 and 650 ppm) using the entire dataset; in the
second step, we classified the concentration of Cl (0, 1, 2 and
5 ppm) using the O3 concentration classified in the first step.
Inspection of Figure Se reveals that we can discriminate each
O; concentration with an overall accuracy of 99% and
significantly, we can discriminate between the 1.5 ppm and 0
ppm O3 concentration classes with 99% accuracy. Inspection
of Figure 5f reveals that we achieve an overall classification
accuracy of 83% for Cl, concentration. In particular, we can
discriminate between 1 ppm and 0 ppm Cl, concentration
classes with an accuracy of 81%.

We also tested the generalizability of LCNet by predicting
concentrations for a gaseous mixture containing 3.5 ppm Cl,

and 650 ppm O;. Response data for LC systems at this mixture
composition was not used in the training/validation of LCNet
and this experiment was designed to simulate performance in
an environment that is completely unknown (within the
calibrated detection range of the sensor; 0-5 ppm Cl,). From
Figure 5a and Sb, we see that LCNet predicts a concentration
of 3.59 + 1.35 ppm Cly and a concentration of 587 + 122 ppm
O3 (red), predictions that are in good agreement with the
experimental conditions.
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Figure 5. Regression plot for the prediction of (a) O3 concentration
or (b) Clz concentration from LC response data using LCNet. The
red data point indicates predicted O3 or Cl2 concentration of the
never-before-seen sample with 650 ppm of O3 and 3.5 ppm of Cla.
This data had been kept completely separate from the training set
(to demonstrate the robustness of the predictions). Classification
results (accuracy) for the presence of (¢) O3 or (d) Cl2 in gaseous
mixtures. Classification results (accuracy) for the concentration of
(e) O3 or (f) Cl2 in gaseous mixtures. The diagonal entries are the
fraction of LC responses correctly classified for the given concen-
tration.

Reduced Data Representations. 3D CNNs do not permit
easy identification of the key features (descriptors) that drive
their predictions. Specifically, it is difficult to identify the sig-
natures of the LC responses that are being used by the CNN to
detect O3 and/or Cl,. We addressed this issue by conducting a
systematic analysis under different reduced data representa-
tions. Our data reduction procedure trained CNNs that ignore
specific features of the LC responses (space, time, and color).
Specifically, we eliminate spatial information by conducting
spatial-averaging; we eliminate time information by analyzing
a snapshot at the final time; and we eliminate color information
by analyzing grayscale snapshots (average of RGB channels).
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New CNNs were trained under these reduced data representa-
tions (1D and 2D CNNs) and their prediction performance was
compared with that of LCNet (3D CNN which uses a complete
data representation). A detailed explanation of the procedure
and of the results can be found in the SI. In brief, we found that
the information needed to accurately sense O3 within the mix-
ture with Cl, is minimal; temporal information can be used by
a 1D CNN to obtain reasonable predictions (spatial and color
information does not have a strong effect). Specifically, we ob-
served a modest increase in the regression RMSE (relative to
that of LCNet) when removing spatial information (+10%) but
a large increase when removing temporal information (+143%;
Figure S9). These results are in agreement with the results re-
ported by Bao, et al., who correlated the response time of the
LC to O3 concentration (not in mixtures) using a simple linear
regression model.> In the analysis of Cl,, on the other hand, our
data reduction analysis led us to conclude that removing spatial
information results in a +54% increase in the RMSE and that
removal of temporal information results in a +83% increase
(Figure S9). This result confirms the need to simultaneously
capture spatial and temporal information when detecting Cl,.

Saliency Analysis. We used saliency analyses to further in-
vestigate key features that enable LCNet to detect the presence
of Cl, and O3 within the mixtures. Saliency maps were used to
identify voxels within an input tensor that have the largest in-
fluence on the final prediction of the 3D CNN*. A saliency
map assigns a scalar value to each voxel that correlates with its
influence on the final prediction (the saliency map is a 3D ten-
sor). The saliency value at each voxel is determined by a per-
turbation of the given voxel and a subsequent prediction (i.e.,
via sensitivity analysis). Our goal was to identify which voxels
in our spatio-temporal dataset have the greatest influence on
the detection of a given chemical species (Cl, or Os) by the
CNN. A detailed description of this process is found in the SI;
here we provide a summary of the main findings using an illus-
trative example of saliency maps for a LC system exposed to a
gaseous mixture (5 ppm Oz and 2 ppm Cly; Figure 6). In partic-
ular, we explore the spatial-average of the saliency map in or-
der to identify key times in the response that influence the pre-
diction. The saliency analysis in Figures 6a and 6b indicate that
the key factor determining LCNets prediction of O3 concentra-
tion is the response time; specifically, we can see that there is
a peak in the saliency value at ¢ = 33s, which is the time at
which the LC optical response is first evident. We also observe
a peak in the saliency value at ¢ = 52s, which is the time at
which the response brightness intensity saturates. The presence
of the two peaks indicates that LCNet is using the transition
time to characterize the O3 concentrations. In contrast, inspec-
tion of Figures 6¢ and 6d reveals that the transition time is not
used by the CNN for characterization of Cl, concentration.
Specifically, we can see that saliency exhibits dynamics after
the brightness has saturated (¢ = 52s) and the high values post-
saturation indicate that these features are important in the de-
tection of Cl,. These results indicate that the presence of Cl, in
a mixture of Cl, and Os changes the final stage of the LC re-
sponse and that this effect is detectable by the CNN.

