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ABSTRACT: We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, 

when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into 

the physical processes that underlie the sensor response.  We develop the methodology using O3 and Cl2 mixtures (representative of 

an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system.  Whereas O3 and Cl2 

both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial 

and final optical states of the LCs, we show that a 3-dimensional convolutional neural network (3D CNN) can extract feature infor-

mation that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures 

as well as to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the 

brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. 

We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 

concentration.  The proposed methodology is generalizable to a wide range of analytes, reactive surfaces and LCs, and has the poten-

tial to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal 

color fluctuations.

The development of new materials and methodologies for the 

sensing of targeted chemical species has the potential to be 

broadly useful in a range of contexts, including occupational 

health,1,2 homeland security (toxic industrial chemicals),3,4 or 

medicine (e.g., analysis of the breath).5 In particular, there re-

mains an unmet need for wearable sensors for human exposure 

measurements and health monitoring,6,7 and light weight sen-

sors for autonomous aerial vehicles.8,9 Additionally, although 

metal oxide10–13 and electrochemical amperometric14–16 sensors 

possess limits of detection that make them potentially suitable 

for environmental monitoring, they are not approved for regu-

latory compliance testing by US regulatory agencies (the Envi-

ronmental Protection Agency and the Occupational Safety and 

Health Administration) because they are not sufficiently stable 

or reliable.  Liquid crystals (LCs), which combine key proper-

ties of crystalline solids (long-range order) and isotropic liquids 

(molecular mobility), are a promising class of chemoresponsive 

materials for designing wearable/portable sensors (e.g., badges 

for monitoring of exposure to toxic gases17 and assays read out 

using a smartphone18).  In this paper, we provide a methodolog-

ical advance towards the development of sensors based on LCs 

that have attributes that may enable them to address the above-

described unmet needs. 

LC-based sensors have been designed by exploiting changes 

in the mesoscale organization of bulk LC phases (e.g., choles-

teric LCs and chemically sensitive chiral dopants) that are in-

duced by targeted chemical species.19–25 Alternatively, the LC 

sensor design investigated in this work relies on the use of re-

active surfaces to trigger surface anchoring transitions of 

LCs.26–35  Whereas the majority of past studies have analyzed 

the average intensity of light passing through LC-based sensors, 

here, we make an advance in methodology that involves ana-

lyzing the spatiotemporal optical responses of LCs to mixtures.  

By using machine-learning methods, we show that information 

embedded in the spatiotemporal optical response of the LC can 

be used to identify targeted gas species within a mixture and to 

quantify their concentrations.  Additionally, we show that it is 

possible to use machine learning to provide physical insights 

into the processes that permit identification of targeted species 

from a given optical response of the LC sensor. We use Cl2 and 

O3 as model chemical species to illustrate this methodology, but 

the approach is broadly applicable to wide range of analytes as 

well as potentially other classes of optical sensors.36 The capa-

bility to analyze mixtures of Cl2 and O3 is relevant to applica-

tions such as air quality monitoring in urban environments and 

wastewater treatment facilities, where Cl2 and O3 are both 

used.37,38 
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Past studies have used machine-learning methods to analyze 

LC optical responses to single component gases but not mix-

tures.  For example, so-called 2-dimensional convolutional neu-

ral networks (2D CNNs), which analyze the spatial patterns 

generated by LC responses (x, y, independent of time), have 

been used to extract information from LC responses to single 

component gas streams.39,40 Alternatively, an ensemble of both 

3D-CNNs (which analyze time-dependent spatial patterns (t, x, 

y)) and 2D-CNNs with Long Short-Term Memory networks (a 

class of CNNs that is well-suited to measurements of time se-

ries data) has also been reported for analysis of the dynamic op-

tical response of LC droplets to exposure to individual VOCs 

(single-component gas streams).41 However, a disadvantage of 

ensemble methods is that they prevent interpretation of the out-

put of the CNN in terms of physical mechanisms.  Whereas 

these prior studies focus on single component streams, a key 

contribution contained in the work reported in this paper is the 

design a 3D CNN (that we call LCNet) that extract features 

from highly complex spatio-temporal color patterns that de-

velop during the LC system response to O3/Cl2 mixtures. Alt-

hough these features are straightforward to identify in the LC 

response to single gaseous species, the experiments reported in 

this paper reveal that without use of CNNs, these space-time 

features are difficult to quantify and detect in complex gaseous 

mixtures. 

The LCNet architecture reported herein provides a frame-

work to analyze large amounts of video data that were generated 

by performing high-throughput experiments with LCs. In 

LCNet, a video capturing the LC response is represented as a 

multi-channel 3D tensor (multi-dimensional array, see details in 

Methods and Supporting Information (SI)) in which every chan-

nel is a 3D tensor that contains the space-time response of a 

color channel. As such, the 3D CNN can simultaneously extract 

features from space-time patterns for red (R), green (G), and 

blue (B) channels and can capture dependencies between such 

channels. The data representation used by the 3D CNN is com-

prehensive and prevents loss of key information that is encoded 

in spatial, temporal, or color patterns. The feature information 

extracted by the 3D CNN can be used in a wide variety of tasks 

relevant to sensor performance such as classification (for de-

tecting the presence of a particular chemical species) and 

regression (for quantifying the concentrations of single or mul-

tiple chemical targets). Specifically, we show that LCNet can 

predict the presence of O3 (accuracy of 99 ± 1%) and Cl2 (accu-

racy of 93 ± 3%) in a gaseous mixture, where accuracy is de-

fined as = (number of samples in which an analyte is present is 

classified as having an analyte present (true positive) + number 

of samples in which an analyte is absent is classified as having 

no analyte present (true negative)) / total number of samples × 

100%. Notably, we show that such accuracies can be obtained 

for gaseous environments that are dominated by O3 (with con-

centrations that are three orders of magnitude higher than those 

of Cl2).  This indicates that LCNet can effectively identify sub-

tle signatures that are present in the LC responses. Moreover, 

we show that LCNet can predict the concentration of O3 and Cl2 

in a mixture and that it generalizes to concentrations not in-

cluded in the training procedure.  

