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Abstract. What is the maximum number of holes enclosed by a d-dimensional polycube
built of n tiles? Represent this number by fd(n). Recent results show that f2(n)/n converges
to 1/2. We prove that for all d ≥ 2 we have fd(n)/n → (d− 1)/d as n goes to infinity. We
also construct polycubes in d-dimensional tori with the maximal possible number of holes
per tile. In our proofs, we use metaphors from error-correcting codes and dynamical systems.

1. Introduction

In 1954 [6], Solomon W. Golomb defined a polyomino as a finite rook-connected subset of
squares of the infinite checkerboard. Since then, polyominoes and their higher-dimensional
analogues (often under the name lattice animals or polycubes) have become an important
object of study in statistical physics, where they are used as a simple model of polymers and
other accretion phenomena [4, 13]. The related problem of counting all polyominoes with
certain geometric properties as a function of the number of tiles, which may help understand
the probabilities of different behaviors of a system, leads to difficult open questions in com-
binatorics; see [9] for an overview. But for example, the asymptotic growth rate of the total
number of polycubes is known to be exponential in the number of tiles [11], including in
the higher-dimensional cases studied in this paper. The exact base of the exponential is not
known even in dimension 2, but a number of bounds are known [1, 2, 3, 5].

For our purposes, we view polyomino-hood as a constraint on subsets of the square tes-
sellation of R2, or more generally the tessellation of Rd by unit cubes. (Here one imagines a
rook in d-dimensional chess which can move in any coordinate direction.) Subject to this con-
straint, we look to maximize the “frothiness” of the subset: the number of holes (bounded
connected components of the complement) that are enclosed inside. On the way, we will
encounter ideas from error-correcting codes, sphere-packing, and dynamical systems.

1.1. Definitions and results. We now begin the formalities. A d-polycube is a finite union
of tiles (unit cubes) of the regular cubical tessellation of Rd which has connected interior. In
what follows we use the term polycube to refer to any d-polycube for any d ≥ 2.

A hole in a polycube is a bounded connected component of its complement. Viewed
through the lens of algebraic topology, the number of holes in a polycube is its top Betti
number: the rank of its (d− 1)st homology group.

For a fixed d, we define the function fd : N → N such that fd(n) is the maximum number of
holes in a d-dimensional polycube with n tiles. The function f2(n) was studied exhaustively
in [10] and [12]. Our main theorem gives an asymptotic bound for fd(n):

Theorem 1.1. For every fixed d ≥ 2,

fd(n) =
d− 1

d
n− Θ

(︁
n

d−1
d
)︁
.
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For context, notice that in a d-dimensional checkerboard—let’s say a tournament checker-
board with dark green and beige cubes—the union of the green cubes has about as many
holes as tiles. However, this set is not a polycube. Our theorem establishes the price of
making sure the set is rook-connected: one needs to additionally fill in one in 2d − 1 beige
cubes, and some extra near the boundary.

We can avoid the issue of counting these extra boundary cubes, which generate the second
order term in Theorem 1.1, by reducing modulo a lattice in Zd. The quotient of Rd by the
action of the lattice, which is topologically a d-dimensional torus, is still tessellated by unit
cubes, and we can define a toric polycube to be a rook-connected union of such cubes. As one
might hope, many such tori contain “ideal polycubes” with the maximal possible number of
holes per tile:

Theorem 1.2. For every d, there is an infinite number of lattices Λ ⊂ Zd such that there
is a toric polycube in the quotient torus Rd/Λ with d

2d−1 det(Λ) tiles and d−1
2d−1 det(Λ) holes.

Here det(Λ) is the volume of the torus Rd/Λ, also known as the covolume of Λ.

In particular, this means that there are such tori with arbitrarily large volume.
The rest of the paper is structured as follows: Section 2 introduces ideas from error-

correcting codes, which we use to construct polycubes with a large number of holes in Section
3. In Section 4, we complete the proof of Theorem 1.1 by proving an upper bound. In Section
5, we prove Theorem 1.2 using ideas about linear dynamical systems.

