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Abstract—This article studies a distributed average tracking
(DAT) problem, in which a collection of agents work collaboratively,
subject to local communication, to track the average of a set of
reference signals, each of which is available to a single agent.
Our primary objective is to seek a design methodology for DAT
under possibly weight-unbalanced directed networks—the most
general and thus most challenging case from the network topology
perspective, which has few results in the literature. For this pur-
pose, we propose a distributed algorithm based on a chain of two
integrators that are coupled with a distributed estimator. It is found
that the convergence depends on not only the network topology
but also the deviations among the reference signal accelerations.
Another primary interest of this article stems from the dynamics
perspective—a point perceived as a main source of control design
difficulty for multiagent systems. Indeed, we devise a nonlinear al-
gorithm that is capable of achieving DAT under weight-unbalanced
directed networks for agents subject to high-order integrator dy-
namics. The results show that the convergence to the vicinity of
the average of the reference signals is guaranteed as long as the
signals’ states and control inputs are all bounded. Both algorithms
are robust to initialization errors, i.e., DAT is insured even if the
agents are not correctly initialized, enabling the potential applica-
tions in a wider spectrum of application domains.

Index Terms—Distributed average tracking, multiagent system,
weight-unbalanced directed graphs.

I. INTRODUCTION

In distributed average tracking (DAT), the agents are coupled through
the common task that they try to track the average of a set of reference
signals, each of which is available to a single agent and is generally
time varying; the task should be completed on the basis of local
information and local communication among the agents. Recent years
have witnessed a growing interest in the study of DAT, partially due to
its broad applications. DAT has found applications in distributed sensor
fusion [1] and distributed Kalman filtering [2], where the technique
has mainly been applied from an estimation perspective. There are
also various applications, where DAT is employed to design control
laws for physical agents. Examples include dynamic region-following
formation control [3] and distributed convex optimization [4]. It has
been recognized that DAT has its own unique difficulties and faces
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not only theoretical but also practical challenges, since the tracking
objective of DAT is time varying and unavailable to any agent.

From the estimation perspective, the goal of the DAT problem is to,
in a distributed manner, fuse information or compute common estimates
of certain time-varying quantities of interest. A typical example is
to estimate and track the averaged position of a moving target by
multiple cameras. In this case, the local reference signal is the position
data, sensed by each camera, of the moving target. Some DAT results
from the estimation perspective have been presented in [5]–[11]. For
example, in [5], the authors propose a linear algorithm to achieve DAT
for reference signals with steady states. A proportional algorithm and a
proportional-integral (PI) algorithm are proposed in [6] to achieve DAT
with a bounded tracking error under constant or slowly-varying inputs.
Based on the nonsmooth sliding mode control theory for nonlinear
systems, [8] presents a distributed nonlinear algorithm to achieve accu-
rate DAT for time-varying reference signals with bounded derivatives.
In order to remove the chattering effect caused by the discontinuous
signum function, the authors in [9] propose a class of distributed
continuous nonlinear algorithms with, respectively, static and adaptive
coupling strengths for signals generated by linear dynamics. Different
from [9], our article focuses on DAT over a weight-unbalanced directed
graph, which introduces more challenges than its undirected counter-
part. Furthermore, in [10], considering the robustness to initial errors,
the authors develop a nonlinear DAT algorithm for arbitrary reference
signals with known bounded derivatives.

From the control perspective, some physical agents cooperatively
track a desired trajectory generated by multiple reference signals. For
example, the desired trajectory might be the geometric center of mul-
tiple leader robots. In this case, the local reference signal is the state of
each leader robot. In practice, the physical agents might have more com-
plicated dynamics than single-integrator dynamics. Some researchers
have solved the DAT problem via linear distributed algorithms [12],
[13], and some researchers have employed nonlinear distributed al-
gorithms [3], [14]–[17]. Both the linear algorithms and the nonlinear
algorithms have their features and advantages while with tradeoff. For
weight-balanced directed graphs, considering single-integrator dynam-
ics, the authors in [12] investigate a continuous algorithm to make agents
track the average of the dynamic inputs with a bounded steady-state
error. Recently, the authors in [13] propose a linear distributed algorithm
with a chain of two integrators for single-integrator dynamics, which
can deal with a class of reference signals with steady deviations among
the reference signal velocities. However, in the linear algorithms, a
common assumption is that the multiple reference signals tend to con-
stant values, and most of the results cannot guarantee accurate tracking.
Therefore, to achieve accurate DAT, the nonlinear algorithm in [8]
is further extended in [14] to double-integrator systems for reference
signals with bounded accelerations. To address the DAT problem for
physical agents with nonlinear systems, in [15], the authors introduce
an exact DAT algorithm for systems with heterogeneous unknown
nonlinear dynamics, where no constraints are imposed on the input
reference signals. Furthermore, a distributed algorithm is developed
in [16] for agents with nonlinear dynamics to achieve DAT in finite time.
DAT algorithms are proposed for agents with general linear dynamics
in [3] and for agents with additional Lipschitz-type nonlinear dynamics
in [17], where exact DAT is achieved. However, the tradeoff is that the
signum function used in some of the above nonlinear algorithms may
cause chattering phenomena.
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It should be recognized, nevertheless, that the DAT works alluded
to above are all built upon the assumption that the network topology
is either undirected or directed but weight-balanced; both cases are
highly idealistic and seldom seen in practice. For example, if a camera
is used to get the relative positions between agents, due to the limited
field of view, it is possible that one agent can sense another agent but
not vice versa. In addition, if the agents use communication devices
to exchange information with others, the agents might broadcast at
different power levels. As a result, the above situations might result
in weight-unbalanced directed graphs. Moreover, if the convergence
of an algorithm remains unchanged even after removing a few slow
communication links or package loss, which might in turn result in a
weight-unbalanced directed graph, the algorithm will be more robust
and reliable. In order to solve DAT for generic directed networks, the
authors in [18] propose a distributed algorithm to drive the states of
all agents to a neighborhood of the average of the reference signals.
A prerequisite for the algorithm to work is that the left eigenvector,
corresponding to the zero eigenvalue, of the Laplacian matrix should be
available to the agents, which is seldom possible in practice, particularly
for large networks.

This article is devoted to establishing DAT algorithms for generic
directed networks, which are possibly weight-unbalanced. To the best
of our knowledge, the DAT problem has not yet been addressed in the
literature for weight-unbalanced directed graphs without knowing the
left eigenvector of the Laplacian matrix. Specifically, we introduce two
algorithms for different application scenarios, each of which has its
own relative benefits.

