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Abstract. Scalable spaces are simply connected compact manifolds or finite complexes
whose real cohomology algebra embeds in their algebra of (flat) differential forms. This is a
rational homotopy invariant property and all scalable spaces are formal; indeed, scalability
can be thought of as a metric version of formality. They are also characterized by particularly
nice behavior from the point of view of quantitative homotopy theory. Among other results,
we show that spaces which are formal but not scalable provide counterexamples to Gromov’s
long-standing conjecture on distortion in higher homotopy groups.

1. Introduction

Starting with the 1978 paper [Gro78] and continuing in the 1990s with [Gro98, Ch. 7]
and [Gro99], Gromov has promoted the idea that the geometry of maps between simply
connected spaces is governed by Sullivan’s minimal models in rational homotopy theory and
maps between them. In this paper, we both show that this intuition is true in the strongest
possible sense for a large class of “scalable” spaces, which includes spheres, complex projective
spaces, Lie groups and Grassmannians, and give examples showing that the general situation
is more complicated. In particular, we disprove one of the main conjectures from [Gro99].

Scalable spaces are closely related to formal spaces, a notion introduced by Sullivan in
[Sul77] and elsewhere. A formal space is one whose rational homotopy type is a “formal
consequence” of its rational cohomology ring; that is, all higher-order rational cohomology
operations are trivial. However, Sullivan gives two other characterizations: one in terms
of quasi-isomorphisms (maps preserving cohomology) and another in terms of rational self-
maps. Scalable spaces satisfy two analogous equivalent conditions, but with a metric flavor.
In addition, they satisfy two equivalent conditions regarding Lipschitz homotopies. The
precise statement of these four equivalent conditions is given in Theorem A.

1.1. Growth, distortion, Lipschitz homotopy. Let X and Y be sufficiently nice compact
metric spaces, for example Riemannian manifolds or piecewise Riemannian simplicial com-
plexes. In [Gro99], Gromov outlines a number of homotopical invariants concerning the as-
ymptotic behavior of the Lipschitz constant as a functional on the mapping space Map(X,Y ).
The Lipschitz constant tells us the scale at which the map becomes homotopically trivial, and
therefore is a good measure of homotopical information. Besides the inherent appeal of this
program, it is important for achieving an understanding of broader questions in quantitative
geometric topology, for example the questions regarding cobordism theory studied in [FW13]
and [CDMW18].

In the past decade, a fair amount of progress has been made on this program; see [FW13,
CDMW18, CMW18, Gut18, Man19, MW20, Man20, Ber18].

A convenient language for discussing asymptotics is “big-O notation”, reviewed below:

• We write f = O(g) if the function f grows asymptotically no faster than g, i.e. f is
eventually bounded by the function Cg for some C > 0.
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• We write f = o(g) if f grows asymptotically strictly more slowly than g, i.e. for every
c > 0, f is eventually bounded by cf .

• We write f = Ω(g) if f grows asymptotically no slower than g, i.e. g = O(f).
• We write f = Θ(g) if f and g have the same asymptotic growth, i.e. f = O(g) and
g = O(f) both hold.

The most basic asymptotic invariant of Map(X,Y ) is growth: how many elements of the
set of homotopy classes [X,Y ] have representatives with Lipschitz constant ≤ L? This line
of inquiry goes back to [Gro78], in which Gromov proved the following:

Theorem. For a simply connected compact Riemannian manifold Y , the growth of πn(Y ) is
at most polynomial in L.

The proof derives from rational homotopy theory. Sullivan, following K.-T. Chen, had
showed that all real-valued invariants πn(Y ) → R could be computed by pulling back dif-
ferential forms along a map f : Sn → Y , taking wedges and antidifferentials, and finally
integrating a resulting n-form over the sphere. Gromov remarked that all steps of this pro-
cedure could be bounded polynomially in terms of the Lipschitz constant of the original
map.

In [Gro99], Gromov conjectured that the upper bounds on the homotopical complexity of
L-Lipschitz maps obtained in this way are sharp. To make this precise, it is natural to define
the distortion of an element α ∈ πn(Y ) to be

δα(L) = max{k : kα has an L-Lipschitz representative}1.
Then Gromov’s conjecture would imply that the distortion of any element is Θ(Lr) where r
is an integer. Moreover, an easily stated consequence is:

Conjecture (Gromov). The distortion of an element α ∈ πn(Y ) is Θ(Ln) if and only if α
has nontrivial image under the rational Hurewicz homomorphism, and Ω(Ln+1) otherwise.

The “if” here is easy to see using a degree argument (see Propositions 4.2) and 4.3; the
“only if” has been open until now, and Gromov noted that even a proof of the first part
would be remarkable.

Finally, Gromov also defined a related relative invariant: given two homotopic L-Lipschitz
maps, we can ask for bounds on the Lipschitz constants of the intermediate maps of a homo-
topy. For example, given nice compact spaces X and Y , when can we expect two homotopic
L-Lipschitz maps X → Y to be homotopic through KL-Lipschitz maps, for some constant
K = K(X,Y )? Ferry and Weinberger noted that for the applications they were considering,
it was more useful to also bound the Lipschitz constant in the time direction. Hence:

Question. For what spaces Y is there always a constant K = K(X,Y ), for any compact
metric simplicial complex X, such that any two homotopic L-Lipschitz maps X → Y have a
K(L+ 1)-Lipschitz homotopy?

Ferry and Weinberger characterized spaces satisfying a more restrictive condition, where
the constant only depends on the dimension d of X. In that case, all homotopy groups of
Y must be finite. On the other hand, it was shown in [CDMW18] that spaces satisfying
the above condition include those that are rationally products of Eilenberg–MacLane spaces,
including for example odd-dimensional spheres. This paper also includes the first example

1This is essentially the inverse function of the notion used in [Gro99], but accords with the notion of
distortion used in geometric group theory.
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of a target space Y which does not have this property. Moreover, in [CMW18] it was shown
that even even-dimensional spheres do not have the property as stated; to include them in
our class, we must consider only nullhomotopic maps.

A number of weaker, polynomial bounds on sizes of homotopies and nullhomotopies appear
in [CMW18] and [Man19], but before this paper, linearity had only been additionally proven
in the case of maps S3 → S2, by the first author [Ber18].

The various quantities described here are intimately connected. For example, in [CDMW18],
it is shown that if one attaches a cell along an element of πn(Y ) with sufficiently large distor-
tion, then the resulting complex is forced to have nonlinear nullhomotopies. Conversely, the
argument of [Man20] describing the growth of [X,Y ] for certain X and Y relies on estimates
on the sizes of Lipschitz homotopies.

1.2. Main results. The main result of this paper defines a new class of spaces in which the
answers to these questions are particularly nice.

Theorem A. The following are equivalent for a formal simply connected finite complex Y :

(i) There is a homomorphism H∗(Y ) → Ω∗
♭Y of differential graded algebras which sends

each cohomology class to a representative of that class. Here Ω∗
♭Y denotes the flat forms,

an algebra of not-necessarily-smooth differential forms studied by Whitney.
(ii) There is a constant C(Y ) and infinitely many (indeed, a logarithmically dense set of)

p ∈ N such that there is a C(Y )(p+ 1)-Lipschitz self-map which induces multiplication
by pn on Hn(Y ;R).

(iii) For all finite simplicial complexes X, nullhomotopic L-Lipschitz maps X → Y have
C(X,Y )(L+ 1)-Lipschitz nullhomotopies.

