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Abstract—This article studies a generalized Nash equi-
librium problem with coupling equality constraints and lo-
cal action sets, where the cost function of each player has
a general form that depends on the actions of other players
in this game. In the case that the players cannot directly use
the others’ actions, all players are allowed to estimate their
opponents’ actions by communicating with their neighbors
over a digraph. In this regard, continuous-time coordination
dynamics are proposed for two kinds of directed commu-
nication topologies including weight-balanced and weight-
unbalanced digraphs. When the pseudogradient is strongly
monotone and Lipschitz continuous as well as the extended
pseudogradient is Lipschitz continuous, it is theoretically
shown that the proposed dynamics could solve the general-
ized Nash equilibrium problem with and without local action
sets, respectively. Finally, the obtained theoretical results
are illustrated by numerical simulations.

Index Terms—Continuous-time coordinated dynamics,
coupling constraints, digraphs, generalized Nash equilib-
rium (NE) problem.
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[. INTRODUCTION

ETWORKED games have gained considerable attention

due to their wide applications in the context of multiagent
networks such as sensor networks [1]; smart grids [2], [3]; and
cloud systems [4]; just to name a few. The objective for a net-
worked game is to find its Nash equilibrium (NE) or generalized
Nash equilibrium (GNE) by designing distributed algorithms,
where an NE (GNE) is referred to as a best response strategy at
which any player does not benefit by deviating its local strategy
unilaterally [5].

Recently, distributed computation on NE (GNE) has been ex-
tensively studied via a variety of NE (GNE)-seeking algorithms.
Roughly speaking, the algorithm design is mainly based on two
types of communication modes among players. One is that with
acommunication graph described by an interference graph, each
player’s neighbors in the interference graph are determined by
the number of the other players whose actions influence that
player’s cost function. Typical results within this context can be
found in [6]-[9]. Note that the above-mentioned case would
lead to all-to-all communication interactions among players,
especially when each player’s local cost function depends on
all the other opponents’ actions. However, requiring a complete
communication graph is restrictive and impractical in large-scale
systems, as pointed out in [10]. To overcome this limitation,
a general undirected and connected communication graph was
considered in [10]-[14], [18], [20], and [21]. In this case, since
players cannot fully obtain the other opponents’ actions, each
player is allowed to have an additional variable for estimating
the others’ actions by exchanging the estimate information with
its neighbors. By using this mechanism, discrete-time algo-
rithms based on gossip and inexact alternating direction method
of multipliers-type were proposed for solving the NE (GNE)
problems [10]-[14]. On the other hand, due to the effective
analysis tool provided by continuous-time control techniques
in multiagent systems [15]-[17], continuous-time distributed
algorithms were constructed, such as a consensus approach [18],
an integration of dynamic average consensus protocol and
gradient-play [19], and a passivity control approach [20], [21].
As a specific form of a general game, aggregative games were
investigated in [22]-[27].

Except for the previous results on undirected graphs, dis-
tributed NE (GNE) problems over directed communication
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graphs were studied in [28]-[33]. The two-player zero game was
addressed in [28] and [29] by continuous-time and discrete-time
algorithms, respectively. In [30], an unconstrained multiagent
game was investigated via a continuous-time distributed seeking
algorithm. In [31], asynchronous gossip-based algorithms were
presented for tackling networked games with local action sets.
Moreover, the aggregative games over weight-balanced digraphs
were solved in [32] and [33].

It can be found that the study on the GNE problems over
digraphs focuses mainly on the aggregative games with coupling
constraints, where each player uses its estimate of the aggregate
of players’ actions to update its action [32], [33]. However, for
a general game, it is hard to complete the updates to players’
actions by the aggregate of players’ actions, as shown in [10].
Although a general type of game model without and with local
action sets over directed communication topologies was, respec-
tively, studied in [30] and [31], the proposed algorithms cannot
be directly applied to the case with affine constraints that couple
the players’ actions.

This article focuses on a GNE problem subject to coupling
equality constraints and local action sets over digraphs, and the
aim is to design continuous-time coordination dynamics to find
a GNE of the game. In this regard, continuous-time coordination
dynamics with projection operation are designed over a weight-
balanced digraph. When the communication topology is weight-
unbalanced, the estimation protocol of the left eigenvector [34]
is incorporated into the proposed dynamics to solve the case
without local action sets, where the estimation protocol is used
to neutralize the weight-unbalanced information. In comparison
to the existing works, the main contributions of this article are
listed as follows.

1) Similar to the estimation mechanism given in [20] and
[21], each player estimates all the other players’ actions
and exchanges its own estimation information with its
neighbors in the present coordination dynamics. This
protects the players’ actions from leaking to other players,
unlike the literature [7]-[9] in which each player can
access to all players’ actions related to its cost function.

2) The present coordination dynamics are able to solve a
general type of game model over digraphs compared
to the aggregative game models studied in [24]-[27],
[32], and [33]. Also, they can deal with the case with
coupling equality constraints over digraphs, while this
is not directly solved by those techniques given in [30]
and [31]. It should be pointed out that the proposed
projection algorithm is an upper semicontinuous system
in comparison to the algorithms reported in [20], [21], and
[33] that are related to the tangent cones of local action
sets.

3) The convergence of the proposed coordination dynamics
is analyzed in detail by using the properties associated
with the projection operation and the Lyapunov stability
theory. In particular, it proved the exponential conver-
gence of the proposed coordination dynamics without
projection operation.