In the first algorithm, we consider single-integrator dynamics and
avoid the use of the left eigenvector of the Laplacian matrix. The
proposed algorithm accounts for a generic directed network and a
wide class of time-varying reference signals of which the accelerations
have bounded deviations; hence, it is practically more relevant and
meaningful. Particularly, we introduce a distributed linear algorithm
with a chain of two integrators coupled with a distributed estimator
for the left eigenvector of the Laplacian matrix associated with the
zero eigenvalue. The algorithm is inspired by [13], [19], and [20].
Specifically, the distributed estimator in the emerging algorithm is
motivated by [19] and [20]. However, the problem studied here is
on DAT, which aims at tracking the average of multiple time-varying
reference signals. In contrast, [19] and [20] focus on a distributed
optimization problem, where the team optimal value is a constant. The
time-varying nature of the DAT problem makes the analysis and design
in the current article significantly different from those in [19] and
[20]. Moreover, the usage of the chain of two integrators is inspired
by [13] but the algorithms therein are limited to undirected graphs.
In contrast, the current article deals with weight-unbalanced directed
graphs. The asymmetric nature of the weight-unbalanced directed
graphs and the coupling of the distributed estimator with the chain of
two integrators make the analysis and design in this article much more
challenging than those in [13]. We prove that if the deviations among
the reference signal accelerations tend to zero (respectively, bounded),
the algorithm can achieve DAT with zero (respectively, bounded)
tracking error.

In the second algorithm, we consider agents with high-order integra-
tor dynamics. We propose a distributed nonlinear algorithm coupled
with a distributed estimator for the left eigenvector of the Laplacian
matrix associated with the zero eigenvalue. The algorithm is motivated
by [3]. Specifically, our proposed algorithm and [3] both can achieve
DAT for agents subject to certain linear dynamics. However, our pro-
posed algorithm can solve the DAT problem under general weight-
unbalanced directed graphs. In contrast, [3] poses an assumption that
the graph is undirected. The relaxation of such an assumption makes our
proposed algorithm amenable to more applications but in turn, poses
more technical challenges. In addition, we replace the signum function
in [3] with a continuous approximation in order to remove the chattering
effect caused by the discontinuous signum function. The approximate
function is widely adopted in the sliding mode control field [21]. The
results show that if the reference signals and signal control inputs are
bounded, the algorithm can achieve DAT with arbitrarily small tracking

errors. The convergence of the algorithm to the vicinity of the average
of the reference signals is established via Lyapunov stability theory and
input-to-state stability theory.

Some preliminary results of this article (Section III) are presented
in [22]. This article extends [22] by introducing new results on the non-
linear algorithm for high-order integrator systems in weight-unbalanced
directed graphs.

II. PRELIMINARIES

A. Notation

Let R,Rn and R
n×m denote the sets of real numbers, real vec-

tors of dimension n, and real matrices of size n×m, respectively.
Let R>0 represent the set of positive real numbers. Let 1n (resp.
0n) be the vector of n ones (resp. n zeros), In denote the n× n
identity matrix, and 0̄n (resp. 0̄m×n) denote the n× n (resp. m× n)
matrix of all zeros. For a matrix A ∈ R

m×n, σmax(A) denotes the
maximal singular value of matrix A, AT is the transpose of A, and
vec (A) = [col1(A)T , . . . , coln(A)T ]T ∈ R

nm is the column vector
of sizenm× 1obtained by stacking the columns ofA, where coli(A) ∈
R

m represents the i th column of matrix A. For a square matrix
A ∈ R

m×m, A−1 denotes the inverse of A. For a vector x ∈ R
n×1,

diag(x) ∈ R
n×n represents the diagonal matrix with the elements in

the main diagonal being the elements of x, ‖x‖p denotes the p-norm
of the vector x. Let ⊗ be the Kronecker product. Let n! be the product
of n consecutive natural numbers from 1 to n. Let f2 ◦ f1(·) be the
composition of two functions f1(·) and f2(·). Let f−1(·) denote the
inverse of a function f(·). Let �a� be the largest integer that is smaller
than or equal to a.

Proposition 1 [23]: Let A ∈ R
m×n, B ∈ R

n×l and D ∈ R
l×k.

Then, vec (ABD) = (DT ⊗A) vec(B).

B. Graph Theory

A weighted directed graph, is denoted by G = (V, E ,A), whereV =
{1, . . ., n} is the node set, E ⊆ V × V is the edge set, and A = [aij ] ∈
R

n×n is the weighted adjacency matrix with aij ∈ (0, ā) if (j, i) ∈ E
and aij = 0 otherwise for some ā ∈ R>0. For a directed graph, an
edge (j, i) implies that node i can receive information from j. LetNi =
{j ∈ V : (j, i) ∈ E} denote the set of in-neighbors of node i. A directed
path is a sequence of nodes connected by edges. A directed graph is
strongly connected if for every pair of nodes there is a directed path
connecting them. The Laplacian matrix L = [lij ] ∈ R

n×n associated
with A is defined as lii =

∑n
j=1,j 	=i aij and lij = −aij , where i 	= j.

Note that L1n = 0n. A directed graph is weight-balanced if and only
if 1T

nL = 0
T
n .

Lemma 1 [24], [25]: Let G = (V, E ,A) be a directed graph with
the Laplacian matrix L ∈ R

n×n. If G is strongly connected, then the
following statements hold.

1) There exists a positive left eigenvector p = [p1, . . ., pn]
T of L

associated with the zero eigenvalue, such that pi > 0, i = 1, . . ., n,

pTL = 0
T
n , and

∑n
i=1 pi = 1.

2) The Laplacian matrixL has a simple zero eigenvalue corresponding

to the right eigenvector 1n, and all the nonzero eigenvalues have

positive real parts.

3) minaT x=0,x 	=0n
xT L̄x > λ2(L̄)xTx

/

n, where x is any vector,

L̄ = LTP + PL and P = diag(p), a is any vector with positive

entries, and λ2(L̄) is the smallest nonzero eigenvalue of matrix L̄.

4) limt→∞ exp(−Lt) = 1np
T .

III. LINEAR DAT ALGORITHM FOR

SINGLE-INTEGRATOR DYNAMICS

In this section, the DAT problem for multiagent systems with single-
integrator dynamics over weight-unbalanced directed graphs is studied.
Consider a multiagent system consisting ofn agents with an interaction
topology described by a weighted directed graph G.
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Assumption 1: The directed graph G is time invariant and strongly
connected.1

Suppose that the agents follow the single-integrator dynamics

ẋi(t) = ui(t), i = 1, . . ., n (1)

where xi(t) ∈ R
m and ui(t) ∈ R

m are, respectively, the ith agent’s
state and control input. Each agent has a time-varying reference signal
ri(t) ∈ R

m, i = 1, . . ., n, satisfying

ṙi(t) = vri (t), v̇ri (t) = ar
i (t) (2)

where vri (t) ∈ R
m and ar

i (t) ∈ R
m are, respectively, the velocity and

acceleration of the ith reference signal. For example, the reference
signal ri might be the position, sensed by the ith camera, of a mobile
target of interest.

Our main objective is to design a distributed algorithm for agent
i ∈ V based on ri(t), v

r
i (t), a

r
i (t), xi(t) and xj(t), j ∈ Ni, such that

it tracks the average of all the time-varying reference signals, i.e.,

lim
t→∞

∥

∥

∥

∥

∥

xi(t)− (1/n)

n
∑

j=1

rj(t)

∥

∥

∥

∥

∥

2

= 0. (3)

We call a DAT algorithm robust to initialization errors if the objective
(3) can be achieved regardless of the agents’ initial states. For notational
simplicity, we will remove the time index t from variables in the
remainder of the section.

