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Robust Distributed Average Tracking for
Double-Integrator Agents Without Velocity

Measurements Under Event-Triggered
Communication
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Abstract—This article focuses on an event-triggered
mechanism to solve the distributed average tracking
problem for double-integrator agents without velocity
measurements. In some practical applications, velocity
measurements may be unavailable due to technology
and space limitations, and it is also usually less accurate
and more expensive to implement. Before deriving the
event-triggered approach, we first present a base algorithm
without using velocity measurements, which sets the stage
for the development of the event-triggered algorithm. The
base algorithm has an advantage over the existing related
works in the sense that there is no global information
requirement for parameter design. Building on the base
algorithm, we present an event-triggered algorithm
that further removes the continuous communication
requirement and is free of Zeno behavior. It is suitable for
practical implementation, since in reality, the bandwidth of
the communication network and power capacity are usually
constrained. The event-triggered algorithm overcomes
some practical limitations, such as the unbounded growth
of the adaptive gain and requirement of additional internal
dynamics, by constructing a new triggering strategy.
In addition, a continuous nonlinear function is used to
approximate the signum function to reduce the chattering
phenomenon in reality. Numerical simulations are provided
to illustrate the obtained results.

Index Terms—Distributed average tracking, double-
integrator agents, event-triggered communication, velocity
measurements.

I. INTRODUCTION

D
ISTRIBUTED cooperative control of multiagent systems
has drawn increasing attention from various scientific

communities due to its wide range of applications, such as
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vehicle formation, sensor networks, and cooperative surveil-
lance. Consensus is an important research subject in distributed
cooperative control of multiagent systems, where all the agents
reach an agreement on a state of interest. When the desired
consensus state for a group of agents follows a certain trajectory,
the distributed tracking problem is investigated. During the
recent decade, a more general problem, the distributed average
tracking problem, which includes consensus and distributed
tracking as special cases, is formulated and addressed in the
literature. In the distributed average tracking problem, each
agent has a time-varying reference signal, and the goal is to
design controllers for the agents based on local information
such that all the agents are able to track the average of these
reference signals. Because of the time-varying tracking objective
and the lack of access to error signals, the distributed average
tracking problem is theoretically more challenging compared
with consensus and distributed tracking problems.

In the literature, there are cases where each agent aims to
only estimate the average of these reference signals, which is
often called dynamic average consensus. Some applications,
such as feature-based map merging [1] and distributed Kalman
filtering [2], have been reported in the literature. Several linear
distributed algorithms are established to deal with the dynamic
average consensus problem for certain types of reference signals.
For instance, the dynamic average consensus problem is solved
in [3]–[5] for reference signals with steady-state values, with a
common denominator in their Laplace transforms, and slowly
varying reference signals, respectively. The dynamic average
consensus problem is solved with bounded steady-state error
for a strongly connected weight-balanced interaction topology
in [6], where the discrete-time counterparts are addressed as
well. A class of nonlinear algorithms is proposed in [7] for
reference signals with bounded deviations, and the dynamic
average consensus error is bounded. A nonsmooth algorithm
is proposed in [8], which enables each agent to keep track of the
average of a class of reference signals with bounded derivatives.
More recently, combined with an adaptive scheme, two dynamic
average consensus algorithms without correct initialization are
proposed in [9] such that each agent is able to estimate the
average of the reference signals. Also, a robust dynamic av-
erage consensus algorithm is proposed for directed networks,
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which guarantees an arbitrary prescribed small steady-state error
bound.

The aforementioned algorithms focus on estimator design,
and in reality, some tasks, such as region following formation
control [10] and coordinated path planning [11], require each
agent to have a certain dynamics, and the goal is to design con-
trollers for each agent such that its physical states track the aver-
age of multiple time-varying reference signals. In this context,
the term distributed average tracking is often used. A nonsmooth
algorithm is presented in [12] for double-integrator agents. It
requires that the accelerations of the individual reference signals
be bounded. For general linear systems, the distributed average
tracking problem is addressed in [13]. The distributed average
tracking algorithms mentioned above need full state information
(e.g., both positions and velocities for double-integrator agents)
to update the controllers.

However, in some practical applications, partial states may be
unavailable due to technology and space limitations. Moreover,
it is usually less accurate and more expensive to implement
velocity measurements compared with position measurements.
Hence, it is worth investigating the distributed average tracking
problem for double-integrator agents without using velocity
measurements. In [14], the authors investigate the problem de-
scribed above. However, in [14], the lower bounds of the design
parameters depend on the bounds related to the reference signals
and the graph information including the largest and smallest
nonzero eigenvalues of the Laplacian matrix, which are global
information and may be inaccessible to the agents. Also, the
algorithm in [14] is sensitive to parameter selection as a certain
parameter is required to be exactly equal to a certain value.

All these aforementioned continuous-time distributed average
tracking algorithms require each agent to continuously interact
with its neighbors. However, in reality, it may not be practical
due to the constrained bandwidth of the communication network
and power source. In contrast, discrete-time distributed average
tracking algorithms require agents to interact with each other
periodically. It may result in a waste of network resources.
Furthermore, with regard to general bounded reference signals,
there usually exist tracking errors by using the discrete-time al-
gorithms. Thus, it makes sense to employ event-triggered control
strategies to address the distributed average tracking problem.
They take advantage of opportunistic aperiodic sampling to im-
prove efficiency. In [15], the authors extend the algorithm in [6]
by incorporating an event-triggered communication strategy,
but specific initialization is needed for a certain variable, and
there exist nonzero tracking errors for general bounded reference
signals. A robust dynamic average consensus algorithm under
dynamic event-triggered communication is proposed in [16] for
agents to estimate the average of the reference signals. These two
works focus on the estimation aspect of the distributed average
tracking problem, where the agents’ dynamics are essentially
single integrators.