(iv) For all n < dimY , homotopic L-Lipschitz maps Sn → Y have C(Y )(L + 1)-Lipschitz
homotopies.

Remark 1.1. The conditions (i) and (ii) imply formality of Y almost immediately and in
fact can be seen as geometric strengthenings of two equivalent characterizations of formality
given by Sullivan. In §7, we give an example of a non-formal space which satisfies (iv) but
not (iii). It is not clear whether (iii) implies formality.

On the other hand, condition (i) is strictly weaker than the notion of “geometric formality”
introduced by Kotschick [Kot01] based on Sullivan’s observation that it is satisfied by sym-
metric spaces, and studied by several others. For example, all simply connected geometrically
formal 4-manifolds are rationally equivalent to S4, CP 2, or S2 × S2.

We call spaces satisfying (i)–(iv) scalable based on the scaling maps of (ii). Examples of
scalable spaces include spheres, projective spaces, and other symmetric spaces of compact
type. More examples of spaces known to be scalable and those known not to be scalable are
given in Table 1.

We summarize some properties of scalable spaces below.

Theorem B (Properties of scalable spaces).

(a) Scalability is invariant under rational homotopy equivalence.
(b) The class of scalable spaces is closed under products and wedge sums.
(c) All skeleta of scalable complexes are scalable.
(d) Scalable spaces satisfy Gromov’s distortion conjecture.

In fact, in Theorem 10.1 we state a stronger result related to Theorem B(d), which essen-
tially says that for any simply connected domain X, we can understand the minimal Lipschitz
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Symmetric spaces

Sn, CPn, HPn

Grassmannians

Scalable spaces

CP 2 # CP 2,

3CP 2 # 3CP 2,

#r(Sn × Sn), r ≤
(
2n
n

)
/2

Formal spaces

#rCP 2, r ≥ 4

CPn # CPn, n ≥ 3

#r(Sn × Sn), r >
(
2n
n

)
/2

Table 1. A Venn diagram of simply connected manifolds.

constant of maps in a homotopy class in [X,Y ] purely by looking at maps between Sullivan
minimal models. We defer the statement until it can be made precise.

On the other hand, we show that the strong form of the distortion conjecture does not
always hold for non-scalable spaces, even those that are formal:

Theorem C. The class of the puncture in π5([#4CP 2 × S2]◦) has distortion o(L6).

We do not, however, know any matching lower bounds on distortion besides the trivial L5,
nor do we have upper bounds stronger than the already known L6 (either of which would be
very interesting.) We merely show that the known upper bound cannot be sharp. This is
similar to the situation for Lipschitz homotopies of non-scalable formal spaces: we show that
they cannot have linear Lipschitz constant, but we do not give any other lower bound for the
sizes of homotopies. This contrasts with the examples given in [CDMW18] and [CMW18],
which include an explicit lower bound.

Finally, applying Theorem A to maps between wedges of spheres yields the following:

Corollary 1.2. For every rational number r ≥ 4, there are spaces Xr and Yr such that the
growth of [Xr, Yr] is Θ(Lr).

The spaces Xr and Yr are constructed in [Man20, Thm. 3.2], and it is shown there that the
growth of [Xr, Yr] is asymptotically Ω(Lr−ε) for every ε > 0 and O(Lr). The construction of
efficient maps uses a homotopy between two O(L)-Lipschitz maps between wedges of spheres;
the remark after Example 3.1 indicates that if one had such a homotopy with Lipschitz
constant O(L), then the estimate on growth could be improved to Θ(Lr). The existence of
such homotopies follows from Theorem A.

1.3. Which spaces are scalable? To decide whether a space is scalable, we typically use
condition (i) of Theorem A. To prove that a closed, formal n-manifold Y is not scalable,
we show the following local obstruction. A map φ as in (i) sends the fundamental class
[Y ] ∈ Hn(Y ) to a nonzero (flat) form; in particular, it has a nonzero restriction at some
point p ∈ Y . Evaluating forms at that point, we get a mapping of graded algebras

φp : H
∗(Y ;R) φ−→ Ω∗

♭ (Y ) →
⋀
T ∗
p ,

which we show to be an embedding due to the Poincaré pairing. We discuss several families
of manifolds for which such an embedding is impossible. Conversely, in some cases we are
able to extend a local embedding of H∗(Y ;R) in the exterior algebra on a single tangent
space to an embedding into the entire Ω∗(Y ).

It is tempting to conjecture that this can always be done; that is, that one can always
extend an embedding of H∗(Y ;R) at one point (when Y is a closed manifold) or several
points (otherwise) to an embedding into Ω∗(Y ). This would imply the following additional
criterion for scalability:
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Optimistic conjecture. A space is scalable if and only if it is formal and H∗(Y ;R) embeds
in

⋀∗RN for some finite N .

Scalability would then depend only on real homotopy type—itself an open problem:

Question. By Theorem B(a), scalability is a rational homotopy invariant. Is it also an
R-homotopy invariant?

1.4. Scaling limits. We now discuss techniques used in the proof of Theorem A. The most
novel of these is used in showing (ii) ⇒ (i). Given a sequence of self-maps, we move to the
sequence of induced maps M∗

Y → Ω∗X in the world of rational homotopy. These can be for-
mally scaled so that the corresponding geometric bounds are uniform; then by a compactness
theorem, we can find an accumulation point, although this requires us to expand the space
of forms to one which is complete. This accumulation point is the map of (i). The same
technique, in combination with the algebraic impossibility discussed above, is used to prove
Theorem C.

These proofs are reminiscent of the work of Wenger [Wen11] showing that there are nilpo-
tent groups whose Dehn function is not exactly polynomial. There the role of the limiting
object obtained after scaling is played by the asymptotic cone, and one can use the algebraic
structure of the nilpotent group to prove the nonexistence of a filling with certain bounds.
Since nilpotent groups can also be studied using rational homotopy theory, it would be in-
teresting to get a stronger handle on the formal similarities between these arguments.

1.5. Formal maps to genuine maps. The shadowing principle introduced in [Man19]
allows formal, rational homotopy-theoretic maps and homotopies to be upgraded to actual
maps between spaces with only a linear deterioration in geometric bounds. This finds a
number of applications in this paper; the simplest is (i) ⇒ (ii) of Theorem A.

A more involved application of the shadowing principle is the direction (ii) ⇒ (iii). This is
a generalization of the first author’s argument [Ber18] proving that maps S3 → S2 have linear
nullhomotopies, which we summarize as follows. A map S3 → S2 can be “regularized” via a
short homotopy to have a nice structure: imagine a bowl of spaghetti, in which the sauce is
mapped to the basepoint of S2, while the cross-section of each noodle maps homeomorphically
onto its complement. The construction iteratively “combs” the spaghetti at larger and larger
scales: 2, 4, and so on up to 2log(Lip f). Each step takes twice as long as the previous one, but
there are logarithmically many steps total, making for a linear bound. Finally the last map
is well-organized enough to be nullhomotoped by hand.

Here, we generalize this idea by abstracting the components: a “combed” O(L)-Lipschitz
map is the composition of an O(L/K)-Lipschitz map with a “scaling” self-map as provided by
(ii). The shadowing principle is used to produce both the intermediate maps (by “squinting
at” the original map) and the homotopies between them.