A. DAT Algorithm Design

We propose the following algorithm:

ui = −κ(xi − ri)− κzii
∑

j∈Ni

aij(xi − xj) + vri − w1i

ẇ1i = κ2zii
∑

j∈Ni

aij(xi − xj)− zii
∑

j∈Ni

aij(w2i − w2j)

ẇ2i = w1i − κri − vri , żi = −
∑

j∈Ni

aij(zi − zj) (4)

where κ ∈ R>0 is a positive control gain, zi ∈ R
n is agent i’s esti-

mate of the left eigenvector corresponding to the zero eigenvalue of
the Laplacian matrix, zii is the ith component of zi, w1i ∈ R

m and
w2i ∈ R

m are the internal states of a chain of two integrators, and aij

is the (i, j)th entry of the adjacency matrix. We initialize the internal
statesw1i,w2i, and the estimators zi to satisfy the following conditions:

n
∑

i=1

w1i(0) = 0m, zij(0) = 0, ∀i 	= j, zii(0) = 1, ∀i ∈ V. (5)

We note that each component of xi is decoupled in (4). Therefore, in
the following, we will only tackle the one-dimensional case, i.e., m =
1. The same conclusion holds for any m≥2 by using the Kronecker
product. Substituting (4) into (1) leads to a vector form as

ẋ = −κ(x− r)− κZnLx+ vr − w1

ẇ1 = κ2ZnLx− ZnLw2

ẇ2 = w1 − κr − vr, ż = −(L ⊗ In)z (6)

where r = [r1, . . ., rn]
T ∈ R

n, vr = [vr1 , . . ., v
r
n]

T ∈ R
n,

x = [x1, . . ., xn]
T ∈ R

n, w1 = [w11, . . ., w1n]
T ∈ R

n, w2 =

[w21, . . ., w2n]
T ∈ R

n, z = [zT1 , . . ., z
T
n ]

T ∈ R
n2

and Zn =
diag([z11, z22, . . ., znn]) ∈ R

n×n.
Lemma 2: If Assumption 1 holds and z(0) satisfies (5), then

limt→∞ Zn → P , where P is defined in Lemma 1.

1Note that there is no requirement that G be weight-balanced.

Proof: We know that z = exp ((−L⊗ In)t)z(0). By Lemma 1, it
can be obtained that limt→∞ z = exp (1np

T ⊗ In)z(0) = 1n ⊗ p if
z(0) satisfies (5), yielding limt→∞ Zn → P . �

Remark 1: Compared with [13] which requires the network be
undirected, the algorithm (4) can work for generic directed networks.
Due to Lemma 2, we know that Zn is utilized to estimate the matrix
P . It follows from 1

T
nPL = 0

T
n that PL is equivalent to the Laplacian

matrix of a balanced directed graph [26].
Remark 2: In the proposed algorithm (4), a chain of two integrators

with the internal states w1i and w2i are introduced to make (4) work for
more general reference signals, the term −κ(xi − ri) is introduced to
achieve sum tracking, i.e., limt→∞ ‖∑n

i=1 xi −
∑n

i=1 ri‖2 = 0, and
the term−κzii

∑

j∈Ni
aij(xi − xj) is introduced to achieve consensus

with the aid of the chain of two integrators w1i and w2i. The distributed
estimator given by the last equation in (4) is used by agent i to
estimate the left eigenvector, corresponding to the zero eigenvalue, of
the Laplacian matrix.

Remark 3: In the proposed algorithm (4), only correct initializations
of internal states w1i(0) and zi(0) are needed, and correct initial-
izations of agents’ states xi(0) and w2i(0) are not required, which
makes the algorithm robust to the state initialization errors. Note that
the initialization condition (5) can be easily satisfied, e.g., to satisfy
∑n

i=1 w1i(0) = 0, we can choose w1i = 0, ∀i = 1, . . ., n.

B. Convergence Analysis

The main assumption and result of this section are stated in the
following theorem.

Assumption 2: The deviations among the accelerations of the refer-
ences all tend to zero, i.e., limt→∞(ar

i − ar
j ) = 0, i 	= j.

Theorem 1: Using (4) for (1), if Assumptions 1 and 2 and the initial
condition (5) hold, and κ � 1, then limt→∞ ‖xi − 1

n

∑n
j=1 rj‖2 = 0

for all i = 1, . . ., n.
Proof: Define x̃ = x− 1

n
1n1

T
nr, w̃1 = w1 − κΩr − Ωvr , w̃2 =

ZnLw2 + κΩvr +Ωar , and Y = [x̃T , w̃T
1 , w̃

T
2 ]

T where Ω = In −
1
n
1n1

T
n . It can be verified that Lx̃ = Lx and LΩ = L. The first three

equations in (6) can be rewritten in terms of Y as

Ẏ = f(Y ) + g(Y ) + h (7)

where

f(Y ) =

⎡

⎣

−κx̃− κPLx̃− w̃1

κ2PLx̃− w̃2

PLw̃1

⎤

⎦

g(Y ) =

⎡

⎣

κ(P − Zn)Lx̃
κ2(Zn − P )Lx̃
(Zn − P )Lw̃1

⎤

⎦ , h =

⎡

⎣

0
0

κΩar +Ωȧr

⎤

⎦ .

Based on Assumption 2, we know that h will approach zero as time
goes to infinity. Therefore, by taking h in (7) as the system input, we
first analyze the stability and convergence properties of the unforced
system, i.e.,

Ẏ = f(Y ) + g(Y ). (8)

Due to Lemma 2, we know that as t → ∞, Zn − P tends to zero, so
by Corollary 9.1 and Lemma 9.5 in [28] the convergence of (8) can be

analyzed via Ẏ = f(Y ) only, i.e.,

⎡

⎣

˙̃x
˙̃w1

˙̃w2

⎤

⎦ = Ã

⎡

⎣

x̃
w̃1

w̃2

⎤

⎦ (9)

where

Ã =

⎡

⎣

−κ− κPL −In 0̄n

κ2PL 0̄n −In
0̄n PL 0̄n

⎤

⎦ .
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In the following, we show that the dynamical system (9) is stable and
convergent by studying the dynamics of two related systems. Define
T1 = [ q1 QT ]T , where q1 = 1√

n
1n, Qq1 = 0n−1 and QQT = In−1.

It follows that T1PLTT
1 =

[

0 0
T
n−1

0n−1 Λ

]

, where Λ is an upper trian-

gular matrix whose diagonal entries are the nonzero eigenvalues of
PL. Thus x̂ = [x̂1 x̂T

2:n]
T = T1x̃, ŵ1 = [ŵ11 ŵT

12:1n]
T = T1w̃1 and

ŵ2 = [ŵ21 ŵT
22:2n]

T = T1w̃2, where x̂1, ŵ11 and ŵ21 ∈ R. We can
rewrite (9) as

⎡

⎣

˙̂x1

˙̂w11

˙̂w21

⎤

⎦ = A

⎡

⎣

x̂1

ŵ11

ŵ21

⎤

⎦ ,

⎡

⎣

˙̂x2:n

˙̂w12:1n

˙̂w22:2n

⎤

⎦ = Â

⎡

⎣

x̂2:n

ŵ12:1n

ŵ22:2n

⎤

⎦ (10)

where

A = −

⎡

⎣

κ 1 0
0 0 1
0 0 0

⎤

⎦ , Â =

⎡

⎣

−κ− κΛ −In−1 0̄n−1

κ2Λ 0̄n−1 −In−1

0̄n−1 Λ 0̄n−1

⎤

⎦ .

