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Abstract— This brief addresses distributed continuous-time
optimization problems with time-varying objective functions. The
goal is for multiple agents to cooperatively minimize the sum of
local time-varying objective functions with only local interaction
and information while explicitly taking into account distributed
adaptive gain design. Here, the optimal point is time varying
and creates an optimal trajectory. First, for the unconstrained
case, a distributed nonsmooth algorithm coupled with a state-
dependent gain is proposed. It is shown that the interaction
gain for each agent can be computed according to the variation
of the Hessian and gradient information of the convex local
objective functions so that the algorithm can solve the time-
varying optimization problem without imposing a bound on
any information about the local objective functions. Second, for
the case where there exist common time-varying linear equality
constraints, an extended algorithm is presented, where local

Lagrangian functions are introduced to address the equality
constraints. The asymptotic convergence of both algorithms to the
optimal solution is proved. Numerical simulations are presented
to illustrate the theoretical results. In addition, the one proposed
algorithm is experimentally implemented and validated on a
multi-Crazyflie platform.

Index Terms— Distributed continuous-time optimization, state-
dependent control gains, time-varying objective functions.

I. INTRODUCTION

R
ECENTLY, the solution of distributed optimization prob-

lems by multiagent systems has received increasing

attention due to its broad applications in sensor networks, big-

data analysis, smart grids, multirobot teams, and resource allo-

cation. The goal is for multiple agents to solve an optimization

problem cooperatively in a distributed manner where the team

objective function is the sum of local objective functions, each

of which is known to only one agent. There are many existing

results on distributed optimization in the discrete-time settings

(see [1] and references therein).

Related Works: Recently, significant results on distributed

continuous-time optimization have been published [2]–[12].

The continuous-time algorithms have application in motion
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coordination of multiagent systems. For example, multiple

agents modeled by continuous-time dynamics might need to

rendezvous or dock at a location that is optimal for the

team (with respect to certain team performance functions).

The aforementioned works [2]–[12] focus on time-invariant

objective functions, whereas the time-varying counterparts

are encountered in many applications (see [13]–[16] and

their references). Time-varying objective functions make the

design and analysis for the distributed optimization problem

much more complex. In this brief, we are interested in solv-

ing distributed continuous-time optimization problems with

time-varying objective functions for agents that have single-

integrator dynamics.

In the literature on distributed continuous-time optimiza-

tion with time-varying objective functions, some researchers

combined the consensus method and optimization algorithms.

The resulting algorithms require the convex objective function

to satisfy restrictive assumptions [17]–[20], in addition to the

general differentiable assumption. For example, Sun et al. [17]

consider a class of distributed time-varying quadratic opti-

mization problems, where not only the quadratic coefficients

(Hessians) but also their first and second-order derivatives

are required to be bounded. Hosseinzadeh et al. [18] propose

a distributed solution for linear programming problems with

possibly time-varying inequality constraints, and prove that

the tracking error is proportional to the rate of change of

the parameters. Distributed time-varying convex optimization

problems are studied for multiagent systems with, respectively,

linear and nonlinear dynamics in [19] and [20], where a bound

is placed on the Hessians and the time rate of change of the

gradients of the local objective functions.

Furthermore, the articles on the distributed time-varying

optimization mentioned above all focus on unconstrained

cases [19], [20], or constraint set cases [17], [18], while in

some applications it is desirable to consider equality con-

straints. While equality constraints are considered in [8]–[11],

the focus there is on distributed optimization with time-

invariant objective functions and time-invariant equality

constraints. Fazlyab et al. [21] focuses on the optimization

problems with time-varying objective functions and time-

varying inequality and equality constraints. However, the algo-

rithms there can only be employed in a centralized manner.

Although optimizing certain team performance functions in a

distributed manner while considering the time-varying equality

constraints is a highly motivating task in many multiagent

applications, it has not been addressed in the literature.

Contributions: In this brief, the distributed continuous-time

optimization problem is studied for more general time-varying
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objective functions. The main contributions are given as fol-

lows. First, we propose a distributed nonsmooth algorithm

with state-dependent gains for the unconstrained case. Here,

the interaction gain of each agent is adjusted according to

the variation of the Hessian and gradient information of the

convex local objective functions, so that the algorithm can

solve the time-varying optimization problem without imposing

a bound on any information about the local objective functions

(see Remark 4 for details). Therefore, the proposed algorithm

can deal with more general objective functions. To the best

of our knowledge, this is the first work in the literature

of distributed continuous-time -varying optimization that the

optimization problem can be solved without imposing a bound

on any information about the local objective functions. Second,

for the case where there exist common time-varying linear

equality constraints, an extended algorithm is proposed. Local

Lagrangian functions are introduced to address the equality

constraints. Similarly, the time-varying constrained optimiza-

tion problem can be solved without imposing a bound on any

information about the local objective functions and constraint

functions. Note that the distributed time-varying constrained

optimization problem has its unique difficulties and is more

challenging than the unconstrained counterpart since the local

constraints are also time-varying. Both algorithms are distrib-

uted in the sense that each agent uses only information from

itself and its neighbors and there is no need to know any global

parameters. For both algorithms, it is shown that all agents

achieve consensus in finite time and the consensus solution

converges to the optimal solution asymptotically. Numerical

simulations are presented to illustrate the theoretical results.

One proposed algorithm is also experimentally validated on a

multi-Crazyflie platform.

Comparison With the Literature1: To address the dis-

tributed optimization problem, [2]–[12] propose distributed

continuous-time algorithms for the time-invariant objective

functions. In contrast, the current paper proposes distributed

continuous-time algorithms for the time-varying objective

functions with zero tracking errors. In the literature, only

a few works consider the distributed continuous-time time-

varying optimization problem [17]–[20]. However, with our

proposed algorithms, there is no need to impose a bound on

certain information about the local objective functions as in

all of the existing works that solve the distributed continuous-

time time-varying optimization problem [17]–[20] (see related

works in Section I for details). The proposed algorithms are

partly inspired by Rahili and Ren [19]. Specifically, this brief

and the work by Rahili and Ren [19] both introduce the

idea of distributed average tracking to facilitate the distributed

algorithm design. However, Rahili and Ren [19] place a bound

on the Hessians and the rate of change of the gradients of the

local objective functions. This brief presents a state-dependent

gain design such that the above assumption can be removed.