The focus of this article is on an event-triggered mechanism
to solve the distributed average tracking problem for double-
integrator agents without using velocity measurements. Before
deriving the event-triggered approach, we first present a base
algorithm (see Section III) to solve the distributed average

tracking under continuous communication. Then, we present
an event-triggered distributed average tracking algorithm that
further removes the continuous communication requirement.
In contrast, Ghapani et al. [14] consider the problem of dis-
tributed average tracking of double-integrator agents without
using velocity measurements under continuous communication,
which does not enjoy the benefit of the event-triggered algorithm
proposed in this article. While the base algorithm in this article
has some connection with [14], it is worth mentioning that even
this base algorithm has an advantage over [14] in the sense that
no global information is needed for parameter design. We would
also like to point out that the base algorithm has a different
structure from the one in [14]. Such a structure and its indepen-
dence on global information lay a solid base for the development
of the event-triggered algorithm. The proposed event-triggered
algorithm is able to achieve distributed average tracking with
zero tracking errors, does not require correct initialization, and is
free of Zeno behavior. In contrast to [16], which is limited to only
single-integrator agents, double-integrator agents without using
velocity measurements are considered in this article, which is a
more complicated and challenging problem. It is also noted that
there are some practical limitations for the algorithm in [16].
First, the time-varying gain may grow unbounded due to per-
sistent disturbance, which would affect the convergence and the
success of the event triggering scheme. Second, an extra internal
dynamics is needed to ensure the exclusion of Zeno behavior,
which may cost extra computational power and storage space. In
addition, the use of the signum function may cause the chattering
phenomenon in real applications. The proposed event-triggered
algorithm overcomes the aforementioned limitations in [16]. In
this algorithm, a new adaptive law and a new event-triggering
strategy are constructed, and a continuous nonlinear function is
used to approximate the signum function.

Some preliminary results of this article (see Section III)
are presented in [18]. The current article improves on [18] by
introducing a new event-triggered distributed average tracking
algorithm to overcome some practical limitations. In addition,
this article contains more detailed proofs and additional simula-
tion results.

The remainder of this article is arranged as follows. In
Section II, some preliminaries are presented, and the distributed
average tracking problem is introduced. Section III provides a
base algorithm to achieve relaxed parameter conditions with-
out velocity measurements under continuous communication.
In Section IV, an event-triggered distributed average tracking
algorithm is proposed to remove the continuous communication
requirement. Numerical examples are provided in Section V to
explain the main results. Section VI concludes this article.

II. PRELIMINARIES AND PROBLEM STATEMENT

Denote by R≥0 the set of non-negative real numbers. For a
given vector x ∈ R

p, ‖x‖2, ‖x‖1, and ‖x‖∞ denote the two
norm, one norm, and infinity norm of x, respectively. For a set
S , |S| denotes the cardinality of S . The transpose of matrix A is
denoted by AT . The Kronecker product of matrices A and B is
denoted by A⊗B. We use sgn(·) to denote the signum function
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defined componentwise. Let 0m×n ∈ R
m×n denote the m× n

dimensional zero matrix, and for simplicity, let 0m = 0m×1.
In ∈ R

n×n denotes the identity matrix. For any symmetric
matrix M , the notation M � 0 is used to say that M is positive
definite.

A. Graph Theory

For a multiagent system consisting of N agents, the inter-
action topology can be modeled by an undirected graph G =
{V, E}, whereV = {1, . . . , N} and E ⊆ V × V denote the node
set and edge set, respectively. An edge denoted by (i, j) ∈ E ,
means that agent i and j can obtain information from each
other. In an undirected graph, the edges (i, j) and (j, i) are
equivalent. It is assumed that (i, i) /∈ E . The neighbor set of
node i is denoted by Ni = {j ∈ V | (j, i) ∈ E}. The adjacency
matrix A = [aij ] ∈ R

N×N of the graph G is defined such that
aij = 1 if (j, i) ∈ E and aij = 0 otherwise. For an undirected
graph, aij = aji. By arbitrarily assigning an orientation for
every edge in G, let B = [Bij ] ∈ R

N×|E| denote the incidence
matrix associated with graph G, where Bij = −1 if edge ej
leaves node i,Bij = 1 if it enters node i, andBij = 0 otherwise.
An undirected path between node i1 and ik is a sequence of
edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where ik ∈ V .
A connected graph means that there exists an undirected path
between any pair of nodes in V .

B. Problem Formulation

In this article, we consider N physical agents, and the in-
teraction topology among these agents is characterized as the
undirected graph G = (V, E). Unless otherwise stated, through-
out this article, we assume a time-invariant graph. Each agent i
is modeled by double-integrator dynamics

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ V (1)

where xi(t) ∈ R
p and vi(t) ∈ R

p are the ith agent’s position
and velocity, respectively, and ui is its control input.

Each agent has a time-varying reference signal xr
i ∈ R

p, i ∈
V satisfying

ẋr
i (t) = vri (t), v̇ri (t) = ur

i (t), i ∈ V (2)

where vri (t) ∈ R
p and ur

i (t) ∈ R
p are the velocity and accelera-

tion of the ith agent’s reference signal, respectively. We assume
that the reference signals are generated internally by the agents,
and that each agent has access to its own reference signal, and the
velocity and acceleration of the reference signal. In this article,
we make the following assumption on the reference signals and
the velocities and accelerations of the reference signals.

Assumption 1: For any two connected agents, the local
difference in reference signals xr

i (t), their velocities vri (t), and
their accelerations ari (t) are bounded, i.e.,

sup
t∈[0,∞)
∀(i,j)∈E

‖xr
i (t)− xr

j(t)‖∞ ≤ x̄r,

sup
t∈[0,∞)
∀(i,j)∈E

‖vri (t)− vrj (t)‖∞ ≤ v̄r,

and

sup
t∈[0,∞)
∀(i,j)∈E

‖ur
i (t)− ur

j(t)‖∞ ≤ ār.