The remainder of this article is described as follows. Some
preliminaries and game formulation are given in Section II.

Continuous-time coordination dynamics for solving a GNE
problem over digraphs are presented and analyzed in Section III.
Theoretical results are illustrated by numerical simulations in
Section IV. Section V concludes this article and suggests the
future work.

[I. PRELIMINARIES AND GAME FORMULATION

Notations: Let R™, RP*9, and | - | denote the set of n-
dimensional real vectors, the set of p x ¢ dimensional real
matrixes, and Euclidean norm, respectively. Let I, and 1,, € R"
represent the identity matrix and the vector with each element
equal to 1, respectively. Let O denote a column vector with all
entries being zeros, whose dimension depends on the context
in which it is used. Let ¥V = {1,2,..., N} be an index set.
col(z1, za,...,xN) represents a stacked column vector in the
form of (21,23 ... 21)T. Let diag(a1, as, . . ., a,) denote a
diagonal matrix, where a; is its diagonal element. For a square
matrix A, Amin(A) and Apmax(A) denote the largest and the
smallest eigenvalues of A, respectively. B @ C' denotes the
Kronecker product of matrices B and C. Given a nonempty
closed convex set K, the normal cone to K at x € K is
Ni(z)={ue R":ul(y—x) <0 Vy € K} and Pg(z)=
arg min,c i ||z — y|| denotes the projection of a vector x € R"
on K. Itis well known that Pk is nonexpansive. That is, it holds
that || Pc(2) — Pic(y)]| < |l — y]| for any z,y € R™.

A. Monotone Operators and Projection Properties

The following concepts can be referred to [35]. Let F':
D C R®" — R™ be a vector-valued function. F is mono-
tone if (z —y)T(F(z) — F(y)) >0 for all z,y € D, and
strictly monotone if the strict inequality holds whenever x #
y. F is m—strongly monotone if (z —y)T (F(z) — F(y)) >
m|lz — y||? for all z,y € D. F is M —Lipschitz continuous if
|F(x) = F(y)|| < Ml - y]| forall 2,y € D.

Lemma 1: (see [36] and [37]) Let K C R™ be a nonempty
closed convex set. For any =,y € R", define V : R™ — R as
follows:

Vie,y) = %(le = Pr)|I* = llz = P (2)]?)-

Then, V' (z,y) satisfy the following statements.
* (x—2)"(Px(x) = Px(2)) = || P () — Pk (2)]?
Vz,y € R".
* V(z,y) > 5l|Px(x) — Px(y)]*.
e V(xz,y) is continuously differentiable with respect to x
and its gradient is V,V (2, y) = Px(z) — P (y).

B. Grapy Theory

Let a digraph G = (V, £) denote the information exchange
among players, where V is the player set and £ C V x V is the
edge set. An edge e;; € £ indicates that player ¢ can receive
information from its neighbor player 5. The weighted adjacency
matrix A = (a;j)nxn associated with graph G is defined as
a;; > 0if e;; € €, and a;; = 0, otherwise. Moreover, a;; = 0,
1 € V. A directed path from player ¢ to player j is composed
of a sequence of edges in the form (4,41), (41,42), .- ., (ig,J)-
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A digraph is strongly connected if there exists a di-
rected path between any pair of distinct players. The in-
neighbors and out-neighbors of player i are denoted as N\" =
{jla;; > 0} and N™ = {j|a;; > 0}, respectively. Correspond-
ingly, the in-degree and out-degree are di" = 3" jenin Gij and
gt = Zjeme a;;. The Laplacian matrix Ly = (1;;) nx N cOI-
responding to graph G is defined by Ly = D™ — A, where
D" = diag(d, d¥,...,d%). A digraph is weight-balanced if
and only if di" = d5" for all i € V. Equivalently, 15, Ly = 0.

Lemma 2: (see [15] and [16]) Assume that graph G is strongly
connected with the Laplacian matrix L. Then:

e there is a positive left eigenvector & = (£1, &, ..., En)T
associated with the zero eigenvalue such that 7 L, = 07
and Zi\/:l Ez =1.

° minlgxzo 2TLx > ro(L)||x where L = M
with = = diag(£1, &, . .., En) and Ao (L) is of the second
smallest eigenvalue of L.

o limy oo e IVt = 1567,

12,

C. Game Formulation

Consider a noncooperative game with N players. In this
game, each player ¢ € V has its own local action set §2; C R™.
Besides, all players share a coupling constraint Zf\]: 1 Bizi =
SN | bi, where z; € Q;, B; € R™ ™, and b; € R™. The aim
of player ¢ is to choose its action z; from its feasible ac-
tion set X;(z_;) = {x; € Q|(xs,2—;) € 2N X} to minimize
its cost function f;(z;,z_;), given the other players’ action
x_; = (T1,8, ..., Ti1, Tit1, ..., 2N), where Q= [[IL, Q;
and X = {x € R"|Bx = b}. The considered noncooperative
game problem can be mathematically described as follows:

min f;(zs,2;), st. z; € Xi(x ). (1)
Let n =" n; B=[Bi,Bs,...,Bn], b= b;, and
x =col(xy,xa,...,xy) € R™. The strategy set of all players is

denoted as 2 N X. A strategy profile z* = col(x},z5,...,2%)
is called a GNE of the game (1) if for any ¢ € V,
filzi,x2;) > fi(x], 2%;) Vo, € Xi(al,). @)

Assumption 1:Foreachi € V), the set §2; is convex, compact,
and for each fixed xz_;, the local cost function f;(x;, x_;) is
continuously differentiable and convex with regard to x;.

