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Abstract—This article studies a generalized Nash equi-
librium problem with coupling equality constraints and lo-
cal action sets, where the cost function of each player has
a general form that depends on the actions of other players
in this game. In the case that the players cannot directly use
the others’ actions, all players are allowed to estimate their
opponents’ actions by communicating with their neighbors
over a digraph. In this regard, continuous-time coordination
dynamics are proposed for two kinds of directed commu-
nication topologies including weight-balanced and weight-
unbalanced digraphs. When the pseudogradient is strongly
monotone and Lipschitz continuous as well as the extended
pseudogradient is Lipschitz continuous, it is theoretically
shown that the proposed dynamics could solve the general-
ized Nash equilibrium problem with and without local action
sets, respectively. Finally, the obtained theoretical results
are illustrated by numerical simulations.
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I. INTRODUCTION

N
ETWORKED games have gained considerable attention

due to their wide applications in the context of multiagent

networks such as sensor networks [1]; smart grids [2], [3]; and

cloud systems [4]; just to name a few. The objective for a net-

worked game is to find its Nash equilibrium (NE) or generalized

Nash equilibrium (GNE) by designing distributed algorithms,

where an NE (GNE) is referred to as a best response strategy at

which any player does not benefit by deviating its local strategy

unilaterally [5].

Recently, distributed computation on NE (GNE) has been ex-

tensively studied via a variety of NE (GNE)-seeking algorithms.

Roughly speaking, the algorithm design is mainly based on two

types of communication modes among players. One is that with

a communication graph described by an interference graph, each

player’s neighbors in the interference graph are determined by

the number of the other players whose actions influence that

player’s cost function. Typical results within this context can be

found in [6]–[9]. Note that the above-mentioned case would

lead to all-to-all communication interactions among players,

especially when each player’s local cost function depends on

all the other opponents’ actions. However, requiring a complete

communication graph is restrictive and impractical in large-scale

systems, as pointed out in [10]. To overcome this limitation,

a general undirected and connected communication graph was

considered in [10]–[14], [18], [20], and [21]. In this case, since

players cannot fully obtain the other opponents’ actions, each

player is allowed to have an additional variable for estimating

the others’ actions by exchanging the estimate information with

its neighbors. By using this mechanism, discrete-time algo-

rithms based on gossip and inexact alternating direction method

of multipliers-type were proposed for solving the NE (GNE)

problems [10]–[14]. On the other hand, due to the effective

analysis tool provided by continuous-time control techniques

in multiagent systems [15]–[17], continuous-time distributed

algorithms were constructed, such as a consensus approach [18],

an integration of dynamic average consensus protocol and

gradient-play [19], and a passivity control approach [20], [21].

As a specific form of a general game, aggregative games were

investigated in [22]–[27].

Except for the previous results on undirected graphs, dis-

tributed NE (GNE) problems over directed communication
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graphs were studied in [28]–[33]. The two-player zero game was

addressed in [28] and [29] by continuous-time and discrete-time

algorithms, respectively. In [30], an unconstrained multiagent

game was investigated via a continuous-time distributed seeking

algorithm. In [31], asynchronous gossip-based algorithms were

presented for tackling networked games with local action sets.

Moreover, the aggregative games over weight-balanced digraphs

were solved in [32] and [33].

It can be found that the study on the GNE problems over

digraphs focuses mainly on the aggregative games with coupling

constraints, where each player uses its estimate of the aggregate

of players’ actions to update its action [32], [33]. However, for

a general game, it is hard to complete the updates to players’

actions by the aggregate of players’ actions, as shown in [10].

Although a general type of game model without and with local

action sets over directed communication topologies was, respec-

tively, studied in [30] and [31], the proposed algorithms cannot

be directly applied to the case with affine constraints that couple

the players’ actions.

This article focuses on a GNE problem subject to coupling

equality constraints and local action sets over digraphs, and the

aim is to design continuous-time coordination dynamics to find

a GNE of the game. In this regard, continuous-time coordination

dynamics with projection operation are designed over a weight-

balanced digraph. When the communication topology is weight-

unbalanced, the estimation protocol of the left eigenvector [34]

is incorporated into the proposed dynamics to solve the case

without local action sets, where the estimation protocol is used

to neutralize the weight-unbalanced information. In comparison

to the existing works, the main contributions of this article are

listed as follows.

1) Similar to the estimation mechanism given in [20] and

[21], each player estimates all the other players’ actions

and exchanges its own estimation information with its

neighbors in the present coordination dynamics. This

protects the players’ actions from leaking to other players,

unlike the literature [7]–[9] in which each player can

access to all players’ actions related to its cost function.

2) The present coordination dynamics are able to solve a

general type of game model over digraphs compared

to the aggregative game models studied in [24]–[27],

[32], and [33]. Also, they can deal with the case with

coupling equality constraints over digraphs, while this

is not directly solved by those techniques given in [30]

and [31]. It should be pointed out that the proposed

projection algorithm is an upper semicontinuous system

in comparison to the algorithms reported in [20], [21], and

[33] that are related to the tangent cones of local action

sets.

3) The convergence of the proposed coordination dynamics

is analyzed in detail by using the properties associated

with the projection operation and the Lyapunov stability

theory. In particular, it proved the exponential conver-

gence of the proposed coordination dynamics without

projection operation.

The remainder of this article is described as follows. Some

preliminaries and game formulation are given in Section II.

Continuous-time coordination dynamics for solving a GNE

problem over digraphs are presented and analyzed in Section III.

Theoretical results are illustrated by numerical simulations in

Section IV. Section V concludes this article and suggests the

future work.

II. PRELIMINARIES AND GAME FORMULATION

Notations: Let Rn, Rp×q, and ‖ · ‖ denote the set of n-

dimensional real vectors, the set of p× q dimensional real

matrixes, and Euclidean norm, respectively. Let In and 1n ∈ Rn

represent the identity matrix and the vector with each element

equal to 1, respectively. Let 0 denote a column vector with all

entries being zeros, whose dimension depends on the context

in which it is used. Let V = {1, 2, . . ., N} be an index set.

col(x1, x2, . . . , xN ) represents a stacked column vector in the

form of (xT
1 , x

T
2 , . . . , x

T
N )T . Let diag(a1, a2, . . . , an) denote a

diagonal matrix, where ai is its diagonal element. For a square

matrix A, λmin(A) and λmax(A) denote the largest and the

smallest eigenvalues of A, respectively. B ⊗ C denotes the

Kronecker product of matrices B and C. Given a nonempty

closed convex set K, the normal cone to K at x ∈ K is

NK(x) = {u ∈ Rn : uT (y − x) ≤ 0 ∀y ∈ K} and PK(x) =
argminy∈K ‖x− y‖ denotes the projection of a vector x ∈ Rn

on K. It is well known that PK is nonexpansive. That is, it holds

that ‖PK(x)− PK(y)‖ ≤ ‖x− y‖ for any x, y ∈ Rn.