Therefore, this brief can deal with more general objective

functions that cannot be handled in [19]. In addition, this

brief takes into account the time-varying equality constraints

1Since we focus on the continuous-time algorithms in this work, we do not
present the comparison to the discrete-time algorithms here.

which are not considered in [19]. Moreover, the approach

in [19] increases the adaptive control gain until a consensus is

achieved (see Remark 4). Therefore, the control gain there

might become unnecessarily large. In contrast, the state-

dependent gain in this brief is computed in such a way that

the above situation is eliminated. The novel algorithm design

herein introduces new challenges in the theoretical analysis.

This brief extends our prior adaptive algorithm with time-

invariant objective functions presented in [12, Sec. III-B] to

distributed time-varying unconstrained and constrained opti-

mization cases. Besides more rigorous and detailed proof,

additional numerical examples and experimental results are

also presented.

II. PRELIMINARIES

A. Notation

Let R, R
n and R

n×m denote the sets of real numbers, real

vectors of dimension n, and real matrices of size n × m,

respectively. Let R>0 and R≥0 represent, respectively, the set

of positive and nonnegative real numbers. Let 1n (resp. 0n)

denote the vector of n ones (resp. n zeros), and In denote

the n × n identity matrix. For a matrix A ∈ R
m×n ,

AT (resp. A−1) is the transpose (resp. inverse) of A. For a

vector x = [x1, . . . , xn]
T ∈ R

n×1, diag(x) ∈ R
n×n represents

the diagonal matrix with the elements in the main diagonal

being the elements of x , ‖x‖p represents the p-norm of

the vector x , and sgn(x) = [sgn(x1), . . . , sgn(xn)]
T , where

sgn(xi) = −1 if xi < 0, sgn(xi) = 1 if xi > 0, and otherwise

sgn(xi) = 0. Let ∇ f (x, t) and ∇2 f (x, t) denote, respectively,

the gradient and Hessian of the function f (x, t) : R
n ×

R≥0 �→ R with respect to the vector x .

B. Graph Theory

An undirected graph, is denoted by G = (V, E,A), where

V = {1, . . . , n} is the node set, E ⊆ V × V is the edge set,

and A = [ai j] ∈ R
n×n is the weighted adjacency matrix with

entries ai j , i, j ∈ V . For an undirected graph, an edge ( j, i)

implies that nodes i and j are able to share information with

each other, and ai j = 1 if ( j, i) ∈ E and ai j = 0 otherwise.

Here ai j = a j i . Let Ni = { j ∈ V : ( j, i) ∈ E} denote the set of

neighbors of node i . A path is a sequence of nodes connected

by edges. An undirected graph is connected if for every pair

of nodes there is a path connecting them.

III. DISTRIBUTED TIME-VARYING

UNCONSTRAINED OPTIMIZATION

Consider a multiagent system consisting of n agents with an

interaction topology described by the undirected graph G(t).

Each agent can interact only with its local neighbors. Sup-

pose that the agents satisfy the following single-integrator

dynamics:

ṗi(t) = ui(t) (1)

where pi(t) ∈ R
m and ui(t) ∈ R

m are the state and control

input of agent i . Our goal here is to design ui (t) using only

local information and interactions with neighbors, such that all
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the agents cooperatively find the optimal solution r∗(t) ∈ R
m

(assuming it exists for all t ≥ 0) which is defined as

r∗(t) = arg min
r(t)

{

n
∑

i=1

fi [r(t), t]

}

(2)

where fi [r(t), t] : R
m × R≥0 �→ R are the local objective

functions. It is assumed that fi [r(t), t] is only known to agent i

and is twice continuously differentiable with respect to r(t)

and continuously differentiable with respect to t . Note that
∑n

i=1 fi [pi(t), t] =
∑n

i=1 fi [r(t), t], if pi(t) = p j(t) = r(t)

for all i, j ∈ V , the above problem (2) is equivalent to finding

the optimal solution p∗(t) ∈ R
m∗n which is defined as

p∗(t) = arg min
p(t)

{

n
∑

i=1

fi [pi(t), t]

}

Subject to pi(t) = p j(t) ∀i, j ∈ V (3)

where p(t) is the vector that concatenates the state vectors

pi(t) ∈ R
m of all the agents. Note that problem (2) will

be solved as a consensus minimization problem with the

time-varying team objective function
∑n

i=1 fi [pi(t), t]. Here,

the goal is that each state pi(t) converges to the optimal

solution r∗(t), that is

lim
t→∞

[

pi(t) − r∗(t)
]

= 0m . (4)

We introduce the following assumptions and the following

lemma which are all standard in the recent literature [19].

Assumption 1: The graph G(t) is undirected and connected

for all t ≥ 0.

Assumption 2: The length of the time interval between any

two contiguous switching topologies is greater than or equal

to a given positive constant.

Arbitrary switching of the graph G(t) might lead to the Zeno

behavior. Hence Assumption 2 is imposed to prevent the

system from exhibiting the Zeno behavior.

Assumption 3: Each objective function fi [pi(t), t] is uni-

formly strongly convex in pi(t) and its Hessian matrix

∇2 fi [pi(t), t] is identical under identical local states pi(t)

for all t ≥ 0, i.e., ∇2 fi [pi(t), t] ≥ α Im , for some α > 0

and ∇2 fi [pi(t), t] = ∇2 f j [p j(t), t] if pi(t) = p j(t) for

all i, j ∈ V .

The uniform strong convexity of each objective func-

tion fi [r(t), t] implies the uniform strong convexity of
∑n

i=1 fi [r(t), t], such that the optimal trajectory r∗(t) (assum-

ing it exists for all t ≥ 0) is unique for all t ≥ 0. Moreover, due

to the equivalence between (2) and (3), the optimal solution

p∗(t) defined in (3) is unique for all t ≥ 0.

