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Distributed Average Tracking in Weight-Unbalanced Directed Networks

Shan Sun®, Fei Chen

Abstract—This article studies a distributed average tracking
(DAT) problem, in which a collection of agents work collaboratively,
subject to local communication, to track the average of a set of
reference signals, each of which is available to a single agent.
Our primary objective is to seek a design methodology for DAT
under possibly weight-unbalanced directed networks—the most
general and thus most challenging case from the network topology
perspective, which has few results in the literature. For this pur-
pose, we propose a distributed algorithm based on a chain of two
integrators that are coupled with a distributed estimator. It is found
that the convergence depends on not only the network topology
but also the deviations among the reference signal accelerations.
Another primary interest of this article stems from the dynamics
perspective—a point perceived as a main source of control design
difficulty for multiagent systems. Indeed, we devise a nonlinear al-
gorithm that is capable of achieving DAT under weight-unbalanced
directed networks for agents subject to high-order integrator dy-
namics. The results show that the convergence to the vicinity of
the average of the reference signals is guaranteed as long as the
signals’ states and control inputs are all bounded. Both algorithms
are robust to initialization errors, i.e., DAT is insured even if the
agents are not correctly initialized, enabling the potential applica-
tions in a wider spectrum of application domains.

Index Terms—Distributed average tracking, multiagent system,
weight-unbalanced directed graphs.

|. INTRODUCTION

In distributed average tracking (DAT), the agents are coupled through
the common task that they try to track the average of a set of reference
signals, each of which is available to a single agent and is generally
time varying; the task should be completed on the basis of local
information and local communication among the agents. Recent years
have witnessed a growing interest in the study of DAT, partially due to
its broad applications. DAT has found applications in distributed sensor
fusion [1] and distributed Kalman filtering [2], where the technique
has mainly been applied from an estimation perspective. There are
also various applications, where DAT is employed to design control
laws for physical agents. Examples include dynamic region-following
formation control [3] and distributed convex optimization [4]. It has
been recognized that DAT has its own unique difficulties and faces
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not only theoretical but also practical challenges, since the tracking
objective of DAT is time varying and unavailable to any agent.

From the estimation perspective, the goal of the DAT problem is to,
in a distributed manner, fuse information or compute common estimates
of certain time-varying quantities of interest. A typical example is
to estimate and track the averaged position of a moving target by
multiple cameras. In this case, the local reference signal is the position
data, sensed by each camera, of the moving target. Some DAT results
from the estimation perspective have been presented in [5]-[11]. For
example, in [5], the authors propose a linear algorithm to achieve DAT
for reference signals with steady states. A proportional algorithm and a
proportional-integral (PI) algorithm are proposed in [6] to achieve DAT
with a bounded tracking error under constant or slowly-varying inputs.
Based on the nonsmooth sliding mode control theory for nonlinear
systems, [8] presents a distributed nonlinear algorithm to achieve accu-
rate DAT for time-varying reference signals with bounded derivatives.
In order to remove the chattering effect caused by the discontinuous
signum function, the authors in [9] propose a class of distributed
continuous nonlinear algorithms with, respectively, static and adaptive
coupling strengths for signals generated by linear dynamics. Different
from [9], our article focuses on DAT over a weight-unbalanced directed
graph, which introduces more challenges than its undirected counter-
part. Furthermore, in [10], considering the robustness to initial errors,
the authors develop a nonlinear DAT algorithm for arbitrary reference
signals with known bounded derivatives.

From the control perspective, some physical agents cooperatively
track a desired trajectory generated by multiple reference signals. For
example, the desired trajectory might be the geometric center of mul-
tiple leader robots. In this case, the local reference signal is the state of
each leader robot. In practice, the physical agents might have more com-
plicated dynamics than single-integrator dynamics. Some researchers
have solved the DAT problem via linear distributed algorithms [12],
[13], and some researchers have employed nonlinear distributed al-
gorithms [3], [14]-[17]. Both the linear algorithms and the nonlinear
algorithms have their features and advantages while with tradeoff. For
weight-balanced directed graphs, considering single-integrator dynam-
ics, the authors in [ 12] investigate a continuous algorithm to make agents
track the average of the dynamic inputs with a bounded steady-state
error. Recently, the authors in [ 13] propose a linear distributed algorithm
with a chain of two integrators for single-integrator dynamics, which
can deal with a class of reference signals with steady deviations among
the reference signal velocities. However, in the linear algorithms, a
common assumption is that the multiple reference signals tend to con-
stant values, and most of the results cannot guarantee accurate tracking.
Therefore, to achieve accurate DAT, the nonlinear algorithm in [8]
is further extended in [14] to double-integrator systems for reference
signals with bounded accelerations. To address the DAT problem for
physical agents with nonlinear systems, in [15], the authors introduce
an exact DAT algorithm for systems with heterogeneous unknown
nonlinear dynamics, where no constraints are imposed on the input
reference signals. Furthermore, a distributed algorithm is developed
in [16] for agents with nonlinear dynamics to achieve DAT in finite time.
DAT algorithms are proposed for agents with general linear dynamics
in [3] and for agents with additional Lipschitz-type nonlinear dynamics
in [17], where exact DAT is achieved. However, the tradeoff is that the
signum function used in some of the above nonlinear algorithms may
cause chattering phenomena.
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It should be recognized, nevertheless, that the DAT works alluded
to above are all built upon the assumption that the network topology
is either undirected or directed but weight-balanced; both cases are
highly idealistic and seldom seen in practice. For example, if a camera
is used to get the relative positions between agents, due to the limited
field of view, it is possible that one agent can sense another agent but
not vice versa. In addition, if the agents use communication devices
to exchange information with others, the agents might broadcast at
different power levels. As a result, the above situations might result
in weight-unbalanced directed graphs. Moreover, if the convergence
of an algorithm remains unchanged even after removing a few slow
communication links or package loss, which might in turn result in a
weight-unbalanced directed graph, the algorithm will be more robust
and reliable. In order to solve DAT for generic directed networks, the
authors in [18] propose a distributed algorithm to drive the states of
all agents to a neighborhood of the average of the reference signals.
A prerequisite for the algorithm to work is that the left eigenvector,
corresponding to the zero eigenvalue, of the Laplacian matrix should be
available to the agents, which is seldom possible in practice, particularly
for large networks.