We have also equipped LCNet with so-called saliency anal-

ysis techniques that identify the spatial and temporal character-

istics of the LC response that contain information about the 

mixture composition.  This analysis allows us to gain key in-

sights that can inform the design of LC systems and that can 

help us understand physical phenomena underlying the LC re-

sponse (see SI for more details on saliency analysis).42 Specifi-

cally, we use saliency analysis to reveal specific features of the 

optical response that are critical in detecting O3 and Cl2 in mix-

tures. For instance, we find that the response time of brightness 

is the critical feature that enables O3 sensing, while space-time 

color dynamics is the critical feature that enables Cl2 sensing. 

Additionally, our results reveal that the presence of Cl2 in a mix-

ture (even at low concentrations) influences the response dy-

namics, and that color fluctuations triggered by Cl2 persist even 

after brightness has saturated. This result indicates that Cl2 can-

not be easily detected in mixtures using optical response fea-

tures that ignore color. Our analysis also reveals that the A* 

channel in the L*A*B color space provides an informative de-

scriptor that facilitates the analysis of color dynamics and thus 

quantification of Cl2 concentration in mixtures. These results 

demonstrate that machine learning provides new approaches to 

the design of LC-based sensors that can analyze complex mix-

tures.  

 

 

Figure 1. (a) Optical micrographs (top view, crossed polarizers) of 5CB hosted in copper grids (lateral size of each grid square is 285 μm) 

on surfaces decorated with 15±3 pmol/mm2 Mn(ClO4)2 recorded 0, 30, 60, 70 and 90 seconds after initial exposure to 5±1 ppm O3 gas at 

20% RH, or 0, 300, 480, 600 and 840 seconds after initial exposure to 5±0.2 ppm Cl2 gas at 20% RH. Below the optical images is a repre-

sentation (side view) of the homeotropic (perpendicular) orientation of 5CB hosted in a copper grid before gas exposure (initial state), and 

the planar (parallel) orientation of 5CB after gas exposure (final state). Blue ellipses represent 5CB molecules (the mesogen). (b) Visualiza-

tion of interference colors created by white light illumination when liquid crystals transition from homeotropic to planar orientation (inter-

ference colors are a result of liquid crystal birefringence and tilt angle). Pure O3 triggers a continuous anchoring transition, resulting in a 

continuous evolution of interference colors. Pure Cl2 triggers a discontinuous anchoring transition, resulting in a “jump” in interference 

colors.
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EXPERIMENTAL MATERIALS AND METHODS 

Materials. Manganese (II) perchlorate hydrate and potas-

sium iodide were purchased from Sigma-Aldrich (Milwaukee, 

WI). Fischer’s Finest glass slides and starch indicator 1% for 

iodometric titration were purchased from Fischer Scientific 

(Pittsburgh, PA). Absolute ethanol (anhydrous, 200 proof) was 

purchased from Pharmco-AAPER (Brookfield, CT). All chem-

icals and solvents were of analytical reagent grade and were 

used as received. Deionized water possessed a resistivity of at 

least 18.2 MΩ cm or greater. 5CB was purchased from Jiangsu 

Hecheng Advanced Materials Co., Ltd (Jiangsu, China). Cl2 in 

nitrogen gas (purity of Cl2 is 99.9% and purity of nitrogen is 

99.998%) at a concentration of 10 ppm and nitrogen gas 

(99.998% purity) were obtained from Airgas (Elmira, NY) and 

used as received. Ozone gas was generated from an ozone gen-

erator (A2Z Ozone Inc., Louisville, KY). Sodium thiosulfate 

was purchased from MilliporeSigma (Burlington, MA) for io-

dometric titration. 

Formation of LC films supported on functionalized sur-

faces. Glass slides were rinsed with copious amounts of ethanol 

and then dried under a stream of nitrogen. Metal ions were de-

posited onto the glass surfaces by spin coating ethanolic solu-

tions of 1.5 mM Mn(ClO4)2 at 3000 rpm for 30s (WS-400A-

6NPP/Lite, Laurell Technologies, North Wales, PA). The Mn 

cation surface density was measured to be 15.2±2.6 pmol/mm2, 

as determined by using inductively coupled plasma optical 

emission spectrometry (ICP-OES, Perkin Elmer 4300)34. After 

coating the surface with the metal salt, an 18 μm-thick copper 

transmission electron microscopy (TEM) grid (Electron Mi-

croscopy Sciences, Hatfield, PA) was placed on the metal-salt 

surface. The TEM grid had an overall diameter of 3 mm and 

was composed of square pores with lateral dimensions of 285 

μm. The grids were filled with 0.1 µL of nematic 5CB using a 

microcapillary. The excess LC was removed from the grids by 

wicking the LC into an empty microcapillary tube. 

