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Abstract—This article addresses the design problem of
distributed event-triggered average tracking (DETAT) algo-
rithms for homogeneous and heterogeneous multiagent
systems. The objective of the DETAT problem is to de-
velop a group of distributed cooperative control algorithms
with event-triggered strategies for agents to track the av-
erage of multiple time-varying reference signals. First, for
homogeneous linear multiagent systems, based on sam-
pling measurements and model-relied holding techniques,
a class of static-gain DETAT algorithms is proposed with
a couple of local event-triggered functions for estimators
and controllers, respectively. Compared with the existing
distributed average tracking (DAT) algorithms, the static-
gain DETAT algorithms greatly reduce the cost over com-
munication networks and the frequency of control protocol
updates. Second, to reduce the chattering phenomenon
caused by nonsmooth items in static-gain algorithms and
requirements of the global information of networks, smooth
dynamic-gain DETAT algorithms are introduced based on
boundary layer approximation methods and self-adaptive
principles. Third, for heterogeneous linear multiagent sys-
tems, a new algorithm is established by using the output
regulation techniques for the heterogeneous DETAT prob-
lem. The outputs of heterogeneous agents can ultimately
track the average of multiple time-varying reference sig-
nals. To the best of our knowledge, it is the first time to
study the DETAT problem for heterogeneous multiagent
systems. Finally, some examples are presented to show the
validity of theoretical results.
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I. INTRODUCTION

D
URING the past few decades, the design of distributed
cooperative algorithms over communication networks for

multiagent systems has become an important research focus due
to its wide applications such as cluster battles of unmanned
aerial vehicles, saturation attacks of multiple loitering muni-
tions, voltage regulations of smart grids, and industrial transport
of logistics systems. As the most fundamental distributed coop-
erative algorithms, consensus protocols have been investigated
deeply [1]–[14]. Also, in leader-following networks, distributed
tracking algorithms were studied from lots of research per-
spectives [15]–[16]. As a novel class of distributed coopera-
tive algorithms, distributed average tracking (DAT) algorithms
were raised and studied in [17]–[32]. Different from distributed
consensus and distributed tracking algorithms, DAT algorithms
may ensure agents to track the average of multiple time-varying
reference signals, while each signal is only known by one agent
in networks. Therefore, DAT algorithms are more difficult and
general.

The objective of DAT problems is to design DAT algorithms
for agents to track the average of multiple outside reference
signals. The motivation for DAT problems was arising from the
coordinated tracking for multicamera systems [26], where mul-
tiple nodes equipped with cameras track objects cooperatively.
Besides, DAT algorithms had found applications in distributed
sensor fusions [1], distributed Kalman filters [17], [18], dynam-
ically merging feature-based maps [19], and distributed forma-
tion controllers [31]. Therefore, in order to solve DAT problems,
many DAT algorithms were designed. In the literature, some
pioneering linear DAT algorithms were proposed in [20]–[24].
A proportional DAT algorithm and a proportional–integral one
were proposed in [20] for multiple static signals. Bai et al. [21]
considered the robustness to initial error issues and extended
the proportional–integral algorithm to achieve zero steady-state
error for time-varying signals. Furthermore, the proportional
DAT algorithm was employed in [22] for discrete-time multi-
agent systems. In [24], a DAT algorithm based on sliding-mode
control methods was developed for Euler–Lagrange multiagent
systems. Then, in [25], the DAT problems were investigated for
integrator-type dynamics with swarm behavior and experimental
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validation. Further, some nonlinear DAT algorithms were devel-
oped in [26]–[32] to overcome some difficulties that have not
been solved by existing linear DAT algorithms in [20]–[25]. To
solve DAT problems for multiple dynamic reference signals with
bounded derivatives, a novel class of nonlinear DAT algorithms
was proposed in [26] based on nonsmooth control approaches for
single-integrator-type multiagent systems. Further, in [27], the
nonlinear nonsmooth DAT algorithm was extended to double-
integrator-type multiagent systems for signals with bounded
second derivatives. To extend the high-order linear dynamics
of agents, a class of smooth DAT algorithms was proposed
in [29], which removed the chattering effect caused by the
nonsmooth sign function. Moreover, in [30], the DAT problem
for Lipschitz-type nonlinear dynamical systems was solved. It
is worth mentioning that both the linear and nonlinear DAT
algorithms in [20]–[32] have two common features. First, all
these DAT algorithms need continuous communications, which
require a large amount of cost for communication networks and
is difficult to be utilized in practical engineering. Second, all
agent dynamics in existing works [20]–[32] are homogeneous.

To reduce the cost of continuous communications, many
researchers have studied an energy-saving mechanism using a
triggering strategy that can decide the most optimal instants of
data exchange, called event-triggered control [33]. Due to its
energy saving effect in discontinuous communication networks,
the design of distributed event-triggered cooperative algorithms
for multiagent systems has become a hot topic in recent years.
In the literature, some distributed event-triggered consensus
algorithms were developed for multiagent systems in [34]–[42].
In [37], consensus problems with general linear dynamics were
investigated by event-triggered control strategies, which is one
of the first attempts to extend the previous work to general
linear dynamics. Also, there exist some investigations about
event-triggered distributed average consensus (DAC) or DAT al-
gorithms in [43]–[47] for single- or double-integrator dynamics.
As is well known, the DAC problem is to estimate the average of
time-varying reference signals, while the DAT problem is aiming
to have physical trajectories of agents track the target trajectory.
The DAT problem is an extension of the DAC problem with more
complicated dynamics. Besides, to the best of our knowledge,
there is little research about event-triggered DAT algorithms
for multiagent systems with homogeneous and heterogeneous
general linear dynamics, which may describe many practical
systems. Therefore, how to design distributed event-triggered
average tracking (DETAT) algorithms for homogeneous and het-
erogeneous general linear multiagent systems is a theoretically
challenging and significant problem in practice.

Motivated by the aforementioned observations, this article
aims to design DETAT algorithms for homogeneous and hetero-
geneous multiagent systems. For homogeneous linear multia-
gent systems, two types of DETAT algorithms are devised from
different corners. First, a static-gain DETAT algorithm is intro-
duced with two local event-triggered functions, which solves
the DETAT problem meanwhile reducing the communication
frequency. Then, modified by a continuous approximation of
sign function and self-adaptive principles, continuous dynamic-
gain DETAT algorithms are designed to reduce the chattering
phenomenon caused by the nonsmooth item in the static-gain
algorithm and to remove the requirement of global information.
For heterogeneous linear multiagent systems, by using output
regulation techniques, a new DETAT algorithm is established
for the DETAT problem with heterogeneous linear multiagent

dynamics. The outputs of heterogeneous systems can ultimately
track the average of multiple time-varying reference signals.

The main contributions of this article are stated as follows.

1) For general linear multiagent systems, it is the first time to

design DAT algorithms under event-triggered communi-

cation mechanisms, which are named DETAT algorithms.

Compared with the existing DAT algorithms in [20]–[32]

and DAC algorithms in [43]–[47], DETAT algorithms

proposed in this article may ensure the high-order linear

agents to track the target of average signals. Besides,

compared with the integrator-type dynamics in [43]–[47],

the high-order linear agent dynamics considered in the

article are more general and with practical significance.

Besides, due to the introduction of event-triggered mech-

anisms, the communication frequency of the proposed

DETAT algorithm is greatly reduced, which may cut down

communication costs in real applications.

2) In order to make the DETAT algorithms more applicable

in real practices, a class of continuous dynamic-gain

DETAT algorithms is extended by using boundary layer

approaches and self-adaptive principles. The chattering

raised in static-gain DETAT algorithms is greatly reduced.

Also, the continuous dynamic-gain DETAT algorithm is

fully distributed, which successfully removes require-

ments of global parameters over the network’s topology,

such as the eigenvalue of the Laplacian and the scale of

the network.

3) For heterogeneous linear multiagent systems, a new DE-

TAT algorithm is constructed. The present results on DAT

problems have a common assumption that all agents in

networks have homogeneous dynamics, which is an ideal-

ized assumption and difficult to apply to real engineering.

In general, the dynamics in real multiagent systems are

heterogeneous. In this article, by using output regula-

tion techniques, a new DETAT algorithm is designed

for heterogeneous multiagent systems. The outputs of

heterogeneous agents can track the average signals in a

distributed manner. Compared with the previous homo-

geneous multiagent dynamics [20]–[32], [43]–[47], the

dynamics of agents have been greatly expanded, which

are closer to reality.
The structure of this article is arranged as follows. Preliminar-

ies are presented in Section II. In Section III, a couple of DETAT
algorithms are designed for homogeneous multiagent systems.
Further, in Section IV, DETAT problems for heterogeneous
systems are investigated. In Section V, some numerical simula-
tions are shown to verify theoretical results. Finally, Section VI
concludes the article and looks forward to the future.

II. PRELIMINARIES

A. Notation

Let Rn denote n dimensions as real vectors. Let Rn×n be the
set ofn× n dimension real matrices.1 denotes that the elements
of column vectors are all 1. In represents the identity matrix
of dimension n. λmax(·) and λmin(·) represent the largest and
smallest eigenvalues of a matrix. diag(z1, . . . , zp) stands for a
block-diagonal matrix with diagonal entries z1 to zp. For a series
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of column vectors x1, . . . , xn, col(x1, . . . , xn) represents a col-
umn vector by stacking them together. The notation⊗means the
Kronecker product. For a vector ω = (ω1, ω2, . . . , ωn)

T ∈ Rn,
‖ω‖ denotes the Euclidean norm of ω and sgn(ω) = ω/‖ω‖.