The matrix A ∗ ∗ ∗ ∗ has two eigenvalues 0 (with multiplicity 2) and
−κ. Define

T2 =

⎡

⎣

In−1 0̄n−1 0̄n−1

κIn−1 In−1 0̄n−1

0̄n−1 0̄n−1 In−1

⎤

⎦

such that [x̄T , w̄T
1 , w̄

T
2 ]

T = T2[x̂
T
2:n, ŵ

T
12:1n, ŵ

T
22:2n]

T . It follows from
(10) that

⎡

⎣

˙̄x
˙̄w1

˙̄w2

⎤

⎦ = Ā

⎡

⎣

x̄
w̄1

w̄2

⎤

⎦ (11)

where

Ā =

⎡

⎣

−κΛ −In−1 0̄n−1

0̄n−1 −κIn−1 −In−1

−κΛ Λ 0̄n−1

⎤

⎦ .

The determinant det(λIn−1 − Ā) is given by

det

⎡

⎣

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

κΛ −Λ λIn−1

⎤

⎦

= det

⎡

⎣

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

0̄n−1 0̄n−1 Γ

⎤

⎦ (12)

where Γ = λIn−1+ (λIn−1+ κIn−1)
−1[Λ+ κ(λIn−1+ κΛ)−1Λ].

Noting that the inverse of an upper triangular matrix is also an up-
per triangular matrix, and the multiplication of two upper triangular
matrices is also an upper triangular matrix, it follows that Γ is an
upper triangular matrix. Define Ξ ∈ R

n−1×n−1 where Ξi,i = Λi,i for
all i = 1, 2, . . ., n− 1 and Ξi,j = 0 for all i 	= j. We have

det

⎡

⎣

λIn−1 + κΛ In−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 In−1

0̄n−1 0̄n−1 Γ

⎤

⎦

= det

⎡

⎣

λIn−1 + κΞ 0̄n−1 0̄n−1

0̄n−1 λIn−1 + κIn−1 0̄n−1

0̄n−1 0̄n−1 Γ̃

⎤

⎦ (13)

where Γ̃ = λIn−1 + (λIn−1 + κIn−1)
−1[Ξ + κ(λIn−1 + κΞ)−1Ξ].

The eigenvalues λ of Ā can be obtained by calculating the following
equations

λ
3 + κλ

2 + κΞiiλ
2 + κ2Ξiiλ + Ξiiλ + κΞ2

ii + κΞii = 0,

i = 1, .., n− 1. (14)

To solve (14), we consider the corresponding perturbed cubic equation

λ
3 +

(

κ+ κΞii +
1

κ
− ε

)

λ
2 +

(

κ2Ξii + Ξii + 1− κε
)

λ

+ κΞ2
ii + κ2Ξiiε = 0, i = 1, .., n− 1. (15)

With ε beging the perturbation parameter, it is worth noting that when
ε = 1

κ
, the perturbed cubic (15) reduces to (14). It follows from κ � 1

that (1/κ) � 1. Based on perturbation theory [27], the eigenvalues λ

are given by λ = λ0 + ελ1 +O(ε) = λ0 +
1
κ
λ1 +O(ε), where λ0 is

the solution of the following equations:

(

λ +
1

κ

)

(λ + κ) (λ + κΞii) = 0, i = 1, .., n− 1 (16)

and λ1 =
λ
2

0
+κλ0−κ2Ξ2

ii

λ
2

0
+2λ0+2Ξiiκ+2κ+2/κ+Ξiiκ2+Ξii+1

, i = 1, . . ., n− 1,

with O(ε) being the higher order term.
It follows from (16) that for each i = 1, . . . , n− 1, λ0 =

−1/κ,−κ,−κΞii, along with

λ1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1/κ)2−1−κ2Ξ2

ii

(1/κ)2+2Ξiiκ+2κ+Ξiiκ2+Ξii+1
if λ0 = − 1

κ

−κ2Ξ2

ii

(κ)2+2Ξiiκ+2/κ+Ξiiκ2+Ξii+1
if λ0 = −κ

−κ2Ξii

(κΞii)
2+2κ+2/κ+Ξiiκ2+Ξii+1

if λ0 = −κΞii.

(17)

Recall that the nonzero eigenvalues of PL all have positive real parts,
therefore λ0 and λ1 all have negative real parts, which indicates that the
eigenvalues λ of (14) all have negative real parts. Hence the dynamical
system (11) is exponentially stable. Noting that T1 and T2 are all
nonsingular matrices, the dynamical system (9) must be exponentially
stable.

The null space of the system matrix Ã of (9) is spanned by
[1T

n ,−κ1T
n ,0

T
n ]

T , the eigenvector associated with the zero eigenvalue.
Therefore, (9) converges exponentially fast to the set {(x̃, w̃1, w̃2) | x̃ =
a1n, w̃1 = −aκ1n, w̃2 = 0n, a ∈ R}. According to the definition of
w̃1, we know that 1

T
n w̃1 = 1

T
nw1. It follows from 1

T
n (κ

2PLx−
PLw2) = 0 that1T

n ẇ1 = 0, leading to1T
n w̃1 = 1

T
nw1 = 1

T
nw1(0) =

0. Therefore, if (5) holds, system (9) converges exponentially to the set
{(x̃, w̃1, w̃2) | x̃ = 0n, w̃1 = 0n, w̃2 = 0n}. Based on Corollary 9.1
and Lemma 9.5 in [28], the perturbed system (8) is exponentially stable
with respect to the equilibrium point. Therefore, under Assumption 2,
Y in (7) asymptotically converges to 03n. �

In practice, the reference signals may not always satisfy Assump-
tion 2. A more realistic assumption is to require the deviations among
the reference signal accelerations be bounded, which is formally stated
in the following.

Assumption 3: The deviations among the accelerations of the ref-
erence signals are bounded, i.e., there exists ār ∈ R>0 such that
supt∈[0,∞)(a

r
i − ar

j ) = ār, ∀i ∈ V, j ∈ V, i 	= j.
Theorem 2: Using (4) for (1), if Assumption 3 and the internal

state’s initial conditions (5) hold, and κ � 1, then supt∈[0,∞)

∥

∥

∥xi −
1
n

∑n
j=1 rj

∥

∥

∥

2
is bounded for all i = 1, . . ., n.