In the distributed average tracking for a group of double-
integrator agents, the objective is to design controller ui for
agent i ∈ V such that each agent’s position (velocity) is ca-
pable of tracking the group average of their reference sig-
nals (their reference signals’ velocity). That is, for any i ∈ V ,
it is achieved that limt→∞ ‖xi(t)− 1

N

∑N
j=1 x

r
j(t)‖2 = 0 and

limt→∞ ‖vi(t)− 1
N

∑N
j=1 v

r
j (t)‖2 = 0. In this article, we are

particularly interested in developing a controller for each agent
without velocity measurement and in the absence of any correct
initialization. The motivation behind this is that employing a
velocity measuring device is usually costly in the aspect of
finance and energy. Also, the velocity measurements are less
accurate compared with position measurements. In contrast,
perfect initialization is hard to achieve in reality.

Before moving onto the main results, a lemma is presented in
the following.

Lemma 1 (see [19]): For any symmetric real matrix, M ,

of the form M = [
D11 D12

DT
12 D22

], it holds that M � 0 if and

only if one of the following conditions holds: 1) D11 � 0 and
D22 −DT

12D
−1
11 D12 � 0; and 2) D22 � 0 and D11 −D12D

−1
11

DT
12 � 0.

III. DISTRIBUTED AVERAGE TRACKING WITHOUT

VELOCITY MEASUREMENTS

In this section, we introduce a distributed average tracking
algorithm for double-integrator agents without using the velocity
measurements and in the absence of any correct initialization.
In the rest of this article, we omit the argument t for brevity.

We design a filter for each agent i as

φ̇i = − κ(xi − xr
i )− 2κ(wi − vri ) + ur

i

−
N
∑

j=1

aijπijsgn(xi − xj + wi − wj)

wi = φi + κ(xi − xr
i ), i ∈ V (3)

where κ ∈ R is a positive constant to be determined, φi ∈ R
p is

the internal state of the filter, wi ∈ R
p is the output of the filter,

and πij is a time-varying gain for the edge (i, j) ∈ E , satisfying
the following adaptation law:

π̇ij = aij ‖xi − xj + wi − wj‖1 , i ∈ V (4)

with πij(0) > 0 if (i, j) ∈ E . In addition, each agent i needs to
coordinate with its neighbor j ∈ Ni to ensure πij(0) = πji(0).
In this way, the gains πij and πji remain equal to each other. We
design the controller for agent i as

ui = − κ(xi − xr
i )− κ(wi − vri ) + ur

i

−
N
∑

j=1

aijπijsgn(xi − xj + wi − wj), i ∈ V. (5)
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Essentially, the filter is designed such that its output is capable
of tracking the average of the reference signals’ velocities, and
the controller is applied to drive each agent’s position to the
average of the reference signals and velocity to the output of the
filter. Note that the designs of the filter (3) and the controller
(5) for each agent i depend on only local information and the
positions and filter’s outputs from its neighbors. Therefore, it is
implementable in reality.

Remark 1: Note that there is no requirement on the initializa-
tion of each agents’ position and velocity, as well as the internal
state of the filter. Thus, the proposed algorithm (3)–(5) is called
robust distributed average tracking algorithm.

Let x = [xT
1 , . . . , x

T
N ]T , v = [vT1 , . . . , v

T
N ]T , and w =

[wT
1 , . . . , w

T
N ]T . Define x̃ = (M ⊗ Ip)x, ṽ = (M ⊗ Ip)v, and

w̃ = (M ⊗ Ip)w, where M = IN − 1
N 1N1

T
N . For brevity, de-

fine α = [αT
1 , . . . , α

T
N ]T with αi = κxr

i + κvri + ur
i . Then, we

have

˙̃x = ṽ

˙̃v = − κx̃− κw̃ + (M ⊗ Ip)α

− (BΠ⊗ Ip)sgn
[(

BT ⊗ Ip
)

(x̃+ w̃)
]

(6)

and

˙̃w = − κx̃− 2κw̃ + κṽ + (M ⊗ Ip)α

− (BΠ⊗ Ip)sgn
[(

BT ⊗ Ip
)

(x̃+ w̃)
]

(7)

where Π ∈ R
|E|×|E| is a time-varying diagonal matrix, and the

sth diagonal entry, denoted by Πss, represents the weight on the
sth edge. That is, if the sth edge is between agent i and agent j,
then Πss = πij .

Theorem 1: Suppose that the undirected graphG is connected,
and Assumption 1 holds. Using the algorithm (3)–(5) for (1),
distributed average tracking is achieved asymptotically if κ >
3+2

√
3

3 .
Proof: We prove this statement in two steps. In the

first step, we prove that for any i ∈ V , xi → 1
N

∑N
j=1 xj

and vi → 1
N

∑N
j=1 vj as t → ∞. In the second step,

we prove that for any i ∈ V ,
∑N

j=1 xj →
∑N

j=1 x
r
j and

∑N
j=1 vj →

∑N
j=1 v

r
j as t → ∞. Combining these two steps,

it can be concluded that limt→∞ ‖xi − 1
N

∑N
j=1 x

r
j‖2 = 0 and

limt→∞ ‖vi − 1
N

∑N
j=1 v

r
j‖2 = 0 hold for all i ∈ V . For sim-

plicity, we denote these two steps by consensus and sum-tracking
steps, respectively. Define X = [x̃T , ṽT , w̃T ]T . Consider a Lya-
punov function candidate as

V =
1

2
XTPX +

N
∑

i=1

N
∑

j=1

(πij − πm)2

4
(8)

where

P =

⎡

⎣

µINp 0Np×Np INp

0Np×Np INp −INp

INp −INp 2INp

⎤

⎦ (9)

and πm is a positive constant to be determined. By Lemma 1
and the properties of the Kronecker product, it holds that P is
positive definite if and only if µ > 1. Therefore, V is positive
definite.