Generation of gases. O3 concentration within the gas stream 

fed to the LC was controlled by changing the ratio of N2 and 

O2 in the gas input to an ozone generator; a schematic illustra-

tion is shown in the SI (Figure S1). A higher concentration of 

O2 fed to the O3 generator produced a higher concentration of 

O3 gas (up to a few hundred ppm) as determined by using io-

dometric titration. Detailed descriptions of iodometric titration 

can be found in prior publications43,44. The diluted O3 concen-

tration was measured by using an O3 detector tube (Sensidyne, 

St. Petersburg, FL). The stream of gas containing Cl2 was 

sourced from a certified cylinder containing 10 ppm Cl2 in ni-

trogen and diluted with N2 to the desired concentrations. The 

specific relative humidity of the gas stream fed to the LC was 

controlled at 20% RH by passage of the gas through a portable 

dew point generator (LI-610, LI-COR Biosciences, Lincoln, 

NE). 

Exposure of LC films to gaseous mixtures containing O3 

and Cl2. LC samples hosted within the TEM grids supported 

on the Mn(ClO4)2-decorated surfaces were exposed to a stream 

of Cl2 or/and O3 within a flow cell that was constructed to direct 

the gaseous flow across the LC samples while permitting ob-

servation of the samples through a polarized-light microscope 

(CH40, Olympus, Melville, NY) (Figure 1a). A detailed de-

scription of the flow cell can be found in a prior publication45. 

White light illumination was used in the microscopic observa-

tions (Philips 6V 30W G4 halogen bulb; Philips, Cambridge, 

MA) and videos of the optical responses (crossed-polars, trans-

mission mode) of the LCs were recorded using a Canon T6i 

camera (Canon U.S.A. Inc., Huntington, NY). The videos were 

recorded at ISO 400 and 1/30 shutter speed (29.97 frames/sec-

ond) with a resolution of 1920x1080. The gas fed to the flow 

cell was maintained at room temperature (approximately 

23ºC). The flow rate of each gas stream was controlled using a 

series of rotameters (Aalborg Instruments and Control, Orange-

burg, NY). The total flow rate was maintained at 1200 mL/min 

at atmospheric pressure. For gas mixtures, Cl2 and O3 gases 

with designed concentrations were mixed before being deliv-

ered to the flow cell. We explored gas mixtures containing four 

O3 concentrations (650±20, 100±10, 5±1, and 1.5±0.2 ppm) 

and three Cl2 concentrations (5±0.2, 2±0.08, and 1±0.04 ppm) 

(see SI for additional details). These concentrations were se-

lected for two reasons.  First, these gas compositions generated 

LC responses that were indistinguishable to the eye (Figure 

1b).  Second, these gas compositions generated LC responses 

that were not measurably different when quantified using pre-

vious metrics of LC response such as the average intensity of 

transmitted light (see discussion below in the context of Figure 

4). In addition, we also deliberately explored mixtures contain-

ing a swamping concentration of one species (O3) to challenge 

the ability of LCNet to quantify mixtures under more demand-

ing conditions. However, the effect of no exposure data is dis-

cussed in the SI. In total, we explored sixteen concentrations 

with at least three videos per condition. In each video, we rec-

orded the anchoring transitions of LCs that were confined 

within 32 square grids (each with dimensions of 285 μm x 285 

μm).  

COMPUTATIONAL METHODS 

Data Preparation. Video data of the LC-filled TEM grids 

were used to analyze LC responses to different gaseous envi-

ronments (Figure 1). The responses of the LC systems are rep-

resented as multi-channel 3D tensors (Figure 2), which is the 

data representation required by 3D CNNs. To obtain this rep-

resentation, we split the TEM grid into 12 square grids, as 

shown in Figure 2 and in the SI (Figure S3 and S4). Each grid 

square is defined as a chemoresponsive LC system; for each 

square, we capture an image (48x48) every 1 sec and stack 

them chronologically into a tensor. The tensor of each square 

thus has three dimensions, corresponding to space (directions 

x, y) and time (t). The response times of the LC systems under 

different gaseous environments were found to differ signifi-

cantly (as detailed below in text accompanying Figure 4). To 

obtain a consistent data representation, each video was cropped 

to obtain a total of t=120 seconds because the LC responded to 

all mixture concentrations within t=100 seconds (as detailed 

below in Figure 4). As such, each grid square generates a 3D 

tensor of dimension 48x48x120. Another important aspect of 

the response data collected is that it is recorded in RGB format; 

as such, each image contains three channels (intensity fields for 

red, green, and blue). Each grid square thus generates a 3-chan-

nel, 3D tensor. This data representation is complex but com-

prehensive because it simultaneously captures space, time, and 

color information of the LC responses. It is important to high-

light that the response of each grid square contains a significant 

amount of data; specifically, each 3-channel, 3D tensor con-

tains 829,440 data entries. We will refer to each entry as a 

voxel, which represents a point in space-time. A voxel is a 3D 

generalization of a pixel (a point in a 2D space). The dataset 

studied contains a total of 948 LC system responses (with 96 to 

384 responses (augmented grid videos) for every gaseous mix-

ture concentration, see details in Table S1). Each of these re-

sponses generates a dataset that is input to the LCNet and is 

paired with two real-valued scalar outputs (labels), denoted CO3 
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and CCl2 (which represent the concentration of O3 and Cl2 in the 

gaseous environment).  

3D Convolution Neural Network Architecture (LCNet). 