Proof: Because of the boundedness of h, system (7) is input-to-state
stable by Lemma 4.6 given in [28]. If Assumption 3 holds, it follows
from Definition 4.7 in [28] that the whole tracking error is up-
per bounded by limt→∞ sup ‖x̃(t)‖2 ≤ limt→∞ sup ‖Y (t)‖2 ≤ εār,
where ε is a positive constant. �

IV. NONLINEAR DAT ALGORITHM FOR HIGH-ORDER INTEGRATOR

DYNAMICS

In this section, the DAT problem for multiagent systems with high-
order integrator dynamics over weight-unbalanced directed graphs is
studied. In some applications, it might be more realistic to model
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the dynamics of the agents with high-order integrators. Unlike single-
integrator dynamics, in the case of high-order integrator dynamics, the
agents’ system inputs might have a different dimension from that of the
agents’ state. Consider a network ofn agents whose states are governed
by

ẋi(t) = Axi(t) +Bui(t) (18)

where xi(t) ∈ R
m, ui(t) ∈ R are the system state and control input

of the ith agent,2 A ∈ R
m×m is the state matrix, and B ∈ R

m×1 is the
input matrix. Here A and B are defined as

A =

[

0m−1 Im−1

0 0
T
m−1

]

, B =

[

0m−1

1

]

.

Each agent has a time-varying reference signal ri(t) ∈ R
m given by

ṙi(t) = Ari(t) +Bur
i (t) (19)

where ri(t) ∈ R
m, ur

i (t) ∈ R is the state and control input of the ith
time-varying reference signal. The inputur

i (t) can be properly designed
such that (19) can generate a general time-varying reference signal
ri(t). The following standard assumption is made:

Assumption 4: The reference signals are bounded, and their con-
trol inputs are bounded, i.e., there exist r̄ > 0 and ūr > 0 such that
supt∈[0,∞) ‖ri(t)‖2 ≤ r̄ and supt∈[0,∞) ‖ur

i (t)‖2 ≤ ūr , for all i ∈ V .
Again, for notational simplicity, we will remove the time index t

from variables in the remainder of this section and only keep it in some
places when necessary.

A. DAT Algorithm Design

We study the following control algorithm:

ui = ur
i +K1(xi − ri)− βh̃

⎛

⎝zii
∑

j∈Ni

aijK2(xi − xj)

⎞

⎠

żi = −
∑

j∈Ni

aij(zi − zj) (20)

where zi ∈ R
n is agent i’s estimate of the left eigenvector correspond-

ing to the zero eigenvalue of the Laplacian matrix, zii is the ith element
in vector zi, aij is the (i, j)th element of the adjacency matrix A,

and h̃(·) is a function defined component-wise as h̃(s) =
{

s
|s| if |s|≥ε,
s
ε otherwise,

where ε ∈ R>0 is a small positive constant. In addition

K1 � −(K2A+K2) ∈ R
1×m

K2 � [C0
m−1, C

1
m−1, . . . , C

m−1
m−1 ] ∈ R

1×m (21)

where Ck
m−1 = (m−1)!

(m−1−k)!k!
, k ∈ [0,m− 1], and β is a control gain

satisfying

β >
2n

5

2 σmax(PL) (ūr + σmax(K1)r̄)

λ2(L̄)
(22)

where L̄ and P are defined in Lemma 1. We initialize the es-
timators zi, i ∈ V , to satisfy the last two equations in (5). De-

fine z ∈ R
n2

= [zT1 , . . . , z
T
n ]

T , Zn = diag([z11, z22, . . . , znn]) ∈
R

n×n, x � [xT
1 , . . . , x

T
n ]

T ∈ R
nm, u � [u1, . . . , un]

T ∈ R
n, r �

[rT1 , . . . , r
T
n ]

T ∈R
nm andur � [ur

1, . . . , u
r
n]

T ∈R
n. Then the closed-

loop system (18) can be written in a vector form as

ẋ = (In ⊗A)x+ (In ⊗B)

×
(

ur + (In ⊗K1)(x− r)− βh̃ ((ZnL ⊗K2)x)
)

ż = − (L ⊗ In)z. (23)

2Note that the dimensions of the control input ui in Secs. III and IV are
different.

Remark 4: For the high-order integrator case in Section IV, we
only tackle the one-dimension case (i.e., xi ∈ R

m and ui ∈ R for
m-order integrators), since each dimension of the high-order integrators
is decoupled. Please note that our algorithm can be easily extended
to multidimension high-order integrator cases (i.e., xi ∈ R

mq and
ui ∈ R

q for m-order integrators) by using the Kronecker product.
Remark 5: In the proposed algorithm (20), the term K1(xi − ri)

is introduced to achieve sum tracking (i.e., limt→∞ ‖∑n
i=1 xi(t)−

∑n
i=1 ri(t)‖2 = 0) with the help of the distributed estimator zi, and

the term −βh̃(zii
∑

j∈Ni
aijK2(xi − xj)) is introduced to guarantee

consensus.

B. Convergence Analysis

This section establishes the convergence properties of the system
(18) under the controller (20).

Lemma 3: For any strongly connected directed graph G of order n,
let (PL)+ ∈ R

n×n be the generalized inverse of PL with P and L
being defined in Section II.B, we have (PL)+(PL) = In − 1

n
1n1

T
n .

Proof: Note that 1T
nPL = 0

T
n and PL1n = 0n, i.e., PL can be

viewed as the Laplacian matrix of a weight-balanced directed graph.
Consequently, the proof follows directly from the proof of Lemma 3
in [10]. �

Lemma 4: Let Assumption 1 hold. Using (20) for (18), if ‖(PL ⊗
K2)x(t)‖1 is bounded for all t≥0 and

lim
t→∞

sup ‖(PL ⊗K2)x(t)‖1 ≤ b̄ (24)

where b̄ is an arbitrary positive constant, then limt→∞ sup ‖(Ω⊗
Im)x(t)‖1 ≤ ‖(PL)+⊗ Im‖12m−1b̄

∑m
i=1 i!(

∏i−1
j=0 C

�j/2�
j ), where

Ω = In − 1
n
1n1

T
n , and (PL)+ is the generalized inverse of PL.

Proof: Define X = [x1, . . . , xn] ∈ R
m×n, where xi ∈ R

m, i ∈
[1, n], is defined in (18). Define Xi ∈ R

1×n as the ith row of X . It
follows from Proposition 1 and (21) that

(PL ⊗K2)x = (PL ⊗K2)vec(X) = vec
(

K2X(PL)T
)

= vec
(

(C0
m−1X1 + · · ·+ Cm−1

m−1Xm)(PL)T
)

= C0
m−1vec

(

X1(PL)T
)

+ · · ·+ Cm−1
m−1vec

(

Xm(PL)T
)

= C0
m−1X̃1 + · · ·+ Cm−1

m−1X̃m (25)

where X̃i = vec(Xi(PL)T ). For � ∈ [0,m− 1], define

s� = C0
m−�−1X̃1 + C1

m−�−1X̃2 + · · ·+ Cm−�−1
m−�−1X̃m−� (26)

and thus ṡ� = C0
m−�−1

˙̃X1+ C1
m−�−1

˙̃X2 + · · ·+ Cm−�−1
m−�−1

˙̃Xm−�.