Assumption 2: There exists an interior point = € () such that
X is nonempty.

Remark 1: Assumptions 1 and 2 ensure the existence of a
GNE of game (1).

For each i€V,
dient of the cost

let V,fi(x;,z_;) denote the gra-
function f;(z;,x_;) with respect
to the action x;. Then, F(x)= col(Vyfi(r1,2-1),
VQfQ(LL'Q,CL',Q),... ,VNfN(xN,x,N)) is called the
pseudogradient [38]. From [38, Th. 3.9], it follows that if
z* € QN X is a solution of the following variational inequality:

(x—2)'F(z*)>0 VaeQ Br=»> 3)

then z* is a GNE of game (1). Actually, the variational inequality
(3) is equivalent to the following optimization problem:

minz? F(z*), st. z€Q,Bx=b. 4)
By [39, Th. 3.3], it is derived that the optimal conditions of (4)
satisfy

0 € F(z*) + BTA* + Nqo(z*), Bx* =0b. 5)

The above-mentioned statements are formally characterized as
follows.

Lemma 3: [38] With Assumptions 1 and 2, if =* is a solution
of the variational inequality (3), then z* is a GNE of game (1)
and there exists a A* € R™ such that * and 1" satisfy (5).

Next, a mild assumption is made for the pseudogradient F'(x)
[7], [8], [18], [20], [21], which ensures the uniqueness of the
GNE problem (1).

Assumption 3: The pseudogradient F':Q — R™ is
m—strong monotone and M —Lipschitz continuous.

Throughout this article, (1) is thought of as a multiagent
game, where each player (agent) 7 only knows its own cost
function f; and could not fully observe the others’ actions. Since
each f; depends on all players’ actions, to be able to find the
GNE of game (1), it is necessary to assume that players are
willing to collaborate with their neighbors. The collaboration
means that the players exchange their estimates of all others’
actions with their individual neighbors, where the information
exchange among players is described by a digraph, as shown in
the following assumption.

Assumption 4: The information exchange among players is
a strongly connected digraph.

IIl. GNE SEEKING VIA CONTINUOUS-TIME
COORDINATION DYNAMICS

A. GNE Seeking Over a Weight-Balanced Digraph

This section first presents a class of continuous-time coordi-
nation dynamics for solving game (1) over a weight-balanced
digraph. In this case, for each ¢+ € V), player ¢ carries out the
following GNE seeking strategy:

PR

Wy = —w) +yi = Viyhy') —e > ai;(yi —v)
]EN'“
T T 7
- Bi Ay Yi = Pﬂz(wz)
gLy =—¢ Z @ij (v — y’)
JEN®
}»i—Bzyl b—aZa” ) — zi
]ENm
Gi=a Y ajhi— 1) (6)
JENI

where y! = z; denotes player i’s own action that is viewed as
the output of (6) and is equal to the projection of the auxiliary
variable w! on €, y; represents player ¢’s estimate of player j’s
action, yii denotes player i’s estimate of all the others’ actions,
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A is player ¢’s estimate of the global multiplier associated with
Bx = b, z; is an auxiliary variable of player 4, and € > 0 and
a > 0 are tuning parameters.

Remark 2: In (6), the design of ! is based on player is
pseudogradient dynamics that is integrated into a projection
output feedback mechanism. Meanwhile, player i updates y°
by using the received information from its neighbors so that all
estimates reach consensus (see, yii). The updates of A; and z;
are designed via a decomposition of Bx = b, where A; is used
to estimate the global multiplier in a distributed way with the
help of the auxiliary variable 2.

Remark 3: Actually, the projection operation Py () [39] and
the differential projection operation Pr, (-) [40], [41], in theory,
can deal with the case with convex constraint set ). Note
that the algorithms based on differential projection operation
are not upper-semicontinuous at the boundary of €2 [20], [21],
[33]. To avoid the discontinuity of Pr,(-) at the boundary of
Q, it is preferred to choose Pq(-) to deal with the boundary
of .

For notational brevity, let A =col(A1,A2,...,AN)
€ RN™, z = col(z1,29,...,25) € RN™, Yy =
col(y',¢?,...,yN) € RN" with y' £ (yhyhy) =
col(yt, v, ...,y) € R*, R= diag(R1,R2,...,Rn)E

RnXN” with Ri:(onixzj<inj In1 Onixzj>inj)

S=diag(S1,Ss,...,Sy) € RINn=xNn  ith

<IZj<i”j><Ej<i"j Ozj<i"j><"i 02j<in]'><zj>inj) c
02j>inj><zj<inj OZj>i”j><"i IZ;>L”J'XZJ'>1:”J'

€ Rnixn
Si =

R(n—ni)xn B= diag(By, By, ...,By) €
RNmn b= col(by, by, ..., bx) € RN™,  F(y) =
col(Vifi(yt, yty), ngg(yg,yﬁg),...,VNfN(y%,yZ,VN)) €
R, Q=T[Y, 2 eR" with — R™ x R™ x
- X R™-1 x Q; x R"+1 x ... x R"™ € R” w =
col(w!,w?, ... wh) ERN”, where  w' £ (wi,w',) =

col(wi,w},..., wh) € R" withw’, =y’ ,.
In terms of the definitions of w, y, A, z, F(y), , B, b, and
R, (6) is equivalent to

w=-w+y—RIF(y)—e(Ly @ I,)y — RTBT)
A=BRy—b—a(Ly ®I,)A—z
zZ=a(Lny ®In)A, y= Po(w) (7
where L is defined in Lemma 2.
Lemma 4: Suppose that Assumptions 1 -4 hold,

1% Ly = 07 and the initial value z(0) satisfies Z 1 2i(0) =
0. Let col(w*,1*,2*) be an equilibrium point of (7) with
y" = Pq(w"). Then, y* = 1y ® «*, where z* is the GNE of
game (1).