1.6. How to read this paper. The first few sections are intended to provide examples
of most of the phenomena discussed in this paper without requiring knowledge of rational
homotopy theory. Section 2 introduces flat differential forms, which are an important tech-
nical tool throughout. Section 3 proves some simple facts about linear algebra which allow
us to show that certain spaces are not scalable. Section 4 introduces the basic techniques
of quantitative homotopy theory and gives examples of some of the phenomena which occur
in non-scalable spaces, one of which is the proof of Theorem C. In Section 5, we show that
certain high-dimensional manifolds are scalable, beyond the obvious examples of symmetric
spaces and their wedges and products.
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In Section 6, we discuss rational homotopy theory and its relationship to quantitative
results, introducing necessary facts from [Man19] and relating them to flat forms. The re-
maining sections all use this material in an essential way. The reader who is interested in a
slower-paced introduction to the subject is invited to consult [Man19] for a treatment focusing
on quantitative results or a textbook on the subject such as [GM81]. Section 7 discusses an
example which demonstrates that our methods don’t extend straightforwardly to non-formal
spaces. Finally, Section 8 gives the proof of Theorem A and Section 9 gives the proof of
Theorem B; one particularly technical point is banished to an additional final section.

1.7. Acknowledgements. We would like to thank Robert Young, who pointed out the
reference [Wen11], as well as Robin Elliott and Shmuel Weinberger for other useful comments.
We also thank the anonymous referee for a large number of corrections as well as clarifying
questions and remarks which greatly improved the exposition and led us to several discoveries.
The second author was supported by the NSF via the individual grant DMS-2001042.

2. Flat differential forms

For technical reasons we need to introduce the flat differential forms on X, denoted by
Ω∗
♭ (X). These can be defined in several ways:

• As the dual normed space to the space of flat chains on X [Whi57, §IX.7].
• As the set of L∞ forms with L∞ differential, cf. [GKS82, Thm. 1.5]. Here the differ-
ential of a non-smooth form is defined using Stokes’ theorem applied to its action on
currents.

• As the set of (non-smooth) differential forms satisfying certain complicated “niceness”
conditions, see [Whi57, §IX.6].

We also write Ω∗
♭ (X,A) to denote the subalgebra of flat forms that are identically zero on a

subcomplex A.
Flat forms have a number of attractive properties:

Lemma 2.1 (see [GKS82, §3]). The inclusion Ω∗(X) → Ω∗
♭ (X) induces an isomorphism on

cohomology.

Lemma 2.2 (see [GKS82, Theorem 3.6]). Flat forms pull back to flat forms along Lipschitz
maps.

A sequence of flat forms is said to weak♭ converge if its values on every flat chain converge
(this is an instance of weak∗ convergence.)

Lemma 2.3. Weak♭ limits commute with d and ∧.

Proof. The former is true by definition and the latter is shown in [Whi57, §IX.17]. □

Finally, we need a version for flat forms of a result originally stated by Gromov and proved
among other places as [Man19, Lemma 2–2]:

Lemma 2.4 (Coisoperimetric inequality). Let A ⊂ X be a simplicial pair with a linear

metric. For every k there is a constant C(k,X,A) such that every exact form ω ∈ Ωk+1
♭ (X,A)

has a primitive (an α ∈ Ωk
♭ (X,A) satisfying dα = ω) such that ∥α∥∞ ≤ C(k,X,A)∥ω∥∞.

The proof of [Man19, Lemma 2–2] holds verbatim for flat forms once one defines fiberwise
integration for these. This can be done either directly using the L∞ definition, or by defining
a dual notion of shadows of flat chains.
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3. Obstructions to scalability

In order to show that some spaces aren’t scalable we use the following test.

Proposition 3.1. If X is a scalable closed n-manifold, then there is an embedding of graded
algebras

H∗(X;R) ↪→ Λ∗Rn.

Proof. By property (i) of scalable spaces, X admits a presentation of its cohomology algebra
via flat forms:

φ : H∗(X;R) ↪→ Ω∗
♭X.

Instead of dealing with the whole algebra Ω∗
♭X, we focus just on the values of these points

at some point p ∈ X:
φp : α ↦→ φ(α)(p) ∈ Λ(T ∗

pX) ∼= Λ∗Rn.

Since X is a simply connected (and therefore orientable) closed manifold, one can consider
a fundamental class [X] ̸= 0 ∈ Hn(X) and chose the point p from outside of the zero locus
of φ([X]). Then whenever one has a ⌣ b = [X] in cohomology, the value φp(a) has to be
non-zero, since φp(a) ∧ φp(b) = φp([X]) ̸= 0. And since the pairing of H i(X) and Hn−i(X)
is non-singular by Poincaré duality, no a ∈ H i(X) could go to 0 ∈ ΛiT ∗

p under φp, thus φp

provides the required embedding.
There is a slight technical wrinkle here in that flat forms are only defined up to a measure

zero set. To make sense of the previous paragraph, one needs to choose representatives; the
equation φ(a) ∧ φ(b) = φ([X]) will then be true on a set of full measure for each choice of a
and b in a basis for the cohomology. Since φ([X]) is nonzero on a set of positive measure, we
can find a point p at which φp([X]) ̸= 0 and all the equations are satisfied. □

The criterion we just proved allows to easily rule out scalability for some manifolds by
simply comparing the ranks of H∗(X) and Λ(Rn):

Corollary 3.2. If X is a scalable closed n-manifold, then the rank of Hk(X;R) is at most(
n
k

)
. In particular, #r(Sn × Sn) is not scalable for r >

(
2n
n

)
/2, and #r(Sn × Sm) is not

scalable for r >
(
m+n
n

)
.

This restriction only holds for closed manifolds; for example, arbitrary wedges of spheres
and manifold thickenings thereof are scalable.

Next, we point out some slightly more subtle reasons that certain cohomology algebras
cannot be embedded in the alternating algebra

⋀∗ V for any finite-dimensional R-vector
space V .

Theorem 3.3. The graded algebras listed below cannot be embedded in
⋀∗ V for any V = RN .

The degree n of a generator x is shown by a superscript as in x(n).

(i) For all n ≥ 1, the algebra

Ωn,r =
⟨
a
(n)
i , b

(n)
i (1 ≤ i ≤ r) | ∀i, j : aibi = ajbj , aiaj = bibj = 0; ∀i ̸= j : aibj = 0

⟩
for r > 1

2

(
2n
n

)
. (On the other hand, Ωn, 1

2(
2n
n )

embeds in
⋀∗R2n.)

(ii) For all even n ≥ 2, the algebra

Σn,r =
⟨
a
(n)
i (1 ≤ i ≤ r) | ∀i ̸= j : a2i = a2j , aiaj = 0

⟩
for all r > 1

2

(
2n
n

)
. (On the other hand, Σn, 1

2(
2n
n )

embeds in
⋀∗R2n.)
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(iii) For all n ≥ 3, the algebra

Πn,r =
⟨
a
(2)
i (1 ≤ i ≤ r) | ∀i ̸= j : ani = anj , aiaj = 0

⟩
for all r > 1.

Corollary 3.4. The following spaces are not scalable:

(i) pCP 2 # qCP 2 when either p > 3 or q > 3.

(ii) pHP 2 # qHP 2 when either p > 35 or q > 35.

(iii) pOP 2 # qOP 2 when either p > 6435 or q > 6435.
(iv) #rCPn for n ≥ 3 and r > 1.

Proof. In all the cases, as above, we can restrict an embedding in
⋀∗RN to a subspace

R2n ⊂ RN on which the top class is nontrivial. Moreover, this restriction is still an embedding
since each of the algebras satisfies Poincaré duality, in the sense that its multiplication defines
a bilinear pairing between elements of degree k and degree 2n− k.