Taking the derivative of V along (6) and (7) yields

V̇ = −XTQX + (x̃+ w̃)T (M ⊗ Ip)α

− 1

2

N
∑

i=1

N
∑

j=1

aijπij ‖xi − xj + wi − wj‖1

+
1

2

N
∑

i=1

N
∑

j=1

πij π̇ij −
πm

2

N
∑

i=1

N
∑

j=1

π̇ij

where

Q =

⎡

⎢

⎣

κINp −µ+κ
2 INp

3κ
2 INp

−µ+κ
2 INp κINp − 1+3κ

2 INp

3κ
2 INp − 1+3κ

2 INp 3κINp

⎤

⎥

⎦
. (10)

Note that ‖αi − αj‖∞ ≤ ᾱ by Assumption 1, and let Nmax =
maxi∈V |Ni|. Then, it holds that

‖(M ⊗ Ip)α‖∞ ≤ 1

N
max
i∈V

⎧

⎨

⎩

N
∑

j=1,j 
=i

‖αi − αj‖∞

⎫

⎬

⎭

≤ N − 1

2N

N
∑

i=1

∑

j∈Ni

‖αi − αj‖∞ ≤ ᾱNmax(N − 1)

2
(11)

where ᾱ = κx̄r + κv̄r + ār. For brevity, define

β =
ᾱNmax(N − 1)

2
. (12)

Note that

‖x̃+ w̃‖1 ≤ 1

N

N
∑

i=1

∑

j=1,j 
=i

‖xi − xj + wi − wj‖1

≤ max
i∈V

⎧

⎨

⎩

N
∑

j=1,j 
=i

‖xi − xj + wi − wj‖1

⎫

⎬

⎭

≤ N − 1

2

N
∑

i=1

N
∑

j=1

aij ‖xi − xj + wi − wj‖1 .

It then holds that

(x̃+ w̃)T (M ⊗ Ip)α

≤ (N − 1)β

2

N
∑

i=1

N
∑

j=1

aij‖xi − xj + wi − wj‖1.

Then, it follows that

V̇ ≤ −XTQX − πm − (N − 1)β

2

×
N
∑

i=1

N
∑

j=1

aij‖xi − xj + wi − wj‖1,
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where the fact that

(x̃+ w̃)T (BΠ⊗ Ip)sgn[(BT ⊗ Ip)(x̃+ w̃)]

=
1

2

N
∑

i=1

N
∑

j=1

aijπij‖(xi − xj) + (wi − wj)‖1

is used. Selecting an πm such that πm ≥ β, one has

V̇ ≤ −XTQX := −W [X].

By Lemma 1, the matrix Q is positive definite if and only if κ >
µ+ 1

3(µ−1) = f(µ), which implies that Q is positive definite if

κ > minµ>1 f(µ) =
3+2

√
3

3 . Thus, V̇ ≤ 0, which implies thatV
is nonincreasing. Then, it follows that X and πij are bounded.
Note that V is bounded from below by zero. Thus, limt→∞ V
exists and is finite. Note that

∫ t

0

W [X(τ)]dτ ≤ −
∫ t

0

V̇ [X(τ), {πij(τ)}i,j∈V ]dτ

= V [X(0), {πij(0)}i,j∈V ]− V [X, {πij}i,j∈V ].

Therefore, limt→∞
∫ t

0 W [X(τ)]dτ exists and is finite. It follows
from (6), (7), and Assumption 1 that ˙̃x, ˙̃v, and ˙̃w are bounded.
Hence, x̃, ṽ, and w̃ are uniformly continuous. Consequently,
W [X] is uniformly continuous by the definition of W [X] and
X . By Barbalat’s Lemma, it can be concluded that W [X] → 0
as t → ∞, which implies that limt→∞ X = 0np. This com-
pletes the consensus step. Second, define Sx =

∑N
j=1 xj −

∑N
j=1 x

r
j , Sv =

∑N
j=1 vj −

∑N
j=1 v

r
j , and Sw =

∑N
j=1 wj −

∑N
j=1 v

r
j . Then, we have that Ṡ =

⎛

⎝

⎡

⎣

0 1 0
−κ 0 −κ
−κ κ −2κ

⎤

⎦⊗ Ip

⎞

⎠S =

(A⊗ Ip)S, where S = [ST
x , S

T
v , S

T
w ]

T . The characteristic poly-
nomial of A is

pA(s) = s3 + 2κs2 + (κ+ κ2)s+ κ2.

According to the Routh–Hurwitz stability criterion, it is easy to
verify that if κ > 0, all the zeros of pA(s) = 0 have negative real

parts, which means thatA is Hurwitz. Note thatκ > 3+2
√
3

3 > 0.
Then, the matrixA is Hurwitz, which indicates limt→∞ S = 03p.
This completes the sum-tracking step. �

Note that the dynamics (6) is discontinuous due to the intro-
duction of the signum function in the controller and filter design
(3)–(5). Then, the solutions should be understood in terms of
differential inclusion by using nonsmooth analysis [20], [21].
However, since the signum function is measurable and locally
essentially bounded, the Filippov solutions for the closed-loop
dynamics always exist. The Lyapunov function used in the proof
is continuously differentiable. Then, its set-valued Lie derivative
is a singleton at the discontinuous points. Therefore, the proof
is valid as in the case without discontinuities.