The main hypothesis driving our work is that space-time re-

sponses of LC systems encode significant information that en-

ables the detection of O3 and Cl2 in gaseous mixtures and the 

prediction of their concentrations. Methods previously reported 

in the literature characterize these responses by using de-

scriptors that might fail to capture important information. For 

instance, the response time of the brightness (spatially-aver-

aged) has been used to detect and measure analyte concentra-

tion32,46,47. In this work, we develop a 3D CNN that we call 

LCNet; this ML architecture aims to systematically capture 

spatial, temporal, and color features of LC responses.  

LCNet is implemented in TensorFlow48; a detailed explana-

tion of the inner mechanics and the full architecture is pre-

sented in the SI (Section S3). A simplified representation of the 

operations performed in LCNet is shown in Figure 2; here, we 

illustrate the creation of the tensor representation via stacking 

of snapshots for each TEM square. LCNet uses two primary 

computational operations, which are known as convolution op-

erations (filtrations) and max-pooling. Convolution operations 

are the primary operation for extracting informative pat-

terns/signatures or morphologies from a given input in a 3D 

CNN. In LCNet, each filter is a tensor of dimension 3x3x3; 

each of these filters applies a pattern matching operation on a 

3x3x3 neighborhood of each voxel. The filters are parameters 

that can be learned to extract patterns that best match data. The 

convolution of a filter with a voxel returns a single scalar value, 

which signifies the presence (high value) or absence (low 

value) of the pattern that the filter is seeking to identify. In our 

architecture, we refer to a set of these convolution operations 

as the convolutional layer. A convolution operation over a ten-

sor will map the tensor into a filtered tensor of the same dimen-

sion; thus, a tensor that is passed through a convolutional layer 

is mapped to multiple transformed tensors (one for each filter). 

The convolution layer thus increases the amount of data pro-

cessed exponentially; as such, max-pooling layers are used to 

reduce the dimension of the filtered tensors. In LCNet, the 

max-pooling operation takes a 2x2x3 section of a filtered ten-

sor (containing 12 entries) and summarizes it into a single value 

(the maximum value). This reduces the dimension of the ten-

sors created and distills important information extracted by the 

filters. In LCNet, convolutional layers and max-pooling layers 

are performed recursively. This recursion seeks to extract in-

formation at multiple space-time scales (local and global), 

while summarizing information. The information extracted by 

the convolutional layers is summarized in a stacked vector that 

is fed to a fully-connected neural network. This network prop-

agates the feature information obtained from the convolution 

and max-pooling layers through a sequence of perceptron lay-

ers. The parameters of these layers (weights and biases) are ad-

justed to match the model predictions to the experimental la-

bels (analyte type of concentrations). The fully-connected neu-

ral network can thus perform classification tasks (analyte de-

tection) or regression tasks (prediction of analyte concentra-

tion) based on feature information extracted from convolu-

tional and pooling layers.

 

Figure 2. (a) Schematic of machine learning workflow for data pre-processing, training, and prediction. The video data of each grid square 

divided into 1-sec snapshots that are stacked into a 3D tensor containing three channels (red, green, and blue). This 3-channel, 3D tensor is 

processed via convolutional filters and max pooling operations to extract information. The feature information obtained from convolution 

and pooling is flattened into a single vector and then is fed into a fully-connected layer that detects Cl2 and O3 (classification) or predicts 

their concentrations (regression). (b) Schematic diagram of training, validation, and testing procedures utilized to provide a statistically valid 

estimate of the performance of the 3D CNN. The entire dataset is split into independent sets of testing, validation, and training videos. The 

training and validation videos are used to optimize the parameters of the 3D CNN model. Predictions are then made on the testing videos in 

order to estimate the accuracy of the model.
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 LCNet Training and Testing. A primary factor that deter-

mines the effectiveness of a 3D CNN is the training and corre-

sponding testing of the trained network (Figure 2). We note that 

the datasets for exposure of LCs to a single gas are part of the 

overall dataset. For example, as shown in Figure 2b, the data 

for single gas exposure to O3 (when the concentration of Cl2 is 

zero; 1.5 ppm O3 and 0 ppm Cl2) is part of the overall dataset. 
The total dataset is randomly split into a training set, validation 

set, and testing set. While the architecture of LCNet is prede-

termined (e.g., number of filters, number of layers, size of fil-

ters), the parameter values associated with the convolutional 

layers (filters and biases) and fully-connected layers (weights 

and biases) need to be learned from data via training and vali-

dation. The training and validation of LCNet provide the net-

work with a set of input tensors, taken from the training set, and 

their corresponding output labels. The 3D CNN will then at-

tempt to predict the label from the input data and will compare 

this prediction to the true experimental value of the output la-

bel. For presence classification, the label is the presence of O3 

or Cl2. For concentration regression, the label contains the O3 

and Cl2 concentrations. We also implemented a sequential 

classification approach to detemine the limit of detection of the 

concentration of O3 and Cl2 in the mixture. In the first step, we 

performed concentration classification for O3 for the range of 

concentrations (0, 1.5, 5, 100 and 650 ppm) using the entire 

dataset. In the second step, we classified the concentration of 

Cl2 (0, 1, 2 and 5 ppm) using the O3 concentration classified in 

the first step.  In this approach, the training label is the level of 

O3 or Cl2 concentration. The difference between the predicted 

values and the experimental values is known as the error. The 

3D CNN will then adjust its parameters (by minimizing a 

loss/error function) to reduce the magnitude of the error. This 

is done multiple times for every training input in order to min-

imize the total error for all the training inputs. Along with the 

training set, the validation set is used to prevent overfitting of 

the trained model. The validation set acts as a preliminary test-

ing set, allowing the model to be evaluated on the data it is be-

ing trained on as well as on a separate dataset that helps identify 

the optimal model parameters. Once the network has been 

trained, its generalizability is probed against a testing set. In 

order to further improve the generalizability of the LCNet, we 

perform a task known as k-fold cross-testing.49 The data is split 

into k subsets where k-1 subsets are used for training/validation 

and 1 subset is used for testing. The training/validation and test-

ing are performed k times; each time a different subset is used 

for testing and all other subsets are used for training/validation. 