B. Graph Theory

An undirected graph G(V, E) can be described by a node set
V and an edge set E . The adjacency matrix, A(G) = [aij ] ∈
RN×N , is defined as aii = 0, aij = 1, if (j, i) ∈ E , and aij = 0,
otherwise. The incidence matrix of the graph is defined as D
[49]. The Laplacian of a graph G: L = DDT = ∆(G)−A(G),
is a rank-deficient positive semidefinite matrix. L = [lij ] ∈
RN×N , where lii =

∑N
j=1,j �=i aij and lij = −aij , i �= j. And

the diagonal matrix ∆(G) represents of the degree matrix of the
graph. The degree of agent i is defined as di = lii. If there are
paths between any two nodes, then it is said that the undirected
graph is connected.

Assumption 1: The undirected communication network is
assumed to be connected.

C. Useful Lemmas

Lemma 1: [49] Under Assumption 1, 0 is a simple eigenvalue
ofLwith eigenvector1 and all the other eigenvalues are positive.
Moreover, the smallest nonzero eigenvalue λ2 of L satisfies λ2 =

minz �=0,1T z=0
zTLz
zT z

.
Lemma 2: [50] For nonnegative real numbers a and b and

positive real numbers p and q satisfying (1/p) + (1/q) = 1, one
has ab ≤ ap/p+ bq/q.

Lemma 3: [29] DefineM = IN − 1
N
11

T . Then,M satisfies
the following properties.

1) 0 is a simple eigenvalue ofM with 1 as the corresponding

right eigenvector and 1 is another eigenvalue with multi-

plicity N − 1, i.e., M1 = 1
TM = 0.

2) Under Assumption 1, one has LM = ML = L = LT .

3) M2 = M .
Lemma 4: [48] For an undirected and connected graph G

with the associated Laplacian matrixL, there exists a matrixΛ ∈
RN×N such that LΛ = ΛL = M , where M = IN − 1

N
11

T .

III. DETAT ALGORITHMS FOR HOMOGENEOUS LINEAR

MULTIAGENT SYSTEMS

There are N time-varying reference signals, ri(t) ∈ Rn, i =
1, 2, . . . , N , described by the following dynamics:

ṙi(t) = Ari(t) +Bfi(ri, t) (1)

where ri(t) ∈ Rn is the state of the ith time-varying signal and
fi : R

n ×R+ → Rp represents the reference input of the ith
signal, i = 1, 2, . . . , N . A and B are constant matrices with
compatible dimensions.

Assumption 2: (A,B) is stabilizable.
Assumption 3: fi(ri, t) is bounded, i.e., ‖fi(ri, t)‖ ≤

f i, i = 1, 2, . . . , N , for all t > 0 and ri ∈ Rn. Let f0 �

maxNi=1{f1, . . . , fN}.
Consider a homogeneous multiagent system containing N

agents, described by the following general linear dynamics:

ẋi(t) = Axi(t) +Bui(t), i = 1, 2, . . . , N (2)

where xi(t) ∈ Rn is the state of agent i and ui(t) ∈ Rp is the
control input.

Assume that agent i can only get the state information of
ri(t) and agent i can receive or send the local information to
its neighbor agents, which are denoted by Ni, i = 1, 2, . . . , N .
Besides, let |Ni| be the number of elements in the set Ni.

On the basis of the network model described above, the main
objective of this section is to design a class of DETAT algorithms
for agents to track the average of multiple time-varying reference
signals generated by (1) in the sense that

lim
t→∞

∥

∥

∥

∥

∥

xi(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N

and exclude the Zeno behavior.
Remark 1: The DETAT problem for homogeneous multiagent

systems is to design DAT algorithms based on the distributed
event-triggered network communication and ensure the trajec-
tory of the physical agent to track the average of multiple
time-varying reference signals. The multireference signals may
be various information, such as position state, velocity state, or
acceleration state of any target observed or collected by each
agent. The target could be an airplane or a vehicle. Besides, due
to network communication being discontinuous in real practices,
the existing DAT algorithms based on the continuous network
communication in [20]–[32] were difficult to be applied. There-
fore, the DETAT problem is raised. Different from the traditional
equal interval sampling control strategy, the irregular triggering
time instants are completely determined by the agent itself and
its neighbors. Only the sampled local information is used in
triggering functions, which can effectively avoid continuous
communication. Therefore, DETAT algorithms may save the
communication cost and have great potential in practical en-
gineering fields.

In the following, two kinds of DETAT algorithms are designed
consisting of static gain and continuous dynamic gain for homo-
geneous linear multiagent systems.

A. Static-Gain DETAT Algorithms for Homogeneous
Multiagent Systems

First, let qi(t) and si(t), i = 1, 2, . . . , N, be some inter-
nal states of static-gain DETAT algorithms to be designed,
which satisfy the following relation si(t) = qi(t) + ri(t), i =
1, 2, . . . , N . Define a model-based event-triggering state s̃i(t)
of the internal state si(t) as follows:

s̃i(t) = eA(t−ti
k)si

(

tik
)

∀t ∈
[

tik, t
i
k+1

)

(3)

where tik denotes the kth event-triggering instant of si(t). Let

ei(t) � s̃i(t)− si(t), i = 1, 2, . . . , N, be estimator measure-
ment errors. To assign the estimator triggering instant tik, an
estimator triggering function is designed as follows:

Ti(t) = c1di‖K1‖2 ‖ei‖2 + 2c2di‖K1‖ ‖ei‖

− c1
4
di ‖K1 (s̃i(t)− s̃j(t))‖2 − μie

−νit (4)

whereμi and νi are positive constants. If the triggering condition
Ti(t) ≥ 0 is fulfilled, then si(t) updates its current state and
transfers its current state to its neighbors, and ei(t) will be reset
to 0. The estimators will update their states as soon as they
acquire the latest state information from any neighbors.

Based on the event triggering state s̃i(t) and the proposed
triggering function (4), an estimator of the DETAT algorithms
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is designed as follows:

q̇i(t) = Aqi(t) +Bc1
∑

j∈Ni

[K1 (s̃i(t)− s̃j(t))]

+Bc2
∑

j∈Ni

sgn[K1 (s̃i(t)− s̃j(t))] (5)

where c1 and c2 are positive static gains and K1 ∈ Rp×n is a
matrix gain to be designed later.

Then, let x̂i(t) = xi(t)− si(t), i = 1, 2, . . . , N, represent
tracking errors. Define an event-triggering tracking error of x̂i(t)
by

x̃i(t) = eA(t−τ i
k)x̂i

(

τ ik
)

∀t ∈
[

τ ik, τ
i
k+1

)

(6)

where τ ik denotes the kth event triggering instant of agent i. By

denoting êi(t) � x̃i(t)− x̂i(t), i = 1, 2, . . . , N to be controller
measurement errors, a controller triggering function is given as
follows:

Πi(t) =
1

2
‖K2‖2‖êi‖2 −

1

2
‖K2‖2‖x̃i‖2

+ 2c3 ‖K2‖ ‖êi‖ − μ̂ie
−ν̂it (7)

with μ̂i and ν̂i be positive constants. c3 is a positive static gain
and K2 ∈ Rp×n is another matrix gain to be designed later.
When the triggering condition Πi(t) ≥ 0 is satisfied, the agent
xi(t)updates its current state and broadcasts its state information
to neighbors, and êi(t) will be reset to 0. The agents will update
their states once they receive the latest state information from
any neighbors.

Based on the event-triggering state x̃i(t) and the proposed
triggering function (7), a tracking controller of the DETAT
algorithms is designed as

ui(t) = c1
∑

j∈Ni

[K1 (s̃i(t)− s̃j(t))]

+ c2
∑

j∈Ni

sgn [K1 (s̃i(t)− s̃j(t))]

+K2x̃i(t) + c3sgn [K2x̃i(t)] . (8)

Definition 1: The closed-loop system does not exhibit
the Zeno behavior if T1 = infk{tik+1 − tik} > 0 and T2 =

infk{τ ik+1 − τ ik} > 0, ∀i ∈ V , i.e., an infinite number of com-
munication rounds never happen within a limited period of time.

Algorithm 1: Under Assumptions 1–3, for multiple time-
varying reference signals in system (1), the designed static-gain
DETAT algorithms with the estimator (5) and the controller (8)
can be constructed by the following steps.

1) Solve the following algebraic Riccati equations (AREs):

PmA+ATPm − PmBBTPm + I = 0,m = 1, 2 (9)

to obtain matrices Pm > 0. Choose Km = −BTPm.

2) Choose the parameters c1 ≥ 1
λ2(L) , c2 ≥ 2

√
Nf0

λ2(L) , and

c3 ≥ f0.

3) Set μi > 0, νi > 0, μ̂i > 0, and ν̂i > 0 to be any

positive constants for i = 1, 2, . . . , N , and initialize
∑N

i=1 qi(0) = 0.
Theorem 1: Under Assumptions 1–3, Algorithm 1 solves

the DETAT problem for the homogeneous multiagent system
(2) with time-varying reference signals (1). Furthermore, Zeno
behaviors are excluded in estimation and tracking processes.

Proof: See the Appendix A.

Remark 2: Theorem 1 shows that all agents in homogeneous
multiagent systems (2) can track the average of time-varying
multireference signals (1) by using DETAT algorithms proposed
in (4), (5), (7), and (8), which ensure that the estimation error
ξi(t) and the tracking error x̂i(t) both asymptotically converge
to 0. Besides, Zeno behaviors are excluded during estimation
and tracking processes, respectively. A sufficient condition for
the existence of (4), (5), (7), and (8) is that the pair (A,B) is
stabilizable.