Proof: According to the definition of col(w*, A*, 2*), one gets

Yy —RI'F(y*) —e(Ly @ I,)y* — RTBTA =w*  (8)
BRy" —b—a(Ly®@I,)A"—2z" =0 ©)
(Ly ® L,)A* = 0. (10)

The above-mentioned equation means that A* = 1y ® A* with
A€ R™. With Y | 2,(0) = 0 and Ry* = z*, we can ob-
tain that Ba* = b, by left multiplying (9) by 1%, ® I,,,. Note

that SRT =0, RRT =1,,, Sy = col(y'{,y>,,...
Sw =col(wly,w?,,...,w"y),and w®

the following facts hold:

4 ),
; =Y",;, Vi € V. Thus,

an
12)

S(Ly @ L)y" =0

Ry* — F(y") —cR(Ly ® I,)y* — BTA* = Rw*.
Applying the similar analysis given in [20] and [21]

yields (Ly ® I,)y* =0, which indicates that all (y%)*,

i€V reach consensus. Together with (y!)* =z},
we have y*=1y®az*. By substituting Ry* =z",
Ruw' = col((wh)’, (wd),..., wd)), Fly)=F(ly®
x*) = F(z*), Po(Rw*) =2*, and A" = 1y ® A" into (12),

we get Po(z* — F(2*) — BTA*) = 2*, which is equivalent to
0 € F(x*) + BT)A* + Nq(x*) by [40]. In other words, z* and
A" satisfy (5). This shows that z* is the GNE of game (1) by
Lemma 3. (]

An additional assumption for F'(y) used in [20] and [21] is
given below.

Assumption 5: The extended pseudogradient F' is c-
Lipschitz continuous on 2.

Remark 4: As shown in [20] and [21], F' can be viewed
an extension of the pseudogradient F'. Correspondingly,
Assumption 5 extends the Lipschitz continuity of F' to
F. In fact, Assumption 5 plays a key role in ensuring
the existence and uniqueness of the solutions to (7).
Specifically, from y = Pq(w), it follows that y' = Po(w’)
and y" = Pqo(w") for any w’ € RN™ and w” € RN™. Using
Assumption 5 and the nonexpansive property of Pgq to
yield | F((Pa(w')) — F((Pa(w")| = |F(y) — F(y")] <
clly’ ="l = ¢l Pa(w') — Pa(w")|| < clw’ — w"|l. Thus,
one can obtain that the composite mapping F'( Pq) is c-Lipschitz
continuous on RN™, Denote the left-hand and the right-hand
sides of (7) as col(w, A, 2) and ¥ (w), A, 2), respectively. Then,
(7) can be read as col(w, A, 2) = ¥ (w, &, z). It is not difficult
to find that W is Lipschitz continuous on RN™ x RN™ x RN™,
As a result, it follows that the existence and the uniqueness of
the solutions to (7) can be guaranteed by [42, Th. 3.2]. Also,
Assumptions 3 and 5 are two key conditions in ensuring the
convergence of the proposed GNE seeking strategies as shall be
seen in Appendix A.

Theorem 1: Suppose that Assumptions 1-5 hold, 1%
Ly = 07 and the initial value z(0) satisfies >~ | z;(0) = 0.
Let a and ¢ satisfy the following inequalities:

(k+1)2
H)»Q(E)

dme + (M + ¢)?
4mro(L)

13)

(Ly + L%)/2, k> {HEL

hmin (Q

where L =

y—1 ,0}, Ao(L) is the

second smallest eigenvalue of L and

ro(L)e — ¢ Mxe
Q= M+c 2n\1/ﬁ
2N N
is a positive definite matrix. Then, the trajectory

col(w(t),A(t), z(t)) of system (7) is bounded and y(¢)
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converges asymptotically to 1y ® x*, where z* is the GNE of
game (1).
Proof: The proof is given in Appendix A. ]

B. GNE Seeking Over a Weight-Unbalanced Digraph

It can be seen that the GNE seeking strategy (6) is based on
a weight-balanced digraph among players. As shown in [31],
the weight-unbalanced communication is ubiquitous in reality
such as sensor networks. To solve the GNE problem (1) under a
weight-unbalanced digraph and facilitate the subsequent analy-
sis, it is assumed that Q; = R™ for any ¢ € N In this case, for
each i € NV, player 7 runs the following GNE seeking strategy:

yzl = (:uz) 1vfl yz? Z —€ Z a"L] z
jENm

— ()" B

yiz = —¢€ Z Qij (yiz - yj—z)

jeND

i = () Byl —bi) —a > aij(hi — Ay) — 2
JEN®
2':1‘ =a Z aij(k
jeN
fri ==Y ai(p (14)
JEN®
where p; = (uf, i3, ..., 1Y) € RN.