Remark 2: Note that the algorithm (3)–(5) has some con-
nection with the first algorithm in [14]. In the first algorithm
in [14], there are multiple design parameters, the design of
which depends on the largest and smallest nonzero eigenvalues
of the Laplacian matrix, the bounds on the reference signals,

and the total number of the agents in the network. Also, the first
algorithm in [14] is sensitive to parameter selection as a certain
parameter is required to be exactly equal to a certain value.
However, the algorithm (3)–(5) overcomes these limitations
in [14] and solves the distributed average tracking problem if
κ is greater than a constant. It is easy to select a suitable value
for κ and implement the algorithm. It is also worth noting that
the structures of the controller (5) and the filter (3) are different
from the ones in [14]. Such newly designed structures and their
independence of global information lay a solid base for the
development of event-triggered approaches.

Remark 3: The algorithm (3)–(5) is implementable since κ
is constant, which can be chosen offline before running the
algorithm and embedded to each agent. Once the algorithm starts
to run, the agents communicate with only local neighbors, and
there is no need to have access to any global information. If each
agent chooses its own κi(0) offline such that κi(0) >

3+2
√
3

3 ,
then each agent can run the max consensus algorithm in [22]:
κi(k + 1) = maxj∈Ni∪{i}{κj(k)}, where k is discrete time in-
stance, to drive each agent to reach consensus on maxj∈V κj(0).
It is proved that the max consensus algorithm converges in finite
time. To determine when to stop the max consensus algorithm,
each agent needs to know the diameter of the graph. However,
one can always be more conservative to run the max consensus
algorithm long enough, which guarantees the convergence.

Remark 4: Theorem 1 shows that the agents are capable of
achieving distributed average tracking under any fixed connected
undirected communication network. It is actually able to extend
to the case of arbitrarily switching connected communication
networks with positive dwelling time. The function defined in
(8) can be used as a common Lyapunov function during the proof
process.

IV. EVENT-TRIGGERED DISTRIBUTED AVERAGE TRACKING

WITHOUT VELOCITY MEASUREMENTS

The algorithm (3)–(5) in Section III requires each agent i
to continuously exchange the position, xi, and the output of
the filter, wi, with its neighbors. However, continuous com-
munication may not be practical due to the constrained band-
width of the communication network in reality. To this end,
we investigate the event-triggered distributed average tracking,
which removes the requirement of continuous communication.
It is worth mentioning that no velocity measurements and no
initialization requirements are needed as well.

It is noted that there are several practical limitations for the
event-triggered algorithm in [16]. First, due to the nature of
the adaptation law, the adaptive gains can only increase. It is
normally the case that there exist measurement/communication
noise and/or persistent disturbances in practical systems. In such
a case, perfect consensus cannot be achieved, and consequently,
the adaptive gains and the control inputs will grow unbounded,
which would affect the convergence and the success of the
event-triggered scheme. Second, implementing the algorithm
in [16] requires each agent to maintain an additional internal
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dynamics to ensure the exclusion of Zeno behavior. Such addi-
tional dynamics may cost extra computational power and storage
space. Finally, the use of the signum function in the algorithm
design will cause chattering phenomenon in real applications. To
overcome these limitations, we propose a novel event-triggered
distributed average tracking algorithm without using velocity
measurements and requiring correct initialization.

We propose the following distributed average tracking algo-
rithm with the filter:

φ̇i = − κ(xi − xr
i )− 2κ(wi − vri ) + ur

i

−
N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

wi = φi + κ(xi − xr
i ), i ∈ V (13)

and the controller

ui = − κ(xi − xr
i )− κ(wi − vri ) + ur

i

−
N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t), i ∈ V (14)

and πij is governed by the following adaptation law:

π̇ij = aij
[

−ρijπij +Ri +
(

x̂i − x̂j + ŵi − ŵj

)T

× h
(

x̂i − x̂j + ŵi − ŵj , t
)]

, i ∈ V (15)

where x̂j(t) = xj(t
j
kj
) and ŵj(t) = wj(t

j
kj
), t ∈ [tjkj

, tjkj+1),
denote the last broadcast position and filter output of agent j,
respectively, and tjkj

= max
{

tjk
∣

∣ tjk ≤ t
}

is the latest triggering
time instant of agent j, ρij andRi are positive constants to be de-
termined, and h : R

p × R≥0 → R
p is a nonlinear function [24]

defined as

h(z, t) =
z

‖z‖2 + ηe−ct

where η and c are positive constants. The boundary layer ηe−ct

is time varying, and as t → ∞, the continuous function h(z, t)
approaches the discontinuous function sgn(z).

For each agent i ∈ V , define

exi
= x̂i − xi, ewi

= ŵi − wi (16)

the triggering time instant is determined by ti1 = 0 and

tik+1 = min
{

t
∣

∣ fi
(

t, xi, wi, {x̂j , ŵj}j∈Ni∪{i}
)

> 0
}

(17)

where fi(t, xi, wi, {x̂j , ŵj}j∈Ni∪{i}) is agent i’s triggering
function, which is given by

fi
(

t, xi, wi, {x̂j , ŵj}j∈Ni∪{i}
)

=
∣

∣

∣
‖exi

+ ewi
‖1 Ri + (exi

+ ewi
)T ζ̂i

∣

∣

∣
−εie

−ϕit (18)

where

ζ̂i =

N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t),

and Ri, εi, and ϕi are positive constants to be determined. Note
that the triggering function in (18) takes values in R and depends

on time t, its current position xi and current filter’s output wi,
and its own and neighbors’ last broadcast positions {x̂j}j∈Ni∪{i}
and filter’s outputs {ŵj}j∈Ni∪{i}. For agent i, at the triggering
time instant, it updates its filter’s input and controller by using
its current position and filter’s output and broadcasts its current
position and filter’s output to its neighbors. In the meantime,
exi

and ewi
are reset to zero. When an event is triggered at

its neighboring agent j, it receives newly broadcast position
and filter’s output and update its filter’s input and controller
immediately.