In our framework we use k=5; this gives a simple resampling 

procedure that provides robust performance.50 

RESULTS AND DISCUSSION 

Responses of LC films to gaseous mixtures containing O3 

and Cl2. We performed experimental measurements of the op-

tical response of LCs to mixtures of Cl2 and O3 using nematic 

5CB films supported on Mn(ClO4)2-decorated surfaces. This 

choice of experimental system was guided by prior studies (as 

shown in Figure 1) that demonstrated that 5CB responds to ei-

ther Cl2 or O3 on these surfaces because both gases diffuse 

through the LC to oxidize Mn2+ (in the form of Mn(ClO4)2) to 

Mn4+ (in the form of MnO2), a result confirmed by using Ra-

man spectroscopy51 or powder X-ray diffraction.52 The for-

mation of the MnO2 on the surface weakens the binding of the 

5CB molecules, thus resulting in an LC orientational transition 

(Figure 1). The anchoring transition of the LC that is induced 

by the surface reaction can be easily visualized by using optical 

methods (e.g., by viewing the LC film using white light in 

transmission mode between cross polarizers). Due to the bire-

fringence of LCs, changes in color and brightness are observed 

to accompany orientational transitions. This sensor design prin-

ciple is illustrated on the left side of Figure 1a; when the LCs 

exhibit homeotropic alignment, light is unable to pass through 

crossed polarizers (transmissions mode) and the micrograph of 

the LC film appears black. After exposure to a gaseous analyte, 

the LCs reorient and alter the polarization of light traveling 

through the film, resulting in complex space-time color re-

sponse patterns.  The formation of the MnO2 is irreversible, 

which generates an irreversible LC optical response, making 

this system potentially suitable for use in sensors that alarm 

upon exposure to a threshold concentration of gas or provide 

measurements of cumulative exposure to a gas (e.g., dosime-

ters).53  

 

Figure 3. Optical micrographs (top view, crossed polarizers) of 

5CB on surfaces decorated with 15±3 pmol/mm2 Mn(ClO4)2 rec-

orded 0, 15, 18, 21, 25, 30 and 35 seconds after initial exposure to 

the gas mixtures of 650±20 ppm O3 with 0, 1±0.04, 2±0.08 and 

5±0.2 ppm Cl2 at 20% RH. 

To examine the responses of LC to mixtures of O3 and Cl2, 

we exposed 5CB on surfaces decorated with 15±3 pmol/mm2 

Mn(ClO4)2 to O3-Cl2 mixtures with 16 distinct compositions. 

The gas mixtures contained four O3 concentrations (650±20, 

100±10, 5±1, and 1.5±0.2 ppm), and three Cl2 concentrations 

(5±0.2, 2±0.08, 1±0.04, and 0 ppm). Representative optical re-

sponses to mixtures of 650±20 ppm O3 and varying Cl2 con-

centrations (0, 1±0.04, 2±0.08 and 5±0.2 ppm) at 20% RH are 

presented in Figure 3. Inspection of Figure 3 reveals that all LC 

responses share a common set of characteristics; specifically, 

the optical response starts at 15 seconds and is complete after 

35 seconds, and changes in LC interference colors accompany 

the exposures (consistent with a continuous LC anchoring tran-

sition). We also observe that the dynamic response of the LC 

to the gas mixtures containing 650±20 ppm O3 and various con-

centrations of Cl2 does not obviously vary with Cl2 concentra-

tion. This result indicates that the optical response of the LC is 

dominated by O3 (Figure 3). This observation holds true for 

other mixture compositions (100±10, 5±1, and 1.5±0.2 ppm O3 

with 5±0.2, 2±0.08, and 1±0.04 ppm Cl2), as seen in Figure 4. 

Inspection of Figure 4 also reveals significant variability in the 

dynamics of the LC optical responses, particularly at low O3 

concentrations. This result indicates that temporal features will 

likely not provide robust detection and prediction of O3 con-

centrations. Additionally, in Figure 3, we observe significant 

variability in the spatial response patterns (for different grid 

squares), indicating that it would be difficult to determine gas 

concentrations from snapshots of the LC (which ignore tem-

poral information).  
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Figure 4. Normalized intensity of polarized light transmitted 

through 5CB supported on surfaces decorated with 15.2±2.6 

pmol/mm2 Mn(ClO4)2 exposed to the mixtures of O3 at 650±20, 

100±10, 5±1 and 1.5±0.2 ppm and Cl2 at (a) 0, (b) 1±0.04, (c) 

2±0.08, and (d) 5±0.2 ppm. The shaded area represents the stand-

ard deviation of the intensity at a given time. The response time 

varies with O3 concentration, demonstrating that higher concentra-

tions of O3 result in faster response times. However, when the Cl2 

concentration is varied there is no perceptible difference in the dy-

namic characteristics of the responses. This suggests that temporal 

features can be used to detect and predict O3 but not Cl2.  