B. Continuous Dynamic-Gain DETAT Algorithms for
Homogeneous Multiagent Systems

In the above-mentioned section, the proposed nonsmooth
static-gain DETAT algorithm is designed based on the discontin-
uous function sgn(ω), which may inevitably lead to chattering
effect in real applications. First, in order to reduce chattering
and make the controller easier to implement, the discontinuous
function sgn(ω) can be replaced by a continuous approximation

ĥi(ω) =
ω

‖ω‖+εe−ϕt based on the boundary layer concept, where

ε and ϕ are positive constants. Second, the proposed static-gain

DETAT algorithm requires that c1 ≥ 1
λ2(L) , c2 ≥ 2

√
Nf0

λ2(L) , and

c3 ≥ f0, which depend on the smallest nonzero eigenvalue
λ2 of L and the number of agents N as well as the upper
bounds f0 of the reference input fi(ri, t), i = 1, 2, . . . , N . Since
λ2, f0, and N are all global variables, it is unrealistic for agents
to obtain these global information when the network is large.
Therefore, to remove the chattering in controllers and the global
information restriction, a group of continuous dynamic-gain
DETAT algorithms is designed with a DETAT estimator

qi(t) = Aqi(t) +B
∑

j∈Ni

αij(t) [K1 (s̃i(t)− s̃j(t))]

+B
∑

j∈Ni

βij(t)ĥi [K1 (s̃i(t)− s̃j(t))]

si(t) = qi(t) + ri(t),

N
∑

i=1

qi(0) = 0 (10)

and a DETAT controller

ui(t) =
∑

j∈Ni

αij(t)[K1 (s̃i(t)− s̃j(t))]

+
∑

j∈Ni

βij(t)ĥi[K1 (s̃i(t)− s̃j(t))]

+K2x̃i(t) + cij(t)ĥi [K2x̃i(t)] (11)

with the dynamic-gain coupling strengths αij(t), βij(t), cij(t)
satisfy

α̇ij(t) = γ[(s̃i(t)− s̃j(t))
T Γ1 (s̃i(t)− s̃j(t))

− ϑαij(t)] (12)

β̇ij(t) = η

[

−χβij(t) +
‖K1 (s̃i(t)− s̃j(t))‖2

‖K1 (s̃i(t)− s̃j(t))‖+ εe−ϕt

]

(13)

ċij(t) = κ

[

−�cij(t) +
‖K2x̃i(t)‖2

‖K2x̃i(t)‖+ εe−ϕt

]

(14)
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where Γ1 ∈ Rn×n is a constant gain matrix, and
γ, ϑ, η, χ, κ, and � are positive constants. The triggering
function for the estimator i is modified as

Ti(t) =
∑

j∈Ni

(1 + 2δαij) ‖K1‖2 ‖ei‖2

+
∑

j∈Ni

2 (1 + δβij) ‖K1‖ ‖ei‖

− 1

4

∑

j∈Ni

‖K1 (s̃i − s̃j)‖2 − μie
−νit (15)

where δ is a positive constant. The triggering function for the
agent i is modified as

Πi(t) =
δ

2
‖K2‖2‖ei‖2 + 2 (1 + δcij) ‖K2‖ ‖ei‖

− μ̂ie
−ν̂it. (16)

Algorithm 2: Under Assumptions 1–3, the continuous
dynamic-gain DETAT algorithms (10)–(16) for multiple time-
varying reference signals in (1) are designed in the following
three steps.

1) Obtain Km = −BTPm, Γm = PmBBTPm, m = 1, 2,

respectively, by solving AREs in (9).

2) Select γ, η, and κ small enough, such that

θ4 � max{ϑγ, χη} ≤ 1
λmax(P1)

and θ6 � max{κ�} ≤
1

λmax(P2)
.

3) Choose the parameters δ, μi, νi, μ̂i, and ν̂i to be any

positive constants.
Theorem 2: In this section, the DETAT problem for homo-

geneous multiagent systems is solved by continuous dynamic-
gain DETAT algorithms (10)–(16) constructed by Algorithm
2. The estimation error ξi(t), the tracking error x̂i(t), and
dynamic gains αij(t), βij(t), and cij(t), are uniformly
ultimately bounded. Furthermore, Zeno behaviors can be
excluded.

Proof: See Appendix B.
Remark 3: Differing from Theorem 1, the DETAT problem

can be solved by Theorem 2 without requiring any global
information, such as the smallest nonzero eigenvalue λ2 of L
and the number of agents N as well as upper bounds f0 of
the reference input. In other words, continuous dynamic-gain
DETAT algorithms in this article are in a fully distributed
viewpoint. At the same time, the continuous DETAT algo-
rithms in this section use a continuous approximation of the
discontinuous function sgn(ω), which will reduce the chatter-
ing effect and make the controller easier to implement in real
applications.

Remark 4: It is worth noting that the terms −ϑαij(t),
−χβij(t), and −�cij(t) that are added into (12)–(14) are es-
sentially motivated by the so-called σ-modification technique
in [52]. Using this technique, the estimation error ξ and the track-
ing error x̂ can converge to an arbitrarily small neighborhood of
zero by choosing appropriate parameters and the dynamic gains
αij(t), βij(t), and cij(t) are uniformly ultimately bounded.
Furthermore, it should be pointed out that the event-triggered
function (16) in the tracking process is simpler than that of in
Theorem 1, but the tradeoff is that the trigger frequency will be
increased.

IV. DETAT ALGORITHMS FOR HETEROGENEOUS LINEAR

MULTIAGENT SYSTEMS

Note that Section III is based on the homogeneous considera-
tion of the multiagent systems. However, agents with heteroge-
neous dynamics are very common in practices, which also have
a wider range of applications. Therefore, in this section, a new
DETAT algorithm for heterogeneous linear multiagent systems
is developed.

Consider a heterogeneous multiagent system withN noniden-
tical agents, described by the following dynamics:

ẋi(t) = Aixi(t) +Biui(t)

yi(t) = Cixi(t), i = 1, 2, . . . , N (17)

where xi(t) ∈ Rni , ui(t) ∈ Rpi , and yi(t) ∈ Rn are the state,
the control input and output of the ith agent, respectively, and
Ai ∈ Rni×ni , Bi ∈ Rni×pi , Ci ∈ Rn×ni are constant matrices.

Note that the output dimension of each agent in a heteroge-
neous system is the same. Therefore, the objective of this section
is to design a new DETAT algorithm for heterogeneous systems
such that the output yi(t) of each agent can track the average of
multiple time-varying reference signals generated by (1) in the
sense that

lim
t→∞

∥

∥

∥

∥

∥

yi(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N

and reduce communication frequency.
To address the DETAT problem for heterogeneous multiagent

systems, some important assumptions and lemmas are listed in
the following.

Assumption 4: The states of multiple time-varying reference
signals ri, i = 1, 2, . . . , N, are bounded.

Assumption 5: (Ai, Bi) is controllable and

rank

[

CiBi 0n×pi

−AiBi Bi

]

= ni + n, i = 1, 2, . . . , N.

Lemma 5: [48] Based on Assumption 5, the following linear
matrix equations:

Biγ1i − ψi = 0ni×n

Biγ2i −Aiψi = 0ni×n

Ciψi − In = 0n×n

have solution triplets (γ1i, γ2i, ψi), respectively.
Lemma 6: [51] Consider the following cascade system:

ẏ1(t) = f1 (t, y1(t), y2(t)) (18a)

ẏ2(t) = f2 (t, y2(t)) (18b)

where f1(t, y1(t), y2(t)) ∈ Rn1 , and f2(t, y2(t)) ∈ Rn2 are
piecewise continuous in t and locally Lipschitz in y(t) =

(
y1(t)
y2(t)

). If system (18a), with y2(t) as the input is input-to-state

stable, and the origin of (18b) are globally uniformly asymp-
totically stable, then the origin of the cascade system (18a) and
(18b) is globally uniformly asymptotically stable.

Let υi ∈ Rn be the auxiliary states of the DETAT algorithms
for heterogeneous multiagent systems. To avoid using continu-
ous state information, define ỹi(t) = yi(t

i∗
k ) and υ̃i(t) = υi(t

i∗
k ),

∀t ∈ [ti∗k , t
i∗
k+1) as sampling information, and the measurement

errors eyi(t) = ỹi(t)− yi(t), and eυi(t) = υ̃i(t)− υi(t), i =
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1, 2, . . . , N , where the triggering instant

ti∗k+1
∆
=
{

t > ti∗k |Πyi(t) ≥ 0 ∪Πvi(t) ≥ 0
}

where

Πyi(t) = ‖eyi(t)‖ − μyie
−νyit (19a)

Πυi(t) = ‖eυi(t)‖ − μυie
−νυit (19b)

with μyi, μυi, νyi, and νυi are positive constants. When the
triggering condition is satisfied, the agent updates its current
state and broadcasts its output information to neighbors, and
eyi(t) and eυi(t) will be reset to 0.

Then, based on the event-triggering output state ỹi(t) and the
proposed triggering functions (19), a class of DETAT algorithms
for heterogeneous multiagent systems is proposed as follows:

ui = −K∗
i xi + γ1iυ̇i − (γ2i −K∗

iψi)υi

υ̇i = wi − ỹi + si − α
∑

j∈Ni

(ỹi − ỹj)− di

si = qi + ri

wi = Asi +Bc1
∑

j∈Ni

[K1 (s̃i − s̃j)]

+Bc2
∑

j∈Ni

sgn [K1 (s̃i − s̃j)] +Bfi (ri, t)

ḋi = αβ
∑

j∈Ni

(ỹi − ỹj) (20)

where di, υi, wi ∈ Rn are the auxiliary states of agent i. Ini-

tialize
∑N

i=1 di(0) = 0. α, β are positive coupling gains. The

dynamic of qi is defined in (5) with c1 ≥ 1
λ2(L) , c2 ≥ 2

√
Nf0

λ2(L) .