Case (i): As mentioned above, if r >
(
2n
n

)
/2, the number of n-dimensional generators is

greater than the dimension of
⋀nR2n, and therefore an embedding cannot exist.

Conversely, suppose that r =
(
2n
n

)
/2 and let R2n be generated by x1, . . . , x2n. Then we

can assign the generators to the
(
2n
n

)
degree n monomials generated by dx1, . . . , dx2n, with

ai and bi assigned to complementary choices.

Case (ii): Again suppose R2n is generated by x1, . . . , x2n, and fix a volume form dx1 ∧ · · · ∧
dx2n. Then ∧ induces a symmetric bilinear form on

⋀nR2n of signature
((

2n
n

)
/2,

(
2n
n

)
/2
)
,

with basis vectors

dxI + dxIc and dxI − dxIc

squaring to 1 and −1 respectively. Here I is a choice of n indices between 1 and 2n and Ic

is its positively oriented complement. Then we can assign
(
2n
n

)
/2 generators to forms of the

form dxI + dxIc . On the other hand, if r >
(
2n
n

)
/2, then an assignment of these generators

would imply the existence of a basis in which the bilinear form has Ir as a minor, which
cannot happen.

Case (iii): Assume that n ≥ 3. We would like to show that there cannot be two symplectic
forms on R2n whose wedge product is zero. For some basis x1, . . . , x2n, one of these is

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n

and the other one is η =
∑

i<j wijdxi∧dxj for some coefficients wij . For convenience, denote
w(2i−1)(2i) by ui. Then the condition ω ∧ η = 0 is a system of linear equations of the form

wkℓ = 0, for wkℓ other than ui,

ui + uj = 0, for i ̸= j.

The only potentially non-zero coefficients are ui, but even they vanish if n ⩾ 3: in that case
u1 = −u2 = u3 = −u1, and same goes for any ui. Thus η = 0. □
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4. Phenomena in non-scalable spaces

In this section we give two examples in non-scalable spaces in which a rescaling and con-
vergence argument gives new asymptotic lower bounds on the Lipschitz constant of maps.
The first is a special case of Theorem A but is proven using a more direct method in or-
der to demonstrate the technique. The second is a counterexample to Gromov’s distortion
conjecture.

While these examples can be understood perhaps more elegantly via maps from minimal
models, we have chosen to make them accessible without any knowledge of rational homotopy
theory.

4.1. First examples of Lipschitz bounds. We first go over some methods of establishing
relationships between the Lipschitz constant and homotopy class of a map which date back
to [Gro78].

Proposition 4.1. Let X and Y be Riemannian manifolds with boundary, and suppose that
f : X → Y is an L-Lipschitz map. Then for any flat form ω ∈ Ωn

♭ (Y ),

∥f∗ω∥∞ ≤ Ln∥ω∥∞.

Proof. If f is a smooth map and ω is a smooth form, then ∥f∗ω∥∞ is the supremal value of
f∗ω over n-frames of vectors of length at most 1. The pushforwards of these vectors have
length at most L, so this supremum is bounded above by the supremal value of ω on n-frames
of vectors of length at most L. This is Ln∥ω∥∞.

In the general case, one can think of the ∞-norm as dual to the mass norm on flat chains,
and use the fact that pushing forward by f multiplies the mass of a flat n-chain by at most
Ln [Fed69, 4.1.14]. This duality argument is used in [Whi57, §X.8] for flat forms in open
subsets of Rn, but it works in any space in which the definitions make sense. □

In particular, Proposition 4.1 restricts the action of an L-Lipschitz map on cohomology.
That is the main tool of bounding the homotopy class of an L-Lipschitz map. Here is the
most straightforward application:

Corollary 4.2. If α ∈ πn(Y ) has nontrivial image under the rational Hurewicz homomor-
phism, the distortion of α is O(Ln). That is, the Lipschitz constant of any representative of

kα is Ω(k1/n).

Proof. By assumption, Hn(Y,Q) α∗
−→ Hn(Sn,Q) is nonzero, so there is a form ω ∈ Ω∗(Y ) such

that for every representative f : Sn → Y of α
∫
f∗(ω) = v ̸= 0. Thus, using Proposition 4.1

we can bound the degree k of a representative g of kα by

vol(Sn)∥g∗ω∥∞ ⩽ vol(Sn)(Lip g)n∥ω∥∞. □

For example, when applied to a volume form on Sn, this proposition implies that the
degree of an L-Lipschitz map Sn → Sn is at most Ln. Gromov observed that this estimate
is sharp up to a multiplicative constant:

Proposition 4.3. For every d, there is a map Sn → Sn of degree d whose Lipschitz constant
is C(n)d1/n.

Proof. Let ℓ be smallest integer such that ℓn ≥ d; then ℓ ≤ 2d1/n. Give Sn the metric of
∂[0, 1]n+1, which is bilipschitz to the round metric, and divide one of the faces into ℓn identical
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sub-cubes, ℓ to a side. We map all other faces to a base point, and map d of the sub-cubes
to the sphere by a rescaling of a standard degree 1 map

f : ([0, 1]n, ∂[0, 1]n) → (Sn, pt).

The resulting map has degree d and Lipschitz constant ℓLip f ≤ (2 Lip f)d1/n. □

4.2. The Hopf invariant. Gromov’s next example in [Gro78] concerns maps S3 → S2. The
group π3(S

2) is isomorphic to Z; this isomorphism is realized by the Hopf invariant of a map
f : S3 → S2, which can be computed in several ways:

• Hopf’s original definition: if f is a smooth map, its Hopf invariant is the linking
number between the preimages of any two regular values p and q.

• J. H. C. Whitehead’s formula: if f is a smooth map, its Hopf invariant is given by

Hopf(f) =

∫
S3

α ∧ f∗ω

where ω ∈ Ω2(S2) is any closed form which integrates to 1 and α is any primitive for
f∗ω, which is a closed 2-form in S3 and therefore exact. (Indeed, α can even be a
primitive for f∗ω′, for some ω′ in the same cohomology class as ω.)

• The algebraic topology definition: build a 4-complex Xf by attaching a 4-cell to S2

using f . This has cohomology classes w generating H2(S2) and b generating H4(Xf ).
Then the Hopf invariant of f is the number Hopf(f) such that

w2 = Hopf(f)b.

It is not hard to see the relationships between these definitions. In Whitehead’s formula one
can choose ω and ω′ to be concentrated near p and q, respectively, and then choose α to be
concentrated near an oriented surface filling f−1(q). This shows that Hopf’s definition is a
special case of Whitehead’s.

On the other hand, Whitehead’s formula is related to the algebraic topology definition via
Stokes’ theorem. The attaching map f : S3 → S2 extends to a map F : D4 → Xf , and f

∗ω
extends to a 2-form ω̃ ∈ Ω2(D4). Then by Stokes’ theorem,

Hopf(f) =

∫
S3

α ∧ f∗ω =

∫
D4

ω̃2.

The Hopf map h : S3 → S2 is the map of Hopf invariant 1 which is the attaching map of
the top cell of CP 2. Gromov’s argument shows that the Hopf map S3 → S2 has distortion
Θ(L4). The upper bound uses Whitehead’s formula. By Proposition 4.1, if f is L-Lipschitz,
then ∥f∗d volS2∥∞ ≤ L2, and by Lemma 2.4 we can also choose α so that ∥α∥∞ ≤ CL2.
Therefore

Hopf(f) ≤ vol(S3)∥α∥∞∥f∗d volS2∥∞ ≤ CL4.