Remark 1: Assumption 3 requires that the Hessian matrix

∇2 fi [pi(t), t] be identical under identical local states pi(t) for

all t ≥ 0, which might be restrictive. However, in the literature

of distributed continuous-time time-varying optimization, it is

common to assume that all the Hessian matrices ∇2 fi [pi(t), t]

are identical, i.e., ∇2 fi [pi(t), t] = ∇2 f j [p j(t), t] for all

i, j ∈ V and all t ≥ 0 (see [19], [20]). In this brief,

we reconsider the identical Hessian assumption, and relax it

further. The algorithms herein do not need ∇2 fi [pi(t), t] =

∇2 f j [p j(t), t] for all pi(t) and p j(t). Instead, they only

need ∇2 fi [pi(t), t] = ∇2 f j [p j(t), t] when pi(t) = p j(t).

Note that the identical Hessian condition can be satisfied in

many situations, e.g., fi [pi(t), t] = [α pi(t) + bi(t)]
2 with a

positive constant α and a time-varying function bi(t), which

is commonly used for robot control and energy minimization.

Lemma 1 [22]: Let f (r) : R
m → R be a continuously

differentiable convex function with respect to r . The function

f (r) is minimized at r∗ if and only if ∇ f (r∗) = 0.

A. Distributed Algorithm Design

This section presents and analyzes a distributed adaptive

control algorithm for the time-varying optimization problem

in (3). The controller for agent i is

ui(t) = φi (t) −
∑

j∈Ni(t)

{[

‖φi (t)‖∞ + ‖φ j (t)‖∞ + γi + γ j

]

× sgn
[

pi(t) − p j(t)
]}

φi(t) = −
{

∇2 fi [pi(t), t]
}−1

{

∇ fi [pi(t), t]+
∂

∂ t
∇ fi [pi(t), t]

}

(5)

where γi ∈ R>0 is a constant control gain. The auxiliary

variables φi(t) and φ j(t) ∈ R
m automatically adjust the gain

of the interaction term sgn[pi(t) − p j(t)] for j ∈ Ni(t).

Remark 2: Algorithm (5) solves the time-varying opti-

mization problem of (2) as a consensus minimiza-

tion problem with the time-varying team objective func-

tion
∑n

i=1 fi [pi(t), t]. The term −
∑

j∈Ni (t)
{[‖φi(t)‖∞ +

‖φ j (t)‖∞+γi +γ j ] sgn[pi(t)− p j(t)]} is introduced to achieve

consensus among the agents, that is pi(t) → p j(t), ∀i, j ∈ V .

The auxiliary variable φi(t) is employed to force the consen-

sus state to track the optimal solution r∗(t). Note that the

three terms in φi (t), namely, {∇2 fi [pi(t), t]}−1, ∇ fi [pi(t), t]

and ∂∇ fi [pi(t), t]/∂ t , could become unbounded due to the

involvement of pi(t) and t . Here, the state-dependent gain

‖φi (t)‖∞+‖φ j(t)‖∞+γi +γ j is used to overcome the possible

unboundedness of φi(t).

Remark 3: Algorithm (5) is distributed, because each agent

only uses information about its own objective function and

information communicated by its neighbors. Take agent i as

an example. Agent i uses its own information: pi(t) and the

Hessian and gradient information of its objective function

fi [pi(t), t]; as well as information received from its neighbors:

p j(t) ∈ R
m , γ j ∈ R>0 and ‖φ j (t)‖∞ ∈ R for j ∈ Ni (t).

Moreover, in order to implement Algorithm (5), all agents

need to share a common coordinate system. Note that many

global coordinate systems exist worldwide, such as GPS.

Remark 4: The design of Algorithm (5) is partly motivated

by the algorithm given in [19]

ui(t) = −
∑

j∈Ni

βi j(t) sgn
[

pi(t) − p j(t)
]

+ φi (t)

β̇i j(t) = ‖pi(t) − p j(t)‖1, j ∈ Ni (6)

where φi (t) is the same as that in (5). Compared with

Algorithm (6), Algorithm (5) has two advantages. First, Algo-

rithm in [19] places a bound on the Hessians and the rate of the

change of the gradients of the local objective functions. These

requirements can limit the applicable class of objective func-

tions. For example, as stated in Remark 1, a commonly used
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objective function for robot control and energy minimization is

fi [pi(t), t] = [αpi(t)+bi (t)]
2. If ḃi(t) is unbounded, then it is

obvious that it does not satisfy the above requirement. In this

brief, we introduce a novel state-dependent control gain design

to remove the above requirement. Algorithm (5) can deal

with more general objective functions that cannot be handled

in [19]. Second, the adaptive control gain βi j(t) designed

in (6) keeps increasing until the consensus is achieved.

Therefore, the control gain might become unnecessarily large.

In contrast, the state-dependent gain in this brief is computed

such that the above situation is eliminated. The state-dependent

control gain approach introduces new theoretical challenges

that are the focus of this brief. However, Algorithm (5) has a

disadvantage as well. That is, each agent is required to be able

to get the information of the variable φ j(t) and γ j from its

neighbors, which requires the existence of the communication

capabilities, while Algorithm (6) can be implemented using

only local sensing without the need for the existence of the

communication capabilities as long as the relative position

(xi − x j) between each agent and its neighbors can be

measured.

B. Convergence Analysis

This section establishes the asymptotic convergence of

system (1) under controller (5) to the optimal solution in (2).

Lemma 2: Given (5), using (5) for (1), all the states pi(t)

will achieve consensus in finite time, i.e., there exists a time

T such that ‖pi(t) − p j(t)‖2 = 0 for all i, j ∈ V and for all

t > T .