K∗
i ∈ Rpi×ni is the local feedback gain and γ1i, γ2i, and ψi are

the solutions of the linear matrix equation in Lemma 5. The
design of linear matrix equation in Lemma 5 is partly inspired
by the design of regulator equations in the output regulation [53].

Next, it is proven that the output yi, i = 1, 2, . . . , N, of
heterogeneous multiagent systems can track the average of
multiple time-varying reference signals. According to Theo-
rem 1, the estimator si, i = 1, 2, . . . , N, can obtain the average
of multiple time-varying reference signals. Therefore, it is suf-
ficient to prove that the tracking process can be implemented.

First, substituting the controller (20) into the original system
(17), the closed-loop system is described by

ẋ = (A∗ −B∗K∗)x+B∗γ1υ̇ − (B∗γ2 −B∗K∗Ψ)υ (21a)

υ̇ = w − ỹ + s− α(L⊗ In)ỹ − d (21b)

w = (IN ⊗A) s+ c1(L⊗BK1)s̃ (21c)

+ c2 (IN ⊗B)H(s̃) + (IN ⊗B)F (t) (21d)

ḋ = αβ(L⊗ In)ỹ (21e)

where x = col(x1, . . . , xN ), υ = col(υ1, . . . , υN ), s =
col(s1, . . . , sN ), w = col(w1, . . . , wN ), ỹ = col(ỹ1, . . . , ỹN ),
A∗ = diag(A1, . . . , AN ), B∗ = diag(B1, . . . , BN ),
C∗ = diag(C1, . . . , CN ), K∗ = diag(K∗

1, . . . ,K
∗
N ),

γ1 = diag(γ11, . . . , γ1 N ), γ2 = diag(γ21, . . . , γ2 N ),
Ψ = diag(ψ1, . . . , ψN ), and d = col(d1, . . . , dN ).

Then, the following closed-loop system can be obtained by
variable substitutions:

ẋ = (A∗ −B∗K∗)x+B∗γ1υ̇ − (B∗γ2 −B∗K∗Ψ) υ (22a)

υ̇ = w − υ̃ + s− α (L⊗ In) υ̃ − d

− (ỹ − υ̃)− α (L⊗ In) (ỹ − υ̃) (22b)

ḋ = αβ (L⊗ In) υ̃ + αβ (L⊗ In) (ỹ − υ̃) (22c)

where υ̃ is an intermediate variable triggered at the same time
when y is triggered.

Theorem 3: Suppose that Assumptions 1–4 hold. Let K∗
i ,

i = 1, 2, . . . , N , be such that Ai −BiK
∗
i is Hurwitz and

(γ1i, γ2i, ψi) be defined as in Lemma 5. Initialize
∑N

i=1 di(0) =
0. Choose the parameters α > 0, β > 0. Then the DETAT
problem of heterogeneous multiagent systems is solved. Fur-
thermore, the Zeno behavior is excluded.

Proof: See Appendix C.
Remark 5: It should be mentioned that the design of DE-

TAT algorithms for heterogeneous multiagent systems is a new
problem that has never been investigated as far as is known.
Compared with the existing results in [20]–[32], where the DAT
algorithms are established for homogeneous multiagent systems,
agents with heterogeneous dynamics in this article are closer to
reality.

Remark 6: Note that the proposed DETAT algorithm (20)
with signal estimator qi defined in (5) is also static-gain algo-
rithm. Thus, to eliminate the limitation of global information,
one can also replace (5) with adaptive signal estimator (10) with
self-adaptive laws defined in (12) and (13).

V. SIMULATIONS

In this section, two examples are shown to illustrate, respec-
tively, Theorems 2 and 3.

Use the first case to illustrate Theorem 2. Consider a lin-
ear multiagent system with one hundred time-varying signals,
each of which is a linearized model of the longitudinal dy-
namics of an aircraft [54], [55], described by (1), with ri =
[ri1, ri2, ri3]

T , i = 1, 2, . . . , 100

A =

(−0.277 1 −0.0002
−17.1 −0.178 −12.2

0 0 −6.67

)

, B =

(

0
0

6.67

)

.

The input fi(ri, t) of the ith reference signal satisfies As-
sumption 3, such as f1(r1, t) = 0.5 sin(t), f2(r2, t) = e−2t,
f3(r3, t) = −2.5 cos(2t), f4(r4, t) = 3 sin(2t), and so on. All
the initial values of signals ri(0) and agents xi(0) are randomly
chosen.

To verify the proposed theoretical conclusions, we simulate
a Watts and Strogatz small world network with N = 100 and
average degree K = 1, random reconnect probability β = 0.

By solving AREs in (9), one obtains matrix Pm,m = 1, 2

Pm =

⎛

⎝

2.4142 2.4142 1.0000

2.4142 4.8284 2.4142

1.0000 2.4142 2.4142

⎞

⎠ .

Then, one has Km = (−1.0000 −2.4142 −2.4142 ). By using
continuous dynamic-gain DETAT algorithms (10)–(16) with pa-
rameters chosen as γ=6, ϑ=0.01, η = 6, χ=0.02, κ = 6, �=
0.01, μi=5, νi=0.001, μ̂i=1, ν̂i=0.01, δ=0.5, ε = 0.5, ϕ
= 0.5, simulation results are shown in Figs. 1–3. Fig. 1 depicts
estimation errors si − r̄, i = 1, . . . , 100, which illustrate all
estimators can approximately estimate the average value of
multiple time-varying reference signals with bounded errors.
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Fig. 1. Estimation errors si − r̄, i = 1, . . . , 100.

Fig. 2. Tracking errors xi − r̄, i = 1, . . . , 100.

Fig. 3. Dynamic-gain parameters αij(t), βij(t), and cij(t).

Tracking errors xi − r̄, i = 1, . . . , 100, are shown in Fig. 2.
It can be concluded that the objective of DETAT problem
is realized. The dynamic-gain parameters αij(t), βij(t), and
cij(t) are depicted in Fig. 3, from which it can be seen that
αij(t), βij(t), and cij(t) are all bounded. The introduction of
adaptive gains eliminates the limitation of global information.

The second case is used to illustrate Theorem 3. Consider
a heterogeneous multiagent systems with ten heterogeneous
agents and ten reference signals. The reference signals
are the same as in the first case. In this simulation, the
communication graph among the agents is shown in
Fig. 4, and the system matrices are described by: Ai =
[0, 1; 0, 0], Bi = [0, 1; 1,−2], Ci = [1, 1; 1,−1;−1, 1], i =
1, 3, 5, 7, 9, and Aj = [0,−1; 1,−2], Bj = [1, 0; 3,−1],
Cj = [1, 1; 1,−1;−1, 1], i = 2, 4, 6, 8, 10. The parameters

Fig. 4. Communication topology for heterogenous multiagent systems.

Fig. 5. Estimation process of DETAT algorithms for heterogeneous
multiagent systems. Solid lines are state trajectories si of ten estima-
tors. The dash line is the average of multiple time-varying reference
signals r̄.

Fig. 6. Tracking process of DETAT algorithms for heterogeneous mul-
tiagent systems. Solid lines are output trajectories yi of ten agents. The
dash line is the average of multiple time-varying reference signals r̄.

of the control law (20) and the triggering function (19) are
chosen as γ1i = [1.5, 0.25,−0.25; 0.5, 0.25,−0.25], γ2i =
[−0.0183,−0.4563, 0.4563; 1.3227,−0.4788, 0.4788], ψi =
[0.5, 0.25,−0.25; 0.5,−0.25, 0.25], Ki = [0.9310, 1.1057;
−0.3651,−1.2804], i = 1, 3, 5, 7, 9, and γ1j = [0.5, 0.25,
−0.25; 1.0, 1.0,−1.0], γ2j = [−0.8204, 0.3901,−0.3901;
−1.0378,−0.1879, 0.1879],ψj = [0.5, 0.25,−0.25; 0.5,−0.25,
0.25], Kj = [0.0402, 0.6006; 0.4136,−0.3381], j = 2, 4, 6, 8,
10.α = 1, β = 0.5, μyi = 3, νyi = 0.1. The initial values xi(0)

and υi(0) are randomly chosen and
∑N

i=1 di(0) = 0.
Trajectories of estimators and the average of multiple time-

varying reference signals are shown in Fig. 5, where states of
all estimators converge to the average of multiple time-varying
reference signals. The tracking process is given in Fig. 6, which
shows that outputs of all agents can track the average of multi-
ple time-varying reference signals. Thus, the DETAT problem
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Fig. 7. Triggering instants of DETAT algorithms for heterogeneous
multiagent systems. (a) Triggering instants of estimators. (b) Triggering
instants of agents.

for heterogeneous multiagent systems is realized. Triggering
instants of the first 5 s of estimation and tracking processes
are shown in Fig. 7, respectively, where the communication is
discrete and the communication frequency is reduced.

VI. CONCLUSION

In this article, DETAT problems have been studied for homo-
geneous and heterogeneous multiagent systems. For homoge-
neous multiagent systems, a couple of DETAT algorithms with
static and dynamic gains are designed by using the model-based
local sampled state information, respectively, which ensure each
agent to track the average of multiple time-varying reference sig-
nals. Meanwhile, Zeno behaviors are excluded during estimation
and tracking processes. Further, for heterogeneous multiagent
systems, a new DETAT algorithm has been developed that makes
the output of each agent can track the average of multiple
time-varying reference signals. Compared to the previous related
works, this article introduces the event-triggering mechanism
into the design of DAT algorithms and the agent dynamics is
extended to heterogeneous cases. The future works will extend
DETAT algorithms to the situation of agent dynamics and ref-
erence signals satisfying more general nonlinearities such as
Lipschitz-type conditions and communication topologies under
directed networks.