Therefore the distortion of the Hopf map, whose Hopf invariant is 1, is O(L4). Conversely,
one can build an O(L)-Lipschitz map with Hopf-invariant L4 by postcomposing h with the
degree L2 map fL : S2 → S2 of Proposition 4.3. For a regular value p, (fLh)

−1(p) consists of
L2 circles, each linking with every other one. This gives a total self-linking number of L4.
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y

x

α

β

α ∧ β

γ

Figure 1. In this example, α and β are 1-forms of the form f(x)dx and
f(y)dy (where f is a bump function), and α ∧ β = dγ.

4.3. Homotopy classes of attaching maps. The examples in this section use generaliza-
tions of the Hopf invariant. We use all three definitions: Whitehead-like homotopy invariants
will be derived using Stokes’ theorem and used to produce geometric bounds. To generate
intuition for these bounds, one should pretend that the forms are Poincaré dual to submani-
folds, as in Hopf’s definition, and measure the thickness with which those submanifolds can
be embedded. We suggest the following dictionary for the reader’s marginal doodles:

• Cup products correspond to intersections.
• Differentials correspond to boundaries of submanifolds (and hence primitives corre-
spond to fillings).

• The ∞-norm of a form corresponds to the thickness of the embedded normal neigh-
borhood of the Poincaré dual submanifold.

See Figure 1 for an illustration.
Let M be a smooth oriented n-manifold which is not a rational homology sphere, that

is the fundamental cohomology class is a nontrivial cup product. This implies that if M is
punctured, the puncture generates a nontrivial class in πn−1, since the cup product structure
distinguishes M from M◦ ∨ Sn. We can also think of this class as the top-dimensional
attaching map in a cell structure for M with one n-cell.

Let ω and η be two forms of complementary dimension on M such that
∫
M ω ∧ η = 1, and

let f : Sn−1 →M (n−1) be a map to the (n− 1)-skeleton of M . Then

I(f) =

∫
Sn−1

α ∧ f∗η,

where α is any primitive for f∗ω, is a homotopy invariant of f . By Stokes’ theorem, if f is
in the homotopy class of N times the attaching map of the top cell, then I(f) = N .

4.4. Nonlinear homotopies.

Theorem 4.4. There is no C > 0 such that every nullhomotopic L-Lipschitz mapping S3 →
#4CP 2 has a CL-Lipschitz nullhomotopy.

We first note that #4CP 2 can be given a CW structure with four 2-cells corresponding
to the copies of CP 1 inside each CP 2, together with one top cell whose attaching map in
π3(

⋁
4 S

2) is the sum of the elements corresponding to the Hopf fibration over each of the
spheres.
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Proof. We start with a specific family of maps fN : S3 →
⋁

4 S
2 ⊂ #4CP 2 which are C0N -

Lipschitz; we will show by way of contradiction that there is no C1 such that each fN extends
to a C1N -Lipschitz map D4 → #4CP 2.

Let Si be a copy of CP 1 inside the ith copy of CP 2. We define the fN so that they map
the outside of four fixed balls B1, . . . , B4 to the basepoint ∗. On each Bi, fN maps to Si with
Hopf invariant N4; specifically, as a composition

B3 Hopf map−−−−−−→ Si
degree N2

−−−−−−→ Si,

where the degree N2 map has homeomorphic preimages of Si \ ∗ lined up in a square grid
within a fixed square inside S2, similar to the construction in Lemma 4.3. The maps fN are
nullhomotopic since they are homotopic in

⋁
4 S

2 to N4 times the attaching map of the 4-cell.
Suppose now that, for some C1, every fN extends to a C1N -Lipschitz map hN : D4 →

#4CP 2. Let αi be forms with disjoint support Poincaré dual to the cycles represented
by Si; then for each i, α2

i is a representative of the fundamental class of #4CP 2, so let
γ1, γ2, γ3 ∈ Ω3(#4CP 2) satisfy dγi = α2

i − α2
4. By Proposition 4.1, hN changes the sup-

norm of k-forms by a factor of at most (C1N)k. In particular, the scaled pullback forms
ai,N = 1

N2h
∗
Nαi and gi,N = 1

N4h
∗
Nγi satisfy:

∥ai,N∥∞ ⩽
1

N2
(C1N)2∥αi∥∞ = C2

1∥αi∥∞

∥gi,N∥∞ ⩽
1

N4
(C1N)3∥γi∥∞

N→∞−−−−→ 0.

Thus, we can chose a subsequence (Nk) so that ai,Nk
and gi,Nk

weak♭-converge to some ai,∞
and 0, respectively. Moreover, since a2i,N − a2i,N = dgi,N and weak♭ limits commute with ∧
and d, this means that a2i,∞ = a24,∞ for each i.

On the other hand, by Stokes’ theorem,∫
D4

(h∗Nαi)
2 =

∫
S3

f∗Nαi ∧ η

where η is a form satisfying dη = f∗Nα1|S3 ; that is, this integral is the Hopf invariant of the
projection of fN to S1. Therefore,

∫
D4 a

2
1,∞ = 1; in particular a21,∞ is nonzero at some point.

This means that we have constructed an embedding H∗(#4CP 2;R) →
⋀∗R4; but by

Corollary 3.4, this cannot exist. □

4.5. Proof of Theorem C.

Theorem 4.5. The distortion of the generator α ∈ π5([(#4CP 2)× S2]◦) is o(L6).

This disproves the strong form of Gromov’s conjecture (that any element with trivial
Hurewicz image in πn(Y ) has distortion Ω(Ln+1)) and in particular shows that not all formal
spaces satisfy the conjecture.

Proof. Write Y = [(#4CP 2) × S2]◦. We use an argument very similar to the previous one.
Take a purported sequence of CN -Lipschitz maps fN : S5 → Y representing N6α.

Let α1, . . . , α4 and β be forms on Y pulled back (along the natural projections) from
standard generators of H2(#4CP 2) and H2(S2) respectively. We may assume that the αi

have disjoint support and that α2
i ∧ β = 0 (for example by pulling back our original choice

along the deformation retraction of Y to its 4-skeleton.) Finally, as before, we define γ1, γ2,
γ3 such that dγi = α2

i − α2
4.
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Again by Proposition 4.1, the CN -Lipschitz maps fN change the sup-norm of k-forms by
a factor of at most (CN)k. That implies that the norms of the forms

1

N2
f∗Nαi,

1

N2
f∗Nβ,

1

N4
f∗Nγi

are bounded, and moreover the 1
N4 f

∗
Nγi converge to 0. So we can choose a sequence of N

such that these forms converge to some α∞
i , β∞, and 0, respectively.

Moreover, the α∞
i are nonzero, by the following reasoning. Let ηN ∈ Ω1(S5) be such that

dηN = f∗Nβ. Then

(4.6)

∫
S5

f∗Nα
2
i ∧ ηN = N6.

This can be seen by Stokes’ theorem, as follows. The αi and β can be extended to forms
α̂i and β̂ over the unpunctured Ŷ = (#4CP 2)× S2, retaining all their properties except the

vanishing of α2
i ∧ β; instead, α̂2

i ∧ β̂ represents the fundamental class of Ŷ . Let hN be a

nullhomotopy of fN in Ŷ ; we know that this nullhomotopy must have degree N6 over the
puncture, and therefore

∫
D6 h

∗
N α̂

2
i ∧ β̂ = N6. By Stokes’ theorem, (4.6) holds.