Color Analysis. We determined that the saliency dynamics
that develop late in the LC response to mixtures of Cl, and O;
(after brightness has been saturated) are governed by fluctua-
tions in color. This conclusion was reached by a transformation
of the RGB channels of the input tensor into the L*A*B* color
space.>* The details of this transformation are explained in the
SI. Our main goal in transforming RGB to L*A*B* is to utilize
the A* channel, which represents a measure of intensity of red
or green channels (negative values indicate green intensity and

positive values indicate red intensity). In other words, A* is a
descriptor that simultaneously captures information from red
and green channels. Inspection of Figures 6¢ and 6d reveals that
the complex spatio-temporal color patterns that characterize
the LC response are described by changes in the value of A*.
Specifically, we noted that A* exhibits dynamics after the
brightness of the LC response has saturated. In Figure 6c, we
present a time series of the spatial-average of A*; the spatial
averaging reveals a strong correlation between the timing of the
saliency and A* peaks. This indicates that LCNet is exploiting
dynamics of color patterns to detect the presence of Cl, in mix-
tures.
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Figure 6. (a) Spatial-average of brightness intensity and saliency
(for detection of Os) for a liquid crystal response to a mixture of
Sppm O3 and 2ppm Clz. (b) Snapshots of LC response at repre-
sentative times shown in RGB and grayscale (intensity), along
with the associated saliency maps. (c) Spatial-average of A* and
saliency corresponding to the same LC response and (d) A* snap-
shots corresponding to saliency maps (for detection of Cl2). These
results highlight that the spatio-temporal data representation used
by the 3D CNN automatically identifies key signatures for the de-
tection of O3 (response time) and the driving factor for the detec-
tion of Clz (color fluctuations near the end of the response). The
saliency maps also have identified key color spaces (A*) for the
future study of the physics of liquid crystal sensor responses.

For 18-micrometer-thick films of LC observed through an
optical microscope (crossed polars), color encodes information
about the azimuthal orientation of the LC with respect to the
two orthogonal polarizers and the zenithal angle of the LCs
with respect to the axis normal to the plane of the film!. Thus,
spatio-temporal color patterns encode information regarding
the transition of LCs from homeotropic to planar anchoring
(i.e., interference colors). When analyzed using the A* chan-
nel, a continuous anchoring transition of LC will exhibit oscil-
lations between negative (green) and positive (red) values of
A* (as shown in Figure 7a). In Figure 7, we present experi-
mental characterization of anchoring transitions of LC trig-
gered by exposure to either pure Cl, (S5ppm), pure O3 (Sppm),
or a mixture (Sppm Cl, and S5ppm O3). Inspection of the results
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for the two pure gases reveals two observations. First, the LC
response to pure Cl, exhibits no oscillation in A* (Figure 7b),
consistent with the earlier observation that Cl, triggers a dis-
continuous anchoring transition on Mn(ClO,), surfaces in Fig-
ure la. Second, in contrast to Cl,, the response to pure O3 leads
to high amplitude oscillations in A* (Figure 7c), also consistent
with experimental observations in Figure 1 indicating a contin-
uous change in tilt of the LC during the response to Os. The
limited information encoded in the color dynamics of pure Cl,
provides further insight into why it is more difficult to detect
this analyte (compared to O3, for which color dynamics provide
richer information).

In comparison to pure gases, the response of the LC to the
mixture of Cl, and O3 reveals oscillations in A* (Figure 7d),
but the oscillations are lower in amplitude than those of pure
0;. From the A* field plotted below the spatially averaged A*
values, we also see that, in the presence of a gaseous mixture,
the LC response involves the formation of multiple domains
(each exhibiting a continuous LC anchoring transitions; at a
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given instant in time, some domains are red and some are
green). These individual domains begin their reorientation at
different times and reorient at different rates. This results in
weak fluctuations in A*, as the fluctuations are dampened dur-
ing the spatial averaging. The nature of this response contrasts
to that of pure O;, where there is a single connected domain
that oscillates at a single frequency and this translates to high
fluctuations in A*.