APPENDIX

A. Proof of Theorem 1

The following proof contains two steps. First, it can be proven

that for the ith estimator

lim
t→∞

∥

∥

∥

∥

∥

si(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N.

Let x̂(t) = [x̂T
1 (t), . . . , x̂

T
N (t)]T ,x̃(t) = [x̃T

1 (t), . . . ,
x̃T
N (t)]T , s(t) = [sT1 (t), . . . , s

T
N (t)]T , F (t) = [fT

1 (t), . . . ,
fT
N (t)]T , ξ(t) = [ξT1 (t), . . . , ξ

T
N (t)]T , where ξi(t) � si(t)

− 1
N

∑N
j=1 sj(t).

Consider the following Lyapunov function candidate:

V1 =
1

2
ξT (IN ⊗ P1) ξ. (23)

It then follows from Lemma 1 that

V1 ≥ 1

2
λmin(P1)‖ξ‖2 (24)

where λmin(P1) is the smallest eigenvalue of the positive matrix

P1. It follows from (1), (5), and Lemma 3 that the closed-loop

system can be described by

ξ̇(t) = (IN ⊗A) ξ(t) + c1(L⊗BK1)s̃(t)

+ c2 (IN ⊗B)H(s̃) + (M ⊗B)F (t) (25)

where

H(s̃) =

⎡

⎢

⎢

⎢

⎣

∑

j∈Ni

sgn [K1 (s̃1(t)− s̃j(t))]

...
∑

j∈NN

sgn [K1 (s̃N (t)− s̃j(t))]

⎤

⎥

⎥

⎥

⎦

.

The time derivative of V1 along system (25) can be obtained as

follows:

V̇1 = ξT (IN ⊗ P1A) ξ + c1ξ
T (L⊗ P1BK1)s̃

+ ξT (M ⊗ P1B)F (t) + c2ξ
T (IN ⊗ P1B)H(s̃).

(26)

Because K1 = −BTP1, one has

ξT (L⊗ P1BK1)s̃ = −1

2
ξT

(

L⊗ P1BBTP1

)

ξ

+
1

2
eT

(

L⊗ P1BBTP1

)

e− 1

2
s̃T

(

L⊗ P1BBTP1

)

s̃.

(27)

By noting aij = aji and using Lemma 2, one has

eT
(

L⊗ P1BBTP1

)

e

=

N
∑

i=1

∑

j∈Ni

eTi P1BBTP1 (ei − ej)

≤ 3

2

N
∑

i=1

∑

j∈Ni

eTi P1BBTP1ei +
1

2

N
∑

i=1

∑

j∈Ni

eTj P1BBTP1ej

≤ 2

N
∑

i=1

di
∥

∥BTP1

∥

∥

2 ‖ei‖2

(28)

and

s̃T
(

L⊗ P1BBTP1

)

s̃

=
N
∑

i=1

∑

j∈Ni

s̃Ti P1BBTP1 (s̃i − s̃j)

=
1

2

N
∑

i=1

di
∥

∥BTP1 (s̃i − s̃j)
∥

∥

2
.

(29)
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Under Assumption 3, one has ‖fi(ri, t)‖ ≤ f0, i = 1, 2, . . . , N ,

which further implies ‖F (t)‖ ≤
√
Nf0. It then follows that:

ξT (M ⊗ P1B)F (t)

≤
∥

∥ξT (M ⊗ P1B)
∥

∥ · ‖F (t)‖

≤
√
Nf0

λ2(L)

∥

∥

(

L⊗BTP1

)

ξ
∥

∥

≤
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (ξi − ξj)
∥

∥

≤
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥

+
2
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1

∥

∥ ‖ei‖ . (30)

Noting the facts that ξi − ξj = si − sj , ei = s̃i − si, one gets

ξT (IN ⊗ P1B)H(s̃)

= −
N
∑

i=1

∑

j∈Ni

ξTi P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖

= −1

2

N
∑

i=1

∑

j∈Ni

(ξi − ξj)
T P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖

= −1

2

N
∑

i=1

∑

j∈Ni

(s̃i − s̃j)
T P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖

+
1

2

N
∑

i=1

∑

j∈Ni

(ei − ej)
T P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖

≤ −1

2

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥+
N
∑

i=1

di
∥

∥BTP1

∥

∥ ‖ei‖ .

(31)

Then, substituting (27)–(31) into (26), one obtains that

V̇1 ≤ 1

2
ξT

[

IN ⊗
(

P1A+ATP1

)

− c1L⊗ P1BBTP1

]

ξ

+ c1

N
∑

i=1

di
∥

∥BTP1

∥

∥

2 ‖ei‖2 −
c1
4

N
∑

i=1

di
∥

∥BTP1 (s̃i − s̃j)
∥

∥

2

+

√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥

+
2
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1

∥

∥ ‖ei‖

− 1

2
c2

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥+ c2

N
∑

i=1

di
∥

∥BTP1

∥

∥ ‖ei‖ .

(32)

Utilizing c2 ≥ 2
√
Nf0

λ2(L) follows

V̇1 ≤ 1

2
ξT

[

IN ⊗
(

P1A+ATP1

)

− c1L⊗ P1BBTP1

]

ξ

+ c1

N
∑

i=1

di
∥

∥BTP1

∥

∥

2 ‖ei‖2 −
c1
4

N
∑

i=1

di
∥

∥BTP1 (s̃i − s̃j)
∥

∥

2

+ 2c2

N
∑

i=1

di
∥

∥BTP1

∥

∥ ‖ei‖

≤ 1

2
ξT

[

IN ⊗
(

P1A+ATP1

)

− c1L⊗ P1BBTP1

]

ξ

+

N
∑

i=1

μie
−νit (33)

where one can use the triggering condition (4) to obtain the last

inequality. According to Lemma 1 and Assumption 1, one has

that ξT (L⊗ P1BBTP1)ξ ≥ λ2(L)ξ
T (IN ⊗ P1BBTP1)ξ. By

using c1 ≥ 1
λ2(L) and substituting (23) into (33), one has

V̇1 ≤ −θ1V1 +
N
∑

i=1

μie
−νit (34)

where θ1 = 1
λmax(P1)

. By using the famous comparison lemma

in [51], one obtains that

V1(t) ≤ V1(0)e
−θ1t +

N
∑

i=1

μiΩi (t, θ1)

where Ωi(t, θi) is determined by

Ωi(t, θi) =

{

te−θit θi = σi
1

θi−σi

(

e−σit − e−θit
)

θi �= σi
(35)

since limt→∞ Ωi(t, θi) = 0. In light of V1 ≥
1
2λmin(P1)‖ξ(t)‖2, ξ(t) exponentially converges to 0.

According to Lemma 3, ξi(t), i = 1, 2, . . . , N, satisfy

lim
t→∞

ξi(t) = lim
t→∞

∥

∥

∥

∥

∥

si(t)−
1

N

N
∑

k=1

sk(t)

∥

∥

∥

∥

∥

= 0.

It follows from (5) and
∑N

i=1 qi(0) = 0 that
1
N

∑N
i=1 qi(t) = 0. By noting that si(t) = qi(t) +

ri(t), i = 1, 2, . . . , N , one has 1
N

∑N
i=1 si(t) =

1
N

∑N
i=1 ri(t), i = 1, 2, . . . , N . Therefore, limt→∞ ‖si(t)−

1
N

∑N
k=1 rk(t)‖ = limt→∞ ‖si(t)− 1

N

∑N
k=1 sk(t)‖ = 0, i =

1, 2, . . . , N, which shows that estimators (5) can obtain the

average.

Second, it is proven that

lim
t→∞

∥

∥

∥

∥

∥

xi(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N.

Consider the following Lyapunov candidate:

V2 =
1

2
x̂T (IN ⊗ P2) x̂ (36)

with P2 > 0. By using the controller (8) for (2), one has

˙̂x(t) = (IN ⊗A) x̂(t) + (IN ⊗BK2) x̃(t)

+ c3 (IN ⊗B) SGN [(IN ⊗K2)x̃(t)]− (IN ⊗B)F (t)
(37)
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where

SGN [(IN ⊗K2)x̃(t)] =

⎛

⎜

⎝

sgn (K2x̃1(t))
...

sgn (K2x̃N (t))

⎞

⎟

⎠
.

By taking the time derivative of V2 along (37), one gets

V̇2 = x̂T (IN ⊗ P2A) x̂+ x̂T (IN ⊗ P2BK2) x̃

+ c3x̂
T (IN ⊗ P2B) SGN [(IN ⊗K2) x̃]

− x̂T (IN ⊗ P2B)F (t). (38)

By choosing K2 = −BTP2, one has

x̂T (IN ⊗ P2BK2) x̃=− 1

2
x̂T

(

IN ⊗ P2BBTP2

)

x̂

+
1

2
êT

(

IN ⊗ P2BBTP2

)

ê− 1

2
x̃T

(

IN ⊗ P2BBTP2

)

x̃

and

− c3x̂
T (IN ⊗ P2B) SGN

[(

IN ⊗BTP2

)

x̃
]

=− c3

N
∑

i=1

(

BTP2x̂i

)T
sgn

(

BTP2x̃i

)

= −c3

N
∑

i=1

x̂T
i P2BBTP2x̃i

‖BTP2x̃i‖

= −c3

N
∑

i=1

(x̃i − êi)
TP2BBTP2x̃i

‖BTP2x̃i‖

= −c3

N
∑

i=1

x̃T
i P2BBTP2x̃i

‖BTP2x̃i‖
+ c3

N
∑

i=1

êTi P2BBTP2x̃i

‖BTP2x̃i‖

≤ −c3

N
∑

i=1

∥

∥BTP2x̃i

∥

∥+ c3

N
∑

i=1

∥

∥BTP2

∥

∥ ‖êi‖.