2. Perfect codes in the Lee metric

An error-correcting code is a scheme for transmitting information over noisy channels.
One introduces some amount of redundancy so that small errors can be corrected without
ambiguity. The study of error-correcting codes mainly focuses on finding efficient codes. This
is a kind of packing problem: an efficient code is one in which most pieces of data are close
to one (and only one) code word. Of course, the exact parameters depend on the types of
errors one expects.

000 = 0

111 = 1

Figure 1. Every three-bit string of 0’s and 1’s is either a code word 000 or
111, or is distance one from exactly one of the code words.

For example, say we want to transmit messages consisting only of zeros and ones. The
simplest way of introducing redundancy is to replace each 0 with the string 000 and each
1 with the string 111. We call these three-bit strings code words. If the recipient sees the
substring 101 instead of 000 or 111, they can guess that only one bit was flipped during
transmission and the original bit was a 1. This is an example of a perfect code: every possible
string is either a code word or one error away from a unique code word.

The number of bit flips to get from one word to another defines a metric on (Z/2Z)3,
called the Hamming metric. In this metric, the 1-balls around the code words are disjoint
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and cover all of (Z/2Z)3. In other words, a perfect code is also a perfect packing by balls, or
a tessellation.

This metaphor becomes clearer when we move to a slightly different setting: consider code
words in the alphabet Z/qZ, for some q > 2, and suppose that the errors that arise replace a
letter α with α± 1 (mod q), rather than (as is perhaps more common) an arbitrary different
letter. The number of errors required to change from one point to another then gives us the
Lee metric, in other words the ℓ1 metric on (Z/qZ)d.

Perfect 1-error-correcting codes in the Lee metric were studied by Golomb and Welch [7].
Such perfect codes can be “unwrapped” (lifted to Zd) to create perfect ball packings of Zd, or
equivalently, tessellations of Rd by jacks, polycubes consisting of a tile and all its neighbors.

In the rest of this section we recall [7, Theorem 3] and its proof:

Theorem 2.1. Let d ≥ 1 and q = 2d + 1. Then there is a perfect 1-error-correcting code in
the Lee metric on (Z/qZ)d.

Proof. We take the set of code words Ld to be the set of vectors (a1, . . . , ad) ∈ (Z/qZ)d which
satisfy

d∑︂
i=1

iai = 0.

Then for every value of a2, . . . , ad, there is exactly one value of a1 such that (a1, . . . , ad) ∈
Ld. (Here we can replace 1 with any i which is relatively prime to q.) In particular, this
demonstrates a fact that will be useful later:

Proposition 2.2. Every q× 1×· · ·× 1 subset of (Z/qZ)d contains exactly one element of L.

In particular, the density of Ld is 1/q.
To show that Ld is indeed a perfect 1-error correcting code, it is now enough to show that

the jacks centered at points of Ld cover all of (Z/qZ)d. Let (a1, . . . , ad) /∈ Ld, and suppose
that

d∑︂
i=1

iai = k.

Then Ld contains

(a1, . . . , ak − 1, . . . , ad) if k ≤ d

(a1, . . . , aq−k + 1, . . . , ad) if k ≥ d + 1.

Thus (Z/qZ)d is covered by jacks centered at points of Ld. Since a jack has volume 2d+1 = q,
and the density of Ld is 1/q, this covering cannot have any overlaps. □

3. Building polycubes using perfect codes

We will prove the lower bound of Theorem 1.1 by giving a near-optimal construction for
all d ≥ 2. Later, we will prove the upper bound, showing that the construction is in fact
optimal to first order.

The polycubes we construct look like an almost-cubical shell surrounding an interior sponge
which has as many holes as possible while still being connected. Namely, given a domain
D ⊂ Rd, for example a large cube, we construct a polycube P (D) contained in D. The cubes
that touch the boundary of D, even if only in a corner—we call these the shell of D—are all
“filled in”, i.e. contained in P (D). The rest (the interior of D) is filled according to a certain
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Figure 2. The set K3, viewed from above. Black columns are entirely in

K3 (these correspond to elements of ˜︂L2); in shaded columns, odd-numbered
layers are in K3, and in dotted columns, even-numbered layers are in K3. One
2-dimensional jack is outlined.

repeating pattern which is just dense enough that (1) every green checkerboard cube (from,
recall, a green-and-beige checkerboard) is filled in and (2) every filled-in cube is connected to
the shell via a path of filled-in cubes.