Detection and Concentration Prediction.  After training, 

we used LCNet to predict the concentrations of Cl2 and O3 in 

gas mixtures of the types described in Figure 3 and 4. The re-

sults for concentration predictions (regression) of ~300 test 

samples using LCNet are shown in Figure 5 a and b. Inspection 

of Figure 5a reveals that LCNet can predict O3 concentrations 

with high accuracy, confirming that O3 triggers LC responses 

that contain significant information.52 These results also show 

that the accuracy of the prediction is not affected by Cl2 con-

centration. The predictions for Cl2 (Figure 5b) reveal that 

LCNet can also distinguish Cl2 concentrations (even in the 

presence of high concentrations of O3). However, it is also evi-

dent that accuracy is not as high as that obtained for O3; this 

indicates that Cl2 triggers optical responses in the LC that are 

less informative. This conclusion is confirmed by species iden-

tification results (classification; Figure 5c and d). Specifically, 

we found that LCNet provides a true-positive accuracy of 97% 

for Cl2, but has a 76% true-negative rate, equal to a false-neg-

ative rate of 24% (Figure 5d). The results highlight that it is 

difficult to detect Cl2 from optical responses of LCs to gas mix-

tures.  

From the regression plot for the prediction of O3 or Cl2 

concentration in Figure 5a or b, we found that 100 ppm O3 or 2 

ppm Cl2 cannot be reliably distinguished from 0 ppm. To 

improve the limit of detection of O3 and Cl2 in the mixtures, we 

used a sequential classification approach. In the first step, we 

classified the O3 concentration (for the range of concentrations 

of 0, 1.5, 5, 100 and 650 ppm) using the entire dataset; in the 

second step, we classified the concentration of Cl2 (0, 1, 2 and 

5 ppm) using the O3 concentration classified in the first step. 

Inspection of Figure 5e reveals that we can discriminate each 

O3 concentration with an overall accuracy of 99% and 

significantly, we can discriminate between the 1.5 ppm and 0 

ppm O3 concentration classes with 99% accuracy. Inspection 

of Figure 5f reveals that we achieve an overall classification 

accuracy of 83% for Cl2 concentration. In particular, we can 

discriminate between 1 ppm and 0 ppm Cl2 concentration 

classes with an accuracy of 81%. 

We also tested the generalizability of LCNet by predicting 

concentrations for a gaseous mixture containing 3.5 ppm Cl2 

and 650 ppm O3. Response data for LC systems at this mixture 

composition was not used in the training/validation of LCNet 

and this experiment was designed to simulate performance in 

an environment that is completely unknown (within the 

calibrated detection range of the sensor; 0-5 ppm Cl2). From 

Figure 5a and 5b, we see that LCNet predicts a concentration 

of 3.59 ± 1.35 ppm Cl2 and a concentration of 587 ± 122 ppm 

O3 (red), predictions that are in good agreement with the 

experimental conditions.  

 

Figure 5. Regression plot for the prediction of (a) O3 concentration 

or (b) Cl2 concentration from LC response data using LCNet. The 

red data point indicates predicted O3 or Cl2 concentration of the 

never-before-seen sample with 650 ppm of O3 and 3.5 ppm of Cl2. 

This data had been kept completely separate from the training set 

(to demonstrate the robustness of the predictions). Classification 

results (accuracy) for the presence of (c) O3 or (d) Cl2 in gaseous 

mixtures. Classification results (accuracy) for the concentration of 

(e) O3 or (f) Cl2 in gaseous mixtures. The diagonal entries are the 

fraction of LC responses correctly classified for the given concen-

tration. 

Reduced Data Representations. 3D CNNs do not permit 

easy identification of the key features (descriptors) that drive 

their predictions. Specifically, it is difficult to identify the sig-

natures of the LC responses that are being used by the CNN to 

detect O3 and/or Cl2. We addressed this issue by conducting a 

systematic analysis under different reduced data representa-

tions. Our data reduction procedure trained CNNs that ignore 

specific features of the LC responses (space, time, and color). 

Specifically, we eliminate spatial information by conducting 

spatial-averaging; we eliminate time information by analyzing 

a snapshot at the final time; and we eliminate color information 

by analyzing grayscale snapshots (average of RGB channels). 
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New CNNs were trained under these reduced data representa-

tions (1D and 2D CNNs) and their prediction performance was 

compared with that of LCNet (3D CNN which uses a complete 

data representation). A detailed explanation of the procedure 

and of the results can be found in the SI. In brief, we found that 

the information needed to accurately sense O3 within the mix-

ture with Cl2 is minimal; temporal information can be used by 

a 1D CNN to obtain reasonable predictions (spatial and color 

information does not have a strong effect). Specifically, we ob-

served a modest increase in the regression RMSE (relative to 

that of LCNet) when removing spatial information (+10%) but 

a large increase when removing temporal information (+143%; 

Figure S9). These results are in agreement with the results re-

ported by Bao, et al., who correlated the response time of the 

LC to O3 concentration (not in mixtures) using a simple linear 

regression model.52 In the analysis of Cl2, on the other hand, our 

data reduction analysis led us to conclude that removing spatial 

information results in a +54% increase in the RMSE and that 

removal of temporal information results in a +83% increase 

(Figure S9). This result confirms the need to simultaneously 

capture spatial and temporal information when detecting Cl2. 