It follows from ‖fi(ri, t)‖ ≤ f0, i = 1, 2, . . . , N, that

− x̂T (IN ⊗ P2B)F (t)

=−
N
∑

i=1

(

BTP2x̃i

)T
fi(t) +

N
∑

i=1

(

BTP2êi
)T

fi(t)

≤
N
∑

i=1

∥

∥BTP2x̃i

∥

∥ f0 +
N
∑

i=1

∥

∥BTP2êi
∥

∥ f0.

Then substitute the above inequality into (38) and use c3 ≥ f0,

one has

V̇2 ≤ 1

2
x̂T

[

IN ⊗
(

ATP2 + P2A− P2BBTP2

)]

x̂

+
1

2

N
∑

i=1

∥

∥BTP2

∥

∥

2‖êi‖2 −
1

2

N
∑

i=1

∥

∥BTP2

∥

∥

2‖x̃i‖2

+ 2c3

N
∑

i=1

∥

∥BTP2

∥

∥ ‖êi‖. (39)

Using (7) and (9), one has

V̇2 ≤ −θ2V2 +
N
∑

i=1

μ̂ie
−ν̂it (40)

where θ2 = 1
λmax(P2)

. Similar to the first step, one obtains

V̇2 ≤ 0 and V2 ≥ 1
2λmin(P2)‖ x̂i‖2. Therefore, the tracking

error x̂i(t) = xi(t)− si(t) exponentially converges to 0.

lim
t→∞

∥

∥

∥

∥

∥

xi(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= lim
t→∞

‖xi(t)− si(t)‖+ lim
t→∞

∥

∥

∥

∥

∥

si(t)−
1

N

N
∑

k=1

rk(t)

∥

∥

∥

∥

∥

= 0.

Thus, the agent can track the average of multiple time-varying

reference signals.

In the following, it is shown that Zeno behaviors do not exist

in closed-loop systems. The proof is divided into two parts.

First, it can be proven that there is no Zeno behavior in the

estimation process. For estimator si,∀t ∈ [tik, t
i
k+1), t

i
k+1 < ∞,

it follows from ei(t) � s̃i(t)− si(t) and (5) that the derivative

of ei(t) can be written as

ėi(t) = Aei(t)− c1B
∑

j∈Ni

[K1 (s̃i(t)− s̃j(t))]

− c2B
∑

j∈Ni

sgn [K1 (s̃i(t)− s̃j(t))] . (41)

Consider the norms of (41)

‖ėi(t)‖ ≤ ‖A‖‖ei(t)‖+ ‖c1B
∑

j∈Ni

[K1 (s̃i(t)− s̃j(t))] ‖

+ ‖c2B
∑

j∈Ni

sgn [K1 (s̃i(t)− s̃j(t))] ‖. (42)

Note that limt→∞(‖c1B
∑

j∈Ni
[K1(s̃i(t)− s̃j(t))]‖+

‖c2B
∑

j∈Ni
sgn[K1(s̃i(t)− s̃j(t))]‖) = 0. Thus, ‖ei(t)‖ ≤

e‖A‖t when t is large enough, ∀t ∈ [tik, t
i
k+1). It is not difficult

to obtain that the triggering function (4) satisfies Ti(t) ≤ 0 if

the following condition satisfies:

‖ei(t)‖ ≤

√

c21d
2
i ‖BTP1 (s̃i − s̃j)‖2 + 4c1diμie−νit

2c1di ‖BTP1‖
which further yields

‖ei(t)‖2 ≤ c1di
∥

∥BTP1 (s̃i − s̃j)
∥

∥

2
+ 4μie

−νit

2c1di ‖BTP1‖2
.

Therefore, a lower bounded T1 of tik+1 − tik can be obtained by

solving the following inequality:

(e‖A‖T1)2 ≥ c1di
∥

∥BTP1 (s̃i − s̃j)
∥

∥

2
+ 4μie

−νiT1

2c1di ‖BTP1‖2
.

Further

tik+1 − tik ≥ T1

≥ 1

‖A‖ ln

⎛

⎝

√

c21d
2
i ‖BTP1 (s̃i − s̃j)‖2 + 4c1diμie−νiT1

2c1di ‖BTP1‖

⎞

⎠ .

(43)

Therefore, the Zeno behavior does not exist in the estimation

process.
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Second, it is shown that there is no Zeno behavior in the

tracking process. For agent i, consider the evolution of êi(t),
∀t ∈ [τ ik, τ

i
k+1), τ

i
k+1 < ∞. Combining êi(t) � x̃i(t)− x̂i(t)

and (37) yields that

˙̂ei(t) = Aêi(t)−BK2x̃i(t)− c3Bsgn [K2x̃i(t)] +Bfi(t).

Take the norms of both sides
∥

∥

∥

˙̂ei(t)
∥

∥

∥
≤ ‖A‖ ‖êi(t)‖+ ‖BK2x̃i(t)‖

+ ‖c3Bsgn [K2x̃i(t)]‖+ ‖Bfi(t)‖ . (44)

The previous proof of Lyapunov stability shows that x̂i(t) is

bounded. Note that the interval between two consecutive trig-

gering events is bounded. Therefore, eA(t−τ i
k
) is bounded for any

t ∈ [τ ik, τ
i
k+1). Then ∀t ∈ [τ ik, τ

i
k+1), x̃i(t) = eA(t−τ i

k
)x̂i(τ

i
k) is

also bounded. Since ‖fi(t)‖ ≤ f0, i = 1, 2, . . . , N, it follows

from (44) that
∥

∥

∥

˙̂ei(t)
∥

∥

∥ ≤ ‖A‖ ‖êi(t)‖+�i (45)

where �i denotes the upper bound of ‖BK2x̃i(t)‖+
‖c3Bsgn[K2x̃i(t)]‖+ ‖Bfi(t)‖, ∀t ∈ [τ ik, τ

i
k+1). Consider a

function � : [0,∞) → R≥0, satisfying

�̇= ‖A‖ �+�i, �(0) =
∥

∥êi
(

τ ik
)∥

∥ = 0. (46)

Then, ‖êi(t)‖ ≤ �(t− τ ik), where �(t) is the analytical solution

to (46), given by �(t) = 
i

‖A‖ (e
‖A‖t − 1). Thus, the triggering

function (7) satisfies Πi(t) ≤ 0, if one has the following con-

dition ‖êi(t)‖ ≤ −2c3+
√

4c32+2µ̂ie
−ν̂it

‖BTP2‖ ≤
√
2µ̂i

‖BTP2‖e
−ν̂i
2

t, which

further yields:

‖êi(t)‖2 ≤ 2μ̂i

‖BTP2‖2
e−ν̂it. (47)

Then, the interval between two triggering instants τ ik and τ ik+1

for agent i can be lower bounded by the time for �2(t− τ ik)
evolving from 0 to the right-hand side of (47). Thus, a lower

bounded T2 of τ ik+1 − τ ik can be obtained by solving the fol-

lowing inequality:

�i
2

‖A‖2
(

e‖A‖T2 − 1
)2

≥ 2μ̂i

‖BTP2‖2
e−ν̂i(τ i

k
+T2).

Further, one has

τ ik+1 − τ ik ≥ T2 ≥ 1

‖A‖ ln

⎛

⎝1 +
‖A‖

√

2μ̂ie
−ν̂i(τ i

k
+T2)

�i‖BTP2‖

⎞

⎠ .

(48)

Therefore, the interval between two consecutive triggering in-

stants is strictly positive in a finite time and the Zeno behavior

does not exist in the tracking process.

B. Proof of Theorem 2

Similar to the proof of Appendix A, the proof process is

divided into two parts.

First, for the estimation process, consider the Lyapunov

candidate

V3 =
1

2
ξT (IN ⊗ P1)ξ +

N
∑

i=1

∑

j∈Ni

(

α̃2
ij(t)

8γ
+

β̃2
ij(t)

4η

)

(49)

where α̃ij = αij − α, β̃ij = βij − β,α andβ are two constants,

satisfying β ≥ 2
√
Nf0

λ2(L) , α ≥ 4
λ2(L) , α ≥ β, α ≥ 1

δ
. It is easy to

verify that V3 is positive definite. The closed-loop system con-

sisting of (1) and (10) satisfies

ξ̇(t) = (IN ⊗A) ξ(t) + (Lα ⊗BK1) s̃(t)

+ (IN ⊗B) Ĥβ(s̃) + (M ⊗B)F (t)
(50)

where Lα = (αij · aij)

Ĥβ(s̃) =

⎡

⎢

⎢

⎢

⎢

⎣

∑

j∈N1

β1j ĥ1 [K1 (s̃1(t)− s̃j(t))]

...
∑

j∈NN

βNj
ĥN [K1 (s̃N (t)− s̃j(t))]

⎤

⎥

⎥

⎥

⎥

⎦

.

The time derivative of V3 along the trajectory of (50) can be

obtained as

V̇3 = ξT (IN ⊗ P1A)ξ + ξT (Lα ⊗ P1BK1) s̃

+ ξT (M ⊗ P1B)F (t) + ξT (IN ⊗ P1B) Ĥβ(s̃)

+

N
∑

i=1

∑

j∈Ni

α̃ij

4

[

−ϑαij(t) + ‖K1 (s̃i(t)− s̃j(t))‖2
]

+

N
∑

i=1

∑

j∈Ni

β̃ij

2

[

−χβij(t) +
‖K1 (s̃i(t)− s̃j(t))‖2

‖K1 (s̃i(t)− s̃j(t))‖+ εe−ϕt

]

.