This article is devoted to establishing DAT algorithms for generic
directed networks, which are possibly weight-unbalanced. To the best
of our knowledge, the DAT problem has not yet been addressed in the
literature for weight-unbalanced directed graphs without knowing the
left eigenvector of the Laplacian matrix. Specifically, we introduce two
algorithms for different application scenarios, each of which has its
own relative benefits.

In the first algorithm, we consider single-integrator dynamics and
avoid the use of the left eigenvector of the Laplacian matrix. The
proposed algorithm accounts for a generic directed network and a
wide class of time-varying reference signals of which the accelerations
have bounded deviations; hence, it is practically more relevant and
meaningful. Particularly, we introduce a distributed linear algorithm
with a chain of two integrators coupled with a distributed estimator
for the left eigenvector of the Laplacian matrix associated with the
zero eigenvalue. The algorithm is inspired by [13], [19], and [20].
Specifically, the distributed estimator in the emerging algorithm is
motivated by [19] and [20]. However, the problem studied here is
on DAT, which aims at tracking the average of multiple time-varying
reference signals. In contrast, [19] and [20] focus on a distributed
optimization problem, where the team optimal value is a constant. The
time-varying nature of the DAT problem makes the analysis and design
in the current article significantly different from those in [19] and
[20]. Moreover, the usage of the chain of two integrators is inspired
by [13] but the algorithms therein are limited to undirected graphs.
In contrast, the current article deals with weight-unbalanced directed
graphs. The asymmetric nature of the weight-unbalanced directed
graphs and the coupling of the distributed estimator with the chain of
two integrators make the analysis and design in this article much more
challenging than those in [13]. We prove that if the deviations among
the reference signal accelerations tend to zero (respectively, bounded),
the algorithm can achieve DAT with zero (respectively, bounded)
tracking error.

In the second algorithm, we consider agents with high-order integra-
tor dynamics. We propose a distributed nonlinear algorithm coupled
with a distributed estimator for the left eigenvector of the Laplacian
matrix associated with the zero eigenvalue. The algorithm is motivated
by [3]. Specifically, our proposed algorithm and [3] both can achieve
DAT for agents subject to certain linear dynamics. However, our pro-
posed algorithm can solve the DAT problem under general weight-
unbalanced directed graphs. In contrast, [3] poses an assumption that
the graph is undirected. The relaxation of such an assumption makes our
proposed algorithm amenable to more applications but in turn, poses
more technical challenges. In addition, we replace the signum function
in [3] with a continuous approximation in order to remove the chattering
effect caused by the discontinuous signum function. The approximate
function is widely adopted in the sliding mode control field [21]. The
results show that if the reference signals and signal control inputs are
bounded, the algorithm can achieve DAT with arbitrarily small tracking

errors. The convergence of the algorithm to the vicinity of the average
of the reference signals is established via Lyapunov stability theory and
input-to-state stability theory.

Some preliminary results of this article (Section III) are presented
in [22]. This article extends [22] by introducing new results on the non-
linear algorithm for high-order integrator systems in weight-unbalanced
directed graphs.

Il. PRELIMINARIES

A. Notation

Let R,R™ and R™*"™ denote the sets of real numbers, real vec-
tors of dimension n, and real matrices of size n X m, respectively.
Let R represent the set of positive real numbers. Let 1,, (resp.

0,,) be the vector of n ones (resp. n zeros), I,, denote the n x n
identity matrix, and 0,, (resp. 0,,,.,,) denote the n x n (resp. m x n)
matrix of all zeros. For a matrix A € R™"", g,..(A) denotes the
maximal singular value of matrix A, AT is the transpose of A, and
vee (A) = [eoly (A)T, ..., col, (A)T]T € R"™ is the column vector
of sizenm x 1 obtained by stacking the columns of A, where col; (A4) €
R™ represents the i th column of matrix A. For a square matrix
A e R™ ™ A-1 denotes the inverse of A. For a vector x € R™*!,
diag(z) € R™" represents the diagonal matrix with the elements in
the main diagonal being the elements of x, ||z||,, denotes the p-norm
of the vector x. Let ® be the Kronecker product. Let n! be the product
of n consecutive natural numbers from 1 to n. Let fo o fi(-) be the
composition of two functions f;(-) and fo(-). Let f~1(-) denote the
inverse of a function f(-). Let |a] be the largest integer that is smaller
than or equal to a.

Proposition 1 [23]: Let A€ R™", B € R™! and D € R**,
Then, vec (ABD) = (DT @ A) vec(B).

B. Graph Theory

A weighted directed graph, is denoted by G = (V, £, A), where V =
{1,...,n}isthe node set, £ C V x Vis the edge set, and A = [a,;] €
R™ ™ is the weighted adjacency matrix with a;; € (0,a) if (j,7) € £
and @ij = 0 otherwise for some a € R+ (. For a directed graph, an
edge (7, ) implies that node 4 can receive information from j. Let N; =
{j € V: (4,4) € £} denote the set of in-neighbors of node . A directed
path is a sequence of nodes connected by edges. A directed graph is
strongly connected if for every pair of nodes there is a directed path
connecting them. The Laplacian matrix £ = [I;;] € R™*" associated
with A is defined as [;; = Z",l i Gij and [;; = —a;;, where i # j.
Note that £1,, = 0,,. A dlrected graph is weight-balanced if and only
if17L = OZ

Lemma 1 [24], [25]: Let G = (V, &, A) be a directed graph with
the Laplacian matrix £ € R™*™. If G is strongly connected, then the
following statements hold.