Saliency Analysis. We used saliency analyses to further in-

vestigate key features that enable LCNet to detect the presence 

of Cl2 and O3 within the mixtures. Saliency maps were used to 

identify voxels within an input tensor that have the largest in-

fluence on the final prediction of the 3D CNN42. A saliency 

map assigns a scalar value to each voxel that correlates with its 

influence on the final prediction (the saliency map is a 3D ten-

sor). The saliency value at each voxel is determined by a per-

turbation of the given voxel and a subsequent prediction (i.e., 

via sensitivity analysis). Our goal was to identify which voxels 

in our spatio-temporal dataset have the greatest influence on 

the detection of a given chemical species (Cl2 or O3) by the 

CNN. A detailed description of this process is found in the SI; 

here we provide a summary of the main findings using an illus-

trative example of saliency maps for a LC system exposed to a 

gaseous mixture (5 ppm O3 and 2 ppm Cl2; Figure 6). In partic-

ular, we explore the spatial-average of the saliency map in or-

der to identify key times in the response that influence the pre-

diction. The saliency analysis in Figures 6a and 6b indicate that 

the key factor determining LCNets prediction of O3 concentra-

tion is the response time; specifically, we can see that there is 

a peak in the saliency value at t = 33s, which is the time at 

which the LC optical response is first evident. We also observe 

a peak in the saliency value at t = 52s, which is the time at 

which the response brightness intensity saturates. The presence 

of the two peaks indicates that LCNet is using the transition 

time to characterize the O3 concentrations. In contrast, inspec-

tion of Figures 6c and 6d reveals that the transition time is not 

used by the CNN for characterization of Cl2 concentration. 

Specifically, we can see that saliency exhibits dynamics after 

the brightness has saturated (t = 52s) and the high values post-

saturation indicate that these features are important in the de-

tection of Cl2. These results indicate that the presence of Cl2 in 

a mixture of Cl2 and O3 changes the final stage of the LC re-

sponse and that this effect is detectable by the CNN. 

Color Analysis. We determined that the saliency dynamics 

that develop late in the LC response to mixtures of Cl2 and O3 

(after brightness has been saturated) are governed by fluctua-

tions in color. This conclusion was reached by a transformation 

of the RGB channels of the input tensor into the L*A*B* color 

space.54 The details of this transformation are explained in the 

SI. Our main goal in transforming RGB to L*A*B* is to utilize 

the A* channel, which represents a measure of intensity of red 

or green channels (negative values indicate green intensity and 

positive values indicate red intensity). In other words, A* is a 

descriptor that simultaneously captures information from red 

and green channels. Inspection of Figures 6c and 6d reveals that 

the complex spatio-temporal color patterns that characterize 

the LC response are described by changes in the value of A*. 

Specifically, we noted that A* exhibits dynamics after the 

brightness of the LC response has saturated. In Figure 6c, we 

present a time series of the spatial-average of A*; the spatial 

averaging reveals a strong correlation between the timing of the 

saliency and A* peaks. This indicates that LCNet is exploiting 

dynamics of color patterns to detect the presence of Cl2 in mix-

tures. 

 

 

Figure 6. (a) Spatial-average of brightness intensity and saliency 

(for detection of O3) for a liquid crystal response to a mixture of 

5ppm O3 and 2ppm Cl2. (b) Snapshots of LC response at repre-

sentative times shown in RGB and grayscale (intensity), along 

with the associated saliency maps. (c) Spatial-average of A* and 

saliency corresponding to the same LC response and (d) A* snap-

shots corresponding to saliency maps (for detection of Cl2). These 

results highlight that the spatio-temporal data representation used 

by the 3D CNN automatically identifies key signatures for the de-

tection of O3 (response time) and the driving factor for the detec-

tion of Cl2 (color fluctuations near the end of the response). The 

saliency maps also have identified key color spaces (A*) for the 

future study of the physics of liquid crystal sensor responses. 

For 18-micrometer-thick films of LC observed through an 

optical microscope (crossed polars), color encodes information 

about the azimuthal orientation of the LC with respect to the 

two orthogonal polarizers and the zenithal angle of the LCs 

with respect to the axis normal to the plane of the film1. Thus, 

spatio-temporal color patterns encode information regarding 

the transition of LCs from homeotropic to planar anchoring 

(i.e., interference colors). When analyzed using the A* chan-

nel, a continuous anchoring transition of LC will exhibit oscil-

lations between negative (green) and positive (red) values of 

A* (as shown in Figure 7a). In Figure 7, we present experi-

mental characterization of anchoring transitions of LC trig-

gered by exposure to either pure Cl2 (5ppm), pure O3 (5ppm), 

or a mixture (5ppm Cl2 and 5ppm O3). Inspection of the results 
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for the two pure gases reveals two observations. First, the LC 

response to pure Cl2 exhibits no oscillation in A* (Figure 7b), 

consistent with the earlier observation that Cl2 triggers a dis-

continuous anchoring transition on Mn(ClO4)2 surfaces in Fig-

ure 1a. Second, in contrast to Cl2, the response to pure O3 leads 

to high amplitude oscillations in A* (Figure 7c), also consistent 

with experimental observations in Figure 1 indicating a contin-

uous change in tilt of the LC during the response to O3. The 

limited information encoded in the color dynamics of pure Cl2 

provides further insight into why it is more difficult to detect 

this analyte (compared to O3, for which color dynamics provide 

richer information). 