(51)

Similarly as in the proof of Theorem 1, one has

ξT (Lα ⊗ P1BK1) s̃

≤ −1

4

N
∑

i=1

∑

j∈Ni

αij (s̃i − s̃j)
T Γ1 (s̃i − s̃j)

+
N
∑

i=1

∑

j∈Ni

αij

∥

∥BTP1

∥

∥

2 ‖ei‖2

and

ξT (M ⊗ P1B)F (t)

≤
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥

+
2
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1

∥

∥ ‖ei‖

and

ξT (IN ⊗ P1B) Ĥβ(s̃)

= −1

2

N
∑

i=1

∑

j∈Ni

βij

(s̃i − s̃j)
T P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖+ εe−ϕt

and

1

2

N
∑

i=1

∑

j∈Ni

βij

(ei − ej)
T P1BBTP1 (s̃i − s̃j)

‖−BTP1 (s̃i − s̃j)‖+ εe−φt

≤ −1

2

N
∑

i=1

∑

j∈Ni

βij

∥

∥BTP1 (s̃i − s̃j)
∥

∥

2

‖BTP1 (s̃i − s̃j)‖+ εe−ϕt

+
N
∑

i=1

∑

j∈Ni

βij

∥

∥BTP1

∥

∥ ‖ei‖ .
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Substituting all the above inequalities into (51) yields

V̇3 ≤ ξT (IN ⊗ P1A) ξ−
αij

4

N
∑

i=1

∑

j∈Ni

(s̃i − s̃j)
TΓ1 (s̃i−s̃j)

+

N
∑

i=1

∑

j∈Ni

αij

∥

∥BTP1

∥

∥

2‖ei‖2 +
N
∑

i=1

∑

j∈Ni

βij

∥

∥BTP1

∥

∥ ‖ei‖

+

√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥

+
2
√
Nf0

λ2(L)

N
∑

i=1

∑

j∈Ni

∥

∥BTP1

∥

∥ ‖ei‖

− 1

2

N
∑

i=1

∑

j∈Ni

βij

∥

∥BTP1 (s̃i − s̃j)
∥

∥

2

‖BTP1 (s̃i − s̃j)‖+ εe−ϕt

+

N
∑

i=1

∑

j∈Ni

α̃ij

4
·
[

−ϑ (α̃ij + ᾱ) + (s̃i − s̃j)
TΓ1 (s̃i − s̃j)

]

+

N
∑

i=1

∑

j∈Ni

β̃ij

2
·
[

−χ
(

β̃ij + β̄
)

+
‖K1 (s̃i − s̃j)‖2

‖K1 (s̃i − s̃j)‖+εe−ϕt

]

.

(52)

Due to α̃ij = αij − α, β̃ij = βij − β, one has
∑N

i=1

∑

j∈Ni
−ϑ

4 (α̃
2
ij + α̃ijα) ≤ ϑ

4

∑N
i=1

∑

j∈Ni
(α

2

2 −
α̃2

ij

2 ),
∑N

i=1

∑

j∈Ni
−χ

2 (β̃
2
ij + β̃ijβ) ≤ χ

2

∑N
i=1

∑

j∈Ni
(β

2

2 −
β̃2

ij

2 ).

Since β ≥ 2
√
Nf0

λ2(L) , one has the following inequality:

V̇3 ≤ 1

2
ξT

[

IN ⊗
(

P1A+ATP1

)

− α

4
L⊗ P1BBTP1

]

ξ

+
α

2

N
∑

i=1

[

∑

j∈Ni

(

1 + δαij ·
2

αδ

)

∥

∥BTP1

∥

∥

2 ‖ei‖2

+
∑

j∈Ni

2

(

β

α
+ δβij ·

1

αδ

)

∥

∥BTP1

∥

∥ ‖ei‖

− 1

4

∑

j∈Ni

∥

∥BTP1 (s̃i − s̃j)
∥

∥

2
]

+
β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt

+
ϑ

4

N
∑

i=1

∑

j∈Ni

(

α2

2
−

α̃2
ij

2

)

+
χ

2

N
∑

i=1

∑

j∈Ni

(

β
2

2
−

β̃2
ij

2

)

.

(53)

By using α ≥ 4
λ2(L) , α ≥ β, α ≥ 1

δ
, (9), and (15), one ob-

tains

V̇3 ≤ −1

2
ξT ξ +

α

2

N
∑

i=1

μie
−νit +

β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt

+
ϑ

4

N
∑

i=1

∑

j∈Ni

(

α2

2
−

α̃2
ij

2

)

+
χ

2

N
∑

i=1

∑

j∈Ni

(

β
2

2
−

β̃2
ij

2

)

.

(54)

Substituting (49) into (54) yields

V̇3 ≤ −θ3V3 +
α

2

N
∑

i=1

μie
−νit +

β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt

+
N
∑

i=1

∑

j∈Ni

(

ϑ

8
α2 +

χ

4
β
2
)

+
N
∑

i=1

∑

j∈Ni

[(

θ3 − ϑγ

8γ

)

α̃2
ij +

(

θ3 − χη

4η

)

β̃2
ij

]

(55)

where θ3 � min{ 1
λmax(P1)

, ϑγ, χη}. Furthermore

V̇3 ≤ −θ3V3 +
α

2

N
∑

i=1

μie
−νit +

β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt

+

N
∑

i=1

∑

j∈Ni

(

ϑ

8
α2 +

χ

4
β
2
)

. (56)

Let ζ1 =
∑N

i=1

∑

j∈Ni
(ϑ8α

2 + χ
4 β

2
), by using the comparison

lemma in [51], one obtains that

V3(t) ≤
[

V3(0)−
ζ1
θ3

]

e−θ3t +
ζ1
θ3

+
α

2

N
∑

i=1

μiΩi (t, θ3)

+
1

2
β

N
∑

i=1

∑

j∈Ni

∫ t

0

εe−θ3(t−τ)−ϕτdτ (57)

where Ωi(t, θ3) is given by (35). Then, limt→∞ Ωi(t, θ3) = 0.

Therefore, V3 exponentially converges to the residual set as

D1 �

{

ξ, α̃ij , β̃ij : V3 ≤ ζ1
θ3

}

.

It implies that ξ and α̃ij , β̃ij are uniformly ultimately bounded.

Next, if θ4 � max{ϑγ, χη} ≤ 1
λmax(P1)

, one can rewrite (54)

into

V̇3 ≤ −θ4V3 +
1

2
θ4ξ

T (IN ⊗ P1)ξ −
1

2
ξT ξ

+
α

2

N
∑

i=1

μie
−νit +

β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt + ζ1

+

N
∑

i=1

∑

j∈Ni

[(

θ4 − ϑγ

8γ

)

α̃2
ij +

(

θ4 − χη

4η

)

β̃2
ij

]

≤ −θ4V3 −
1

2
(1− θ4λmax(P1)) ξ

T ξ

+
α

2

N
∑

i=1

μie
−νit +

β̄

2

N
∑

i=1

∑

j∈Ni

εe−ϕt + ζ1. (58)

Obviously, it follows from (58) that V̇3 ≤ −θ4V3 +
α
2

∑N
i=1 μie

−νit + β̄
2

∑N
i=1

∑

j∈Ni
εe−ϕt, if ξT ξ ≥

2ζ1
1−θ4λmax(P1)

. Then, in light of V3 ≥ λmin(P1)
2 ‖ξ‖2, one has that

if θ4 < 1
λmax(P1)

then ξ exponentially converges to the bounded

set

D2 �

{

ξ : ‖ξ‖2 ≤ 2ζ1
1− θ4λmax(P1)

}

.
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Second, for the tracking process, consider the Lyapunov

candidate

V4 =
1

2
x̂T (IN ⊗ P2) x̂+

1

2κ

N
∑

i=1

c̃2ij (59)

where c̃ij = cij − c, and c is a constant satisfying c ≥ f0, c ≥ 1
δ

.

It is not difficult to see that V4 is positive definite. Substitute (11)

into (2). It follows that x̂i(t) satisfies the following closed-loop

dynamics:

˙̂x(t) = (IN ⊗A) x̂(t) + (IN ⊗BK2) x̃(t)

+ (IN ⊗B) Ĥc [(IN ⊗K2)x̃]− (IN ⊗B)F (t)
(60)

where

Ĥc [(IN ⊗K2)x̃] =

⎛

⎜

⎜

⎝

c1j
−BTP2x̃1

‖−BTP2x̃1‖+εe−ϕt

...

cNj
−BTP2x̃N

‖−BTP2x̃N‖+εe−ϕt

⎞

⎟

⎟

⎠

.

The derivative of V4 is given by

V̇4 = x̂T (IN ⊗ P2A) x̂+ x̂T (IN ⊗ P2BK2) x̃

− x̂T (IN ⊗ P2B) Ĥc

[(

IN ⊗BTP2

)

x̃
]

− x̂T (IN ⊗ P2B)F (t)

+ c̃ij

[

−�cij(t) +
‖K2x̃i(t)‖2

‖K2x̃i(t)‖+ εe−ϕt

]

. (61)

For the third term of (61), one has

− x̂T (IN ⊗ P2B) Ĥc

[(

IN ⊗BTP2

)

x̃
]

=− cij

N
∑

i=1

(

BTP2x̂i

)T BTP2x̃i

‖BTP2x̃i‖+ εe−ϕt

≤ −cij

N
∑

i=1

∥

∥BTP2x̃i

∥

∥

2

‖BTP2x̃i‖+ εe−ϕt
+ cij

N
∑

i=1

∥

∥BTP2

∥

∥ ‖êi‖.