Proof: The main idea of our proof is to show that

each corresponding component of the agents’ state vec-

tors reaches a consensus separately in finite time. Let

ṗik(t), pik(t) and φik(t) denote, respectively, the kth com-

ponents of ṗi(t), pi(t) and φi (t). Define A1k(t) �

{i | pik(t) = maxi∈V [pik(t)]}, A2k(t) � {i | pik(t) =

mini∈V [pik(t)]}, p̄k(t) � (1/|A1k(t)|)
∑

i∈A1k (t)
pik(t) and

p
k
(t) � (1/|A2k(t)|)

∑

i∈A2k (t)
pik(t), where |A1k(t)| ≥ 1 and

|A2k(t)| ≥ 1 denote, respectively, the cardinality of A1k(t) and

A2k(t). Clearly, using (5) for (1), the kth component of each

ṗi(t) can be written as

ṗik(t) = φik(t) −
∑

j∈Ni (t)

{[

‖φi(t)‖∞ + ‖φ j (t)‖∞ + γi + γ j

]

× sgn
[

pik(t) − p jk(t)
]}

. (7)

We first show that, when p̄k(t) �= p
k
(t), pik(t) for all

i ∈ A1k(t) are nonincreasing and pik(t) for all i ∈ A2k(t)

are nondecreasing. Note that even though all elements pik(t),

i ∈ A1k(t) have the same value, they need not have the same

derivative. The proof will proceed by induction to establish a

contradiction.

Assume that for agent l ∈ A1k(t) there exist two time

instants t1 < t2 such that ṗlk(t) > 0 for all t ∈ [t1, t2]

almost everywhere (i.e., except for some isolated time instants

of measure zero).2 Note that ‖φl(t)‖∞ +‖φ j (t)‖∞ +γl +γ j >

2Here, we do not consider the sets of measure zero in [t1, t2] on which the
derivatives at certain isolated time instants are nonpositive as these sets have
no effect on the state value pik (t).

φlk(t), and sgn[plk(t) − p jk(t)] = 1 when j ∈ Nl(t) and

p jk(t) �= plk(t). Therefore, it follows from (7) where i is

replaced with l and the fact that ṗlk(t) > 0 for all t ∈ [t1, t2]

almost everywhere that φlk(t) > 0 and p jk(t) = plk(t) for all

j ∈ Nl(t) and all t ∈ [t1, t2]. Further recall that l ∈ A1k(t)

and ṗlk(t) > 0 for all t ∈ [t1, t2] almost everywhere. Given

these facts, there must exist two time instants t3 < t4 satisfying

[t3, t4] ⊆ [t1, t2] such that ṗ jk(t) > 0 for all j ∈ Nl(t) and

all t ∈ [t3, t4] almost everywhere. Similarly, it can be obtained

that pqk(t) = p jk(t) (and hence plk(t)) for all t ∈ [t3, t4]

and all q ∈ N j (t) with j ∈ Nl(t). Since the graph G(t) is

connected, by induction, we have pik(t) = plk(t) for all i and

all t within a certain time interval, which contradicts with the

assumption that p̄k(t) �= p
k
(t). Thus, pik(t) for all i ∈ A1k(t)

are nonincreasing when p̄k(t) �= p
k
(t). Similarly, pik(t) are

nondecreasing for all i ∈ A2k(t) when p̄k(t) �= p
k
(t).

To show that consensus is reached in finite time consider

V (t) = p̄k(t) − p
k
(t) as a Lyapunov function candidate for

all p̄k(t) �= p
k
(t). Note that V (t) > 0 when p̄k(t) �= p

k
(t).

Based on the above analysis, when p̄k(t) �= p
k
(t), ṗik(t) ≤ 0

for all i ∈ A1k(t) and ṗik(t) ≥ 0 for all i ∈ A2k(t)

almost everywhere. Because the graph G(t) is connected, when

p̄k(t) �= p
k
(t), there exists at least a node � ∈ A1k(t) having

an edge to a node j /∈ A1k(t), implying that p�k(t) > p jk(t).

Note that here the indices � and j might change over time. It

follows from (7) that when p̄k(t) �= p
k
(t):

ṗ�k(t) ≤ φ�k(t) −
[

‖φ�(t)‖∞ + ‖φ j (t)‖∞ + γ� + γ j

]

×sgn
[

p�k(t) − p jk(t)
]

≤ −
(

γ� + γ j

)

.

Note that when p̄k(t) �= p
k
(t), ˙̄pk(t) = (1/|A1k(t)|)

∑

i∈A1k (t)
ṗik(t) = (1/|A1k(t)|)[ ṗ�k(t) +

∑

i∈A1k (t)\{�}
ṗik(t)].

Recall that when p̄k(t) �= p
k
(t), ṗik(t) ≤ 0 for all i ∈

A1k(t) \ {�} almost everywhere. We have ˙̄pk(t) ≤

−(((γ� + γ j))/|A1k(t)|) ≤ −((2 mini∈V(γi))/n − 1) almost

everywhere. Note that when p̄k(t) �= p
k
(t), ṗ

k
(t) =

(1/|A2k(t)|)
∑

i∈A2k (t)
ṗik(t) ≥ 0 almost everywhere.

We hence have

V̇ (t) = ˙̄pk(t) − ṗ
k
(t) ≤ −2 min

i∈V
(γi)

/

(n − 1)

almost everywhere when p̄k(t) �= p
k
(t). Based on Lebesgue’s

theory for the Riemann integrability, a function on a compact

interval is Riemann integrable if and only if it is bounded

and the set of its discontinuous points has measure zero [23].

Therefore, although the time-derivative V̇ (t) here is discon-

tinuous at some time points, it is Riemann integrable. Then,

we have

V (t) − V (0) =

∫ t

0

V̇ (τ )dτ ≤ −
2t mini∈V(γi)

n − 1

where t > 0. It follows that:

V (t) ≤ V (0) −

[

2 min
i∈V

(γi)
/

(n − 1)

]

t . (8)

It then can be concluded that V (t) converges to zero in

finite time and the convergence time T satisfies T ≤

(((n − 1)V (0))/(2 mini∈V(γi))). That is, consensus is reached
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in finite time and there exists a positive number T such that

pi(t) = p j(t) for all t ≥ T and all i, j ∈ V . �

Remark 5: It follows from (8) that the convergence time T

of the consensus process can be made smaller by selecting

larger γi . However, if γi is too large, the chattering phenom-

enon would become worse due to the discontinuous signum

function in (5).