Theorem 2: Suppose that the undirected graphG is connected,
and Assumption 1 holds. Apply the algorithm (13)–(15) to (1)
with κ > 3+2

√
3

3 , and the triggering time instant is determined
by (17) with the triggering function defined in (18), where ρij >
λmin(Q)
λmax(P ) , εi > 0, ϕi > 0, η > 0, c > 0, and the matrices P and

Q are given in (9) and (10) with µ = 3+
√
3

3 , respectively. Then,
we have the following.

i) If β ≤ Ri < βmaxj∈Ni
{1, ρij√p(N − 1)}, distributed

average tracking is achieved with bounded error.
ii) If Ri ≥ βmaxj∈Ni

{1, ρij√p(N − 1)}, distributed aver-
age tracking is achieved with zero error.

In addition, the triggering law (17) excludes Zeno behavior
while running the algorithm (13)–(15)

Proof: We first prove statement (i). The proof follows the
same two steps described in that of Theorem 1. Use the same
definitions of x̃, ṽ, and w̃ as in Section III. For notational
simplicity, let χ = x̃+ w̃ and χ̂ = (M ⊗ Ip)(x̂+ ŵ) with

χi = x̃i + w̃i = xi −
1

N

N
∑

j=1

xj + wi −
1

N

N
∑

j=1

wj

and

χ̂i = x̂i −
1

N

N
∑

j=1

x̂j + ŵi −
1

N

N
∑

j=1

ŵj .

Then, we have

˙̃x = ṽ

˙̃v = − κx̃− κw̃ + (M ⊗ Ip)α

−

⎡

⎢

⎣

∑N
j=1 a1jπ1jh(χ̂1 − χ̂j , t)

...
∑N

j=1 aNjπNjh(χ̂N − χ̂j , t)

⎤

⎥

⎦
. (19)

Consider the function V defined in (8). Taking the derivative of
V along (19) yields

V̇ = −XTQX + χT (M ⊗ Ip)α

− χT

⎡

⎢

⎣

∑N
j=1 a1jπ1jh(χ̂1 − χ̂j , t)

...
∑N

j=1 aNjπNjh(χ̂N − χ̂j , t)

⎤

⎥

⎦

+
1

2

N
∑

i=1

N
∑

j=1

π̇ij(πij − πm).
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Then, by using the facts thatπij = πji andh(−z, t) = −h(z, t),
it holds that

V̇ ≤ −XTQX − (ex + ew)
T (M ⊗ Ip)α

+
N
∑

i=1

N
∑

j=1

aij β̄

2
‖χ̂i − χ̂j‖1

+
N
∑

i=1

(exi
+ ewi

)T
N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

+

N
∑

i=1

N
∑

j=1

aijρij
2

(

−πij +
Ri

ρij

)

(πij − πm)

−
N
∑

i=1

N
∑

j=1

aijπm

2
(χ̂i − χ̂j)

Th(χ̂i − χ̂j , t)

where β̄ = (N − 1)β. Note that

N
∑

i=1

N
∑

j=1

aij

[

β̄

2
‖χ̂i − χ̂j‖1 −

πm

2
(χ̂i − χ̂j)

Th(χ̂i − χ̂j , t)

]

=

N
∑

i=1

N
∑

j=1

aij

(

β̄

2
‖χ̂i − χ̂j‖1 −

πm

2

aij ‖χ̂i − χ̂j‖22
‖χ̂i − χ̂j‖2 + ηe−ct

)

≤
N
∑

i=1

N
∑

j=1

aij

(

β̄
√
p− πm

2
‖χ̂i − χ̂j‖2 +

πm

2
ηe−ct

)

where the fact that ‖χ̂i − χ̂j‖1 ≤ √
p‖χ̂i − χ̂j‖2 is used. Since

ab ≤ εa2

2 + b2

2ε ∀a, b ∈ R holds for any ε > 0, it then follows
that:

N
∑

i=1

N
∑

j=1

aijρij
2

(

−πij +
Ri

ρij

)

(πij − πm)

=
N
∑

i=1

N
∑

j=1

aijρij
2

[

−(πij − πm)2 +

(

Ri

ρij
− πm

)

(πij − πm)

]

≤
N
∑

i=1

N
∑

j=1

aijρij
2

[

−1

2
(πij − πm)2 +

1

2

(

Ri

ρij
− πm

)2
]

.

Thus, selecting a πm such that πm ≥ β̄
√
p yields that

V̇ ≤ −XTQX +

N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2

+
πm

2

N
∑

i=1

N
∑

j=1

aijηe
−ct −

N
∑

i=1

N
∑

j=1

aijρij
4

(πij − πm)2

+
ᾱNmax(N − 1)

2

N
∑

i=1

‖exi
+ ewi

‖1

+

N
∑

i=1

(exi
+ ewi

)T
N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

where we have used the Hölder’s inequality. Then, implementing
the triggering condition (17), (18) yields

V̇ ≤ −XTQX +
N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2

+
N
∑

i=1

εie
−ϕit

+
πm

2

N
∑

i=1

N
∑

j=1

aijηe
−ct −

N
∑

i=1

N
∑

j=1

aijρij
4

(πij − πm)2

≤ −λQ/PV +

N
∑

i=1

εie
−ϕit +

πm

2

N
∑

i=1

N
∑

j=1

aijηe
−ct

− 1

4

N
∑

i=1

N
∑

j=1

aij
(

ρij − λQ/P

)

(πij − πm)2

+

N
∑

i=1

N
∑

j=1

aijρij
4

(

R2i

ρij
− πm

)2

≤ −λQ/PV +

N
∑

i=1

εie
−ϕit +

πm

2

N
∑

i=1

N
∑

j=1

aijηe
−ct

+
N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2

where λQ/P = λmin(Q)
λmax(P ) , and the last inequality holds because

ρij > λQ/P . According to the comparison lemma in [23], it
holds that

V ≤ e−λQ/P t

[

V (0) + λQ/P

N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2 ]

+ λQ/P

N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2

+ e−λQ/P t
N
∑

i=1

∫ t

0

(

εie
−(ϕi−λQ/P )τ

+
πm

2
|Ni|ηe−(c−λQ/P )τ

)

dτ.