(62)

From Appendix A and the above inequality, the derivative of V4

satisfies

V̇4 ≤ 1

2
x̂T

[

IN ⊗
(

ATP2 + P2A− P2BBTP2

)]

x̂

+
1

2

N
∑

i=1

∥

∥BTP2

∥

∥

2‖êi‖2 + (f0 + cij)

N
∑

i=1

∥

∥BTP2

∥

∥ ‖êi‖

+ c̄

N
∑

i=1

εe−ϕt + �

N
∑

i=1

(

c̄2

2
−

c̃2ij
2

)

. (63)

By using the fact c ≥ 1
δ

, one gets

V̇4 ≤ 1

2
x̂T

[

IN ⊗
(

ATP2 + P2A− P2BBTP2

)]

x̂

+ c̄

N
∑

i=1

[

δ

2

∥

∥BTP2

∥

∥

2‖êi‖2 + 2 (1 + δcij)
∥

∥BTP2

∥

∥ ‖êi‖
]

+ c̄
N
∑

i=1

εe−ϕt + �
N
∑

i=1

(

c̄2

2
−

c̃2ij
2

)

. (64)

According to the triggering condition (16), by substituting (59)

into (64), one has

V̇4 ≤ −θ5V4 + c̄

N
∑

i=1

μ̂ie
−ν̂it + c̄

N
∑

i=1

εe−ϕt + �

N
∑

i=1

c̄2

2
(65)

where θ5
∆
= min{ 1

λmax(P ) , �κ}. Let ζ2 = �
∑N

i=1
c̄2

2 , and using

the comparison lemma in [51], one obtains that

V4(t) ≤
[

V4(0)−
ζ2
θ5

]

e−θ5t +
ζ1
θ5

+ c

N
∑

i=1

μ̂iΩi (t, θ5)

+ c

N
∑

i=1

∫ t

0

εe−θ3(t−τ)−ϕτdτ (66)

where the function Ωi(t, θ5) is defined by (35). Therefore, V4

exponentially converges to the residual set as

D3 �

{

x̂i, c̃ij : V4 ≤ ζ2
θ5

}

.

It implies that x̂i and c̃ij are uniformly ultimately bounded.

Next, denote θ6 � max{�κ} ≤ 1
λmax(P2)

, (66) can be

rewritten into

V̇4 ≤ − θ6V4 +
1

2
θ6x̂

T (IN ⊗ P2) x̂− 1

2
x̂T x̂+ ζ2

+ c̄
N
∑

i=1

μ̂ie
−ν̂it + c̄

N
∑

i=1

εe−ϕt +
N
∑

i=1

[(

θ6 − �κ

2κ

)

c̃2ij

]

≤ −θ6V4 +
1

2
(1− θ6λmax(P2)) x̂

T x̂+ ζ2

+ c̄

N
∑

i=1

μ̂ie
−ν̂it + c̄

N
∑

i=1

εe−ϕt. (67)

If x̂T x̂ ≥ 2ζ2
1−θ6λmax(P2)

, then V̇4 ≤ −θ6V4 + c̄
∑N

i=1 μ̂ie
−ν̂it +

c̄
∑N

i=1 εe
−ϕt. In light of V4 ≥ λmin(P2)

2 ‖x̂‖2, if θ6 < 1
λmax(P2)

,

then x̂ exponentially converges to the bounded set

D4 �

{

x̂ : ‖x̂‖2 ≤ 2ζ2
1− θ6λmax(P2)

}

.

Therefore, one has the ultimate bounded convergence of tracking

errors according to the above two parts. The DETAT track-

ing errors xi(t)− 1
N

∑N
i=1 ri(t) exponentially converge to the

bounded set

D5 =

{

xi(t)−
1

N

N
∑

i=1

ri(t) :

∥

∥

∥

∥

∥

xi(t)−
1

N

N
∑

i=1

ri(t)

∥

∥

∥

∥

∥

≤
(

2ζ2
1− θ6λmax(P2)

) 1

2

+

(

2ζ1
1− θ4λmax(P1)

) 1

2

}

.

Next, it is shown that the Zeno behaviors are excluded for

closed-loop systems in estimation and tracking processes.

For the estimator i, following from (1) and (10), the derivative

of ei can be written as

ėi(t) = Aei(t)−BK1

∑

j∈Ni

αij [(s̃i(t)− s̃j(t))]

−B
∑

j∈Ni

βij ĥi [K1 (s̃i(t)− s̃j(t))] . (68)
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Taking the norms of both sides

‖ėi(t)‖ ≤ ‖A‖ ‖ei(t)‖+

∥

∥

∥

∥

∥

∥

BK1

∑

j∈Ni

αij [(s̃i(t)− s̃j(t))]

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

B
∑

j∈Ni

βij ĥi [K1 (s̃i(t)− s̃j(t))]

∥

∥

∥

∥

∥

∥

. (69)

Since αij , βij are all bounded, so one can suppose αij ≤
α∗
ij , βij ≤ β∗

ij , ∀(i, j) ∈ E . The rest of the proof is similar to

Theorem 1. The details are omitted here.

Similarly, the Zeno behavior in the tracking process is ex-

cluded. The details are skipped for brevity.

C. Proof of Theorem 3

To obtain the conclusion in Theorem 3, the proofs in detail

are composed of three steps.

Step 1): Introducing a new variable ς = y − υ to show that

the auxiliary state υ is able to converge to y asymptotically.

It follows from the system (21a) that ẋ−Ψυ̇ =
(A∗ −B∗K∗)(x−Ψυ). Due to A∗ −B∗K∗ is Hurwitz,

thus limt→∞ x−Ψυ = 0. Then, it can obtain that

limt→∞ ς = y − υ = 0.

Step 2): It is shown that the following nominal system is

asymptotically stable at the origin:

υ̇ = w − υ̃ + s− α (L⊗ In) υ̃ − d̄,

˙̄d = αβ (L⊗ In) υ̃. (70)

Let ξ = υ − (M ⊗ In)s and w̄ = d̄− (M ⊗ In)s. According

to the triggering function Πυi(t), it is easy to obtain that

‖eυi(t)‖ ≤ μυie
−νυit, which further yields limt→∞ ‖eυ‖ = 0.

Since the estimator s can achieve consistency, (M ⊗ In)s = 0,

following from the analysis of [44, Th. 4.2], it can obtain that

lim
t→∞

∥

∥

∥

∥

∥

υi −
1

N

N
∑

k=1

sk

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N.

Step 3): Consider that the original closed-loop system (22) is

equivalent to adding −ỹ + υ̃ − α(L⊗ In)(ỹ − υ̃) to the nomi-

nal system (70). According to the triggering function Πyi(t), it

is easy to obtain that ‖eyi(t)‖ ≤ μyie
−νyit, which further yields

limt→∞ ‖ey‖ = 0. Similarly, limt→∞ ‖eυ‖ = 0. Then, it can get

from Step 1) that limt→∞ ς = y − υ = 0. Hence, according to

Lemma 6, the closed-loop system (22) is globally uniformly

asymptotically stable.

Therefore, it can be concluded that limt→∞ yi − υi = 0 and

limt→∞ vi − 1
N

∑N
k=1 sk = 0. Because the estimator si can ob-

tain the average of multiple time-varying reference signals, one

obtains

lim
t→∞

∥

∥

∥

∥

∥

yi −
1

N

N
∑

k=1

rk

∥

∥

∥

∥

∥

= 0, i = 1, 2, . . . , N

which means the DETAT problem of the heterogeneous multia-

gent system is realized.

Then, it is proven that there is no Zeno behavior in the closed-

loop system (21).

The derivative of eyi with (17) and (20) over the interval

[ti∗k , t
i∗
k+1) can be written as

ėyi = −Ci(Ai −BiK
∗
i )(xi − ψiυi)− υ̇i

υ̇i = wi − ỹi + si − α
∑

j∈Ni

(ỹi − ỹj)− di

si = qi + ri

ḋi = αβ
∑

j∈Ni

(ỹi − ỹj). (71)

Note that eyi(t
i∗
k ) = 0, the solution of eyi(t) is obtained as

eyi(t) = −
∫ t

ti∗s

Ci (Ai −BiK
∗
i ) [xi(τ)− ψiυi(τ)] dτ

+

∫ t

ti∗s

{

wi(τ) + yi(t
i∗
k )− si(τ)

+ α
∑

j∈Ni

[

yi(t
i∗
s )− yj(t

j∗
m)
]

+ di(τ)

}

dτ (72)

where ti∗s and tj∗m are the latest triggering instants of agent i
and agent j, respectively. For agent i, define ti∗s+1 as the next

triggering instant and t′ = t− ti∗s . It is shown that no Zeno

behavior is exhibited by proving ti∗s+1 − ti∗s > 0.

Since states of multiple time-varying reference signals ri, i =
1, . . . , N are bounded and outputs of agents yi, i = 1, . . . , N
can track the average of time-varying signals, thus yi, i =
1, . . . , N are ultimately uniformly bounded. Further, si, xi −
Ψiυi, υi, and di are bounded. Define h1, h2, h3, h4, h5, h6 >
0 such that ‖yi‖ < h1, ‖xi − ψiυi‖ < h2, ‖di‖ < h3, ‖vi‖ <
h4, ‖si‖ < h5, ‖wi‖ < h6, i = 1, . . . , N.

Define f(ε) = [(2αN + 1)h1 + ‖Ci(Ai −BiK
∗
i )‖h2 +

h3 + h4 + h5 + h6]ε. Note that f(ε) > 0 if and only if ε > 0.

It follows that ‖eyi(t)‖ ≤ f(ε), ∀t ≥ ti∗s . The time interval

ti∗s+1 − ti∗s is greater than or equal to the implicit solution of the

equation f(ε∗) = μyie
−νyi(ε

∗+ti∗s ). The right-hand side of the

above equation is always strictly positive, which implies that

ti∗s+1 − ti∗s ≥ ε∗ > 0 and the interevent time intervals for agent

i are strictly positive, which implies that no Zeno behavior is

exhibited.
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