By (18), we have
˙̃Xk = X̃k+1 for k ∈ [1,m− 1]. It

follows that for � ∈ [1,m− 1], s� + ṡ� = C0
m−�−1X̃1 +

C1
m−�−1X̃2 + · · ·+ Cm−�−1

m−�−1X̃m−� + C0
m−�−1

˙̃X1 + C1
m−�−1

˙̃X2 +

· · ·+ Cm−�−1
m−�−1

˙̃Xm−� = C0
m−�−1X̃1 + C1

m−�−1X̃2 +

· · ·+ Cm−�−1
m−�−1X̃m−� + C0

m−�−1X̃2 + C1
m−�−1X̃3 + · · ·+

Cm−�−1
m−�−1X̃m−�+1. Because Ck

n = Ck−1
n−1 + Ck

n−1 and C0
n = Cn

n = 1,
we have for � ∈ [1,m− 1],

s� + ṡ� = C0
m−�−1X̃1 +

(

C1
m−�−1 + C0

m−�−1

)

X̃2 + · · ·

+
(

Cm−�−1
m−�−1 + Cm−�−2

m−�−1

)

X̃m−� + Cm−�−1
m−�−1X̃m−�+1

= C0
m−�X̃1 + C1

m−�X̃2 + · · ·

+ Cm−�−1
m−� X̃m−� + Cm−�

m−�X̃m−�+1 = s�−1. (27)

The proof will proceed by the mathematical induction method.
Recall the definition of s� given by (26). It follows from (25) that s0 =
C0

m−1X̃1 + · · ·+ Cm−1
m−1X̃m = (PL ⊗K2)x. Therefore, it follows

from (24) that s0(t) is bounded for all t≥0 and limt→∞ sup ‖s0(t)‖1 ≤
b̄. Next, we will prove that for � ∈ [1,m− 1], if s�−1(t) is bounded
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for all t≥0 and limt→∞ sup ‖s�−1(t)‖1 ≤ b̃ with b̃ being a positive
constant, then s�(t) is bounded for all t≥0 and limt→∞ sup ‖s�(t)‖1 ≤
2b̃, using the input-to-state stability concept. It follows from (27)
that ṡ� = −s� + s�−1, which is obviously an input-to-state stable
system by viewing s� as the state and s�−1 as the input. Consider
the Lyapunov function V̄ (s�) =

1
2
‖s�‖22. It follows that α1(‖s�‖2) ≤

V̄ (s�) ≤ α2(‖s�‖2), where α1(y) =
1
2
y2 and α2(y) =

1
2
y2 are both

class K∞ functions. The derivative of V̄ (s�) is given by ˙̄V (s�) =
sT� ṡ� = sT� (−s� + s�−1) ≤ −‖s�‖22 + ‖s�‖2‖s�−1‖2. It follows that
for all ‖s�‖2 ≥ ρ(‖s�−1‖2), where ρ(y) = 2y is a class K function,
˙̄V (s�) ≤ − 1

2
‖s�‖22. Based on Theorem 4.19 and Definition 4.7 in [28],

the system ṡ� = −s� + s�−1 is an input-to-state stable system by view-
ing s� as the state and s�−1 as the input, and there must exist a class
KL function α(·, t) and a class K function γ(y) = α−1

1 ◦ α2 ◦ ρ = 2y
such that for any initial state s�(t0) and any bounded input s�−1(t), the
solution s�(t) exists and satisfies

‖s�(t)‖1 ≤ α(‖s�(t0)‖1, t− t0) + 2

(

sup
t0≤τ≤t

‖s�−1(τ)‖1
)

. (28)

Since ‖s�−1(t)‖1 ≤ b̃ as t → ∞, for an arbitrary number ζ > 0, there

must exist a time T1 > 0 such that ‖s�−1(t)‖1 ≤ b̃+ ζ for all t ≥ T1.
Consequently, for all t ≥ T1, we have

‖s�(t)‖1 ≤ α(‖s�(T1)‖1, t− T1) + 2

(

sup
T1≤τ≤t

‖s�−1(τ)‖1
)

≤ α(‖s�(T1)‖1, t− T1) + 2
(

b̃+ ζ
)

. (29)

Since α(‖s�(T1)‖1, t− T1) is a class KL function, α(‖s�(T1)‖1, t−
T1) → 0 as t → ∞. Therefore, there must exist a time T2 > T1 such
that α(‖s�(T1)‖1, t− T1) < ζ for all t ≥ T2. It follows that for all

t ≥ T2, ‖s�(t)‖1 < ζ + 2b̃+ 2ζ = 3ζ + 2b̃. Since ζ is an arbitrary

positive number, we have ‖s�(t)‖1 ≤ 2b̃ as t → ∞. Therefore, we
obtain the conclusion that for � ∈ [1,m− 1], if s�−1(t) is bounded for

all t≥0 and limt→∞ sup ‖s�−1(t)‖ ≤ b̃, then s�(t) is bounded for all

t≥0 and limt→∞ sup ‖s�(t)‖ ≤ 2b̃. Since we have proved that s0(t)
is bounded for all t≥0 and limt→∞ sup ‖s0(t)‖1 ≤ b̄, we have that
s�(t), � ∈ [0,m− 1], is bounded for all t≥0 and

lim
t→∞

sup ‖s�(t)‖1 ≤ 2�b̄. (30)

Then, we will derive the bound of ‖X̃i‖1, i ∈ [1,m], based on
the bound of ‖s�‖1, � ∈ [0,m− 1], using the mathematical induction

method again. It can be verified that sm−1 = X̃1 by (26). Then it follows

from (30) that limt→∞ sup ‖X̃1(t)‖1 = limt→∞ sup ‖sm−1(t)‖1 ≤
2m−1b̄. Therefore there exists a positive constant B̄2 = 2m−1b̄ >

2m−2b̄ such that limt→∞ sup ‖X̃1(t)‖1 ≤ B̄2. Next, we will prove
that for i ∈ [2,m], if there exists a positive constant B̄i≥2m−ib̄

such that limt→∞ sup ‖X̃k(t)‖1 ≤ B̄i, ∀k ∈ [1, i− 1], then there

exists a positive constant B̄i+1 = iC
� i−1

2
�

i−1 B̄i≥2m−i−1b̄ such that

limt→∞ sup ‖X̃k(t)‖1 ≤ B̄i+1, ∀k ∈ [1, i]. For i ∈ [2,m], if there ex-

ists a positive constant B̄i≥2m−ib̄ such that limt→∞ sup ‖X̃k(t)‖1 ≤
B̄i, ∀k ∈ [1, i− 1], it follows from (26) and (30) that