1) There exists a positive left eigenvector p = [p1,...,pn|T
associated with the zero eigenvalue, such thatp;, > 0,7 = 1,.

pTL =0T, and Y )" pi = 1.

2) The Laplacian matrix £ has a simple zero eigenvalue corresponding
to the right eigenvector 1,,, and all the nonzero eigenvalues have
positive real parts.

3) mingr,—g .20, 7 L2 > ho(L)z"x/n, where z is any vector,
L= £TP + PL and P = diag(p), a is any vector with positive
entries, and Ao (L) is the smallest nonzero eigenvalue of matrix L.

4) lim; ., exp(—Lt) = 1,,p7.

of L

[Il. LINEAR DAT ALGORITHM FOR
SINGLE-INTEGRATOR DYNAMICS

In this section, the DAT problem for multiagent systems with single-
integrator dynamics over weight-unbalanced directed graphs is studied.
Consider a multiagent system consisting of n agents with an interaction
topology described by a weighted directed graph G.
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Assumption 1: The directed graph G is time invariant and strongly
connected.!
Suppose that the agents follow the single-integrator dynamics

where z;(t) € R™ and u;(t) € R™ are, respectively, the ith agent’s
state and control input. Each agent has a time-varying reference signal
r;(t) € R™,i=1,...,n, satisfying

() = i (t), 07 (t) = ai(t) 2

where v} (t) € R™ and a} (t) € R™ are, respectively, the velocity and
acceleration of the ¢th reference signal. For example, the reference
signal 7; might be the position, sensed by the ith camera, of a mobile
target of interest.

Our main objective is to design a distributed algorithm for agent
i € V based on 7;(t), v} (t), al (¢), x;(t) and x;(¢), j € N;, such that
it tracks the average of all the time-varying reference signals, i.e.,

i=1,..,n (D

=0. 3)
2

lim
t—o0

2i(t) = (1) Y5 (0)

We call a DAT algorithm robust to initialization errors if the objective
(3) can be achieved regardless of the agents’ initial states. For notational
simplicity, we will remove the time index t from variables in the
remainder of the section.

A. DAT Algorithm Design
‘We propose the following algorithm:

U; = —K,(JZZ' — 7‘1') — KZi; Z aij(mi — 33]') +U: — Wi
JEN;
; 2
Wii = K™ Zii Z aij (T — 35) — 2 Z a;j(wa; — way)
JEN; JEN;
Wi = Wi; — KTy — U;, 2¢=—Za¢j(zi—zj) C))
JEN;

where k € R+ is a positive control gain, z; € R™ is agent ¢’s esti-
mate of the left eigenvector corresponding to the zero eigenvalue of
the Laplacian matrix, z;; is the ith component of z;, wi; € R™ and
wo; € R™ are the internal states of a chain of two integrators, and a;;
is the (i, 7)th entry of the adjacency matrix. We initialize the internal
states w14, Wa;, and the estimators z; to satisfy the following conditions:

o

=1

We note that each component of z; is decoupled in (4). Therefore, in
the following, we will only tackle the one-dimensional case, i.e., m =
1. The same conclusion holds for any m>2 by using the Kronecker
product. Substituting (4) into (1) leads to a vector form as

&t =—k(x—r)—KkZLx+ v —w

i = k2 Z L — ZpLws

e =wy —kr —v", 2=—(L®I,)z (6)
where r=[ry,...,r,)T €R", "=, 0T e R,
r=[z1,...,2,]T €R", wy = [wi1, ..., wi,]T € R, Wy =
[war,. . wan]T €R™, z=[T,.., 20T €eR” and Z, =
diag([z11, 222, - - -, Znn)) € R™*™,

Lemma 2: If Assumption 1 holds and z(0) satisfies (5), then
lim; ., Z,, — P, where P is defined in Lemma 1.

Note that there is no requirement that G be weight-balanced.

Proof: We know that z = exp ((—£ ® I,,)t)z(0). By Lemma 1, it
can be obtained that lim; .o, z = exp (1,pT ® I,,)2(0) = 1,, @ p if
2(0) satisfies (5), yielding lim; ., Z,, — P. [ |

Remark 1: Compared with [13] which requires the network be
undirected, the algorithm (4) can work for generic directed networks.
Due to Lemma 2, we know that Z,, is utilized to estimate the matrix
P It follows from 17 P£ = 0 that PL is equivalent to the Laplacian
matrix of a balanced directed graph [26].

Remark 2: In the proposed algorithm (4), a chain of two integrators
with the internal states w1 ; and wo; are introduced to make (4) work for
more general reference signals, the term —r(x; — ;) is introduced to
achieve sum tracking, i.e., lim;_ || >0 @i — > iy 74ll2 = 0, and
the term —kz;; >, jen; Qi (x; — ;) is introduced to achieve consensus
with the aid of the chain of two integrators w1, and ws;. The distributed
estimator given by the last equation in (4) is used by agent ¢ to
estimate the left eigenvector, corresponding to the zero eigenvalue, of
the Laplacian matrix.

Remark 3: Inthe proposed algorithm (4), only correct initializations
of internal states wq;(0) and z;(0) are needed, and correct initial-
izations of agents’ states x;(0) and wq;(0) are not required, which
makes the algorithm robust to the state initialization errors. Note that
the initialization condition (5) can be easily satisfied, e.g., to satisfy
> wi;(0) =0, we can choose wy; =0, Vi=1,...,n.

B. Convergence Analysis

The main assumption and result of this section are stated in the
following theorem.

Assumption 2: The deviations among the accelerations of the refer-
ences all tend to zero, i.e., lim;_,. (a} — a§) =0,1# 7.

Theorem 1: Using (4) for (1), if Assumptions 1 and 2 and the initial
condition (5) hold, and > 1, then lim; . [|z; — + S irilla =0
foralli =1,...,n.