We shift our tiling so that centers of cubes lie in Zd and label cubes by the coordinates of
their centers. We refer to cubes for which the sum of the coordinates is 0 and 1 mod 2 as
even and odd cubes, respectively. We use the even cubes as the “green” checkerboard cubes
of condition (1).

We satisfy condition (2) by filling in certain whole columns, so that every unit cube is
either inside or adjacent to such a column. To fill as few cubes as possible, we would like to
choose as few columns as possible; this is achieved if every cube not inside one of the chosen
columns is adjacent to exactly one of them. The columns are indexed by elements of Zd−1,

so we would like to find a subset ˜︁Ld−1 ⊂ Zd−1 such that every element of Zd−1 not in ˜︁Ld−1

neighbors exactly one element of ˜︁Ld−1. Such a set is provided by Theorem 2.1: it is the lift
to Zd−1 of the set Ld−1 ⊂ (Z/(2d− 1)Z)d−1 constructed there.

We can think of the inner part of P (D) as the intersection of the interior of D with a set
of cubes indexed by a set Kd ⊂ Zd. This consists of all even cubes and all cubes whose first

d− 1 coordinates are an element of ˜︁Ld−1. Then from Proposition 2.2 we get:

Proposition 3.1. Let q = 2d−1. Then every q×1×· · ·×1×2 subset of Zd contains exactly
q + 1 elements of Kd.

Figure 3. One possible filling pattern of a 5 × 1 × 2 parallelepiped in K3.

In particular, the density of Kd is

q + 1

2q
=

2d

4d− 2
=

d

2d− 1
.
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Thus, by Proposition 3.1, if the interior of D (after subtracting the boundary cubes) is a
union of q× 1× · · · × 1× 2 parallelotopes, it contains d− 1 holes for every d filled-in tiles. If
in addition we choose D to be close to isoperimetric, then

vol(shell(D)) = O
(︁
vol(D)

d−1
d
)︁
.

The volume of P (D) will then be

vol(P (D)) =
d

2d− 1
vol(D) +

d− 1

2d− 1
vol(shell(D))

and the number of holes in P (D) will be

d− 1

2d− 1
(vol(D) − vol(shell(D))) =

d− 1

d
(vol(P (D)) − vol(shell(D))).

A specific sequence of such polycubes arises from the sequence {Qi}i=1,2,... of cubes of side
length 2qi + 2. In this case, every cube of shell(Qi) has a (d − 1)-face in the boundary, so
that vol(shell(Qi)) ≤ vols−1(∂Qi), and

vold−1(∂Qi) ≤ 2d(vol(Qi))
d−1
d ≤ 2d

[︃
2d− 1

d
vol(P (Qi))

]︃ d−1
d

≤ 4d(vol(P (Qi)))
d−1
d .

This shows that

fd(vol(P (Qi))) ≥
d− 1

d
vol(P (Qi)) − 4(d− 1) vol(P (Qi))

d−1
d .

This proves the lower bound of Theorem 1.1 for a certain sequence of n, but not yet all n.
One way of completing the proof for all n is to remark that

vol(P (Qi+1)) − vol(P (Qi)) = O
(︁
vol(P (Qi))

d−1
d
)︁
,

and therefore we can obtain a good enough lower bound for all n between vol(P (Qi)) and
vol(P (Qi+1)) by adding cubes to P (Qi) arbitrarily. However, we would like to obtain a more
explicit bound.