Remark 5: The design of the dynamics (14) is based on
the integration of the consensus protocol ji; [34] and the dy-
namics (6) with €; = R™. In comparison to the push-sum
mechanism [43], [44], the present distributed setting based on
the Laplacian matrix with a zero row sum is more practical in
broadcast-based communications, as shown in [34] and [45].
Instead, there still needs a matrix with a zero column sum like the
Laplacian matrix with a zero column sum given in the push-sum
mechanism [44]. To be specific, in (14), u; is used to estimate
the left eigenvector &, and its ith component 1! is used in X; and
L. As seen in the subsequent proof given in Lemma 5, the use
of 4! is to ensure a balance matrix =Ly such that its balance
is utilized to obtain the optimal conditions of (4) with 2 = R"
at the steady state of system (15), where a key property is that
the matrix =L v satisfies a zero column sum. Here, it should be
emphasized that an estimation way is used to obtain such a matrix
with a zero column sum instead of requiring that the Laplacian
matrix satisfies a zero column sum by using the out-degrees or
controlling the outgoing weights.

Let gt =col(ju1, pia, - . ., un ) and B = diag(ui, 3, . . .
With y, A, z, F(y), pu, E, B, b, and R, (14) becomes

—(E'@L)RTF(y) —e(Ly ® I,)y
—(E'®I1,)RTBT)

TSR

A=(E'®1,)(BRy —b) —a(Ly ® I,)A —
2 =a(Ly ® L)\

—(Ly ® In)p

Remark 6: With Assumption 4 and the initial value p£(0) sat-
isfying p2(0) = 1 and p? (0) = 0,5 # i, i, j € V, the existence
of E~! is guaranteed as shown in [34].

Lemma 5: Suppose that Assumptions 1-4 hold, the initial
values z(0) and p(0) satisfy Zfil &2:(0) = 0,and pi(0) =1
and uZ(O) =0,j #14,i,j € V, respectively. Let col (¥, X, Z, )
be an equilibrium point of system (15). Then, y =1y ® 7,
where T is the GNE of the relaxed game (1) with 2 = R™.

Proof:  Note  that  p(t) = e IN®INtL(0)  and
lim;_,o e Invt =1 ~ET. With the definition of the initial value
w(0), it holds that limy oo pu(t) = 1y ® € and lim; . E(t) =
=, where = is defined in Lemma 2. Then, v, ):, and z satisfy

15)

RYF(§) +e(ELy @ L)y +R'BTA =0 (16)
BRYy-b—aELy LA - (E@1,)2=0 (17)
(Ly @ I,k = 0. (18)

Following the analysis similar to the proof of Lemma 4, it
is concluded that § =1y ®%, A =1y ®A, and F(&)+
BT = 0, B# = b. This implies that Z is the GNE point of the
relaxed game (1) with 2 = R™. O

Theorem 2: Suppose that Assumptions 1-5 hold and all B;,
i €V are row full rank. Let the initial values z(0) and p(0)
satisfy ZZ 1&2i(0) = 0,and pi(0) = Land 1 (0) = 0,5 # 4,
1,j € V, respectively. Let a and € satisfy the following inequal-
1ties:

4me + (M + c)? (0 +1)? (19)
4’]7’1)\2 (I_/) ’ 9)»2 (Z/)

Where 9 = {O’ Emm‘é}‘l‘n(@) o 1}’ gIIlin = min{gl’ 52’ e 7§N}?
A2(L) is defined in Lemma 2, and

_ Ao(L)e — ¢ —Mxe

Q = < _ M+c QEW

2v/N N

is a positive definite matrix. Then, the trajectory

col(y(t),A(t), z(t)) generated by system (15) converges
exponentially to the point col(#, A, Z) defined in Lemma 5.

Remark 7: The proposed coordination dynamics (7) and (15)
adopt the same estimation mechanism in dealing with the actions
of other players as in [20] and [21]. In comparison to [20] and
[21], the present dynamics provide a new insight in addressing
directed communication graphs and affine equality constraints.

Remark 8: In Theorems 1 and 2, the parameters ¢ and a are
used to guarantee the convergence of the proposed dynamics. It
can be found that the lower bounds of € and a depend on the
global information of the concerned communication graph, and
the global constants associated with the strong monotonicity and
the Lipschitz continuity. Some distributed schemes [17], [46]
for estimating those global information can be adopted before
running (7) and (15).

IV. SIMULATION RESULTS

In this section, the proposed dynamics are executed to solve
two GNE seeking problems.
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(e )e—) 3

Fig. 1. Underlying communication topologies. (a) Balanced digraph.
(b) Unbalanced digraph.

@ 4

(a) (b)

30 40

20 40

t
()

Fig. 2. (a) GNE of Example 1 by executing system (7). (b) Profiles of
the trajectory col(w, A, z) with respect to time t.

Example 1: Consider a five-player aggregative game prob-
lem [27] over a strongly connected digraph. In this game, the cost
function of player ¢ € {1,2,...,5} is given by f;(x;,z_;) =
(J,‘i — di)2+p($)l‘i+5l‘i, where di = 50, dy = 55, d3 = 60,
dy = 65, ds =70, and p(z) =0.0437_, z;. The local ac-
tion sets and the shared equality constraint are 2y = [45, 55],
Qg = [44, 66], (23 = [46, 72|, Q04 = [52, 78], Q5 = [56, 84], and
Ez 1T = Zz 1b with by = 45, by = 50, bg = 55, by = 60,
and bs; = 65.