Proof: Define & = x — %1,1157“, W, = w; — KOQr — QU”, Wy =
ZpLwsy + k" 4+ Qa”, and Y = 27, @T , 01T where Q = I,, —
£1,,17 . Tt can be verified that L& = Lz and £Q = L. The first three
equations in (6) can be rewritten in terms of Y as

Y= f(Y)+g(Y)+h ™
where

—KT — KPLT —

fiy) = K2PLT — o
PLy

k(P — Z,)L% 0
g(V)=|k*(Z,—P)LT | ,h= 0

(Z,, — P) L kQa” + Qa”

Based on Assumption 2, we know that ~A will approach zero as time
goes to infinity. Therefore, by taking h in (7) as the system input, we
first analyze the stability and convergence properties of the unforced
system, i.e.,

Y = f(Y)+g(Y). (8)

Due to Lemma 2, we know that as ¢t — oo, Z,, — P tends to zero, so
by Corollary 9.1 and Lemma 9.5 in [28] the convergence of (8) can be
analyzed via Y = f(Y') only, i.e.,

2
2

®

2, §x

Slﬂgl
Il
b
(V)

where
—k—kPL -1, 0,
K/%PE On _,In
0, PL 0,

A:
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In the following, we show that the dynamical system (9) is stable and
convergent by studying the dynamics of two related systems. Define

Ty =[q Q"]", where ¢, = ﬁln, Qa1 =0, 1and QQ" =1, .
It follows that Ty PLTT = [07?71 OTT}\ 1 ], where A is an upper trian-

gular matrix whose diagonal entries are the nonzero eigenvalues of
PL.Thus z = [‘il Li'%:n]T = Tlff, ’lbl = [’12)11 12)?2:1"]1—‘ = Tlﬂ)l and
Wy = [toy Wy, ]T = Ti1y, where £1,101; and Wy € R. We can
rewrite (9) as

T2:n

.xl T R T2:n
Wy | =AW |, | Wizan | =A | Dizan (10)
Wa1 W21 W22:2n W22:2n
where
k10 . —k— kA =1, 4 0, 1
A=—]001|,A=| KA 0,4 —Iy1
000 0,1 A 0,1

The matrix A * * % % has two eigenvalues 0 (with multiplicity 2) and
—k. Define

In—l Gn—l Qn—l
@!n—l !n—l On—l
Onfl 077.71 Infl

T2:

such that [z7, wT, wl T = TL[2L, w5, 0., . Itfollows from
(10) that

i [z
wy | = A | (1)
wg w2
where
_ jKA —in-1 ()nfl
A= 0,1 7H[n71 ijnfl
—kA A On—l

The determinant det(A1,,_; — A) is given by

)‘Infl + KA [nfl (_)nfl
det ()nfl )“]nfl + H/I'nfl Infl
KA —A )"In—l
)\Inzl + KA In—l On—l
= det 0,1 )‘f—[nfl + K/Infl Infl (12)
(_)nfl (_)nfl r

where T'= AL, 1+ (M, 1+ kI, 1) YA+ w(A, 1+ &A) A
Noting that the inverse of an upper triangular matrix is also an up-
per triangular matrix, and the multiplication of two upper triangular
matrices is also an upper triangular matrix, it follows that I' is an
upper triangular matrix. Define = € R" "~ where Z; ; = A, ; for
alli=1,2,...,n—1and Z; ; = 0 forall i # j. We have

)\.In:1 + K,A
97171

On—l

Infl ()nfl
)“In717+/{1—n71 Infl
On—l r

det

)‘Inil + K= 671,71 (jnfl
0,1 My 1+ kL1 0,
On—l

On—l

— det " (13)
r
where T'=Al, 1+ (M1 + Kl 1) Y E+ k(AL 1 +KE)'E].
The eigenvalues A of A can be obtained by calculating the following
equations

)\,3 + Ii)\.2 + KE“’)\.2 =+ K/QE“)\, + E“)x =+ K/E?,L + KJE“' = 0,

i=1,.,n—1. (14)

To solve (14), we consider the corresponding perturbed cubic equation
3 = 1 2 20 =
M h+rE;+——¢) A+ (KPEi+Zu+1—ke) A
K

+ KEZL 4+ K?Ee =0, i=1,.,n—1. (15)
With ¢ beging the perturbation parameter, it is worth noting that when
€= %, the perturbed cubic (15) reduces to (14). It follows from k > 1
that (1/k) < 1. Based on perturbation theory [27], the eigenvalues A
are given by A = Ag + erp + O(e) = Ag + %)\1 + O(g), where A is
the solution of the following equations:

1
<A+—) (A+r)(A+KEH) =0, i=1,.. (16)
K
124rro-rZEZ
and Ay = Ag+2xo+251i2+2K+2/K+Eim2+5”+1’
with O(e) being the higher order term.
It follows from (16) that for each :=1,...,n—1, Xg=
—1/k, —k, —KE;;, along with

i=1,...,n—1,

(1/k)%-1-K2E2

i ifrg=—1
(1/K8)2 425,k +26+E;; K2 +E;;+1 0 K
222
h= i if Ao = —k (17
(R)2 428/t 2/ Rt r2 425 +1 0
k25 . —
) lf )xo = —RKZj-.