On the other hand, by the coisoperimetric inequality Lemma 2.4, we can take ηN so
that ∥ηN∥∞ ≲ N2; this allows us to choose a further subsequence in which the N−2ηN
converge weakly to some η∞ with dη∞ = β∞. Moreover, since ∧ commutes with weak limits,∫
S5(α

∞
i )2 ∧ η∞ = 1. Therefore,

∫
S5 |(α∞

i )2|∞d vol ≳ 1, and in particular (α∞
i )2 is nonzero.

In other words, (α∞
i )2 = (α∞

j )2 ̸= 0 for every i and j, but α∞
i ∧ α∞

j = 0 for every i ̸= j.

By Theorem 3.3 (case (ii), n = 2, r = 4) this cannot happen locally at any point. □

5. Examples of scalable spaces

In this section we prove that certain connected sums are in fact scalable by showing that
they have the condition (i) listed in Theorem A. The basic idea is to use Poincaré duality,
building forms supported on the tubular neighborhoods of certain submanifolds.

Theorem 5.1. For any n ≤ m and r ≤
(
n+m−1
n−1

)
the space #r(Sn × Sm) is scalable.

In particular, once we combine this result with Prop. 3.2, we know the exact cutoff for
scalability for spaces of the form #r(Sn×Sn); for m ̸= n there remains a gap. One corollary
is as follows:

Corollary 5.2. The following spaces are scalable:

• pCP 2 # qCP 2, 0 ≤ p, q ≤ 3.
• pHP 2 # qHP 2, 0 ≤ p, q ≤ 35.
• pOP 2 # qOP 2, 0 ≤ p, q ≤ 6435.

Proof. We start by “symmetrizing” #r(Sn×Sn) by adding (n+1)-cells which make the two
factors of each Sn × Sn homotopic to each other. The resulting space Σn,r is still scalable
because the inclusion map

#r(Sn × Sn) ↪→ Σn,r

induces an injection on cohomology, and the corresponding forms are easy to extend over the
additional cells.

Recall that formal spaces, which will be discussed in more detail in the next section, have a
rational homotopy type that is a “formal consequence” of their rational cohomology algebra.
In particular, two formal spaces that have the same rational cohomology algebra are rationally
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equivalent, as is the case for #rCP 2 and Σ2,r. Thus by Theorem B(a), #2CP 2 and #3CP 2

are scalable.
Similarly, CP 2 #CP 2 is formal and has the same rational cohomology algebra as S2 ×S2.

More generally, pCP 2 # qCP 2 is rationally equivalent to #max(p, q)(S2 ×S2) with |q− p| of
the connected summands “symmetrized”.

The quaternionic and octonionic cases are similar. □

On the other hand, our results say nothing about “mixed” connected sums such as (S2 ×
S2)#CP 2, since while their real cohomology algebras are isomorphic to ones we understand,
their rational cohomology algebras are not. If we knew that scalability is a real homotopy
invariant, we would understand it for all simply connected 4-manifolds.

One can make a more general statement than Theorem 5.1 to treat the case of different
summands, although the condition on r becomes a bit convoluted. We say a family I of
subsets I ⊂ {0, 1, . . . , k} is intersection-complete if for any I, J ∈ I all four intersections of I
or Ic with J or Jc are non-empty.

Theorem 5.3. For any intersection-complete family I of subsets I ⊂ {0, 1, . . . , k}, the fol-
lowing space is scalable:

XI := #I∈I
(
S|I| × Sk+1−|I|).

We use the notation SI and SIc for the two spheres in the summand corresponding to I.
Theorem 5.1 is recovered from this statement by choosing as I any subcollection of the(

n+m−1
n−1

)
subsets of {0, . . . , n +m − 1} of cardinality n that contain 0. This, together with

the inequality n ≤ m, ensures that the family is intersection-complete.

Proof. We start by explaining why the combinatorial formulation makes sense. To show that
condition (i) from Theorem A holds we need to present the cohomology ring H∗(XI) by
forms ω ∈ Ω∗

♭ (XI). The space XI has a simple cell decomposition: it is a disk Dk+1 attached
to a wedge of spheres

⋁
I SI by the sum of Whitehead products [idSI

, idSIc
].

So we start building these forms near the center of the disk Dk+1 ⊂ Rk+1 by sending the
generator of H |I|(SI) to the form ωI :=

⋀
i∈I dxi, for each I ∈ I ∪Ic (where Ic represents the

set of all complements of elements of I, not the complement of I). The fact that the family
is intersection-complete then implies that any two such forms have a common dxi and hence
multiply to 0, unless they are ωI ∧ ωIc =

⋀
i dxi. This way we get a multiplicative structure

isomorphic to that of H∗(XI).
Now it remains to extend the forms ωI from a region [−1, 1]k+1 ⊊ Dk+1 to the rest of the

disk so that on the boundary ∂Dk+1 they turn out to be pullbacks along the attaching map
of the volume forms on the spheres SI . We summarize this in the following lemma, which we
take the rest of the section to prove.

Lemma 5.4. For any intersection-complete family I of subsets of {0, . . . , k}, the forms ωI ,
I ∈ I ∪ Ic, can be extended to closed forms on Dk+1 so that

ωI |∂Dk+1 = f∗αI ,

where the forms αI are the volume forms of

SI ⊂
⋁
I∈I

(SI ∨ SIc) ⊂ XI ,

and f is the previously mentioned attaching map, and such that the product of the forms is
zero outside [−1, 1]k+1. □
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5.1. Proof of lemma 5.4. Let’s overview the rough idea of the construction. First we
extend the forms ωI from the cube [−1, 1]k+1 to a much larger cube via the same formula

ωI =
⋀
i∈I

χxi∈[−1,1]dxi.

In other words, on any large sphere around the origin, ωIc is concentrated near, and Poincaré
dual to, the coordinate sphere

S(I) := {x ∈ Sk | xi = 0, i ∈ Ic}.

Taking I to be the closure of I ∪ Ic under intersections, the coordinate spheres S(J) for
J ∈ I \ ∅ are the closed strata of a stratification of Sk. (By a stratification here, we mean
a collection of submanifolds X(I) ⊂ X associated to elements I of a semilattice I, where
X(I) ∩ X(J) = X(I ∩ J), and with conditions on the neighborhood of a point of X(I).
We don’t need to make the concept completely precise because the general notion of such a
stratification is only used to build intuition.)

Outside this cube, we will construct forms that are again more or less Poincaré dual
to closed submanifolds in a stratification of an annular region in Dk+1, which we equate to
Sk× [0, T ]. This stratification restricts to the stratification by coordinate spheres on Sk×{0},
and the strata indexed by all J outside of I ∪ Ic have trivial intersection with Sk × {T}.

We describe this as a kind of stratified framed bordism, that is we examine the intersections
of the strata with concentric spheres centered at the origin and describe their evolution as
“time”, i.e. radius, increases. Over time, the strata are “peeled off” one by one, starting
with the maximal ones. These maximal strata are stored aside after being detached, while
all subsequent lower ones are peeled off and then collapsed.

Each time a stratum departs, however, it leaves behind a small part of itself, concentated
near and held in place by lower strata. We reinterpret the leftover pieces as data associated
to fibers over the lower strata: here we actually keep track of the forms rather than the
strata themselves. Luckily, the exact shapes that are added this way don’t matter, as all the
lower-dimensional strata eventually collapse. But we do use the fact that they are globally
almost products, in a sense which we now describe.