Finally, observations of the A* response during Cl, detection
in mixtures with O3 reveal that color fluctuations appear sooner
(50 sec, Figure 7d) than the optical response of the LC to pure
Cl, (300 sec, Figure 7b). This indicates that the presence of O3
in the mixture accelerates the LC response to Cly; in other
words, the analytes have a synergistic effect. This apparent
synergy is confirmed by our observation that LCNet enables
detection of Cl, with concentrations that are as low as 1 ppm in
mixtures that are dominated by Os (concentrations of 650
ppm). Additional studies aimed at understanding the origin of
this synergy are ongoing and will be reported elsewhere.
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Figure 7. (a) Visualization of interference colors in A* created by white light illumination when liquid crystals transition from homeotropic
to planar. The red-green transformation cycles several times. Pure O3 triggers a continuous anchoring transition, resulting in a continuous
evolution of interference colors in A*. Pure Clz triggers a discontinuous anchoring transition, resulting in a “jump” in interference colors in
A*. (b)-(d) Spatial-average of A* for pure 5 ppm Cl2, pure 5 ppm O3, and a mixture of 5 ppm O3 + Sppm Clz2 and A* channels. The time
ranges for selected snapshots are from 400 to 700 seconds, 63 to 125 seconds, and 60 to 91 seconds, respectively. These time ranges capture
the A* signal during the response. (b) Exposure to Sppm Cl2 results in a discontinuous LC transition and thus no oscillations in the average
A* value. (c) Exposure to Sppm O3 induces the formation of a single domain that has a continuous LC transition that represents a large
amplitude oscillation in the spatially averaged A*. (d) Exposure to S5ppm Clz + 5ppm O3 mixture forms multiple domains in the LC film that
reorient continuously. These domains begin the transition at different times and different speeds, causing the oscillations of A* to be of lower

amplitude than those found in the response to pure Os.

CONCLUSIONS

We report experimental measurements of the optical re-
sponses of LC films supported on Mn(ClO4),-decorated sur-
faces to mixtures of O3 and Cl,, and we use the experimental
datasets to train a 3D CNN architecture (called LCNet) to ex-
tract spatial, temporal, and color information from the optical
responses of the LC films to the gas mixtures. We show that
this information enables the detection of each species of gas
within the mixture as well as prediction of their concentrations
at levels relevant to the targeted contaminants. We also show
we can detect the presence of Cl, even when the concentration
of O3 is orders of magnitude greater than the Cl, concentration.
The proposed methodology has attributes (low cost, small
monitoring device) that have the potential to greatly improve
personal exposure measurements of air pollutants in industrial

and urban contexts to support human health studies. The sim-
ultaneous monitoring of ozone and chlorine gas are used as ex-
amples of a criteria pollutant and hazardous air pollutants
(HAP), respectively, thus showing that the integration of LC
and 3D CNN can allow the simultaneous monitoring of both
classes of air pollutants.

We use simplified data representations, saliency analysis,
and color analysis to identify main features of the LC response
that enable simultaneous detection of O3 and Cl,. This analysis
reveals that Oz detection is driven by the transition time over
which the brightness of the LC changes, while Cl, detection is
driven by color fluctuations that develop late in the optical re-
sponse of the LC. Our analysis also reveals that a color field
called A* provides a reliable descriptor for analysis of the color
dynamics of the LC response (e.g., enables detection of
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continuous/discontinuous anchoring transitions of LC). Our
approach to capturing spatiotemporal color patterns of the LC
in a thin film geometry is generalizable and is applicable to
analysis of LC responses in other geometries (e.g., fiber'®? and
droplet*'). Our study also identifies synergistic effects of the
two gases on the LC response, synergy that permits detection
of Cl, in the mixture more rapidly than in pure Cl, gas. Future
studies will use density functional theory and molecular dy-
namics simulations to understand synergistic effects that arise
in gaseous mixtures and to study how changes in the design can
improve sensor performance.

In this paper, we focus on the development of a machine
learning methodology for analysis of Cl, and O3 using gas mix-
tures with concentrations in the ppm range. However, the LC-
based approach reported here has the potential to be extended
to detection of mixtures of Cl, and Oj; in the parts-per-billion
(ppb) range. For example, previously we demonstrated detec-
tion of 200 ppb of Cl, (as a single gas component).?® Addition-
ally, we have performed preliminary measurements demon-
strating detection of 220 ppb of Os (see details in SI; Section
S9). We envisage future directions of investigation that extend
the methodology reported in this paper to the analysis of gas
mixtures in the ppb concentration range.
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