Following is the main result of this section.

Theorem 1: If Assumptions 1–3 hold, for system (1) under

the controller (5), all the states pi(t) will converge asymptot-

ically to the optimal solution r∗(t) in (2).

Proof: Under Assumptions 1 and 2, it follows from

Lemma 2 that the states of all the agents achieve consensus in

finite time, i.e., there exists a time T such that pi(t) = p j(t)

for all i, j ∈ V and all t ≥ T . For t ≥ T , consider the

Lyapunov function candidate

V2(t) =
1

2

{

n
∑

i=1

∇ fi [pi(t), t]

}T {

n
∑

i=1

∇ fi [pi(t), t]

}

. (9)

It follows from [19, Th. 3.9] that the derivative of V2(t) is:

V̇2(t)

=

{

n
∑

i=1

∇ fi [pi(t), t]

}T {

n
∑

i=1

d∇ fi [pi(t), t]

dt

}

= −

{

n
∑

i=1

∇ fi [pi(t), t]

}T [

n
∑

i=1

(∇ fi [pi(t), t]

+∇2 fi [pi(t), t]
∑

j∈Ni (t)

{[

‖φi(t)‖∞ + ‖φ j (t)‖∞ + γi + γ j

]

× sgn
[

pi(t) − p j(t)
]})]

. (10)

Note from Assumptions 1 and 3 that the graph G(t) is undi-

rected and ∇2 fi [pi(t), t] = ∇2 f j [p j(t), t] if pi(t) = p j(t)

for all i, j ∈ V , it follows that for all t ≥ T :

n
∑

i=1

∇2 fi [pi(t), t]
∑

j∈Ni (t)

{[

‖φi (t)‖∞ + ‖φ j (t)‖∞ + γi + γ j

]

× sgn
[

pi(t) − p j(t)
]}

= ∇2 fi [pi(t), t]

n
∑

i=1

∑

j∈Ni (t)

{[

‖φi (t)‖∞ + ‖φ j (t)‖∞ + γi + γ j

]

× sgn
[

pi(t) − p j(t)
]}

= 0m .

Then we have for all t ≥ T

V̇2(t) = −

{

n
∑

i=1

∇ fi [pi(t), t]

}T {

n
∑

i=1

∇ fi [pi(t), t]

}

= −2V2(t) (11)

which indicates that V2(t) = e−2t V2(T ) for all t ≥ T .

It can be concluded that limt→∞ V2(t) = 0, and thus

limt→∞

∑n
i=1 ∇ fi [pi(t), t] = 0m . Due to Assumption 3,

the Lyapunov function V2(t) defined in (9) has a

unique time-varying global minimum r∗(t) such that

{
∑n

i=1 ∇ fi [r
∗(t), t]}T {

∑n
i=1 ∇ fi [r

∗(t), t]} = 0. Recall that

pi(t) = p j(t) for all i, j ∈ V and all t ≥ T , which in turn

implies that all pi(t) will converge to the optimal solution

r∗(t) in (2) based on Lemma 1. �

Remark 6: In some robotic applications, it is desirable for

the agents to come into a formation, while the center of the

formation moves along the optimal trajectory. To achieve this

goal, we introduce a deviation vector δi(t) for each agent i

and replace pi(t) in (5) with pi(t) − δi(t). It follows that

Algorithm (5) will guarantee that pi(t) − δi(t) converges to

the optimal trajectory, which in turn implies that pi(t)− p j(t)

converges to δi(t)−δ j(t). Here, δi(t)−δ j(t) defines the desired

relative position from agent j to agent i in the formation. That

is, the agents will be able to converge to the optimal trajectory

with the deviation vector δi(t). The analysis follows directly

by letting pi(t) − δi(t) play the role of pi(t) in the previous

proof.

IV. DISTRIBUTED TIME-VARYING OPTIMIZATION WITH

TIME-VARYING LINEAR EQUALITY CONSTRAINTS

In this section, we extend the results in Section III-A

to take into account common time-varying linear equality

constraints. The goal is to design ui(t) such that all the agents

cooperatively find the optimal solution r̃∗(t) ∈ R
m defined as

r̃∗(t) = arg min
r̃(t)

{

n
∑

i=1

fi [r̃(t), t]

}

Subject to A(t)r̃(t) = b(t) (12)

where A(t) ∈ R
q×m and b(t) ∈ R

q are the equality constraint

functions. Note that A(t)pi(t) = A(t)r̃(t) for all i ∈ V

and
∑n

i=1 fi [pi(t), t] =
∑n

i=1 fi [r̃(t), t], if pi(t) = p j(t) =

r̃(t) for all i, j ∈ V . Therefore, the above problem (12) is

equivalent to finding the optimal solution p∗(t) ∈ R
m∗n which

is defined as

p∗(t) = arg min
p(t)

{

n
∑

i=1

fi [pi(t), t]

}

Subject to A(t)pi(t) = b(t) ∀i ∈ V

and pi(t) = p j(t) ∀i, j ∈ V . (13)

Here, the goal is that each state pi(t) converges to the optimal

solution r̃∗(t), that is

lim
t→∞

[

pi(t) − r̃∗(t)
]

= 0m . (14)

Here, agent i only has access to its own objective function

fi [pi(t), t], the constraint function A(t) and b(t), its own state

pi(t), and information received from its neighbors j ∈ Ni (t).

We need an additional assumption.

Assumption 4: The number of equality constraints is less

than the dimension of the state variable pi , i.e., q < m.

Moreover, the rows of A(t) are linearly independent for all

t ≥ 0, i.e., rank[A(t)] = q .

Assumption 4 ensures that the constraint function has infi-

nitely many solutions at each t ≥ 0.