Definition. A thickening of the stratification by coordinate spheres described above is de-
termined by a choice of numbers 1 < εI ≪ Rad(Sk) for every I ∈ I which satisfy εJ ≫ εI
whenever J ⊂ I. Then the (closed) membrane SI is defined to be the εI -neighborhood of the
coordinate sphere S(I). The open membrane S◦

I is SI \
⋃
J⊊I

SJ .

To start, we must pick the initial εI ’s small enough that we can pass to significantly thicker
membranes a number of times over the course of the argument.

The membrane SI is canonically diffeomorphic to S(I)×Dk+1−|I|, with coordinates (x, r, θ)
representing the point at distance r along the geodesic from x ∈ S(I) to θ ∈ S(Ic). We say
that a form ω agrees with our thickening if on any open membrane

S◦
I
∼= S(I)×D(εI) \

⋃
J⊊I

SJ

it depends only on the D(εI) coordinates, i.e., ω is the pullback of some ωD ∈ Ω∗(D(εI))
under the projection to the second factor.

This notion of agreement is crucial for the description of the construction, so it will be
maintained throughout the rest of the section.
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Figure 2. An example of pinching off a 2-membrane (gray) with 1- and 0-
membranes (black) standing still. The 2-membrane leaves behind some tubes
that are inherited by the lower membranes and are incorporated into them.

As the procedure consists of peeling off the membranes, we need to specify a way to detach
them.

Definition. Given a thickening and closed forms ωJ,0 which agree with it, a pinching off of
a membrane SI in the direction of pI ∈ S(Ic) is a new thickening (with new forms ωJ,1) such
that:

(1) All the change in the forms is supported in a small neighborhood of SI , and outside
all SJ for J ̸= I.

(2) The membrane SI is replaced by a parallel thickened sphere S′
I which is shifted slightly

in the direction of pI and doesn’t cross any other membranes. This carries forms that
agree with its product structure. The new thickening does not have a membrane
corresponding to I.

(3) For J ⊂ I, the SJ are thickened in a consistent way, and the forms are changed in
such a way that they agree with the new thickening; for other J , the thickening does
not change.

(4) The forms ωJ,0 and ωJ,1 extend to closed forms ωJ,t ∈ Ω∗(Sk × [0, 1]) whose pairwise
products are still zero.

Lemma 5.5. Let J be a set of subsets of [0, . . . , k] which is closed under intersection. For
a sufficiently thin thickening of the stratification of Sk by coordinate spheres S(J), J ∈ J ,
any maximal membrane SI can be pinched off in any direction pI such that the shift of SI in
that direction wouldn’t intersect other membranes.

This is the main technical lemma, but its proof is just a wordy description of Figure 2. So
we put it in a separate section 5.2. With this tool at hand, we are ready to prove Lemma 5.4.

The forms on the cylinder Sk × [0, T ] are constructed on cylinders Sk × [t, t+1], one after
the other, half of which are pinch-off cylinders.

First we pinch off the maximal membranes. Since I is intersection-complete, no two sets
of indices in I ∪ Ic are contained in one another. Therefore the supports of the forms ωI are
precisely the maximal membranes. Given a maximal membrane SI , pick a point pI ∈ S(Ic)
that is far away from any lower membranes. That ensures that the geodesic disk D with
center pI and boundary S(I) only intersects the open membranes S◦

J⊆I and S◦
Ic . So we pinch

off SI in the direction of pI and contract it along D to be a tight loop around pI . Then we
pinch off SIc in a similar way and contract it along an analogous disk to be tightly linked
with the new SI .
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After every maximal membrane is dealt with in this way, we have a set of Whitehead-linked
spheres, as required by the conclusion of the lemma. We move them all to a small ball so they
can be ignored for the rest of the construction; it remains to kill the remaining membranes.

This is done inductively, from the top down. Any now-maximal membrane SI can be
pinched off in the direction of the pJ that was picked earlier for one of the original maximal
membranes SJ , J ⊃ I. The geodesic disk D with center pJ and boundary S(I) only intersects
membranes near its boundary, since we have already gotten rid of S◦

Jc . Thus after pinching

off, we can extend the resulting sphere to a disk in Sk × [t, t + 1] which does not intersect
any other membranes. The normal bundle extends to the trivial bundle on this disk, so we
can extend the forms to ones on Sk × [t, t + 1] which agree with this bundle structure. On
the remaining thickened stratification, the forms do not change on this interval.

After collapsing all the lower-order membranes, all that remains is the linked spheres, as
required by the statement of the lemma.

5.2. Pinch-off lemma. It remains to prove Lemma 5.5. Recall that the aim is to pinch off a
maximal membrane SI so that it splits into a parallel disjoint sphere S′

I , plus some leftovers
that are brushed under the set

⋃
J⊊I SJ . First, observe that on a neighborhood K of SI

(which includes S′
I) we can choose coordinates

(5.6) S(I)×Dk−|I| × [−ε, δ + ε],

which preserve trivializations, such that SI ⊂ S(I)×Dk−|I| × [−ε, ε] and such that the last
coordinate represents roughly the direction from S(I) to pI , which is angled away from other
membranes intersecting S(I). In particular, we can arrange it so that S′

I is just SI shifted

by δ in the direction of the last coordinate, and S(I)×Dk−|I| × [ε, δ + ε] does not intersect
any membranes.

We now define forms on K × [0, 1] which extend the ωJ on K ×{0} and are time-invariant
on the SJ ′ , J ′ ⊊ I. Recall that on S◦

I , the ωJ are independent of the sphere coordinate,

that is ωJ |S◦
I
is the pullback of a compactly supported form αJ ∈ Ω∗(Dk+1−|I|) along the

projection to the disk coordinate. Let K◦ = K \
⋃

J ′⊊I SJ ′ . We define ωJ on K◦ × [0, 1] via

ωJ = (π × τ)∗αJ , where π(x, y, r, t) = y is the projection to Dk−|I| and

τ : S(I)×Dk−|I| × [−ε, δ + ε]× [0, 1] → [−ε, δ + ε]

is a Lipschitz function satisfying:

(a) τ(x, y, r, 0) = r for all x and y (so that ωJ |K×{0} is as desired).
(b) For t ∈ (0, 1), τ(x, y, r, t) interpolates linearly between r and τ(x, y, r, 1).
(c) τ(x, y, r, 1) depends only on r and the distance d from x to the set

⋃
J ′⊊I S(J

′). Moreover,
as a function of r and d it is the piecewise linear function described by Figure 3.

The membrane pinched off in Figure 2 is the preimage under τ of a small neighborhood of
zero. In Figure 3, we see that at time t = 1, this preimage splits into a shifted copy S′

I and a
bubble surrounding the lower strata. We expand all the SJ , J ⊊ I, so that they have radius
between 3ε and δ − ε and therefore encompass this bubble. This can be done as long as δ is
sufficiently larger than ε.

We argue that the new forms at time 1 agree with this new thickening. Indeed, if (x, y, r)
is contained in the newly thickened S◦

J , then the closest point to x ∈ S(I) in the lower strata
is in some S(J ′) such that J ′ ⊇ J . Then the values of the forms at (x, y, r, 1) only depend
on the distance from x to this point and on y and r. All of these depend only on the fiber
coordinate in SJ . On the other hand, outside all of the SJ , the forms are zero except on S′

I .
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⋃
J ′⊊I SJ ′ fits in here

(and τ is independent of t
on this subdomain)

d = ε

d = 0

r = −ε
ε

3ε

δ − ε

r = δ + ε

Figure 3. A graph of τ(x, y, r, 1) as a function of r and d. It is not to scale,
but faithfully shows the linear pieces. The range is [−ε, ε].