A. Monotone Operators and Projection Properties

The following concepts can be referred to [35]. Let F :
D ⊂ Rn → Rn be a vector-valued function. F is mono-

tone if (x− y)T (F (x)− F (y)) ≥ 0 for all x, y ∈ D, and

strictly monotone if the strict inequality holds whenever x 
=
y. F is m−strongly monotone if (x− y)T (F (x)− F (y)) ≥
m‖x− y‖2 for all x, y ∈ D. F is M−Lipschitz continuous if

‖F (x)− F (y)‖ ≤ M‖x− y‖ for all x, y ∈ D.

Lemma 1: (see [36] and [37]) Let K ⊂ Rn be a nonempty

closed convex set. For any x, y ∈ Rn, define V : Rn → R as

follows:

V (x, y) =
1

2
(‖x− PK(y)‖2 − ‖x− PK(x)‖2).

Then, V (x, y) satisfy the following statements.
� (x− z)T (PK(x)− PK(z)) ≥ ‖PK(x)− PK(z)‖2
∀x, y ∈ Rn.

� V (x, y) ≥ 1
2‖PK(x)− PK(y)‖2.

� V (x, y) is continuously differentiable with respect to x
and its gradient is ∇xV (x, y) = PK(x)− PK(y).

B. Grapy Theory

Let a digraph G = (V, E) denote the information exchange

among players, where V is the player set and E ⊂ V × V is the

edge set. An edge eij ∈ E indicates that player i can receive

information from its neighbor player j. The weighted adjacency

matrix A = (aij)N×N associated with graph G is defined as

aij > 0 if eij ∈ E , and aij = 0, otherwise. Moreover, aii = 0,

i ∈ V . A directed path from player i to player j is composed

of a sequence of edges in the form (i, i1), (i1, i2), . . ., (ik, j).
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A digraph is strongly connected if there exists a di-

rected path between any pair of distinct players. The in-

neighbors and out-neighbors of player i are denoted as N in
i =

{j|aij > 0} andN out
i = {j|aji > 0}, respectively. Correspond-

ingly, the in-degree and out-degree are din
i =

∑

j∈N in
i
aij and

dout
i =

∑

j∈N out
i
aji. The Laplacian matrix LN = (lij)N×N cor-

responding to graph G is defined by LN = Din −A, where

Din = diag(din
1 , d

in
2 , . . ., d

in
N ). A digraph is weight-balanced if

and only if din
i = dout

i for all i ∈ V . Equivalently, 1TNLN = 0.

Lemma 2: (see [15] and [16]) Assume that graphG is strongly

connected with the Laplacian matrix LN . Then:
� there is a positive left eigenvector ξ = (ξ1, ξ2, . . ., ξN )T

associated with the zero eigenvalue such that ξTLN = 0
T

and
∑N

i=1 ξi = 1.

� min1T
N
x=0 x

T L̄x ≥ λ2(L̄)‖x‖2, where L̄ =
ΞLN+LT

NΞ

2

with Ξ = diag(ξ1, ξ2, . . . , ξN ) and λ2(L̄) is of the second

smallest eigenvalue of L̄.
� limt→∞ e−LN t = 1NξT .

C. Game Formulation

Consider a noncooperative game with N players. In this

game, each player i ∈ V has its own local action set Ωi ⊂ Rni .

Besides, all players share a coupling constraint
∑N

i=1 Bixi =
∑N

i=1 bi, where xi ∈ Ωi, Bi ∈ Rm×ni , and bi ∈ Rm. The aim

of player i is to choose its action xi from its feasible ac-

tion set Xi(x−i) = {xi ∈ Ωi|(xi, x−i) ∈ Ω ∩X} to minimize

its cost function fi(xi, x−i), given the other players’ action

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xN ), where Ω =
∏N

i=1 Ωi

and X = {x ∈ Rn|Bx = b}. The considered noncooperative

game problem can be mathematically described as follows:

min fi(xi, x−i), s.t. xi ∈ Xi(x−i). (1)

Let n =
∑N

i=1 ni, B = [B1, B2, . . . , BN ], b =
∑N

i=1 bi, and

x = col(x1, x2, . . . , xN ) ∈ Rn. The strategy set of all players is

denoted as Ω ∩X . A strategy profile x∗ = col(x∗
1, x

∗
2, . . . , x

∗
N )

is called a GNE of the game (1) if for any i ∈ V ,

fi(xi, x
∗
−i) ≥ fi(x

∗
i , x

∗
−i) ∀xi ∈ Xi(x

∗
−i). (2)

Assumption 1: For each i ∈ V , the setΩi is convex, compact,

and for each fixed x−i, the local cost function fi(xi, x−i) is

continuously differentiable and convex with regard to xi.

Assumption 2: There exists an interior point x̄ ∈ Ω such that

X is nonempty.

Remark 1: Assumptions 1 and 2 ensure the existence of a

GNE of game (1).

For each i ∈ V , let ∇ifi(xi, x−i) denote the gra-

dient of the cost function fi(xi, x−i) with respect

to the action xi. Then, F (x) = col(∇1f1(x1, x−1),
∇2f2(x2, x−2), . . . ,∇NfN (xN , x−N )) is called the

pseudogradient [38]. From [38, Th. 3.9], it follows that if

x∗ ∈ Ω ∩X is a solution of the following variational inequality:

(x− x∗)TF (x∗) ≥ 0 ∀x ∈ Ω, Bx = b (3)

thenx∗ is a GNE of game (1). Actually, the variational inequality

(3) is equivalent to the following optimization problem:

min
x

xTF (x∗), s.t. x ∈ Ω, Bx = b. (4)

By [39, Th. 3.3], it is derived that the optimal conditions of (4)

satisfy

0 ∈ F (x∗) +BT
λ
∗ +NΩ(x

∗), Bx∗ = b. (5)

The above-mentioned statements are formally characterized as

follows.

Lemma 3: [38] With Assumptions 1 and 2, if x∗ is a solution

of the variational inequality (3), then x∗ is a GNE of game (1)

and there exists a λ
∗ ∈ Rm such that x∗ and λ

∗ satisfy (5).

Next, a mild assumption is made for the pseudogradient F (x)
[7], [8], [18], [20], [21], which ensures the uniqueness of the

GNE problem (1).

Assumption 3: The pseudogradient F : Ω → Rn is

m−strong monotone and M−Lipschitz continuous.