To interpolate between the volumes of P (Qi) and P (Qi+1), we use polycubes P (D) for
sets D of more complicated shape. The interiors of these sets will still be composed of
q×1×· · ·×1×2 parallelotopes, which we will call fundamental parallelotopes. Let m be any
number between (4d−2)d−1id and (4d−2)d−1(i+ 1)d (these are the numbers of fundamental
parallelotopes in the interior of Qi and Qi+1, respectively). Let D0

m be the set composed of
the interior of Qi together with some extra fundamental parallelotopes in the interior of Qi+1

to make a total of m. To choose these unambiguously, we add them in lexicographic order
by the coordinates of the “lowest” corner. In particular, we get from D0

m to D0
m+1 by adding

one fundamental parallelotope. We define Dm to be D0
m together with a one-cube-thick shell

surrounding it.
We claim:

Lemma 3.2. For every (4d− 2)d−1id ≤ m ≤ (4d− 2)d−1(i + 1)d,

vol(shell(Dm)) ≤ vol(shell(Qi+1)).

Proof. We will actually show that vol(shell(Dm)) ≤ vol(shell(Dm+1)). This suffices to prove
the lemma since D(4d−2)d−1(i+1)d = Qi+1.

Notice that Dm ⊂ Dm+1. Moreover, since fundamental parallelotopes are added in lexi-
cographic order, if a cube labeled by x ∈ Zd is in Dm+1 \Dm, then every cube y ∈ Dm has
yi < xi for at least one i.



6 G. MALEN, F. MANIN, AND E. ROLDÁN

Let us proceed from Dm to Dm+1, adding one cube at a time in lexicographic order. At
the time we add a cube x, the positive orthant x+(Z≥0)

d is completely empty. We claim that
the volume of the shell never decreases during this process: the shell gains the cube x and
loses at most one cube. Indeed, the only cube that might leave the shell is (x1−1, . . . , xd−1).
Any other cube which shares a face with x will remain in the shell since it also shares faces
with other cubes in x + (Z≥0)

d. □

From this we have:

vol(shell(Dm)) ≤ 2d
(︁
vol(Dm)1/d + 2d− 1

)︁d−1

≤ 4d(vol(P (Dm)))
d−1
d + O

(︁
vol(P (Dm))

d−2
d
)︁
.

This shows that

(3.3) fd(vol(P (Dm))) ≥ d− 1

d
vol(P (Dm))− 4(d− 1) vol(P (Dm))

d−1
d −O

(︁
vol(P (Dm))

d−2
d
)︁
.

Now, the volumes of the P (Dm) still don’t cover every n. However, the difference between
Dm and Dm+1 is at most one fundamental parallelotope together with a shell surrounding
it, which means that it has a bound depending only on d:

vol(P (Dm+1)) − vol(P (Dm)) ≤ (2d + 3) · 3d−2 · 4 − (2d− 2).

Thus interpolating by appending extra tiles arbitrarily to P (Dm) extends the bound of (3.3)
to every n:

fd(n) ≥ d− 1

d
n− 4(d− 1)n

d−1
d −O

(︁
n

d−2
d
)︁
.

4. Upper bound

We bound above the number of holes in a d-polycube of volume n by bounding the number
of (d − 1)-dimensional faces which border holes; this strategy to determine an upper bound
for fd(n) is used in [10] for the case d = 2. The resulting bound will match the first-order
term of Theorem 1.1.

For a d-polycube A, the (d−1)-dimensional faces of the cubes that make it up are naturally
partitioned into three sets: interior faces incident to two adjacent d-dimensional cubes; faces
which bound holes; and exterior faces on the outer perimeter of A. We denote the sizes of
these sets by b(A), ph(A), and po(A), respectively.

Suppose A has n d-cubes and encloses h holes. Every d-cube has 2d (d − 1)-dimensional
faces. Adding all of these together double-counts the interior faces, yielding that

2dn = po(A) + 2b(A) + ph(A).

The smallest holes are the size of a single d-cube, so ph(A) ≥ 2dh, and we can write

(4.1) 2dh ≤ ph(A) = 2dn− 2b(A) − po(A).