A. Distributed Algorithm Design

In this section, we derive a distributed control algo-

rithm such that (14) holds. The Lagrangian function of
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problem (12) is

L[r̃(t), t] =

n
∑

i=1

fi [r̃(t), t] + νT (t)[A(t)r̃(t) − b(t)] (15)

where ν(t) ∈ R
q is the Lagrangian multiplier. Note that the

function L[r̃(t), t] is strongly convex in r̃(t) and concave

in ν(t). Based on the KKT conditions, we know that the

optimal solution of problem (12) must satisfy

n
∑

i=1

∇ fi

[

r̃∗(t), t
]

+ AT (t)ν∗(t) = 0m

A(t)r̃∗(t) − b(t) = 0q . (16)

Let λi (t) ∈ R
q be local internal states playing the role of the

local counterparts of the global Lagrangian multiplier ν(t).

Then the optimal solution in (16) is equivalent to

lim
t→∞

‖pi(t) − p j(t)‖2 = 0 ∀i, j ∈ V (17a)

lim
t→∞

‖λi (t) − λ j (t)‖2 = 0 ∀i, j ∈ V (17b)

n
∑

i=1

∇ fi [pi(t), t] + AT (t)λi (t) = 0m (17c)

A(t)pi(t) − b(t) = 0q ∀i ∈ V . (17d)

The controller for agent i is defined as

ui(t) = ψ F
i (t) −

∑

j∈Ni (t)

{[

‖ψi (t)‖∞ + ‖ψ j (t)‖∞ + γi + γ j

]

× sgn
[

pi(t) − p j(t)
]}

λ̇i (t) = ψL
i (t) −

∑

j∈Ni (t)

{[

‖ψi (t)‖∞ + ‖ψ j (t)‖∞ + γi + γ j

]

× sgn
[

λi (t) − λ j (t)
]}

ψi (t) = −
{

∇2 L̃ i [si (t), t]
}−1

{

∇ L̃ i [si(t), t]+
∂

∂ t
∇ L̃ i [si (t), t]

}

(18)

where L̃ i [si(t), t] = fi [pi(t), t] + λT
i (t)[A(t)pi(t) − b(t)]

with si(t) ∈ R
m+q = [pT

i (t), λT
i (t)]T , and ψ F

i (t) and ψL
i (t)

denote, respectively, the first m components and the last

q components of the vector ψi ∈ R
m+q . It follows from

Assumptions 3 and 4 that ∇2 L̃ i [si (t), t] is invertible [22].

There are four conditions in (17). In Algorithm (18), the term

−
∑

j∈Ni (t)
{[‖ψi (t)‖∞ + ‖ψ j (t)‖∞ + γi + γ j ] sgn[pi(t) −

p j(t)]} is introduced to ensure that all the agents achieve

consensus on states pi(t), i.e., condition (17a). The term

−
∑

j∈Ni (t)
{[‖ψi (t)‖∞+‖ψ j(t)‖∞+γi +γ j] sgn[λi (t)−λ j(t)]}

is employed to ensure that all the agents achieve consensus

on λi (t), i.e., condition (17b). The term ψi is introduced to

achieve the optimal condition given by (17c) and (17d).

Remark 7: It is worth mentioning that the discontinuous

signum function in (5) and (18) might cause chattering

behavior. In practice, a simple and useful way to solve this

oscillating problem is to approximate the signum function

using a continuous function in a region called the boundary

layer around the sliding surface [25]. For example, we can

replace the signum function with the function

h(z) =
z

||z||2 + ε

where z ∈ R
m and ε is a positive constant. Despite the

drawback of the chattering effect, sliding-mode control has its

own merits such as fast convergence and robustness against

system uncertainties and disturbances.

B. Convergence Analysis

This section establishes the asymptotic convergence of

system (1) under controller (18) to the optimal solution

in (12).

Theorem 2: If Assumptions 1–4 hold, for system (1) under

controller (18), then all the states pi(t) will converge asymp-

totically to the optimal solution r̃∗(t) in (12).

Proof: First, we show that the conditions given by (17a)

and (17b) can be achieved. Applying controller (18) to

system (1) leads to

ṡi(t) = ψi (t) −
∑

j∈Ni (t)

{[

‖ψi (t)‖∞ + ‖ψ j (t)‖∞ + γi + γ j

]

×sgn
[

si(t) − s j(t)
]}

. (19)

The desired result follows under Assumptions 1 and 2 by

letting ṡi(t), si (t), and ψi (t), respectively, play the role of

ṗi(t), pi(t), and φi(t) in the proof of Lemma 2. That is,

consensus on si (t) will be achieved in finite time. Then there

exists a time T such that si (t) = s j (t) for all t > T and all

i, j ∈ V and thus pi(t) = p j(t) and λi (t) = λ j (t) for all

t > T and all i, j ∈ V .

Next we show that conditions (17c) and (17d) will be

achieved. The gradient and Hessian of the function L̃ i [si (t), t]

with respect to si (t) are

∇ L̃ i [si (t), t] =

[

∇ fi [pi(t), t] + AT (t)λi (t)

A(t)pi(t) − b(t)

]

∇2 L̃ i [si (t), t] =

[

∇2 fi [pi(t), t] AT (t)

A(t) 0q

]

(20)

where ∇2 L̃ i [si (t), t] is invertible due to Assumptions 3 and 4.

It is obvious that if ∇2 fi [pi(t), t] = ∇2 f j [p j(t), t]

under pi(t) = p j(t) for all i, j ∈ V , then it holds

that ∇2 L̃ i [si(t), t] = ∇2 L̃ j [s j (t), t] under pi(t) = p j(t)

for all i, j ∈ V . Consider the Lyapunov function candi-

date V3(t) = (1/2){
∑n

i=1 ∇ L̃ i [si (t), t]}T {
∑n

i=1 ∇ L̃ i [si(t), t]}.

Similar to the analysis in Theorem 1, it can be concluded that

as t → ∞, V3(t) → 0, we have limt→∞

∑n
i=1 ∇ L̃ i [si(t), t] =

0m+q and thus limt→∞

∑n
i=1 ∇ fi [pi(t), t] + AT (t)λi (t) =

0m and limt→∞

∑n
i=1 A(t)pi(t) − b(t) = 0q based on the

definition in (20). The conclusion of the theorem then follows

by combining the above statements. �

V. SIMULATION RESULTS

The simulation results in this section illustrate the effective-

ness of the theoretical results obtained in Sections III and IV.