(KZ43)2+2r+2/r+E k2454 +1

Recall that the nonzero eigenvalues of PL all have positive real parts,
therefore Ao and A, all have negative real parts, which indicates that the
eigenvalues A of (14) all have negative real parts. Hence the dynamical
system (11) is exponentially stable. Noting that 7} and 75 are all
nonsingular matrices, the dynamical system (9) must be exponentially
stable. ~

The null space of the system matrix A of (9) is spanned by
17, —k1T, 0117, the eigenvector associated with the zero eigenvalue.
Therefore, (9) converges exponentially fast to the set { (Z, w1, ws) | Z =
al,,w; = —akl,,ws = 0,,a € R}. According to the definition of
w1, we know that 1240, = 1Tw,. It follows from 1% (x2PLx —
PLws) = 0that 174, = 0,leading to 170, = 17w, = 11w, (0) =
0. Therefore, if (5) holds, system (9) converges exponentially to the set
{(Z,w1,w2) | T =0,,w; = 0,,ws = 0,}. Based on Corollary 9.1
and Lemma 9.5 in [28], the perturbed system (8) is exponentially stable
with respect to the equilibrium point. Therefore, under Assumption 2,
Y in (7) asymptotically converges to Os,,. |

In practice, the reference signals may not always satisfy Assump-
tion 2. A more realistic assumption is to require the deviations among
the reference signal accelerations be bounded, which is formally stated
in the following.

Assumption 3: The deviations among the accelerations of the ref-
erence signals are bounded, i.e., there exists a” € Ry such that
SUDse(0,00) (@] —af) = a", Vi €V, j € V,i # j.

Theorem 2: Using (4) for (1), if Assumption 3 and the internal

state’s initial conditions (5) hold, and £ > 1, then sup;c(g ’ T —

1 n
n > j=1T3

Proof: Because of the boundedness of h, system (7) is input-to-state
stable by Lemma 4.6 given in [28]. If Assumption 3 holds, it follows
from Definition 4.7 in [28] that the whole tracking error is up-
per bounded by lim; o, sup ||Z(¢)]|2 < lim;—o sup || Y (¢)]|2 < ea”,
where € is a positive constant. |

is bounded forall7 = 1,..., n.
2

IV. NONLINEAR DAT ALGORITHM FOR HIGH-ORDER INTEGRATOR
DYNAMICS

In this section, the DAT problem for multiagent systems with high-
order integrator dynamics over weight-unbalanced directed graphs is
studied. In some applications, it might be more realistic to model
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the dynamics of the agents with high-order integrators. Unlike single-
integrator dynamics, in the case of high-order integrator dynamics, the
agents’ system inputs might have a different dimension from that of the
agents’ state. Consider a network of n agents whose states are governed
by

where z;(t) € R™, u;(t) € R are the system state and control input
of the ith agent,> A € R™*™ is the state matrix, and B € R™*! is the
input matrix. Here A and B are defined as

_ Om—l -Im—l _ Om—l
i) e[

Each agent has a time-varying reference signal r;(¢) € R™ given by

7;(t) = Ary(t) + Bul (t) (19)
where 7;(t) € R™, u}(t) € R is the state and control input of the ith
time-varying reference signal. The input u[ (¢) can be properly designed
such that (19) can generate a general time-varying reference signal
7;(t). The following standard assumption is made:

Assumption 4: The reference signals are bounded, and their con-
trol inputs are bounded, i.e., there exist ¥ > 0 and 4" > 0 such that
SUD;e[0,00) 173 (8) |2 < 7 and sup,c(o, oy [|4f ()]|2 < @”, forall i € V.

Again, for notational simplicity, we will remove the time index ¢
from variables in the remainder of this section and only keep it in some
places when necessary.

A. DAT Algorithm Design
We study the following control algorithm:

UZ:u:-f‘Kl(l’l*Tz)*ﬂiL Ziq Zaing(xifx]-)

JEN;
fi=— ay(z—z)

JEN;

(20)

where z; € R"™ is agent ¢’s estimate of the left eigenvector correspond-
ing to the zero eigenvalue of the Laplacian matrix, z;; is the ith element
in vector z;, a;; is the (4, 7)th element of the adjacency matrix A,

and h(-) is a function defined component-wise as h(s) = { gl sl
where € € R+ is a small positive constant. In addition

K1 2 —(K2A + K,) € RV™

Ky 2[Cp_1,Cpsy o, Cli] € RV 1)
where Ck | = %, k € [0,m — 1], and S is a control gain
satisfying

2n%0—max(P£) (ﬂr + Umax(Kl)F)

B> =

r2(L)
where £ and P are defined in Lemma 1. We initialize the es-
timators z;,7 € )V, to satisfy the last two equations in (5). De-

(22)

fine z ¢ R = E, ... 207, Z, = diag([z11, 222, -, 2nn])) €
R p 22l 2l e RV, w2 uy,...,u,)T € R, r &
[T, .. .,rF17 eR™ andu” £ [uf,...,u"]T € R™. Thentheclosed-

loop system (18) can be written in a vector form as

&= (I, ® Az + (I, ® B)
x (u (I, ® K (@ — ) — Bh (ZoL ® Kg);t:))

i= —(L®1,)z (23)

Note that the dimensions of the control input u; in Secs. IIl and IV are
different.

Remark 4: For the high-order integrator case in Section IV, we
only tackle the one-dimension case (i.e., z; € R™ and u; € R for
me-order integrators), since each dimension of the high-order integrators
is decoupled. Please note that our algorithm can be easily extended
to multidimension high-order integrator cases (i.e., z; € R™? and
u; € RY for m-order integrators) by using the Kronecker product.

Remark 5: In the proposed algorithm (20), the term K (z; — r;)
is introduced to achieve sum tracking (i.e., limy o || > i @i (t) —
o 7i(t)]l2 = 0) with the help of the distributed estimator z;, and
the term —fBh(zii >, @i Ko(w; — x;)) is introduced to guarantee
consensus.

B. Convergence Analysis

This section establishes the convergence properties of the system
(18) under the controller (20).

Lemma 3: For any strongly connected directed graph G of order n,
let (PL)T € R™ ™ be the generalized inverse of PL with P and £
being defined in Section ILB, we have (PL)*(PL) = I,, — +1,,17.