We would like to find an upper bound on h in terms of n and d. For this, we must find
lower bounds for both b(A) and po(A). Notice that b(A) is (equivalently) the number of edges
in the dual graph of A, so the minimal value for given n is attained when the dual graph is
a tree, and b(A) ≥ n − 1. On the other hand, po(A) is the perimeter of the union of A and
all its holes, which has volume at least n + h. Since the most compact polycube is a cube of
any side length, this is bounded from below by

po(A) ≥ 2d(n + h)
d−1
d .
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Plugging these bounds into (4.1), we get

h ≤ 2dn− 2(n− 1) − 2d(n + h)
d−1
d

2d
≤ d− 1

d
n− (n + h)

d−1
d .

When d = 2, this bound is essentially sharp, as discussed in [12]. On the other hand, when
d ≥ 3, the two quantities b(A) and po(A) cannot be simultaneously minimized, because the
dual graph of the boundary of a large cube has many cycles. It is likely that a tighter
theoretical upper bound can be obtained by “trading off” the number of cycles and the size
of the boundary. Still, the naive bound gives the desired upper bound for Theorem 1.1:

fd(n) ≤ d− 1

d
n− n

d−1
d .

5. Toric polycubes

We now study toric polycubes and prove Theorem 1.2, which we restate here:

Theorem. For every d ≥ 2, there is an infinite number of lattices Λ ⊂ Zd such that there is
a toric polycube in Rd/Λ with d

2d−1 det(Λ) tiles and d−1
2d−1 det(Λ) holes.

We first see that this maximizes the number of holes in a toric polycube of a given volume.
In the absence of an outer perimeter, equation (4.1) for a polycube of volume n becomes

2dh ≤ 2dn− 2b(A) ≤ 2dn− 2(n− 1) = 2(d− 1)n + 2,

and so h ≤ d−1
d n + 1

d .
To construct optimal examples, we take a lattice Λ such that the set Kd constructed in §3

is Λ-invariant, and let P be the projection of Kd to Rd/Λ. Then P has the following features:

• The volume of P is d
2d−1 det(Λ).

• Each cube not in P is surrounded by cubes in P .

Therefore, P is a toric polycube with a maximal number of holes if and only if it is a toric
polycube, i.e. if it is rook-connected.

Lattices Λ with this property are easy to construct:

Proposition 5.1. Define Λ0 to be the lattice consisting of those points in ˜︁Ld−1×Z for which
the sum of the coordinates is even. Then Kd is Λ0-invariant, and therefore invariant with
respect to any sublattice of Λ0.

Proof. We refer to lattice points the sum of whose coordinates is even as even points. The

set Kd is the union of ˜︁Ld−1 × Z and the lattice of even points. Therefore, any lattice whose
action preserves these two lattices preserves Kd, in particular their intersection Λ0. □

Thus the main goal of the section is to find lattices Λ ⊂ Λ0 such that Kd/Λ is rook-
connected and investigate their properties.

To get a handle on this, recall that every rook-connected component of Kd is a one-
dimensional column (parallel to the dth coordinate direction) together with every other cube
from each adjacent column. Thus for Kd/Λ to be rook-connected, we need to make sure that
Rd/Λ is covered by the image of a single column and its neighbors. We can think of this as
a discrete analogue of either ergodicity or density for linear flows on the torus.

One of the most classical results in dynamical systems is Kronecker’s density theorem: in
R2/Z2, the trajectory of a flow along a line of irrational slope is dense. More generally, in
Rd/Zd, the trajectory of a linear flow (α1t, . . . , αdt) is dense as long as αi/αj is irrational for
every i ̸= j.
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Figure 4. A fundamental domain for the flow in Proposition 5.3 in 3D, with
n1 = 5, n2 = 3, c = 3. A contiguous portion of the flow line is highlighted.

A discrete analogue of this follows immediately from the Chinese remainder theorem:

Proposition 5.2. Let n1, . . . , nd−1 be pairwise relatively prime integers, and consider the
linear flow φ(t) = (t/n1, . . . , t/nd−1, t) on Rd/Zd. The image of φ(t) contains every point of
the form

(k1/n1, . . . , kd−1/nd−1, 0), ki ∈ Z/niZ.