Throughout this article, (1) is thought of as a multiagent

game, where each player (agent) i only knows its own cost

function fi and could not fully observe the others’ actions. Since

each fi depends on all players’ actions, to be able to find the

GNE of game (1), it is necessary to assume that players are

willing to collaborate with their neighbors. The collaboration

means that the players exchange their estimates of all others’

actions with their individual neighbors, where the information

exchange among players is described by a digraph, as shown in

the following assumption.

Assumption 4: The information exchange among players is

a strongly connected digraph.

III. GNE SEEKING VIA CONTINUOUS-TIME

COORDINATION DYNAMICS

A. GNE Seeking Over a Weight-Balanced Digraph

This section first presents a class of continuous-time coordi-

nation dynamics for solving game (1) over a weight-balanced

digraph. In this case, for each i ∈ V , player i carries out the

following GNE seeking strategy:

ẇi
i = −wi

i + yii −∇fi(y
i
i , y

i
−i)− ε

∑

j∈N in
i

aij(y
i
i − yji )

−BT
i λi, yii = PΩi

(wi
i)

ẏi−i = −ε
∑

j∈N in
i

aij(y
i
−i − yj−i)

λ̇i = Biy
i
i − bi − a

∑

j∈N in
i

aij(λi − λj)− zi

żi = a
∑

j∈N in
i

aij(λi − λj) (6)

where yii = xi denotes player i’s own action that is viewed as

the output of (6) and is equal to the projection of the auxiliary

variable wi
i on Ωi, y

i
j represents player i’s estimate of player j’s

action, yi−i denotes player i’s estimate of all the others’ actions,
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λi is player i’s estimate of the global multiplier associated with

Bx = b, zi is an auxiliary variable of player i, and ε > 0 and

a > 0 are tuning parameters.

Remark 2: In (6), the design of ẇi
i is based on player is

pseudogradient dynamics that is integrated into a projection

output feedback mechanism. Meanwhile, player i updates yi−i

by using the received information from its neighbors so that all

estimates reach consensus (see, ẏi−i). The updates of λi and zi
are designed via a decomposition of Bx = b, where λi is used

to estimate the global multiplier in a distributed way with the

help of the auxiliary variable zii .
Remark 3: Actually, the projection operation PΩ(·) [39] and

the differential projection operation PTΩ
(·) [40], [41], in theory,

can deal with the case with convex constraint set Ω. Note

that the algorithms based on differential projection operation

are not upper-semicontinuous at the boundary of Ω [20], [21],

[33]. To avoid the discontinuity of PTΩ
(·) at the boundary of

Ω, it is preferred to choose PΩ(·) to deal with the boundary

of Ω.

For notational brevity, let λ = col(λ1, λ2,. . ., λN )
∈ RNm, z = col(z1, z2, . . . , zN ) ∈ RNm, y =
col(y1, y2, . . . , yN ) ∈ RNn with yi � (yii , y

i
−i) =

col(yi1, y
i
2, . . . , y

i
N ) ∈ Rn, R = diag(R1,R2, . . . ,RN )∈

Rn×Nn with Ri=(0ni×
∑

j<i nj
Ini

0ni×
∑

j>i nj ) ∈ Rni×n,

S = diag(S1,S2, . . . ,SN ) ∈ R(Nn−n)×Nn with Si =
(

I∑
j<i nj×

∑
j<i nj

0∑
j<i nj×ni

0∑
j<i nj×

∑
j>i nj

0∑
j>i nj×

∑
j<i nj

0∑
j>i nj×ni

I∑
j>i nj×

∑
j>i nj

)

∈

R(n−ni)×n, B = diag(B1, B2, . . . , BN ) ∈
RNm×n, b = col(b1, b2, . . . , bN ) ∈ RNm, F (y) =
col(∇1f1(y

1
1 , y

1
−1),∇2f2(y

2
2 , y

2
−2), . . . ,∇NfN (yNN , yN−N )) ∈

Rn, Ω =
∏N

i=1 Ωi ∈ RNn with Ωi = Rn1 ×Rn2 ×
· · · ×Rni−1 × Ωi ×Rni+1 × · · · ×RnN ∈ Rn, w =
col(w1, w2, . . . , wN ) ∈ RNn, where wi � (wi

i, w
i
−i) =

col(wi
1, w

i
2, . . . , w

i
N ) ∈ Rn with wi

−i = yi−i.

In terms of the definitions of w, y, λ, z, F (y), Ω, B, b, and

R, (6) is equivalent to

ẇ = −w + y −RTF (y)− ε(LN ⊗ In)y −RTBT
λ

λ̇ = BRy − b− a(LN ⊗ Im)λ − z

ż = a(LN ⊗ Im)λ, y = PΩ(w) (7)

where LN is defined in Lemma 2.

Lemma 4: Suppose that Assumptions 1–4 hold,

1TNLN = 0
T and the initial value z(0) satisfies

∑N
i=1 zi(0) =

0. Let col(w∗,λ∗, z∗) be an equilibrium point of (7) with

y∗ = PΩ(w
∗). Then, y∗ = 1N ⊗ x∗, where x∗ is the GNE of

game (1).

Proof: According to the definition of col(w∗,λ∗, z∗), one gets

y∗ −RTF (y∗)− ε(LN ⊗ In)y
∗ −RTBT

λ
∗ = w∗ (8)

BRy∗ − b− a(LN ⊗ Im)λ∗ − z∗ = 0 (9)

(LN ⊗ Im)λ∗ = 0. (10)

The above-mentioned equation means that λ
∗ = 1N ⊗ λ

∗ with

λ
∗ ∈ Rm. With

∑N
i=1 zi(0) = 0 and Ry∗ = x∗, we can ob-

tain that Bx∗ = b, by left multiplying (9) by 1TN ⊗ Im. Note

that SRT = 0, RRT = In, Sy = col(y1−1, y
2
−2, . . . , y

N
−N ),

Sw = col(w1
−1, w

2
−2, . . . , w

N
−N ), and wi

−i = yi−i, ∀i ∈ V . Thus,

the following facts hold:

S(LN ⊗ In)y
∗ = 0 (11)

Ry∗ − F (y∗)− εR(LN ⊗ In)y
∗ −BT

λ
∗ = Rw∗. (12)

Applying the similar analysis given in [20] and [21]

yields (LN ⊗ In)y
∗ = 0, which indicates that all (yi)∗,

i ∈ V reach consensus. Together with (yii)
∗ = x∗

i ,

we have y∗ = 1N ⊗ x∗. By substituting Ry∗ = x∗,
Rw∗ = col((w1

1)
∗, (w2

2)
∗, . . . , (wN

N )∗), F (y∗) = F (1N ⊗
x∗) = F (x∗), PΩ(Rw∗) = x∗, and λ

∗ = 1N ⊗ λ
∗ into (12),

we get PΩ(x
∗ − F (x∗)−BT

λ
∗) = x∗, which is equivalent to

0 ∈ F (x∗) +BT
λ
∗ +NΩ(x

∗) by [40]. In other words, x∗ and

λ
∗ satisfy (5). This shows that x∗ is the GNE of game (1) by

Lemma 3. �

An additional assumption for F (y) used in [20] and [21] is

given below.