Proof: Note that 1T PL = 0T and PL1, =0, i.e., PL can be
viewed as the Laplacian matrix of a weight-balanced directed graph.
Consequently, the proof follows directly from the proof of Lemma 3
in [10]. | |

Lemma 4: Let Assumption 1 hold. Using (20) for (18), if ||[(PL ®
K5)xz(t)||1 is bounded for all >0 and

tlim sup |[(PL ® Ka)x(t)|1 <b (24)
—00

where b is an arbitrary positive constant, then lim; .., sup |[(Q2®
L))l < [[(PL)*® Ln:27 15 0, ([ Tj=, C/*), where
Q=1I,—£1,17, and (PL)" is the generalized inverse of PL.

Proof: Define X = [z1,...,2,] € R™™, where z; € R™, i €
[1,7n], is defined in (18). Define X; € R'*™ as the ith row of X. It
follows from Proposition 1 and (21) that

(PL® Ky)x = (PL® Ka)vec(X) = vec (K2 X (PL)")
=vec ((CY,_1 X1 4+ Cn 1 X,,)(PL)T)
=Y _yvec (X1(PL)T) + -4+ Cllvec (Xon (PL)T)

1

=C% Xyt IR, (25)
where X; = vec(X;(PL)T). For £ € [0,m — 1], define
se=Co X1 +Ch_  Xo+ - +CI I Xy (26)

and thus $, = C° 7@71;(1—&— C}nizfl)’%g +--~+Cm’£’1)L(m,g.

m m—~_—1

By (18), we have X=X, for ke[l,m—1. It
follows that for fe€[l,m—1], s+ =C% , X+

CreXa + ot Cr it X 0 +CY o 1 X1+ Ch X+
4 C,T:f:ll)zm—z = C?n—Zlel + CiL7271X2 +

et C’Zzl:f:ll)?mfl + Cgl,e,lxz + 0#7271)25 4o+

Cmt1X,, o11. Because CX = CF 1+ C* | and C0 = C7 =1,

we have for £ € [1,m — 1],

set+80=Cf p 1 X1+ (Cho1 +Cgr) Xo 4+
+(Crit+ O i) Xt + Ot Xt

=Ch X1+ Ch  Xo+--

+ O X+ O X o1 = 01 @7

The proof will proceed by the mathematical induction method.
Recall the definition of s, given by (26). It follows from (25) that s =
C?n_le 4+ C:,’;:ll)?m = (PL ® Ky)x. Therefore, it follows
from (24) that s¢ () is bounded for all t>0 and lim;_,, sup ||so(¢) |1 <
b. Next, we will prove that for £ € [1,m — 1], if sy_1(¢) is bounded
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for all >0 and lim_, sup l[se-1(t)]l1 < b with b being a positive + C}?J lim sup || X1 (£)])1 +- - -
constant, then s, (t) is bounded for all £>0 and lim;_,, sup ||s,(¢)[|1 < t—00
2b, using the input-to-state stability concept. It follows from (27) = 5
that sy = —s¢ + sy_1, which is obviously an input-to-state stable +C 1 lim supHX, ( )Hl
system by viewing s, as the state and s,_; as the input. Consider i i1 i
the Lyapunov function V (s;) = $||s¢[|3. It follows that oy (|| s¢[|2) < < C’Lf lom=ip 4 C}j ‘B4 4 C}j !B,
V(s¢) < aa(|[sell2), where o (y) = 292 and az(y) = Sy? are both il i)~ lisl) - |51 ~
_ - 2 2 2 — 2

class K+ functions. The derivative of V(s,) is given by V(s,) = <C; i B+C.{ Bi+--+C; { B =iC; { B
st ép =8l (=s0+s01) < —|sel? + Hsz||2||sz 1|2 It follows that
for all > here = 2y is a class K function, =y

”SZHQ Pllse-t2). w Ply) =2y et where the last third inequality holds since C f >1 is the

V(se) —3 L|/s¢||3. Based on Theorem 4.19 and Definition 4.7 in [28],
the system $, = —s, + sy_1 is an input-to-state stable system by view-
ing s, as the state and s,_; as the input, and there must exist a class
KL function a(+, ) and a class K function (y) = ;' o g 0 p = 2y
such that for any initial state s,(to) and any bounded input s,_1 (¢), the
solution s,(t) exists and satisfies

lse@ll < alllse(to)ll1,t

to) + 2 ( sup HSg,l(T)Hl) . (28)

to<T<t

Since ||s¢-1(t)|l1 < bast — oo, for an arbitrary number ¢ > 0, there

must exist a time 77 > 0 such that |[s,_1(¢)||1 < b+ (forallt > T,.
Consequently, for all ¢t > T, we have

lse(®)ll < alse(T) ]t — 1) +2 ( sup ||sH<r>||1)

Ty <7<t

allse(Ta) .t = 71) +2 (B +<).

Since a(|[s¢(T1)||1,t — T1) is a class KL function, a(]|se(T1)|1,t —
T:) — 0 as t — oo. Therefore, there must exist a time 7> > 77 such
that o([[se(T71) 1.t —T1) < ¢ for all ¢ > T5. It follows that for all
t > Ty, ||se(t)|ly < ¢+ 20+ 2¢ = 3¢ + 2b. Since ¢ is an arbitrary
positive number, we have |[s;(t)|; < 2b as t — oc. Therefore, we
obtain the conclusion that for £ € [1,m — 1], if s,_1(¢) is bounded for
all >0 and lim,_,, sup ||s¢—1(¢)|| < b, then s,(t) is bounded for all
>0 and lim, ... sup ||s¢(t)|| < 2b. Since we have proved that so(t)
is bounded for all ¢>0 and lim;_,., sup||so(¢)||1 < b, we have that
s¢(t),£ € [0,m — 1], is bounded for all >0 and

(29)

lim sup [|s¢ (t)[|: < 2°h. (30)
—00

Then, we will derive the bound of || X |1, i € [1,m], based on
the bound of ||s,||1, £ € [0, m — 1], using the mathematical induction
method again. It can be verified Ehatsm 1 = X1 by (26). Then it follows
from (30) that limy_, sup || X1 (t)[|1 = limye sup||Spm-1(t)[1 <
2m=1p, Therefore there exists a positive constant B, = 2™ 1h >