In these examples we fixed the torus and played with the direction of the flow. In our
main case of interest, the flow direction is fixed—it is the dth coordinate direction—and we
can vary the torus. Of course, we can switch between these points of view via a coordinate
change, as in the following reformulation of Proposition 5.2. From here on, we denote the
standard basis vectors of Rd by e1, . . . , ed.

Proposition 5.3. Let n1, . . . , nd−1 be pairwise relatively prime integers, and consider the
linear flow φ(t) = ted on Rd/Λc, where Λc is the lattice generated by

n1e1, . . . , nd−1ed−1, ced −
d−1∑︂
i=1

ei,

for any c ∈ R+. The image of φ(t) is exactly

{(k1, . . . , kd−1, t) : ki ∈ Z/niZ and t ∈ R/cZ}.

This is already very close to what we want. We get there using a further coordinate change:

Proposition 5.4. Let d ≥ 2 and q = 2d − 1. Let n1, . . . , nd−1 be pairwise relatively prime
integers such that n1 is even, and c an odd integer. Fix the vectors

u1 = qe1

ui = ei − ie1, 2 ≤ i ≤ d− 1, i odd

ui = ei + (q − i)e1, 2 ≤ i ≤ d− 1, i even

ud = ed,

and let Λ be the lattice in Rd generated by

n1u1, . . . , nd−1ud−1, ced −
d−1∑︂
i=1

ui.

Then Λ ⊂ Λ0 and Kd/Λ is rook-connected.
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This proposition completes the proof of Theorem 1.2.

Proof. By applying the coordinate change ei ↦→ ui to Proposition 5.3, we see that the image
of Red in Kd/Λ is

X = {(x1, . . . , xd−1, t) : (x1, . . . , xd−1) ∈ Γ and t ∈ R/cZ}
where Γ is the lattice in Rd−1 × {0} generated by u1, . . . ,ud−1.

In fact, Γ = ˜︁Ld−1×{0}. To see this, notice that det(Γ) = q and that each ui is an element

of ˜︁Ld−1 × {0}. Moreover, since u1 and ud are odd, n1 is even, u2, . . . ,ud−1 are even, and c
is odd, all the generators of Λ are even. Therefore Λ ⊂ Λ0 and Kd/Λ is well-defined.

From the fact that Γ = ˜︁Ld−1 ×{0}, it follows that every cube in Kd/Λ either is associated
to a point of X or is adjacent to a cube that is. This proves that Kd/Λ is rook-connected. □

To conclude, we make some remarks about the shapes of these tori. We can get the
infinite number of tori required by Theorem 1.2 just by taking n1 = 2, n2, . . . , nd−1 = 1,
and arbitrarily large c. However, this solution is somehow unsatisfying, since the resulting
tori are almost one-dimensional: they are long skinny tubes which the polycube fills up by
winding around them twice.

One way to measure the “fatness” of a Riemannian manifold is to estimate how big you can
grow a metric ball around any point before it stops being topologically a ball. For a flat torus
T = Rd/Λ, the supremal diameter of such balls is the systole of T : the length of its shortest
topologically nontrivial loop or, equivalently, the length of the shortest nonzero vector in the
lattice Λ. A large systole can be thought of as a sign that a d-torus is d-dimensional in an
essential way.

The systole of a flat torus T is bounded above by C(d)(volT )1/d; to see this, scale the
lattice to have covolume 1 and notice that the size of the shortest nonzero vector is bounded
above. (The fact that a similar bound holds for arbitrary Riemannian metrics is much harder
to prove and is an instance of Gromov’s systolic inequality, see [8].) The constant C(d)2 is
known as the Hermite constant in dimension d.

The tori in our construction get within a multiplicative constant of this bound: if we
choose n1, . . . , nd−1 and c to be large and close to each other, then the lattice Λ is very nearly
homothetic to Λ0. It would be interesting to know whether one can choose Λ satisfying the
conditions of Theorem 1.2 whose systole is arbitrarily close to the universal upper bound.
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