Assumption 5: The extended pseudogradient F is c-
Lipschitz continuous on Ω.

Remark 4: As shown in [20] and [21], F can be viewed

an extension of the pseudogradient F . Correspondingly,

Assumption 5 extends the Lipschitz continuity of F to

F . In fact, Assumption 5 plays a key role in ensuring

the existence and uniqueness of the solutions to (7).

Specifically, from y = PΩ(w), it follows that y′ = PΩ(w
′)

and y′′ = PΩ(w
′′) for any w′ ∈ RNn and w′′ ∈ RNn. Using

Assumption 5 and the nonexpansive property of PΩ to

yield ‖F ((PΩ(w
′))− F ((PΩ(w

′′))‖ = ‖F (y′)− F (y′′)‖ ≤
c‖y′ − y′′‖ = c‖PΩ(w

′)− PΩ(w
′′)‖ ≤ c‖w′ −w′′‖. Thus,

one can obtain that the composite mappingF (PΩ) is c-Lipschitz

continuous on RNn. Denote the left-hand and the right-hand

sides of (7) as col(ẇ, λ̇, ż) and Ψ(w,λ, z), respectively. Then,

(7) can be read as col(ẇ, λ̇, ż) = Ψ(w,λ, z). It is not difficult

to find that Ψ is Lipschitz continuous on RNn ×RNm ×RNm.

As a result, it follows that the existence and the uniqueness of

the solutions to (7) can be guaranteed by [42, Th. 3.2]. Also,

Assumptions 3 and 5 are two key conditions in ensuring the

convergence of the proposed GNE seeking strategies as shall be

seen in Appendix A.

Theorem 1: Suppose that Assumptions 1–5 hold, 1TN
LN = 0

T and the initial value z(0) satisfies
∑N

i=1 zi(0) = 0.

Let a and ε satisfy the following inequalities:

ε >
4mc+ (M + c)2

4mλ2(L̃)
, a >

(κ+ 1)2

κλ2(L̃)
(13)

where L̃ = (LN + LT
N )/2, κ > { ‖B‖2

λmin(Q) − 1, 0}, λ2(L̃) is the

second smallest eigenvalue of L̃ and

Q =

⎛

⎜

⎝

λ2(L̃)ε− c −M + c

2
√
N

−M + c

2
√
N

m

N

⎞

⎟

⎠

is a positive definite matrix. Then, the trajectory

col(w(t),λ(t), z(t)) of system (7) is bounded and y(t)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 02,2022 at 00:30:36 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: GENERALIZED NASH EQUILIBRIUM SEEKING VIA CONTINUOUS-TIME COORDINATION DYNAMICS OVER DIGRAPHS 1027

converges asymptotically to 1N ⊗ x∗, where x∗ is the GNE of

game (1).

Proof: The proof is given in Appendix A. �

B. GNE Seeking Over a Weight-Unbalanced Digraph

It can be seen that the GNE seeking strategy (6) is based on

a weight-balanced digraph among players. As shown in [31],

the weight-unbalanced communication is ubiquitous in reality

such as sensor networks. To solve the GNE problem (1) under a

weight-unbalanced digraph and facilitate the subsequent analy-

sis, it is assumed that Ωi = Rni for any i ∈ N . In this case, for

each i ∈ N , player i runs the following GNE seeking strategy:

ẏii = −(µi
i)

−1∇fi(y
i
i , y

i
−i)− ε

∑

j∈N in
i

aij(y
i
i − yji )

− (µi
i)

−1BT
i λi

ẏi−i = −ε
∑

j∈N in
i

aij(y
i
−i − yj−i)

λ̇i = (µi
i)

−1(Biy
i
i − bi)− a

∑

j∈N in
i

aij(λi − λj)− zi

żi = a
∑

j∈N in
i

aij(λi − λj)

µ̇i = −
∑

j∈N in
i

aij(µi − µj) (14)

where µi = (µ1
i , µ

2
i , . . . , µ

N
i ) ∈ RN .

Remark 5: The design of the dynamics (14) is based on

the integration of the consensus protocol µ̇i [34] and the dy-

namics (6) with Ωi = Rni . In comparison to the push-sum

mechanism [43], [44], the present distributed setting based on

the Laplacian matrix with a zero row sum is more practical in

broadcast-based communications, as shown in [34] and [45].

Instead, there still needs a matrix with a zero column sum like the

Laplacian matrix with a zero column sum given in the push-sum

mechanism [44]. To be specific, in (14), µi is used to estimate

the left eigenvector ξ, and its ith component µi
i is used in λ̇i and

ẏii . As seen in the subsequent proof given in Lemma 5, the use

of µi
i is to ensure a balance matrix ΞLN such that its balance

is utilized to obtain the optimal conditions of (4) with Ω = Rn

at the steady state of system (15), where a key property is that

the matrix ΞLN satisfies a zero column sum. Here, it should be

emphasized that an estimation way is used to obtain such a matrix

with a zero column sum instead of requiring that the Laplacian

matrix satisfies a zero column sum by using the out-degrees or

controlling the outgoing weights.

Letµ = col(µ1, µ2, . . . , µN ) andE = diag(µ1
1, µ

2
2, . . . , µ

N
N ).

With y, λ, z, F (y), µ, E, B, b, and R, (14) becomes

ẏ = −(E−1 ⊗ In)RTF (y)− ε(LN ⊗ In)y

− (E−1 ⊗ In)RTBT
λ

λ̇ = (E−1 ⊗ Im)(BRy − b)− a(LN ⊗ Im)λ − z

ż = a(LN ⊗ Im)λ

µ̇ = −(LN ⊗ IN )µ. (15)

Remark 6: With Assumption 4 and the initial value µ(0) sat-

isfying µi
i(0) = 1 and µj

i (0) = 0, j 
= i, i, j ∈ V , the existence

of E−1 is guaranteed as shown in [34].