lim
t→∞

sup ‖X̃i(t)‖1

= lim
t→∞

sup ‖sm−i(t)− C0
i−1X̃1(t)− · · · − Ci−2

i−1X̃i−1(t)‖1

≤ lim
t→∞

sup ‖sm−i(t)‖1 + C0
i−1 lim

t→∞
sup ‖X̃1(t)‖1+· · ·

+ Ci−2
i−1 lim

t→∞
sup ‖X̃i−1(t)‖1

≤ C
� i−1

2
�

i−1 lim
t→∞

sup ‖sm−i(t)‖1

+ C
� i−1

2
�

i−1 lim
t→∞

sup ‖X̃1(t)‖1+· · ·

+ C
� i−1

2
�

i−1 lim
t→∞

sup ‖X̃i−1(t)‖1

≤ C
� i−1

2
�

i−1 2m−ib̄+ C
� i−1

2
�

i−1 B̄i+· · ·+ C
� i−1

2
�

i−1 B̄i

≤ C
� i−1

2
�

i−1 B̄i + C
� i−1

2
�

i−1 B̄i + · · ·+ C
� i−1

2
�

i−1 B̄i = iC
� i−1

2
�

i−1 B̄i

where the last third inequality holds since C
� i−1

2
�

i−1 ≥ 1 is the

biggest coefficient among all Cl
i−1, l ∈ [0, i− 1]. Since i > 1 and

C
� i−1

2
�

i−1 ≥1, we have iC
� i−1

2
�

i−1 B̄i ≥ B̄i. If B̄i≥2m−ib̄, it follows that

iC
� i−1

2
�

i−1 B̄i≥2m−ib̄≥2m−i−1b̄. Therefore, for i ∈ [2,m], if there ex-

ists a positive constant B̄i≥2m−ib̄ such that limt→∞ sup ‖X̃k(t)‖1 ≤
B̄i, ∀k ∈ [1, i− 1], then there exists a positive constant B̄i+1 =

iC
� i−1

2
�

i−1 B̄i≥2m−i−1b̄ such that limt→∞ sup ‖X̃k(t)‖1 ≤ B̄i+1, ∀k ∈
[1, i]. We have proved that there exists B̄2 = 2m−1b̄ > 2m−2b̄

such that limt→∞ sup ‖X̃k(t)‖1 ≤ B̄2, ∀k ∈ [1]. It thus follows that

limt→∞ sup ‖X̃i(t)‖1 ≤ i!(
∏i−1

j=0 C
�j/2�
j )2m−1b̄ for i ∈ [1,m].

Recall the definition of X̃i. Based on Proposition 1, we have

‖(PL ⊗ Im) vec(X)‖1 =
∥

∥vec
(

X(PL)T
)∥

∥

1

=

m
∑

i=1

∥

∥vec
(

Xi(PL)T
)∥

∥

1
=

m
∑

i=1

∥

∥X̃i

∥

∥

1
.

Therefore

lim
t→∞

sup ‖(PL ⊗ Im)x(t)‖1 = lim
t→∞

sup ‖(PL ⊗ Im) vec(X(t))‖1

= lim
t→∞

sup
m
∑

i=1

∥

∥X̃i(t)
∥

∥

1

≤ 2m−1b̄
m
∑

i=1

i!

(

i−1
∏

j=0

C
�j/2�
j

)

.

It follows from Lemma 3 that if Assumption 1 holds, then (PL)+PL =
In − 1

n
1n1

T
n , which further leads to

lim
t→∞

sup ‖(Ω⊗ Im)x(t)‖1

= lim
t→∞

sup ‖
(

(PL)+ ⊗ Im
)

(PL ⊗ Im)

× x(t)‖1 ≤ ‖(PL)+ ⊗ Im‖12m−1b̄

m
∑

i=1

i!

(

i−1
∏

j=0

C
�j/2�
j

)

.

�

The main result of this section is given as follows.
Theorem 3: Using (20) for (18), if Assumptions 1 and 4, the

gain condition (22) and last two initial conditions in (5) hold,
then limt→∞ sup

∑n
k=1 ‖xk(t)− (1/n)

∑n
j=1 rj(t)‖1 ≤ ‖(PL)+ ⊗

Im‖1nε2m−1
∑m

i=1 i!(
∏i−1

j=0 C
�j/2�
j ), where (PL)+ is the generalized

inverse of matrix PL.
Proof: Consider the Lyapunov function candidate

V (x) =

n
∑

i=1

g̃

⎛

⎝pi
∑

j∈Ni

aijK2(xi − xj)

⎞

⎠ (31)
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where pi is defined in Lemma 1, g̃(s) : R → R is a function defined as

g̃(s) =
{

|s| if |s|≥ε,
s2

2ε
+ ε

2
otherwise. It can be shown that the derivative of V (x) is

V̇ (x) =

n
∑

i=1

ξi

⎛

⎝pi
∑

j∈Ni

aijK2(ẋi − ẋj)

⎞

⎠ (32)

where ξi ∈ R, i ∈ [1, . . . , n], is defined as

ξi =

⎧

⎪

⎨

⎪

⎩

1 if pi
∑

j∈Ni
aijK2(xi − xj) ≥ ε,

−1 if pi
∑

j∈Ni
aijK2(xi − xj) ≤ −ε,

pi

∑
j∈Ni

aijK2(xi−xj)

ε
otherwise.

(33)

Define ξ = [ξ1, . . . , ξn]
T ∈ R

n. Then the derivative of V (x) along the
trajectory of (23) can be calculated as follows:

V̇ (x) = ξT (PL ⊗K2) ẋ

= ξT (PL ⊗K2)

(

(In ⊗A)x+ (In ⊗B)

×
(

ur + (In ⊗K1)(x− r)− βh̃ ((ZnL ⊗K2)x)
)

)

= ξT (PL ⊗K2B)ur + ξT (PL ⊗K2(A+BK1))x

− ξT (PL ⊗K2BK1)r

− βξT (PL ⊗K2B)h̃ ((ZnL ⊗K2)x) . (34)

Recall the definition of K2 and B, we have K2B = Cm−1
m−1 = 1, it

follows that

V̇ (x) = ξTPLur + ξT (PL ⊗K2(A+BK1))x

− ξT (PL ⊗K1)r − βξTPLh̃ ((ZnL ⊗K2)x) .
(35)

Consider the first term in (35). It follows from the Schwartz inequality
that

ξTPLur ≤ ‖ξ‖2‖PL‖2‖ur‖2 ≤ n
3

2 σmax(PL)ūr. (36)

Similarly, we have ξT (PL ⊗K1)r ≤ n
3

2 σmax (PL)σmax (K1)r̄.
Next, consider the second term in (35). Due to the definitions of K1

and K2 in (21), we know that K2(A+BK1) = −K2. Recall the

definition of ξ in (33), it follows that ξ = h̃((PL ⊗K2)x) and thus
ξi and the ith element of (PL ⊗K2)x have the same sign. Therefore
ξT (PL ⊗K2(A+BK1))x = −ξT (PL ⊗K2)x ≤ 0.

Consider the fourth term in (35). Define η ∈ R
n = h̃((ZnL ⊗

K2)x) and ψ ∈ R
n = η − ξ, then we have

− βξTPLh̃ ((ZnL ⊗K2)x) = −βξTPLη

= −βξTPL(ξ + ψ) = −β

2
ξTPLξ − β

2
ξTLTPξ − βξTPLψ

= −β

2
ξT L̄ξ − βξTPLψ ≤ −β

2
ξT L̄ξ + βn

1

2 σmax(PL)‖ψ‖2.