Assume that there are six agents (n = 6) in 2-D (m = 2). The

network topology shown in Fig. 1 is undirected and connected.

Let pi(t) = [xi(t), yi (t)]
T ∈ R

2 denote the state (position) of

agent i , where xi(t) ∈ R (respectively, yi(t) ∈ R) denotes

the position of agent i in the x-coordinate (respectively,

y-coordinate).
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Fig. 1. Undirected graph representing the communication topology between
agents.

First, we show the simulation result using Algorithm (5).

Let r(t) = [rx(t), ry(t)]
T and consider the following uncon-

strained optimization problem:

r∗(t) ∈ R
2 = argmin

n
∑

i=1

{

[rx(t) − 0.1(0.25 + 0.5i)t]2

+
[

ry(t) − 0.1(0.25 + 0.5i)t
]2

}

. (21)

This problem is an instance of (2). The goal is that each state

pi(t) converges to the optimal solution r∗(t) defined in (21).

The intuition of problem (21) is from the multirobot target

tracking problem, where [0.1(0.25+0.5i)t, 0.1(0.25+0.5i)t]T

encodes the tracking target of agent i . Here, multiple robots

aim to cooperatively find the optimal position that is close to

all the targets. Choose γi = 1, ∀i ∈ V . The proof of Lemma 2

proves that the maximum time for consensus to be achieved

satisfies T ≤ (((n − 1)V (0))/(2 mini∈V(γi))). Therefore, with

γi = γ j = γ̄ , the time to achieve consensus, for any given set

of initial conditions, is inversely proportional to γ̄ .

The initial states of the agents are chosen as p1(0) =

[0, 1]T , p2(0) = [0.5, 1]T , p3(0) = [0.5, 0.5]T , p4(0) =

[0, 0.5]T , p5(0) = [−0.5, 0]T , p6(0) = [0, 0]T . The agents’

states and the optimal trajectory in the (x, t) [respectively,

(y, t)] coordinates are shown in Fig. 2(a) [respectively,

Fig. 2(b)]. The red dashed line is the optimal solution and

the other solid lines are the trajectories of all agents’ states.

It is clear that all the agents track the optimal trajectory

asymptotically (i.e., limt→∞ ‖pi(t)−r∗(t)‖2 = 0 for all i ∈ V)

which is consistent with Theorem 1. We introduce a deviation

vector to (5) by replacing pi with pi − δi (see Remark 3.4).

Here, δ1 = [0.5, 0.5]T , δ2 = [0.5, 0]T , δ3 = [0.5,−0.5]T ,

δ4 = [−0.5, 0.5]T , δ5 = [−0.5, 0]T , δ6 = [−0.5,−0.5]T .

In Fig. 3, the blue circles present a snapshot of all the agents’

initial positions and the blue crosses present two snapshots

of all the agents at 4.5 and 9 s, respectively. Fig. 3 shows

each agent’s trajectories with the deviation vectors introduced

(blue dashed lines), the center position of all the agents (black

solid line), and the optimal trajectory (red dashed line) in

the (x, y, t) coordinates. Note that the agents asymptotically

form a rectangle formation with its center tracking the optimal

trajectory, implying that limt→∞ ‖pi(t) − δi − r∗(t)‖2 = 0 for

all i ∈ V .

Second, we show a simulation result using Algorithm (18).

Let r̃ = [r̃x , r̃y]
T and consider the following constrained

optimization problem:

r̃∗(t) ∈ R
2 = argmin

n
∑

i=1

{

[r̃x(t) − i t]2 +
[

r̃y(t) − i t
]2

}

Subject to cos(t)r̃x(t) + sin(t)r̃y(t) = 3. (22)

Fig. 2. Simulation results showing state convergence using controller (5).

Fig. 3. Simulation results using controller (5) with the deviation vectors
introduced.

Fig. 4. Simulation results showing state convergence to the optimal solution
using controller (18).

Fig. 5. Simulation results showing convergence of the constraint using
controller (18).

Problem (22) is an instance of Problem (12). The goal

here is that each state pi(t) converges to the optimal solu-

tion r̃∗(t) defined in (22). The intuition of Problem (22)

is also from the multirobot target tracking problem, where

[i ∗ t, i ∗ t]T encodes the tracking signal of agent i and

the function cos(t)r̃x(t) + sin(t)r̃y(t) = 3 represents some
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Fig. 6. Experimental setup and information flow.

Fig. 7. Experimental results using controller (5).

physical constraints for the robots. For this simulation, ∀i ∈ V ,

we select γi = 5 and choose the initial states xi(0) and yi(0)

randomly from the range [−10, 10]. The state trajectories of

the agents (solid lines) and the optimal trajectory r̃∗(t) defined

in (22) (red dashed line) are shown in Fig. 4. It is clear

that all the agents track the optimal trajectory asymptotically,

i.e., limt→∞ ‖pi(t) − r̃∗(t)‖2 = 0 for all i ∈ V . Fig. 5 shows

convergence of the constraint for each agent. We can see that

cos(t)xi(t) + sin(t)yi(t) − 3 converge to zero asymptotically

for all the agents, which is consistent with Theorem 2.

VI. EXPERIMENTAL RESULTS

In this section, the algorithm designed in Section III is

applied to the multiagent formation control problem and the

multiagent moving target tracking problem and is tested in

experiments. The experiments are conducted in the Coopera-

tive Vehicle Networks (COVEN) Laboratory at the University

of California, Riverside with six Crazyflie 2.0 quadrotors [26]

in an 5 × 5 m2 indoor environment covered by a VICON

motion capture system [28]. The Crazyflies are controlled

by the velocity commands (i.e., the control signals ui (t)

are the velocity commands that are sent to the Crazyflies)

such that their dynamics follow the single-integrator system

given by (1). The experimental setup is illustrated in Fig. 6.

In this experiment, the control system is divided into two

parts, namely, high level and low level. The high-level control

involves the setup of the network topology, implementation

of the distributed optimization algorithm, and generation of

the velocity commands ui (t). The host computer is used to

run the high-level controller due to the fact that the Crazyflies

used in the experiments do not have sufficient computation

capability to run the controller in real-time. A VICON motion

capture system coupled with the extended Kalman filter is

Fig. 8. Experimental results using controller (5).