Lemma 5: Suppose that Assumptions 1–4 hold, the initial

values z(0) and µ(0) satisfy
∑N

i=1 ξizi(0) = 0, and µi
i(0) = 1

and µj
i (0) = 0, j 
= i, i, j ∈ V , respectively. Let col(ỹ, λ̃, z̃, µ̃)

be an equilibrium point of system (15). Then, ỹ = 1N ⊗ x̃,

where x̃ is the GNE of the relaxed game (1) with Ω = Rn.

Proof: Note that µ(t) = e−(LN⊗IN )tµ(0) and

limt→∞ e−LN t = 1NξT . With the definition of the initial value

µ(0), it holds that limt→∞ µ(t) = 1N ⊗ ξ and limt→∞ E(t) =
Ξ, where Ξ is defined in Lemma 2. Then, ỹ, λ̃, and z̃ satisfy

RTF (ỹ) + ε(ΞLN ⊗ In)ỹ +RTBT
λ̃ = 0 (16)

BRỹ − b− a(ΞLN ⊗ Im)λ̃ − (Ξ⊗ In)z̃ = 0 (17)

(LN ⊗ Im)λ̃ = 0. (18)

Following the analysis similar to the proof of Lemma 4, it

is concluded that ỹ = 1N ⊗ x̃, λ̃ = 1N ⊗ λ̃, and F (x̃) +
BT

λ̃ = 0, Bx̃ = b. This implies that x̃ is the GNE point of the

relaxed game (1) with Ω = Rn. �

Theorem 2: Suppose that Assumptions 1–5 hold and all Bi,

i ∈ V are row full rank. Let the initial values z(0) and µ(0)

satisfy
∑N

i=1 ξizi(0) = 0, and µi
i(0) = 1 and µj

i (0) = 0, j 
= i,
i, j ∈ V , respectively. Let a and ε satisfy the following inequal-

ities:

ε >
4mc+ (M + c)2

4mλ2(L̄)
, a >

(θ + 1)2

θλ2(L̄)
(19)

where θ > {0, ‖B‖2
ξminλmin(Q̄)

− 1}, ξmin = min{ξ1, ξ2, . . . , ξN},

λ2(L̄) is defined in Lemma 2, and

Q̄ =

(

λ2(L̄)ε− c −M+c

2
√
N

−M+c

2
√
N

m
N

)

is a positive definite matrix. Then, the trajectory

col(y(t),λ(t), z(t)) generated by system (15) converges

exponentially to the point col(ỹ, λ̃, z̃) defined in Lemma 5.

Remark 7: The proposed coordination dynamics (7) and (15)

adopt the same estimation mechanism in dealing with the actions

of other players as in [20] and [21]. In comparison to [20] and

[21], the present dynamics provide a new insight in addressing

directed communication graphs and affine equality constraints.

Remark 8: In Theorems 1 and 2, the parameters ε and a are

used to guarantee the convergence of the proposed dynamics. It

can be found that the lower bounds of ε and a depend on the

global information of the concerned communication graph, and

the global constants associated with the strong monotonicity and

the Lipschitz continuity. Some distributed schemes [17], [46]

for estimating those global information can be adopted before

running (7) and (15).

IV. SIMULATION RESULTS

In this section, the proposed dynamics are executed to solve

two GNE seeking problems.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 02,2022 at 00:30:36 UTC from IEEE Xplore.  Restrictions apply. 



1028 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 2, JUNE 2021

Fig. 1. Underlying communication topologies. (a) Balanced digraph.
(b) Unbalanced digraph.

Fig. 2. (a) GNE of Example 1 by executing system (7). (b) Profiles of
the trajectory col(w,λ,z) with respect to time t.

Example 1: Consider a five-player aggregative game prob-

lem [27] over a strongly connected digraph. In this game, the cost

function of player i ∈ {1, 2, . . . , 5} is given by fi(xi, x−i) =
(xi − di)

2+p(x)xi+5xi, where d1 = 50, d2 = 55, d3 = 60,

d4 = 65, d5 = 70, and p(x) = 0.04
∑5

i=1 xi. The local ac-

tion sets and the shared equality constraint are Ω1 = [45, 55],
Ω2 = [44, 66], Ω3 = [46, 72], Ω4 = [52, 78], Ω5 = [56, 84], and
∑5

i=1 xi =
∑5

i=1 bi with b1 = 45, b2 = 50, b3 = 55, b4 = 60,

and b5 = 65.

Under the balanced digraph Fig. 1(a), by executing (7), it can

be found that for all i ∈ 1, 2, . . . , 5, yi converge to the GNE

of Example 1, as shown in Fig. 2(a), which is consistent with

Fig. 3. (a) GNE of the relaxed Example 1 by executing system (15).
(b) Evolution of col(y, ‖λ,z)− col(ỹ, λ̃, z̃)‖ with respect to time t.

Fig. 4. (a) GNE of Example 2 by executing system (7). (b) Profiles of
the trajectory col(w,λ,z) with respect to time t.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 02,2022 at 00:30:36 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: GENERALIZED NASH EQUILIBRIUM SEEKING VIA CONTINUOUS-TIME COORDINATION DYNAMICS OVER DIGRAPHS 1029

Fig. 5. (a) GNE of the relaxed Example 2 by executing system (15).
(b) Evolution of ‖col(y,λ,z)− col(ỹ, λ̃, z̃)‖ with respect to time t.

the result given in [27]. Correspondingly, Fig. 2(b) shows the

boundedness of the trajectory col(w,λ, z). By implementing

(15) under the unbalanced digraph Fig. 1(b), the GNE of the

relaxed Example 1 without Ωi is illustrated in Fig. 3(a). Mean-

while, Fig. 3(b) shows the fact that the trajectory col(y,λ, z)
tends to its convergent point exponentially fast.

Example 2: Consider a five-player nonaggregative game

problem over a directed strongly connected graph. The cost

functions of these five players are, respectively,

f1(x1, x−1) = x3
1 − 3x1x2,

f2(x2, x−2) = (−2x1 + 4x2 +
1

2
x4 + x5)

2 − 48x2,

f3(x3, x−3) = (x1 + 4x3 − x4 − x5)
2,

f4(x4, x−4) = (2x1 + 4x3 + 8x4 − x5)
2, and

f5(x5, x−5) = (x1 + 4x3 + 8x4 + 17x5)
2.

Additionally, the local action sets Ωi = [0, 10],
i ∈ {1, 2, . . . , 5}, and the shared equality constraint
∑N

i=1 xi =
∑N

i=1 bi for this game are imposed, where

col(b1, b2, . . . , b5)
T = (5, 8, 3, 6, 6)T .