27-2h such that lim,_,. sup || X1 (t)]; < Bs. Next, we will prove
that for ¢ € [2,m], if there exists a positive constant B;>2"""b

such that lim,_. sup || X (¢)|1 < Bs, Vk € [l,i— 1], then there
exists a positive constant B7,+1 = zC’ L5 JB >9m~i-1} guch that
limy oo sup | Xx(8)|l1 < Big1, VE € [1, z] Fori € [2,m)], if there ex-

1sts a positive constant B;>2™"b such that lim,_,. sup || Xy (¢)|; <
B;, Yk € [1,i — 1], it follows from (26) and (30) that

lim sup H)Z'Z(t)Hl
t—o0

= Jim sup y—o(1) ~ CL Ka(t) —--- = O K0y
< Jim sup (1) 1 + O2y im sup |51 (0)]1 +--
+Ci? thjg sup || X; 1 (1)1

< CET im sup 5,040

biggest coefficient among all C!_,,l € [0,i — 1]. Since i > 1 and

C-7 51, we have iCCT B, > B,. If B;>2™ b, it follows that
i1 . .

iCL | B, >9m-ip>2mi-1p, Therefore, for i € [2,m], if there ex-

ists a positive constant B;>2"""b such that lim,_, ., sup ||Xk t)]: <
B,, Vk € [1,i — 1], then there exists a positive constant B;,; =

zC’ ! By>2m~-1% such that lim,_,.. sup X)) < Big1, Yk €
1, z]. We have proved that there exists B, = 2™ 1b > 2m2)
such that lim,_,.. sup || X5 (¢)||; < Bg, Vk € [1]. It thus follows that
lim, o sup | X; (8|1 < iN[Ti2y CF/2)2m b for i € [1,m].
Recall the definition of XZ. Based on Proposition 1, we have

[(PL® Im) vec(X)||, =

= Z Hvec (X rPo)T
=1

[[vee (X(PL)T) |,
1 Z H)ZlHl

Therefore

hm sup|| (PLR 1) z(t)|, _hm sup||(P£®I ) vee(X (¢))||,

= limsup X0,

IA

2W113iz‘! (ﬁ CJWQJ> :
i=1 j=0

It follows from Lemma 3 that if Assumption 1 holds, then (PL) T PL =
I, — %1,1 17 which further leads to

lim sup |(Q @ L) z(t)]];
t—o0

= tlim sup|| (PL)" @ I,) (PL® I.,,)

m i1
z(t)|l < [(PL)T ®Im|‘12m7152i! <H CJLJ/2J> '

i=1

The main result of this section is given as follows.
Theorem 3: Using (20) for (18), if Assumptions 1 and 4, the
gain condition (22) and last two initial conditions in (5) hold,

then limy oo sup 355y [lzx () — (1/n) 325, ()]l < [(PL)T @
L [ime2m =t 3 (TS, C U/2) \where (PL)* is the generalized
inverse of matrix PE

Proof: Consider the Lyapunov function candidate

Z.g Dbi Zaz]KZ

JEN;

€1V

)
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where p; is defined in Lemma 1, §(s) : R — R is a function defined as

g(s) = { ‘% s iflsl=¢. Tt can be shown that the derivative of V() is

n
V(z) = Zfi Di Z ai; Ko (i — &) (32)
i=1 FEN;
where §; € R, i € [1,...,n], is defined as
1 lfpz Zje]\/’i ai]'KQ(Ii—l'j) 267
¢ = —1Z if p; ZjENi a;j Ko(z; — ;) < —¢, 33)
Pi caijKo(wi—xj)
N j ’ " otherwise.
Define ¢ = [£1,...,&,]T € R™. Then the derivative of V (z) along the

trajectory of (23) can be calculated as follows:

V(z) =T (PL® K,) i

=T (PL®KS) <(In ® Az + (I, ® B)

(07 (10 K)o = 1) = BB (L K )

=¢T(PL® KyB)u" +¢7 (PL® Ky(A+ BK))) x
—¢T(PL ® KyBK))r

— BET(PL @ KyB)h ((ZnL @ Ka)x) . (34)

Recall the definition of K5 and B, we have Ko B = C’;’T‘j =1, it
follows that

V(z) = T PLu" + €T (PL® Ko(A + BK,)) ©
- (35)
—T(PL® Ky)r — BETPLL ((Zp, L @ Ko)x) .

Consider the first term in (35). It follows from the Schwartz inequality
that

€7 PL" < eI PLIa |2 < nf o (PO, (6)
Similarly, we have (7 (PL ® K;)r < N3 Trax (PL)Omax (K1)T.
Next, consider the second term in (35). Due to the definitions of K
and K, in (21), we know that K5(A 4+ BK;) = — K. Recall the
definition of £ in (33), it follows that £ = h((PL ® K)x) and thus
&; and the ith element of (PL ® K5)x have the same sign. Therefore
ET(PL® Ka(A+ BKy))r = —€£T(PL® Ky)x < 0.