Here L̄ is defined in Lemma 1. In addition, if there exists i ∈ V
such that

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ ≥ ε, there is at least a 1 and
a negative number or a −1 and a positive number in the elements
of vector ξ. Therefore, there must exist a positive vector a such that
aT ξ = 0. It follows from Lemma 1 that if there exists i ∈ V such that
∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ ≥ ε, then ‖ξ‖22≥1 and

β
2
ξT L̄ξ > β

2n
λ2(L̄)‖ξ‖22 ≥ β

2n
λ2(L̄). (37)

Then we have if there exists i ∈ V such that
∣

∣pi
∑

j∈Ni
aijK2(xi −

xj)
∣

∣ ≥ ε,

V̇ (x) ≤ − ξT (PL ⊗K2)x+ n
3

2 σmax(PL) (ūr + σmax(K1)r̄)

− β

2n
λ2(L̄) + βn

1

2 σmax(PL)‖ψ‖2

< − ξT (PL ⊗K2)x+ βn
1

2 σmax(PL)‖ψ‖2. (38)

Here the last inequality is under the gain condition (22). Next, we
show that all

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ remains in a bounded re-

gion. According to the definition of V (x), we know that the exis-
tence of i ∈ V such that

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣→ ∞ is a nec-

essary and sufficient condition of V (x) → ∞. If there exists i ∈ V
such that

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣→ ∞, it will also hold that

ξT (PL ⊗K2)x → ∞ and V̇ (x) < 0, which will result in a bounded
V (x) and thus all bounded

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣. It follows that

all
∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ and thus V (x) remain bounded. Ac-
cording to the gain condition in (22), we know that there exists a positive

number ς such that V̇ ≤ ς − ξT (PL ⊗K2)x+ βn
1

2 σmax(PL)‖ψ‖2
if there exists i ∈ V such that

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ ≥ ε. It

follows from Lemma 2 that ψ → 0n as t → ∞, therefore there

must exist a time T3 such that βn
1

2 σmax(PL)‖ψ‖2 < ς for all

t ≥ T3. Then we have V̇ (x) < 0 for all t ≥ T3 if there exists i ∈
V such that

∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ ≥ ε. Then we can get the

conclusion that ‖(PL ⊗K2)x(t)‖1 is bounded for all t≥0, and all
∣

∣pi
∑

j∈Ni
aijK2(xi − xj)

∣

∣ ≤ ε as t → ∞ and thus

lim
t→∞

sup ‖(PL ⊗K2)x(t)‖1 ≤ nε. (39)

Note that Assumption 1 holds. It then follows from Lemma 4 that

lim
t→∞

sup ‖(Ω⊗ Im)x(t)‖1

= lim
t→∞

sup
n
∑

k=1

∥

∥

∥

∥

∥

xk(t)−
1

n

n
∑

j=1

xj(t)

∥

∥

∥

∥

∥

1

≤ ‖(PL)+ ⊗ Im‖1nε2m−1

m
∑

i=1

i!

(

i−1
∏

j=0

C
�j/2�
j

)

. (40)

In what follows, the term (1T
n ⊗ Im)(x− r) is analyzed. The deriva-

tive of (1T
n ⊗ Im)(x− r) can be calculated as follows:

d
(

(1T
n ⊗ Im)(x− r)

)

dt
= (1T

n ⊗ Im)(ẋ− ṙ) = (1T
n ⊗ Im)

×
(

(In ⊗ (A+BK1)) (x− r)−β(In ⊗B)h̃((ZnL ⊗K2)x)
)

=
(

1
T
n ⊗ (A+BK1)

)

(x− r)− β(1T
n ⊗B)h̃ ((ZnL ⊗K2)x) .

(41)

It follows from the definitions of K1 and K2 that det(λIm −

(A+BK1)) =

[

λ −1 0 0 0
··· ··· ··· ··· ···
0 0 0 λ −1

C0
m C1

m C2
m ··· λ+Cm−1

m

]

= (λ + 1)m, which indi-

cates that the eigenvalues of A+BK1 all have negative real parts.
Here det(·) denotes the determinant of a matrix. Define the variable
S = (1T

n ⊗ Im)(x− r), then we can rewrite (41) as

Ṡ = (In ⊗ (A+BK1))S − β(1T
n ⊗B)h̃ ((ZnL ⊗K2)x) . (42)

Then we can use the input-to-state stability to analyze the system (42)

by treating the term β(1T
n ⊗B)h̃((ZnL ⊗K2)x) as the input andS as

the state. From Lemma 2, we know that Zn(t) → P as t → ∞, leading

to h̃((Zn(t)L ⊗K2)x(t)) → h̃((PL ⊗K2)x(t)). It has been proved
that |pi

∑

j∈Ni
aijK2(xi(t)− xj(t))| ≤ ε, ∀i ∈ V , is reached as t →

∞, therefore we have h̃((Zn(t)L ⊗K2)x(t)) → ((PL⊗K2)x(t))
ε

as

t → ∞. It thus follows that β(1T
n ⊗B)h̃((Zn(t)L ⊗K2)x(t)) →

β (1T
nPL⊗BK2)x(t)

ε
= 0m as t → ∞, which gives S → 0m and thus

limt→∞
∑n

i=1(xi(t)− ri(t)) → 0m as t → ∞. It follows from (40)
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that

lim
t→∞

sup
n
∑

k=1

∥

∥

∥

∥

∥

xk(t)−
1

n

n
∑

j=1

rj(t)

∥

∥

∥

∥

∥

1

≤ ‖(PL)+ ⊗ Im‖12m−1nε
m
∑

i=1

i!

(

i−1
∏

j=0

C
�j/2�
j

)

. (43)

�

Remark 6: Both the linear and nonlinear algorithms have their
unique features and advantages while with tradeoffs. The advantage
of the linear algorithm (4) is that it is smooth and linear and hence is
easier to implement in practice. However, the tradeoff is that the tracking
error is zero only for reference signals whose acceleration deviations
approach zero and bounded for signals with bounded acceleration
deviations. On the other hand, the advantages of the nonlinear algorithm
(20) are that it can achieve DAT with relatively small tracking errors
for reference signals whose states and velocities are both bounded (it
follows from (43) that the tracking error can be arbitrarily small by
adjusting ε) and it can deal with more general high-order integrator
systems. But the tradeoff is that the nonlinear algorithm may be more
“expensive” to implement than the linear one in practice.

V. CONCLUSION

In this article, we have studied distributed average tracking in weight-
unbalanced directed graphs, which attempts to push a set of networked
agents to track the average of the locally available time-varying ref-
erence signals, where each agent can only receive information from
its neighbors. We first propose a linear algorithm for single-integrator
dynamics. We have shown that the tracking error is upper bounded if
the reference signals have bounded acceleration deviations. We also
investigate a nonlinear algorithm for high-order integrator dynamics,
which guarantees that distributed average tracking can be achieved with
arbitrarily small tracking errors if the reference signals and their veloc-
ities are all bounded, and the control gain is properly chosen. Future
works include the extension to nonlinear agent models, discrete-time
multiagent systems and stochastic reference signals.
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