From Fig. 4, it can be seen that all trajectories yi, i ∈
1, 2, . . . , 5, converge to the GNE of Example 2 and the trajectory

col(w,λ, z) is bounded by running (7) under the balanced

digraph Fig. 1(a). Fig. 5 gives the simulation results on the

relaxed Example 2 with Ωi = R by implementing (15) under

the unbalanced digraph Fig. 1(b), where the GNE of the relaxed

Example 2 and the exponential convergence of the trajectory

col(y,λ, z) are shown. These simulations verify the effective-

ness of the proposed GNE seeking dynamics.

V. CONCLUSION

This article has investigated the GNE seeking problem subject

to linear equality constraints and local action sets. By allowing

each player to estimate its opponents’ actions on a directed

communication topology, we established the corresponding co-

ordinated GNE seeking dynamics for the game problem and its

relaxed case without local action sets, respectively, for weight-

balanced and weight-unbalanced digraphs. By virtue of stability

theory from nonlinear systems, we showed the convergence

of the proposed dynamics with the strong monotonicity and

Lipschitz continuity of the pseudogradient as well as the Lips-

chitz continuity of the extended pseudogradient. The simulations

illustrated the validity of the proposed dynamics.

Note that when the communication topology is weight-

unbalanced, this article is mainly devoted to studying the GNE

problem with linear equality constraints but without local action

sets. At present, there is still a certain challenge in terms of

convergence analysis for the case with local action sets over

weight-unbalanced digraphs, which is worthy of further study.

APPENDIX A
PROOF OF THEOREM 1

Proof. To analyze the convergence of system (7), construct

the following Lyapunov function:

V =
κ+ 1

2

(

‖w − PΩ(w
∗)‖2 − ‖w − PΩ(w)‖2

)

+
κ

2
‖λ − λ

∗‖2 + 1

2
‖λ − λ

∗ + z − z∗‖2

where col(w∗,λ∗, z∗) and κ are defined in Lemma 4 and Theo-

rem 1, respectively. From Lemma 1, it follows that

V ≥ κ+ 1

2
‖y−y∗‖2+κ

2
‖λ−λ

∗‖2+1

2
‖λ−λ

∗+z−z∗‖2 ≥ 0

and ∇wV = (κ+ 1)(y − y∗). It is clear that ∇λV = κ(λ −
λ
∗) + (λ − λ

∗ + z − z∗) and

∇zV = λ − λ
∗ + z − z∗.

Then, the derivative of V along with system (7) is

V̇ = (κ+1)(y−y∗)T
(

−w+y−RTF (y)−RTBT
λ−ε

(LN⊗In)y)+κ(λ−λ
∗)T (BRy−b−z−a(LN⊗Im)λ)

+ (λ−λ
∗+z−z∗)T (BRy−b−z)

= (κ+ 1)v1 + (κ+ 1)v2 + ε(κ+ 1)v3 + κav4

+ (κ+ 1)v5+ v6 − ‖z − z∗‖2

where

v1 = −(y − y∗)T (w −w∗) + ‖y − y∗‖2

v2 = −(y − y∗)TRT (F (y)− F (y∗))

v3 = −(y − y∗)T (LN ⊗ In)(y − y∗)
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v4 = −(λ − λ
∗)T (LN ⊗ Im)(λ − λ

∗)

v5 = −(λ − λ
∗)T (z − z∗)

v6 = (z − z∗)TBR(y − y∗).

From Lemma 1, we arrive at v1 ≤ 0. In fact, we can make

the following orthogonal decomposition for y and λ, namely,

y = ȳ + y⊥ and λ = λ̄ + λ
⊥, where ȳ = 1N ⊗ ȳ with ȳ ∈

Rn, ȳTy⊥ = 0, λ̄ = 1N ⊗ λ̄ with λ̄ ∈ Rm and λ̄
T
λ
⊥ = 0.

Note that F (ȳ)− F (y∗) = F (ȳ)− F (x∗) and R(ȳ − y∗) =
ȳ − x∗. Then,

v2 = −(ȳ−y∗)TRT (F (y)−F (y∗))−y⊥RT (F (y)−F (y∗))

= −(ȳ−y∗)TRT (F (y)−F (ȳ))−(ȳ−x∗)T (F (ȳ)−F (x∗))

−(y⊥)TRT (F (y)−F (ȳ))−(y⊥)TRT (F (ȳ)−F (x∗))

≤ c‖ȳ−x∗‖‖y⊥‖−m‖ȳ−x∗‖2+c‖y⊥‖2+M‖y⊥‖‖ȳ−x∗‖

= (M+c)‖ȳ−x∗‖‖y⊥‖−m‖ȳ−x∗‖2+c‖y⊥‖2

where the inequalities ‖F (ȳ)− F (x∗)‖ ≤ M‖ȳ − x∗‖,

−(ȳ − x∗)T (F (ȳ)− F (x∗)) ≤ −m‖ȳ − x∗‖2 and

‖F (y)− F (ȳ)‖ ≤ c‖y − ȳ‖ = c‖y⊥‖ that are derived

from Assumptions 3 and 5 are used. According to Lemma 2,

the orthogonal decomposition of λ and 1TNLN = 0, we can

compute that

v3 = −(y⊥)T (LN ⊗ In)y
⊥ ≤ λ2(L̃)‖y⊥‖2

v4 = −(λ⊥)T (LN ⊗ Im)λ⊥ ≤ λ2(L̃)‖λ⊥‖2.
Note that W = {col(y,λ, z)|∑N

i=1 zi(t) =
∑N

i=1 zi(0) = 0}
is a strongly positive invariant set under system (7). Then,

for any col(y,λ, z) ∈ W , v5 = −(λ⊥)T (z − z∗). Furthermore,

(κ+ 1)v5 ≤ (κ+ 1)2‖λ⊥‖2 + 1
4‖z − z∗‖2, where the in-

equality xT y ≤ ‖x‖2 + 1
4‖y‖2 is adopted. Similarly,

v6 ≤ ‖B‖2‖y − y∗‖2 + 1

4
‖z − z∗‖2.

Hence, V̇ is bounded by

V̇ ≤ −(κ+ 1)uTQu+ ‖B‖2‖y − y∗‖2

−
(

κaλ2(L̃)− (κ+ 1)2
)

‖λ⊥‖2 − 1

2
‖z − z∗‖2

where u = (‖y⊥‖, ‖ȳ − y∗‖)T and Q is defined in

Theorem 1. It is obvious that Q is positive definite by

the definition of ε given in (13). Thus, λmin(Q) > 0 and

uTQu ≥ λmin(Q)‖u‖2 = λmin(Q)‖y − y∗‖2. This further

simplifies V̇ as follows:

V̇ ≤ −
(

(κ+ 1)λmin(Q)− ‖B‖2
)

‖y − y∗‖2

−
(

κaλ2(L̃)− (κ+ 1)2
)

‖λ⊥‖2 − 1

2
‖z − z∗‖2.