Consider the fourth term in (35). Define n € R™ = ﬁ((Zn£®
Ky)z) and ¢ € R™ = i — &, then we have

— BETPLA (ZnL @ Ko)x) = —BET PLy

B B
= —B¢TPL(E + ) = —S€TPLE — ST LTPE — BETPLY
_B B

2 2
Here L is defined in Lemma 1. In addition, if there exists i € V
such that ‘pi Eje/\q a;; Ko (x; — a:])| > ¢, there is at least a 1 and
a negative number or a —1 and a positive number in the elements
of vector £. Therefore, there must exist a positive vector a such that
a”¢ = 0. It follows from Lemma 1 that if there exists i € V' such that
P 2 jen, @ij Ka(zi — 25)| > e, then [[€[|3>1 and

§TLE — BETPLY < —Z€TLE + Bn? opmas(PL)|[Y])o-

SETLE > (L)€ = gr 2 (L) 37

Then we have if there exists 4 € V such that }pi ZjEM a;; Ko(x; —
l'])’ 2 €,

V(z) < — €7 (PL® Ka) & + n? 0 (PL) (U7 + Ormax (K1)7)

_ %M(z) + B O (PL) 9]z

< — €7 (PL® K2) 2 + Bn? gmax (PL) [ |2-

Here the last inequality is under the gain condition (22). Next, we
show that all | Diy. e, Qi Ko(x; — w])| remains in a bounded re-
gion. According to the definition of V' (z), we know that the exis-
tence of ¢ € V such that |p¢ Zjex\/’i a;; Ko(z; — J:J)| — 00 iS a nec-
essary and sufficient condition of V(z) — oo. If there exists i € V
such that |p; Y7,y @i Ka(z; — ;)| — oo, it will also hold that
¢T(PL ® Ka)z — oo and V (z) < 0, which will result in a bounded
V() and thus all bounded |p; >~ x, ai; Ka(z; — x;)|. It follows that
all |p¢ Zje/\ﬂ; a;; Ko (z; — acj)| and thus V(x) remain bounded. Ac-
cording to the gain condition in (22), we know that there exists a positive
number ¢ such that V < ¢ — £7(PL ® K3)z + 812 0max (PL)||1] 2
if there exists 7 € V such that |pi ZJEM a;; Ko(x; — :cj)‘ >e It
follows from Lemma 2 that ¢ — 0,, as ¢t — oo, therefore there
must exist a time T3 such that Bn2omax(PL)|¢]2 < < for all
t > T5. Then we have V(a:) < 0 for all t > Tj if there exists 7 €
V such that !pi Zje/\/’i a;; Ko (z; — oc])| > ¢. Then we can get the
conclusion that ||[(PL ® K3)xz(t)||; is bounded for all ¢>0, and all
|pi Zjem a;; Ko(x; — x])| < e ast — oo and thus

(3%)

tlim sup [|(PL ® Ka)x(t)|1 < ne. (39)

Note that Assumption 1 holds. It then follows from Lemma 4 that

thjg sup [|(Q ® I,z (t) ||

. n 1 n
= th_)rroi sup; g (t) — o z;:rj(t)
= i=

1
m i—1 ]

< (PL)T @ Ly |ime2m™ ! (H CJU/ZJ) . (40)
i=1 j=0

In what follows, the term (1% ® I,,,)(x — r) is analyzed. The deriva-
tive of (17 @ I,,,)(x — r) can be calculated as follows:

d ((12 ® Iy,)(x — r))
dt

x (([n ® (A+ BK))) (¢ — 1)~ B(I, ® BY(ZnL ® Kg):t))

= (177; ® Im)(x - 7") = (12 ® Im)

= (17T ® (A+ BK,)) (z — ) — B(AL @ B)h ((Z,L ® Ka2)z).
41

It follows from the definitions of K; and K, that det(Al,, —
A -1 0 0 0
(A+BEK) = [ AR I
cy, Ch, C2y e atet
cates that the eigenvalues of A + BK all have negative real parts.
Here det(-) denotes the determinant of a matrix. Define the variable
S =17 ® I,)(z — r), then we can rewrite (41) as

S =(I,®(A+ BK,))S — (1% @ B)h ((ZnL @ Ky)x) .

Then we can use the input-to-state stability to analyze the system (42)
by treating the term 3(17 ® B)h((Z,L ® K»)z) as the input and S as
the state. From Lemma 2, we know that Z,, (t) — P ast — oo, leading
to h((Zn ()L ® K5)a(t)) — h((PL ® Ky)x(t)). It has been proved
that [p; 3 jen, aij Ka(zi(t) — ()| < €, Vi € V, is reached as t —
oo, therefore we have h((Z,(t)L ® Ky)x(t)) — w as

t — oo. It thus follows that (17 @ B)h((Z,(t)L @ K2)z(t)) —
BM =0,, as t — oo, which gives S — 0,, and thus
limy oo > iy (24 () — 74(t)) = 0, as t — oco. It follows from (40)

= (A + 1)™, which indi-

(42)
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that

n
lim sup E
t—o0
k=1

5e®) = ()

1

m i—1
< IPLYF @ L] 2™ ne D il <H c}””) . 43)

i=1 =0

|
Remark 6: Both the linear and nonlinear algorithms have their
unique features and advantages while with tradeoffs. The advantage
of the linear algorithm (4) is that it is smooth and linear and hence is
easier to implement in practice. However, the tradeoff is that the tracking
error is zero only for reference signals whose acceleration deviations
approach zero and bounded for signals with bounded acceleration
deviations. On the other hand, the advantages of the nonlinear algorithm
(20) are that it can achieve DAT with relatively small tracking errors
for reference signals whose states and velocities are both bounded (it
follows from (43) that the tracking error can be arbitrarily small by
adjusting €) and it can deal with more general high-order integrator
systems. But the tradeoff is that the nonlinear algorithm may be more
“expensive’” to implement than the linear one in practice.

V. CONCLUSION

In this article, we have studied distributed average tracking in weight-
unbalanced directed graphs, which attempts to push a set of networked
agents to track the average of the locally available time-varying ref-
erence signals, where each agent can only receive information from
its neighbors. We first propose a linear algorithm for single-integrator
dynamics. We have shown that the tracking error is upper bounded if
the reference signals have bounded acceleration deviations. We also
investigate a nonlinear algorithm for high-order integrator dynamics,
which guarantees that distributed average tracking can be achieved with
arbitrarily small tracking errors if the reference signals and their veloc-
ities are all bounded, and the control gain is properly chosen. Future
works include the extension to nonlinear agent models, discrete-time
multiagent systems and stochastic reference signals.
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