In comparison to pure gases, the response of the LC to the 

mixture of Cl2 and O3 reveals oscillations in A* (Figure 7d), 

but the oscillations are lower in amplitude than those of pure 

O3. From the A* field plotted below the spatially averaged A* 

values, we also see that, in the presence of a gaseous mixture, 

the LC response involves the formation of multiple domains 

(each exhibiting a continuous LC anchoring transitions; at a 

given instant in time, some domains are red and some are 

green). These individual domains begin their reorientation at 

different times and reorient at different rates. This results in 

weak fluctuations in A*, as the fluctuations are dampened dur-

ing the spatial averaging. The nature of this response contrasts 

to that of pure O3, where there is a single connected domain 

that oscillates at a single frequency and this translates to high 

fluctuations in A*.  

Finally, observations of the A* response during Cl2 detection 

in mixtures with O3 reveal that color fluctuations appear sooner 

(50 sec, Figure 7d) than the optical response of the LC to pure 

Cl2 (300 sec, Figure 7b). This indicates that the presence of O3 

in the mixture accelerates the LC response to Cl2; in other 

words, the analytes have a synergistic effect. This apparent 

synergy is confirmed by our observation that LCNet enables 

detection of Cl2 with concentrations that are as low as 1 ppm in 

mixtures that are dominated by O3 (concentrations of 650 

ppm). Additional studies aimed at understanding the origin of 

this synergy are ongoing and will be reported elsewhere. 

 

Figure 7. (a) Visualization of interference colors in A* created by white light illumination when liquid crystals transition from homeotropic 

to planar. The red-green transformation cycles several times. Pure O3 triggers a continuous anchoring transition, resulting in a continuous 

evolution of interference colors in A*. Pure Cl2 triggers a discontinuous anchoring transition, resulting in a “jump” in interference colors in 

A*. (b)-(d) Spatial-average of A* for pure 5 ppm Cl2, pure 5 ppm O3, and a mixture of 5 ppm O3 + 5ppm Cl2 and A* channels. The time 

ranges for selected snapshots are from 400 to 700 seconds, 63 to 125 seconds, and 60 to 91 seconds, respectively. These time ranges capture 

the A* signal during the response. (b) Exposure to 5ppm Cl2 results in a discontinuous LC transition and thus no oscillations in the average 

A* value. (c) Exposure to 5ppm O3 induces the formation of a single domain that has a continuous LC transition that represents a large 

amplitude oscillation in the spatially averaged A*. (d) Exposure to 5ppm Cl2 + 5ppm O3 mixture forms multiple domains in the LC film that 

reorient continuously. These domains begin the transition at different times and different speeds, causing the oscillations of A* to be of lower 

amplitude than those found in the response to pure O3.

CONCLUSIONS 

We report experimental measurements of the optical re-

sponses of LC films supported on Mn(ClO4)2-decorated sur-

faces to mixtures of O3 and Cl2, and we use the experimental 

datasets to train a 3D CNN architecture (called LCNet) to ex-

tract spatial, temporal, and color information from the optical 

responses of the LC films to the gas mixtures. We show that 

this information enables the detection of each species of gas 

within the mixture as well as prediction of their concentrations 

at levels relevant to the targeted contaminants. We also show 

we can detect the presence of Cl2 even when the concentration 

of O3 is orders of magnitude greater than the Cl2 concentration. 

The proposed methodology has attributes (low cost, small 

monitoring device) that have the potential to greatly improve 

personal exposure measurements of air pollutants in industrial 

and urban contexts to support human health studies. The sim-

ultaneous monitoring of ozone and chlorine gas are used as ex-

amples of a criteria pollutant and hazardous air pollutants 

(HAP), respectively, thus showing that the integration of LC 

and 3D CNN can allow the simultaneous monitoring of both 

classes of air pollutants.  

We use simplified data representations, saliency analysis, 

and color analysis to identify main features of the LC response 

that enable simultaneous detection of O3 and Cl2. This analysis 

reveals that O3 detection is driven by the transition time over 

which the brightness of the LC changes, while Cl2 detection is 

driven by color fluctuations that develop late in the optical re-

sponse of the LC. Our analysis also reveals that a color field 

called A* provides a reliable descriptor for analysis of the color 

dynamics of the LC response (e.g., enables detection of 
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continuous/discontinuous anchoring transitions of LC). Our 

approach to capturing spatiotemporal color patterns of the LC 

in a thin film geometry is generalizable and is applicable to 

analysis of LC responses in other geometries (e.g., fiber19,23 and 

droplet41).  Our study also identifies synergistic effects of the 

two gases on the LC response, synergy that permits detection 

of Cl2 in the mixture more rapidly than in pure Cl2 gas. Future 

studies will use density functional theory and molecular dy-

namics simulations to understand synergistic effects that arise 

in gaseous mixtures and to study how changes in the design can 

improve sensor performance.  

In this paper, we focus on the development of a machine 

learning methodology for analysis of Cl2 and O3 using gas mix-

tures with concentrations in the ppm range.  However, the LC-

based approach reported here has the potential to be extended 

to detection of mixtures of Cl2 and O3 in the parts-per-billion 

(ppb) range.  For example, previously we demonstrated detec-

tion of 200 ppb of Cl2 (as a single gas component).28 Addition-

ally, we have performed preliminary measurements demon-

strating detection of 220 ppb of O3 (see details in SI; Section 

S9). We envisage future directions of investigation that extend 

the methodology reported in this paper to the analysis of gas 

mixtures in the ppb concentration range. 
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