Under the balanced digraph Fig. 1(a), by executing (7), it can
be found that for all 4 € 1,2,...,5, 3° converge to the GNE
of Example 1, as shown in Fig. 2(a), which is consistent with

20 30 40
t
(@)

[—llcol(y; A, ) — col(g, X, 3)]]

20 30 40
(b)

Fig. 3. (a) GNE of the relaxed Example 1 by executing system (15).
(b) Evolution of col(y, ||A, z) — col(#g, A, Z)|| with respect to time ¢.

12
10
“ o8
6
—
1
)
0
0 200 400 600 800 1000
t
(@)
500 200
0 0
-200{ "\,
-1000 e
- 4
1500 500 1000 %% 500 1000
10 t ‘ t
5f .---=TCIZIZzss=ss-m---o------o--o
« o - T T T T T T T T T s
\\
] SR
-10 -
0 200 400 600 800 1000
t
(b)

Fig. 4. (a) GNE of Example 2 by executing system (7). (b) Profiles of
the trajectory col(w, A, z) with respect to time ¢.
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0 50 100 150 200
t

(a)

[—llcol(y, X, 2) — col(@, X, 2)l]

100 150 200
t

(b)

Fig. 5. (a) GNE of the relaxed Example 2 by executing system (15).
(b) Evolution of ||col(y, A, z) — col(7, A, Z)|| with respect to time ¢.

the result given in [27]. Correspondingly, Fig. 2(b) shows the
boundedness of the trajectory col(w, A, z). By implementing
(15) under the unbalanced digraph Fig. 1(b), the GNE of the
relaxed Example 1 without €2; is illustrated in Fig. 3(a). Mean-
while, Fig. 3(b) shows the fact that the trajectory col(y, A, 2)
tends to its convergent point exponentially fast.

Example 2: Consider a five-player nonaggregative game
problem over a directed strongly connected graph. The cost
functions of these five players are, respectively,

fi(zr,zo1) = 2f — 3z129,
1
fz((EQ,.’t,Q) = (—21}1 + 4!172 + §$4 + 5175)2 — 481'2,

f3(z3,2-3) = (21 + da3 — 24 — 75)?,

(221 + 4a3 + 814 — x5)%, and

f4($4,5€—4)

f5($5,.’£,5) = (1’1 + 4£E3 + 85U4 + 171’5)2.

action
shared

Additionally, the local sets
ie{l,2,...,5}, and the equality
Zilil T; = Zfil b; for this game are imposed, where
col(by, by, ..., b5)T = (5,8,3,6,6)T.

From Fig. 4, it can be seen that all trajectories yi, 1€
1,2,...,5,converge to the GNE of Example 2 and the trajectory
col(w, A, z) is bounded by running (7) under the balanced
digraph Fig. 1(a). Fig. 5 gives the simulation results on the
relaxed Example 2 with 2; = R by implementing (15) under
the unbalanced digraph Fig. 1(b), where the GNE of the relaxed
Example 2 and the exponential convergence of the trajectory

Q; = [0, 10],
constraint

col(y, A, z) are shown. These simulations verify the effective-
ness of the proposed GNE seeking dynamics.

V. CONCLUSION

This article has investigated the GNE seeking problem subject
to linear equality constraints and local action sets. By allowing
each player to estimate its opponents’ actions on a directed
communication topology, we established the corresponding co-
ordinated GNE seeking dynamics for the game problem and its
relaxed case without local action sets, respectively, for weight-
balanced and weight-unbalanced digraphs. By virtue of stability
theory from nonlinear systems, we showed the convergence
of the proposed dynamics with the strong monotonicity and
Lipschitz continuity of the pseudogradient as well as the Lips-
chitz continuity of the extended pseudogradient. The simulations
illustrated the validity of the proposed dynamics.

Note that when the communication topology is weight-
unbalanced, this article is mainly devoted to studying the GNE
problem with linear equality constraints but without local action
sets. At present, there is still a certain challenge in terms of
convergence analysis for the case with local action sets over
weight-unbalanced digraphs, which is worthy of further study.

APPENDIX A
PROOF OF THEOREM 1

Proof. To analyze the convergence of system (7), construct
the following Lyapunov function:

k+1

v =2 (o= Patw)? - 0~ Falw)?)

K 1
+ §||X—X*H2+ §HX—X* +z—z*||2

where col(w*, A", z*) and k are defined in Lemma 4 and Theo-
rem 1, respectively. From Lemma 1, it follows that

V> Sy P S At P A A 22 > 0
and V.,V = (k+ 1)(y — y*). It is clear that V,V = k(A —
M)+ (A—2*+2z—2*)and

Vo,V =A—-A"+2z-2"
Then, the derivative of V' along with system (7) is
V= (s+1)(y—y")" (~wt+y-R"F(y)-R"B"r—e¢
(Ly®@1,)y) +(A—A2")T (BRy—b—2z—a(Ly®I,,)A)
+ (A=2*+2z—2")T (BRy—b—2)
= (k4 vy + (K + Dve + e(k + 1)vg + kavy
+ (k + Vst vs — ||z — 2*||?
where
vi=—(y—y) (w—w)+ |y -y’
v2=—(y—y) "R (F(y) — F(y"))
vs=—(y—y) (Ly @ LIn)(y — y")
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—(A=A)T(Ly ® I,)(A =A%)
—(A =" (z—2%)
ve = (2 —2*)"BR(y — ¢").