By invoking (13) and the definition of κ, we have that V̇ ≤ 0.

Since V is radially unbounded with regard to col(y,λ, z), we

conclude that y, λ, and z are bounded. It is easy to verify that

w is also bounded. Let M be the largest invariant set contained

in W ∩ {V̇ = 0}. According to the LaSalle invariance princi-

ple [42], each solution starting in W approaches M as t → ∞.

Clearly, y = y∗ = 1N ⊗ x∗ in M. Therefore, y → 1N ⊗ x∗.�

APPENDIX B
PROOF OF THEOREM 2

Proof: Since each Bi, i ∈ V , is full row rank, (BiB
T
i )

−1 is

well-defined and positive definite. Naturally, (BBT )−
1
2 is also

positive definite. To facilitate the analysis, col(ẏ, λ̇, ż) in system

(15) is rewritten as follows:

col(ẏ, λ̇, ż) = f(y,λ, z) + g(y,λ, z, t) (20)

where

f(y,λ, z) =
⎛

⎝

−(Ξ−1⊗In)RTF (y)−ε(LN⊗In)y−(Ξ−1⊗In)RTBT
λ,

(Ξ−1⊗Im)(BRy−b)−a(LN⊗Im)λ−z,
a(LN⊗Im)λ,

⎞

⎠

and

g(y,λ, z, t) =
⎛

⎝

((Ξ−1−E−1)⊗In)RTF (y)+((Ξ−1−E−1)⊗In)RTBT
λ,

((E−1−Ξ−1)⊗Im)BR(y−b),
0,

⎞

⎠ .

To show the exponential stability of (20) at the point col(ỹ, λ̃, z̃)
defined in Lemma 5, consider the following Lyapunov function

V̄ :

V̄ = V1 + V2

where

V1 =
θ+1

2
(y−ỹ)T (Ξ⊗In)(y−ỹ)+

θ

2
(λ−λ̃)T (Ξ⊗Im)(λ−λ̃)

+
1

2
(λ − λ̃ + z−z̃)T (Ξ⊗Im)(λ − λ̃ + z − z̃)

V2 =
σ

2

(

y − ỹ +RTBT (BBT )−
1
2 (λ − λ̃)

)T

(Ξ⊗In)

(

y − ỹ +RTBT (BBT )−
1
2 (λ−λ̃)

)

with θ > 0 and σ > 0. Then, the derivative of V̄ along system

(20) is

˙̄V = w1 + w2 + w3

where w1 = ( ∂V1

∂col(y,λ,z) )
Tf(y,λ, z), w2 = ( ∂V2

∂col(y,λ,z) )
T

f(y,λ, z), and w3 = ( ∂V̄
∂col(y,λ,z) )

Tg(y,λ, z, t).
It is readily to compute that

w1 ≤ −(θ+1)(y−ỹ)TRT (F (y)−F (ỹ))−ε(θ+1)(y−ỹ)T

(ΞLN ⊗ In)(y−ỹ)−(z−z̃)T (Ξ⊗ Im)(z−z̃)

−θa(λ−λ̃)T (ΞLN ⊗ Im)(λ−λ̃)+(z−z̃)TBR(y−ỹ)

−(θ + 1)(λ−λ̃)T (Ξ⊗ Im)(z−z̃).
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Following similar procedures to those given in the proof of

Theorem 1, w1 is bounded by

w1 ≤ −
(

(θ + 1)λmin(Q̄)−‖B‖2
ξmin

)

‖y−ỹ‖2−1

2
(z−z̃)T

(Ξ⊗ Im)(z−z̃)−
(

θaλ2(L̄)−(θ + 1)2
)

‖λ⊥‖2.

On the other hand, we can derive that w2 satisfies

w2 ≤ −σλmin(Q̄)‖y−ỹ‖2+σ(�1+�2+�3+�4+�5+�6)

−σaλ2(L̄)‖λ⊥‖2−σ(λ−λ
∗)T (BBT )

1
2 (λ−λ

∗)

where

�1 = −a(y−ỹ)T (Ξ⊗In)RTBT (BBT )−
1
2 (LN⊗Im)(λ−λ̃)

= −a(y−ỹ)T (Ξ⊗In)RTBT (BBT )−
1
2 (LN⊗Im)λ⊥

�2 = (y−ỹ)TRTBT (BBT )−
1
2BR(y−ỹ)

�3 = −(y−ỹ)T (Ξ⊗ In)RTBT (BBT )−
1
2 (z−z̃)

�4 = −(λ−λ̃)T (BBT )−
1
2B(F (y)−F (ỹ))

!�5 = −ε(λ−λ̃)T (BBT )−
1
2BR(LN ⊗ In)(y−ỹ)

�6 = −(λ−λ̃)T (Ξ⊗ Im)(z−z̃).

Applying the orthogonal decomposition of λ given in the

proof of Theorem 1 and LN1N = 0 to �1 yields �1 =
−a(y−ỹ)T (Ξ⊗In)RTBT (BBT )−

1
2 (LN⊗Im)λ⊥. For any

two matrixes A ∈ Rp×q and B ∈ Rq×p, [47, Th. 1.3.22] indi-

cates that if the eigenvalues of AB (or BA) are non-negative,

then λmax(AB) = λmax(BA). Note that the positive semidefi-

nite matrix J � BT (BBT )−
1
2 (LNLT

N⊗Im)(BBT )−
1
2B im-

plies that the eigenvalues of J are non-negative. Thus,

λmax(J) = λmax((LNLT
N⊗Im)(BBT )−

1
2BBT (BBT )−

1
2 )

= λmax(LNLT
N⊗Im) = ‖LN‖2.

Then, �1 satisfies

�1 ≤ a2λmax(J)

2
‖y−ỹ‖2 + 1

2
‖λ⊥‖2

=
a2‖LN‖2

2
‖y−ỹ‖2 + 1

2
‖λ⊥‖2.