Therefore,

lim
t→∞

V ≤ λQ/P

N
∑

i=1

N
∑

j=1

aijρij
4

(

Ri

ρij
− πm

)2

,

which implies that ‖xi − 1
N

∑N
j=1 xj‖2, ‖vi − 1

N

∑N
j=1 vj‖2,

and ‖wi − 1
N

∑N
j=1 wj‖2 are all bounded.

Second, define Sx, Sv , and Sw as in the proof of Theorem 1.
Note that

N
∑

i=1

N
∑

j=1

aijπijh(χ̂i − χ̂j) = 0
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holds for any i ∈ V because πij = πji and h(−z, t) = −h(z, t).
As a result, by a similar proof of Theorem 1, it follows that

lim
t→∞

N
∑

j=1

xj =
N
∑

j=1

xr
j

and

lim
t→∞

N
∑

j=1

vj =
N
∑

j=1

vrj .

Therefore, limt→∞(xi − 1
N

∑N
j=1 x

r
j) and limt→∞(vi −

1
N

∑N
j=1 v

r
j ) are bounded.

For the proof of the statement (ii), we consider the following
Lyapunov function candidate:

V2 =
1

2
XTPX +

1

4

N
∑

i=1

N
∑

j=1

(

πij −
Ri

ρij

)2

.

Taking the derivative yields that

V̇2 ≤ −XTQX − (ex + ew)
T (M ⊗ Ip)α

+

N
∑

i=1

(exi
+ ewi

)T
N
∑

j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

−
N
∑

i=1

N
∑

j=1

aijρij
2

(

πij −
Ri

ρij

)2

+
β

2

N
∑

i=1

N
∑

j=1

aij ‖χ̂i − χ̂j‖1

− 1

2

N
∑

i=1

N
∑

j=1

Ri

ρij
aij(χ̂i − χ̂j)

Th(χ̂i − χ̂j , t).

Notice that −(ex + ew)
T (M ⊗ Ip)α ≤ β‖ex + ew‖1 Imple-

menting the triggering condition (17), (18) yields that

V̇2 ≤ −XTQX +

N
∑

i=1

εie
−ϕit +

1

2

N
∑

i=1

N
∑

j=1

Ri

ρij
aijηe

−ct

−
N
∑

i=1

N
∑

j=1

aijρij
2

(

πij −
Ri

ρij

)2

≤ −λQ/PV +
N
∑

i=1

εie
−ϕit +

1

2

N
∑

i=1

N
∑

j=1

Ri

ρij
aijηe

−ct

−
N
∑

i=1

N
∑

j=1

aij

(

ρij
2

− λQ/P

4

)(

πij −
Ri

ρij

)2

≤ −λQ/PV +

N
∑

i=1

εie
−ϕit +

1

2

N
∑

i=1

N
∑

j=1

Ri

ρij
aijηe

−ct

where the last inequality holds by noting that ρij > λQ/P in the
statement. Following the similar line of analysis as in the proof
of statement (i), we have limt→∞ V2 = 0, which implies that
xi → 1

N

∑N
j=1 xj , vi → 1

N

∑N
j=1 vj , and wi → 1

N

∑N
j=1 wj ,

as t → ∞. Hence, the consensus step is completed. The sum-
tracking step can be completed by the same analysis to that in
the proof of statement (i). Therefore, the distributed average
tracking is achieved with zero tracking error.

Next, we prove that the proposed event-triggering mechanism
(17), (18) is able to exclude Zeno behavior. Since V (or V2) is
bounded according to the analysis above, it is concluded that
‖xi‖1, ‖wi‖1 ∀i ∈ V , and |πij | ∀(i, j) ∈ E are all bounded. It
then follows that ‖ẋi‖1 and ‖ẇi‖1 are bounded. Let ẇmax

i =
supt∈[0,∞) ‖ẋi‖1, and ẇmax

i = supt∈[0,∞) ‖ẇi‖1. Note that
∣

∣

∣‖exi
+ ewi

‖1 Ri + (exi
+ ewi

)T ζ̂i

∣

∣

∣

≤ ‖exi + ewi‖1 Ri +
∣

∣

∣(exi + ewi)
T ζ̂i

∣

∣

∣

≤ ‖exi
+ ewi

‖1
(

Ri +
∥

∥

∥ζ̂i

∥

∥

∥

∞

)

≤ ‖x̂i − xi + ŵi − wi‖1
(

Ri +
∥

∥

∥ζ̂i

∥

∥

∥

∞

)

≤ (t− t∗) (ẋmax
i + ẇmax

i )
(

Ri +
∥

∥

∥ζ̂i

∥

∥

∥

∞

)

where ζ̂i is defined in (18). The next event will not be triggered

before
∣

∣

∣‖exi
+ ewi

‖1Ri + (exi
+ ewi

)T ζ̂i

∣

∣

∣= εie
−ϕit. Thus, a

lower bound is given by τ ∗ = t− t∗ that solves the equation

(t− t∗) (ẋmax
i + ẇmax

i )
(

Ri +
∥

∥

∥
ζ̂i

∥

∥

∥

∞

)

τ ∗ = ε1e
−ϕiτ

∗
e−ϕit

∗
.