Vg =

Vg =

From Lemma 1, we arrive at v; < 0. In fact, we can make
the following orthogonal decomposition for y and A, namely,

=y+ytand A =1+ 1", where y =1y ® 7 with § €
R, yTyt =0, A=1y ®2 with A € R™ and A" A+ = 0.
Note that F(y) — F(y*) = F(y) — F(z*) and R(y —y*) =
y — x*. Then,

= —(g—y)"RT (F(y)-F(y")) —y'R" (F(y)-F(y))

= —(—y")"R" (F(y)—F(9)) —(g—")" (F(y)—F ("))
(") " RY(F(y)-F(9)—(y") R (F(y)—F(«"))

< dlg—a* |yt l|=mllg—a* P +clly P+ M|y [[[lg—=|

= (M+o)|lg—a*|ly* | =mlg—="|*+clly~|*

where the inequalities | F(y) — F(z")| < M|y
—(y— )" (F(y) - F(z*)) < —mlly — "> and
IF(y) = F@)|l < clly =gl = clly*|| that are derived

from Assumptions 3 and 5 are used. According to Lemma 2,
the orthogonal decomposition of A and 1]TVL ~N = 0, we can
compute that

vy = —(y") (Ly @ L,)y* < ra(L)|y*|?
—(ANT(Ly ® L)t < ao(L) A2

Note that W = {col(y, A, 2)| 2N, zi(t) = 32N | 2;(0) = 0}
is a strongly positive invariant set under system (7). Then,
forany col(y, A, z) € W,vs = —(A*)T(z — 2*). Furthermore,

Vg4 =

(k+ 1)v5 (k+1)%[AM]2 + 3|z — 2*||, where the in-
equality 27y < ||z||? + 1||y||? is adopted. Similarly,
* 1 *
ve < |IBIPlly = v'|I* + S llz = 21"
Hence, V is bounded by
V< —(r+Du" Qu+ By -y
~ 1
~((aral) - (-4 12 ) N2 - s - 2

where u = (|ly*|,||lg —y*)T and @ is defined in

Theorem 1. It is obvious that ) is positive definite by
the definition of ¢ given in (13). Thus, Apin(Q) >0 and
uTQu > Amin(Q)||u]|? = Amin(Q)||y — v*||?. This further
simplifies V as follows:

e (m (@) — ||B||2) ly — |2

~ 1 B
~((aral) = e+ 12 ) N2 = -

By invoking (13) and the definition of «, we have that vV <o.
Since V is radially unbounded with regard to col(y, A, z), we
conclude that y, A, and z are bounded. It is easy to verify that
w is also bounded. Let M be the largest invariant set contained

in WN {V = 0}. According to the LaSalle invariance princi-
ple [42], each solution starting in WV approaches M as ¢ — oo.
Clearly, y = y* = 1y ® * in M. Therefore, y — 1y ® z*.l

APPENDIX B
PROOF OF THEOREM 2

Proof: Since each B;, i € V), is full row rank, (B; B})~!
well-defined and positive definite. Naturally, (BB”)~ 2 is also
positive definite. To facilitate the analysis, col(¥, A, %) in system
(15) is rewritten as follows:

col(§,h,2) = f(y, A, 2) + g(y. A, 2, 1) (20)

where
Fly,r,z) =

—(E'RL)RTF(y)—e(Ln®I,)y— (I, )RTBTX

(E7'®1,,)(BRy—b)—a(Lny®I,)A—
a(Lny®I,)\,
and
9(y.x, z,t) =
((”1—E’1)<§9(In)RTF Y)+((E'-EeL,)RTB"A
E—l

To show the exponential stability of (20) at the point col(#, A, Z)
defined in Lemma 5, consider the following Lyapunov function

V= Vi+ Vs
where
9+1 \NT — ~ 9 T (= 7
Vi= —-(y=9) EL)(Y-9)+5A-2)" (ELn) (A1)
1 -
+§()\—A+Z ) ( ®Im)(x_x+z_z)

EeL)(y-§+R'B"(BBT) 2 (x—i))

with # > 0 and o > 0. Then, the derivative of V' along system
(20) is
‘7 = w1 + w2 + ws

( oV )T

where wq = (%)Tﬂy,x,z), Pool(y X.2)

f(yvxvz)’ and w3 = (%)Tg(yvxvz7 )

It is readily to compute that

—(0+1)(y=9) " RT(F(y)~F(g))—<(0+1)(y-9)"
(ELn @ In)(y—9)—(2—2)" (E® In)(2—2)
—0a(A—X)T(ELy ® I,,)(A—1)+(2—2)" BR(y—79)
—(0+1D)A-VT(E® In)(2-2).

W2 =

wy <
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Following similar procedures to those given in the proof of 1 o T - ? .
Theorem 1, w; is bounded by ws < 7 (A-)(BBT):(A-2) + = ly=ll
)‘min(BB )
IBIEN, o 1, . e
w < (<9+ Dain( @~ o=l =5 (=27 @< la-nrmeio-n + Iy, g2
Amin(BBT)
(€6 n)(2-2)- (ara(D) -6+ 12 ) 1 ! N
we < 5 HVII2 5(z=2)1 (E® In)(2-2)

On the other hand, we can derive that w- satisfies

w2 < —0hmin(Q)|y—7|*+0 (w1 +w2+w3+w4+w5+w6)

—oara (L)1 [P~o (A—2")T (BB”)? (A-1%)

where

@1 = —a(y—9)" (E21,)RT BT (BBT) # (Ly®I,,)(A-1)
= —a(y—9)" (ExL,)RT BT (BB") "% (Ly®@I,,)\*

@y = (y—9)TRTBT(BBT) : BR(y—9)

w3 = —(y-9) (Ee L,)R"BT(BBT) % (2-2)

wy = (A1) (BBT) 2 B(F(y)-F(¥))
by = —e(A—2)T(BBT) * BR(Ly ® I,)(y—@)
o = ~(A-X)T(E® In)(2—2).