Similarly, we can derive that

�2 ≤ λmax(B
T (BBT )−

1
2B)‖y−ỹ‖2

=

√

λmax(BBT )‖y−ỹ‖2 = ‖B‖‖y−ỹ‖2

�3 ≤ 1

2ξmin
‖y−ỹ‖2 + 1

2
(z−z̃)T (Ξ⊗ Im)(z−z̃)

�4 ≤ 1

4
(λ−λ̃)T (BBT )

1
2 (λ−λ̃) +

c2
√

λmin(BBT )
‖y−ỹ‖2

�5 ≤ 1

4
(λ−λ̃)T (BBT )

1
2 (λ−λ̃) +

ε2‖LN‖2
√

λmin(BBT )
‖y−ỹ‖2

�6 ≤ 1

2
‖λ⊥‖2 + 1

2
(z−z̃)T (Ξ⊗ Im)(z−z̃)

where ξmin is defined in Theorem 2. Substituting the abovemen-

tioned inequalities into w2 results in

w2≤σ

(

a2‖LN‖2ξmin+1

2ξmin
+‖B‖+ ε2‖LN‖2+c2

√

λmin(BBT )
−λmin(Q̄)

)

×‖y−ỹ‖2−σ(aλ2(L̄)−1)‖λ⊥‖2−σ

2
(λ−λ̃)T

×(BBT )
1
2 (λ−λ̃)+σ(z−z̃)T (Ξ⊗Im)(z−z̃).

Combining w1 and w2, it can be obtained that

w1 + w2 ≤ −ψ1‖y−ỹ‖2−ψ2(z−z̃)T (Ξ⊗Im)(z−z̃)

− ψ3‖λ⊥‖2−σ

2
(λ−λ̃)T (BBT )

1
2 (λ−λ̃)

where ψ1=(θ+1)λmin(Q̄)− ‖B‖2
ξmin

− σ

(

a2‖LN ‖2ξmin+1
2ξmin

+

‖B‖+ ε2‖LN ‖2+c2√
λmin(BBT )

−λmin(Q̄)

)

, ψ2 = 1
2−σ, and ψ3 =

θaλ2(L̄)−(θ + 1)2 + σ(aλ2(L̄)−1).
Let

σ<min

{

1

2
,

(θ+1)λmin(Q̄)− ‖B‖2
ξmin

a2‖LN‖2
2 + 1

2ξmin
+‖B‖+ ε2‖LN ‖2+c2√

λmin(BBT )
−λmin(Q̄)

}

.

According to (19) and the definition of θ and σ, it

follows that ψ1 > 0, ψ2 > 0, and ψ3 > 0. With ψ �

min{ψ1, ψ2ξmin,
σ
2 λmin(BBT )},

w1 + w2 ≤ −ψ‖col(y,λ, z)−col(ỹ, λ̃, z̃)‖2. (21)

Next,w3 is analyzed. In fact, we can verify that there are some

positive constants α1, α2, and α3 such that V̄ and ∂V̄
∂col(y,λ,z)

satisfy

α1‖col(y−ỹ,λ−λ̃, z−z̃)‖2≤V̄≤α2‖col(y−ỹ,λ−λ̃, z−z̃)‖2
∥

∥

∥

∥

∂V̄

∂col(y,λ, z)

∥

∥

∥

∥

≤ α3‖col(y−ỹ,λ−λ̃, z−z̃)‖.

Given µ(0) in Theorem 2, we can find from the proof of

Lemma 5 that µ(t) converges exponentially to 1N ⊗ ξ.

Correspondingly, E−1 converges to Ξ exponentially

fast. Meanwhile, we can verify that there exist β1 > 0
and β2 > 0 such that ‖E−1 − Ξ−1‖ ≤ β1e

−β2t. After

some computations, we have that ‖((Ξ−1 − E−1)⊗
In)RT (F (y)− F (ỹ)) + ((Ξ−1 − E−1)⊗ In)RTBT (λ −
λ̃)‖ ≤

√

2c2 + ‖B‖2β1e
−β2t‖col(y−ỹ,λ−λ̃)‖, ‖((E−1 −

Ξ−1)⊗ Im)BR(y − ỹ)‖ ≤ ‖B‖β1e
−β2t‖y − ỹ‖, ‖((Ξ−1 −

E−1)⊗ In)RT (F (ỹ) +BT
λ̃)‖ ≤ β1e

−β2t‖F (ỹ) +BT
λ̃‖,

and ‖((E−1 − Ξ−1)⊗ Im)BRỹ‖ ≤ ‖B‖β1e
−β2t‖ỹ‖.

Applying the above-mentioned inequalities to ‖g(y,λ, z, t)‖
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leads to

‖g(y,λ, z, t)‖ ≤ d1e
−β2t‖col(y−ỹ,λ−λ̃, z−z̃)‖+d2e

−β2t

where d1 = β1

√

2c2 + ‖B‖2 and d2 = β1‖B‖‖ỹ‖‖F (ỹ) +

BT
λ̃‖. Hence, w3≤

∥

∥

∥

∥

∂V̄
∂col(y,λ,z)

∥

∥

∥

∥

‖g(y,λ, z, t)‖≤α3d1e
−β2t‖

col(y − ỹ,λ − λ̃, z − z̃)‖2 + α3d2e
−β2t‖col(y − ỹ,λ −

λ̃, z − z̃)‖. Combining with w1 + w2 results in

˙̄V ≤ −(ψ − α3d1e
−β2t)‖col(y−ỹ,λ−λ̃, z−z̃)‖2

+α3d2e
−β2t‖col(y−ỹ,λ−λ̃, z−z̃)‖

≤ −
(

ψ

2
−α3d1e

−β2t

)

‖col(y−ỹ,λ−λ̃, z−z̃)‖2

+
α2
3d

2
2

2ψ
e−2β2t≤−

(

ψ

2α2
−α3d1

α1
e−β2t

)

V̄+
α2
3d

2
2

2ψ
e−2β2t.

According to the comparison lemma given in [42], V̄ (t) satisfies

V̄ (t) ≤ d3e
− ψt

2α2 +d4e
− ψt

2α2

∫ t

0

e(
ψ

2α2
−2β2)τdτ (22)

where d3 = e
α3d1
α1β2 V̄ (0) and d4 =

α2
3d

2
2

2ψ e
α3d1
α1β2 . From (22), it fol-

lows that:
{

V̄ (t) ≤ d3e
− ψt

2α2 +d4te
− ψt

2α2 , ψ
2α2

= 2β2,

V̄ (t) ≤ d3e
− ψt

2α2 + 2α2d4

ψ−4α2β2
(e−2β2t−e−

ψt
2α2 ), ψ

2α2

= 2β2.

In either case, we can conclude that V̄ (t) converges exponen-

tially to zero, which implies that the assertion of Theorem 2

holds. �
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[39] A. P. Ruszczyński, Nonlinear Optimization. Boca Raton, FL, USA:
Princeton Univ. Press, 2006.

[40] B. Brogliato, A. Daniilidis, C. Lemarechal, and V. Acary,
“On the equivalence between complementarity systems, pro-
jected systems and differential inclusions,” Syst. Control Lett.,
vol. 55, no. 1, pp. 45–51, 2006.
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