It is apparent that τ ∗ > 0, which implies no Zeno behavior. This
completes the proof. �

From the triggering condition (17), (18) and the proof of
Theorem 2, the function εie

−φit serves as the time-varying

threshold for the term
∣

∣

∣‖exi
+ ewi

‖1Ri + (exi
+ ewi

)T ζ̂i

∣

∣

∣:=

F (exi
+ ewi

). Once F (exi
+ ewi

) reaches the threshold, the
agent is triggered. Therefore, selecting proper εi and φi allows
one to affect the rate of triggering times. To be exact, a larger
value of εi and a smaller value of φi intuitively lead to a lower
triggering rate.

The matricesP andQ are accessible to agents, since once κ is
determined, the form of these two matrices are fixed. Then, the
eigenvalues of P and Q can be easily computed by each agent.

Remark 5: As indicated in Theorem 2, the lower bound of
the design parameter Ri depends on some global information
such as the total number of agents in the network and the
bounds related to the reference signals. However, the parameter
is constant and can be determined offline before running the
algorithms. One can always be more conservative to select a
large enough number for Ri. Moreover, due to the challenging
nature of the problem studied in this article, it might be inevitable
to have certain piece of global information to determine the
lower bound for the design parameter. This is also the case in
the literature [15], [16], even when solving a simpler problem
compared to the one studied in this article. In addition, to obtain
a better estimate of the lower bound of the design parameter,
one can use some existing algorithms in the literature [22],
[25] to estimate the global information by interacting with local
neighbors.
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Remark 6: The adaptation law (15) is partially inspired by
Zhao et al. [13]. The difference is the adoption of Ri in (15)
for each agent. From Theorem 2, we can see that the value of
Ri has an effect on the tracking error. As stated in Theorem
2, distributed average tracking is achieved with zero tracking
error when Ri is sufficient larger. It is also worth noting that
in this article, an event-triggered communication mechanism
is proposed to avoid continuous interactions and reduce the
communication cost. In addition, only position measurements
are used. These two points distinguish the present work from
the one in [13].

Remark 7: The distributed average tracking problem is solved
by the proposed event-triggered algorithm, and Zeno behav-
ior is excluded, which removes the requirement of continuous
interactions among agents. Compared with the existing works
on event-triggered distributed average tracking algorithms [15],
[16], the proposed one (13)–(15) contributes in the following
two aspects: 1) the algorithm is able to be implemented for
double-integrator agents without using velocity measurements,
which is economical and energy efficient; and 2) several practical
limitations have been overcome by the newly designed triggering
strategy.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide examples to illustrate the results
obtained in this article.

We consider a group of 20 physical agents (N = 20) given
in (1), which are labeled as 1, . . . , 20. The agents form a ring
topology. In the simulation, we set

ur
i = Ai sin(ϑit+ ϕi)

in (2) with

Ai = − 0.04(0.7i+ 0.5)2[2(i− 3.5)− 2(−1)i],

ϑi = 0.2(0.7i+ 0.5),

and

ϕi = (2iπ/N)− π.

Select κ = 5 and πij(0) = 1000 for any i and j that are con-
nected. Implement the algorithm (3)–(5) for (1). The simulation
results are shown in Fig. 1. It can be seen that all the agents’
physical states, positions and velocities, are capable of tracking
1
20

∑20
j=1 x

r
j and 1

20

∑20
j=1 v

r
j , respectively.

In the following, we use the algorithm (13)–(15) for (1) with
the same set of reference signals. The triggering time instants
are determined as in (17) with the triggering function defined
in (18). For simplicity, we set Ri = 2000, εi = 1000, ρi = 5,
and ϕi = 10−4 for any i = 1, . . . , 20. Let η = 10 and c = 1.
The position and velocity trajectories for those 20 agents are
shown in Fig. 2. It can be seen that all the agents’ physical states,
positions and velocities, are capable of tracking 1

20

∑20
j=1 x

r
j

and 1
20

∑20
j=1 v

r
j , respectively. The number of triggering time

instants for each agent is presented in Fig. 3. In this simulation,
we use a fixed-step solver to solve the system, and the fixed-
step size is 10−5. In the 10-s simulation time, agents 1–20 are
triggered 3.69%, 3.80%, 3.84%, 3.93%, 3.91%, 4.03%, 3.99%,

Fig. 1. Using algorithm (3)–(5) for (1), 20 agents’ position and velocity
trajectories. The black lines denote the average of the reference signals
and their velocities. The rest are the position and velocity trajectories of
these 20 agents.

Fig. 2. Using algorithm (13)–(15) for (1), 20 agents’ position and
velocity trajectories.

Fig. 3. Number of triggering time instants of the agents while using
algorithm (13)–(15) for (1). The black line denotes the total number
of triggering time instants. The rest are the number of triggering time
instants for these 20 agents.
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4.08%, 4.02%, 3.90%, 4.09%, 3.78%, 4.02%, 3.79%, 3.85%,
3.68%, 3.49%, 3.27%, 3.34%, and 3.72% of times. Therefore,
the proposed distributed average tracking algorithm (13)–(15)
avoids continuous communication.

VI. CONCLUSION

This article investigated the distributed average tracking prob-
lem for double-integrator agents without velocity measurements
under event-triggered communication. First, a base algorithm
was proposed, which removed the dependence of the design
parameters’ lower bounds on global information. Built on the
base algorithm, an event-triggered distributed average tracking
algorithm was designed to remove the continuous communica-
tion requirement. The event-triggered algorithm was developed
with a new adaptation law and a new triggering condition, which
overcame several practical limitations. In addition, a continuous
nonlinear function was used approximate the signum function
to reduce the chattering phenomenon in reality. Finally, several
examples were provided to illustrate the results in this article.
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