Fig. 9. Experimental results using controller (5).

used to estimate the positions of each agent. The host com-

puter requests the information packet from the Vicon system

every 0.01 s. The low-level control is responsible for achieving

the velocity commands (using the Mellinger controller [27]).

The host computer sends control commands to the Crazyflies

every 0.01 s. The restrictions of a distributed environment

are fully considered and the distributed network topology

defined in Fig. 1 is emulated. We establish six nodes under the

robotics operating system (ROS) to control the six Crazyflies

in parallel.

A. Multiagent Formation Control

First, the distributed time-varying optimization algorithm

given by (5) is implemented experimentally to solve prob-

lem (21). The desired deviations from the optimal trajectory

and the Crazyflies’ initial positions have the same values as

in Section V. Fig. 7(a) [respectively, Fig. 7(b)] shows the

six Crazyflies’ normalized positions (i.e., pi(t) − δi ) and the

optimal trajectory [i.e., r∗(t) defined in (21)] in the (x, t)

coordinate (respectively, (y, t) coordinate). The black solid

lines are the normalized positions of each Crazyflie. The red

solid line is the optimal trajectory. Here δi = [δi x, δiy]
T .

Based on Theorem 1, all pi(t) − δi should converge to the

optimal trajectory asymptotically, i.e., limt→∞ ‖pi(t) − δi −

r̂∗(t)‖2 = 0. This is achieved within a tracking accuracy

of 0–2 cm. Various factors from the experiment might

explain the tracking error: communication time-delay within

the VICON system, failure to perfectly achieve the veloc-

ity commands, or interaction forces among the Crazyflies.

Tracking errors of 2 cm are similar to those experiences in

other multi-Crazyflie experiments [26]. The trajectories of all

the Crazyflies (blue dashed lines), the center position of all

the Crazyflies (black solid line) and the optimal trajectory
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(red solid line) in the (x, y, t) coordinates are shown in Fig. 8,

where the blue circles present a snapshot of all the Crazyflies’

initial positions. The blue crosses present two snapshots of

all the Crazyflies at 4.5 and 9 s, respectively. As can be

seen, the center of the Crazyflies’ positions tracks the optimal

trajectory with small tracking errors (about 0.05 cm) while the

Crazyflies converge to the desired formation. When consider-

ing the center of all the Crazyflies’ positions, the tracking gaps

caused by the interaction forces among them should cancel.

B. Multiagent Moving Target Tracking

In this section, we solve the moving target tracking prob-

lem using Algorithm (5). More precisely, the moving target

tracking problem can be formulated as the following convex

optimization problem:

minimize
1

2

n
∑

i=1

‖pi(t) − Ti(t)‖
2
2 (23)

where pi(t) is the position of robot i , and Ti(t) is the position

of the moving target sensed by agent i . Due to the sensing

capability limitation of each agent, the position of the moving

target sensed by different robots can be different. It is obvious

that the optimal trajectory of problem (23) is (1/n)
∑n

i=1 Ti(t).

In our experiment, we let six Crazyflies track a moving

whiteboard (see Fig. 6). The whiteboard is placed on a cart that

is dragged by a person to move it around. There are six marked

areas located in the four corners and the middle of the two long

edges on the whiteboard. Each area is identified by three mark-

ers. The center position of each marked area (i.e., the center

of three markers in the area) is sent to one assigned Crazyflie,

representing the position of the moving target (whiteboard)

sensed by that Crazyflie [i.e., Ti(t) in (23)]. Essentially each

Crazyflie senses a different biased position of the whiteboard.

The Crazyflies obtain their target’s positions from the VICON

system and calculate their targets’ velocities [i.e., Ṫi (t) in (23)]

based on the position data received between consecutive cam-

era frames. We apply controller (5) with the same deviation

vectors as those in Section V introduced to the multirobot

moving target tracking problem given by (23). In the exper-

iment, we move the cart around and let the Crazyflies track

the whiteboard while maintaining the desired formation shape.

Fig. 9(a) [respectively, Fig. 9(b)] shows the six Crazyflies’

normalized positions represented by pi(t)−δi and the moving

whiteboard’s center position represented by (1/6)
∑6

i=1 Ti (t)

in the (x, t) [respectively, (y, t)] coordinate. The black lines

are the normalized positions of each Crazyflie. The red line

is the center position of the whiteboard. Fig. 10 shows the

trajectories of all the Crazyflies (blue dashed lines), the center

position of all the six Crazyflies (black solid line), and the

center position of the moving whiteboard (red solid line) in

the (x, y, t) coordinate, where the blue circles present a snap-

shot of all the Crazyflies’ initial positions. The blue crosses

present two snapshots of all the Crazyflies at 15 and 28 s,

respectively. It can be seen that the six Crazyflies work

together to estimate and track the center position of the mov-

ing whiteboard with small tracking errors successfully. The

tracking error between each Crazyflie’s actual position pi(t)

Fig. 10. Experimental results using controller (18).

and its desired position (1/6)
∑6

i=1 Ti (t) + δi is up to 2 cm,

and the tracking error between the average trajectory of all

the Crazyflies and the target’s trajectory is up to 0.05 cm.

The tracking errors are acceptable based on the error analysis

in Section VI-A.

VII. CONCLUSION

In this brief, we have studied the distributed continuous-time

optimization problem with time-varying objective functions.

The goal is for a set of networked agents to cooperatively

track the time-varying optimal solution that minimizes the

summation of all the local time-varying objective functions,

where each agent has only local information and local inter-

actions. We have considered the unconstrained optimization

case and the case with a common time-varying equality

constraint. This brief proposes and analyzes two distributed

algorithms coupled with state-dependent control gains for the

considered problems. This brief proves that each algorithm

yields asymptotic convergence to the optimal solution under

reasonable assumptions. Both numerical simulation results

and experimental results have been given to illustrate the

theoretical algorithms.
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