Applying the orthogonal decomposition of A given in the
proof of Theorem 1 and Lyly =0 to w; yields wy =
—a(y—9)T (ExL,)RTBT(BB") 2 (Ly®I,,)A". For any
two matrixes A € RP*? and B € R?7*P, [47, Th. 1.3.22] indi-
cates that if the eigenvalues of AB (or BA) are non-negative,
then Amax(AB) = Amax(BA). Note that the positive semidefi-
nite matrix J £ BT (BBT) 2 (Ly L% ®1,,)(BBT) 2 B im-
plies that the eigenvalues of .J are non-negative. Thus,

Amax(J) = Amax(LyLE®1,,)(BBT) 2 BBT(BBT) 2)

- )\max(LNL%@Im) = HLN”2

Then, w; satisfies

% hmax (J - 1
o < DDy gy e
Pl ]
| e L | Py ZIat2.
g+ L

Similarly, we can derive that

w2 S kmax(BT(BBT)7%B)||y_:l~/||2

= \/Mnam(BBT)\Iy—QII2 = |Bllly-9*

1(z HTE® In)(z—2)

< 2
< 2£mm ly—9l* +

where &, 1s defined in Theorem 2. Substituting the abovemen-
tioned inequalities into wy results in

Cl2 L 2 rnin+1 62 L 2—|—C _
w2§0(1\2[é|-|£+”B|+”]\[| IIIID(Q))
min )\'min(BBT)
x|ly—=gl?—o(ara(L)—1)|IA 4> (x—i)T

x(BB")?(A\-1)+0(z—2)T (E@Im)(z—i).

Combining w; and wy, it can be obtained that

wi +wy <~ |ly—g|*—v2(2—2)" (ER1,)(2-2)
- N -
—wg\IXLIIQ—g(X—X)T(BBT)Q(l—l)
where 1= (041)min(Q) — HB” ( Hngan;m“Jrl—f—
2 L 2_"_(/
||B|| + H,,,,,I,\/(HBBT mln >> *_0', and ’11}3
0&)\.2( ) (9+1) + o a)\.g( 1
Let
{ 1 (6‘+1))‘min(Q)_H§B7,H2 }
o<min :
2’ aZHLNH2 e|LnlP+e® 5 ()
o HIBI TR 2,0(Q)
According to (19) and the definition of 6 and o, it
follows that 11 >0, 1 >0, and 3 >0. With ¢ =
min{wlv w2§mina %)"min(BBT)},
wy +wy < —feol(y, A, z)—col(y, X, 2)[>. @)

Next, ws is analyzed. In fact, we can verify that there are some
positive constants a, ag, and ag such that V' and W;/Lz)
satisfy ’

aq ||C01(y_@7 )‘_Xa z_2)||2§‘7§a2||601(y_@a A'_xa Z—%) H2

v
dcol(y, A, )

< aulleolly-5A-A, 22|

Given p(0) in Theorem 2, we can find from the proof of
Lemma 5 that p(t) converges exponentially to 1y ®¢&.
Correspondingly, E~! converges to = exponentially
fast. Meanwhile, we can verify that there exist $; >0
and B2 >0 such that |[E~!—Z7Y| < Bre P2t After
some computations, we have that [[(E!'-FE 1) ®
LYRT(F(y) - F(§)) + (E} — BV @ L,)RTBT (A -

Vil = \/262+IIB 2Bre P! leol(y—g, A-A)[, (B!~
= ) Im)BR(y — 9)|| < ||Bl|fre” I(E" -
EY) @ L)RT(F(g) + BTA)| < Bre” WIIF( )+ B,
and I(B~" = E7Y) ® L,) BRy| < || B|Bre " ||

Applying the above-mentioned inequalities to ||g(y, A, z,t)]|
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leads to
Hg(y7 X, z, t)” S d167ﬁ2t||col(y7ga X*X, zf’%) H+d26762t

where dy = f1/2¢® + || B||* and dy = 51| B|[|[9][[| F(y) +

BT1|. Hence, w; §’ getyz |19 &, 2, )| Sazdie ™|

901(y - Qv)‘ - j;a z = 2)”2 + a3d2e—62t”C01(y - ka -
A, z — z)||. Combining with w; 4 ws results in

<

< — (1 — agdye ) ol (y—, A—L, 2—2)
+azdye P2t ||col(y—g, A—X, z—2)|
Y —Bat ~ T .32
< - | g-asdie [col(y—g,A—X, z—2)||

2 12 272
azd; —2Bat Y agdy —Bat \ T azd; —2fBat
——= <— | —/————e ") V4—= 2t
T ¢ S 2 T € %2 ©

According to the comparison lemma given in [42], V (t) satisfies

t
[/ Yt Wt T dr
V(1) < dse 7 +dye zﬁz/ (55 28)mdr (9
0

e3dl a2d2 23d1 .
where d3 = e=172 V(0) and dy = =5, e 172 From (22), it fol-
lows that:

_ _ bt _wt »

V(t) S d36 2ag +d4t€ 2ag y m = 2/82,
_ _t B _ Wt

V(t) < dge 202 4 220 (o722t —e 203 ), S0 2L 9,

In either case, we can conclude that V (t) converges exponen-
tially to zero, which implies that the assertion of Theorem 2
holds. D
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