Finally, on S′
I , τ is independent of x, and therefore ωI agrees with the product structure

(5.6).

6. Rational homotopy theory

In this section we introduce Sullivan’s formulation of rational homotopy theory using dif-
ferential forms, emphasizing the quantitative aspects outlined in [Man19]. We also explain
why these results apply to flat as well as smooth forms. We recommend the book by Griffiths
and Morgan [GM81] for a more thorough introduction to the algebraic aspects.

The basic category of Sullivan’s theory is that of differential graded algebras (DGAs). A
DGA is a chain complex over a field F (in our case, always Q or R) equipped with a graded-
commutative multiplication satisfying the (graded) Leibniz rule. The prototypical examples
are:

• The smooth forms Ω∗(X) on a smooth manifold X, or the simplexwise smooth forms
on a simplicial complex.

• Sullivan’s minimal DGA M∗
Y (F) for a simply connected space Y , which is a free

algebra generated in degree n by the indecomposable elements Vn = Hom(πn(Y );F)
and with a differential determined by the k-invariants in the Postnikov tower of Y .
We will write M∗

Y to mean M∗
Y (R).

The cohomology of a DGA is the cohomology of the underlying chain complex. The correct
notion of an equivalence between DGAs is a quasi-isomorphism, a map which induces an
isomorphism on cohomology. In particular, for every simply connected manifold or simplicial
complex Y there is a quasi-isomorphism, which we call the minimal model,

mY : M∗
Y → Ω∗(Y ),

constructed by induction on the indecomposable elements of M∗
Y .

When Y is compact, Ω∗(Y ) is finite-dimensional and M∗
Y is finitely generated in every

degree; so a reductionist perspective is that mY is simply a choice of a finite number of forms
on Y satisfying certain relations. Nevertheless, the perspective of shifting between maps
f : X → Y and homomorphisms φ : M∗

Y → Ω∗(X) via the correspondence

f ↦→ f∗mY
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turns out to be quite powerful. We think of homomorphisms M∗
Y → Ω∗(X), most of which

are not images of genuine maps under this correspondence, as “formal” maps from X to Y .

6.1. Flat forms and minimal models. Here we demonstrate the advantages of using flat
forms Ω∗

♭ (X) rather than smooth forms to define our minimal models. First, Lemmas 2.1
and 2.2 imply the following:

• Any minimal model for Ω∗(X) is also a minimal model for Ω∗
♭ (X).

• Any minimal model mY : M∗
Y → Ω∗

♭ (Y ) induces an algebraicization map f ↦→ f∗mY

sending

{Lipschitz maps X → Y } → Hom(M∗
Y ,Ω

∗
♭ (X)).

Given finite complexes X and Y , we define a weak♭ topology on Hom(M∗
Y ,Ω

∗
♭ (X)) gener-

ated by the topologies on the restrictions to each indecomposable. In other words, a sequence
of maps converges if and only if it converges on every indecomposable.

Lemma 6.1. A sequence of maps in Hom(M∗
Y ,Ω

∗
♭ (X)) whose L∞ norm on each indecom-

posable is bounded has a weak♭-convergent subsequence.

Proof. We note that this also bounds the flat norm on each indecomposable, since the differ-
ential is generated by indecomposables in lower degrees. By the Banach–Alaoglu theorem,
the restriction of the sequence to every indecomposable has a weak♭-convergent subsequence.
Since we can choose a finite basis of indecomposables of degree ≤ dimX, this gives us a sub-
sequence which weak♭-converges on all indecomposables. By Lemma 2.3, this subsequence in
fact converges to a DGA homomorphism. □

Together with Lemma 2.4, these observations are enough to show that the machinery of
[Man19] still works when we substitute flat forms for smooth ones.

6.2. Obstruction theory. Classical obstruction theory describes the obstruction to con-
structing a lifting-extension

A →→↙ ↖

↓↓

Y

p

↓↓

X →→

↗↗

B,

where p : Y → B is a principal fibration with fiber K(π, n): this obstruction lies in
Hn+1(X,A;π) and is obtained by pulling back the k-invariant of the fibration, which lies
in Hn+1(B;π). In particular, it is often fruitful to take Y and B to be adjacent stages of the
Postnikov tower of a space.

A similar obstruction theory for minimal DGAs is described in [GM81, §10]. In this
case, the role of a Postnikov stage of M∗

Y is played by the sub-DGA M∗
Y (k) generated by

indecomposables of degree ≤ k. More generally, the obstruction theory can be stated for
elementary extensions A → A⟨V ⟩, where V is a vector space of indecomposables in degree k
with differentials in An+1.

To give the precise statements, we must introduce other ideas. First define homotopy of
DGA homomorphisms as follows: f, g : A → B are homotopic if there is a homomorphism

H : A → B ⊗ R⟨t, dt⟩,
where t is of degree zero, such that H| t=0

dt=0
= f and H| t=1

dt=0
= g. We think of R⟨t, dt⟩ as an

algebraic model for the unit interval and this notion as an abstraction of the map induced
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by an ordinary smooth homotopy. In particular, it defines an equivalence relation [GM81,
Cor. 10.7]. Moreover, for any piecewise smooth space X there is a map

ρ : Ω∗
♭ (X)⊗ R⟨t, dt⟩ → Ω∗

♭ (X × [0, 1])

given by “realizing” this interval, that is, interpreting the t and dt the way one would as
forms on the interval. When the target is a space Ω∗

♭ (X) of flat forms, we can obtain the
same homotopy theory by replacing DGA homotopies with “formal” homotopies with images
in Ω∗

♭ (X× [0, T ]). We often use these two notions of homotopy interchangeably in this paper.
To help define concrete DGA homotopies, we introduce some extra notation. For any DGA

A, define an operator
∫ t
0 : A⊗ R⟨t, dt⟩ → A⊗ R⟨t, dt⟩ by∫ t
0 a⊗ ti = 0,

∫ t
0 a⊗ tidt = (−1)deg aa⊗ ti+1

i+ 1

and an operator
∫ 1
0 : A⊗ R⟨t, dt⟩ → A by∫ 1

0 a⊗ ti = 0,
∫ 1
0 a⊗ tidt = (−1)deg a

a

i+ 1
.

These provide a formal analogue of fiberwise integration; in particular, they satisfy the iden-
tities

d
(∫ t

0u
)
+
∫ t
0du = u− u| t=0

dt=0
⊗ 1(6.2)

d
(∫ 1

0 u
)
+
∫ 1
0 du = u| t=1

dt=0
− u| t=0

dt=0
.(6.3)

The relative cohomology of a DGA homomorphism φ : A → B is the cohomology of the
cochain complex

Cn(φ) = An ⊕ Bn−1

with the differential given by d(a, b) = (da, φ(a) − db). This cohomology fits, as expected,
into an exact sequence involving H∗(A) and H∗(B). Given a coefficient vector space V ,
H∗(C∗, V ) is the cohomology of the cochain complex Hom(V,C∗).

Now we state the main lemma of obstruction theory, which states the conditions under
which a map can be extended over an elementary extension.

Proposition 6.4 (10.4 and 10.5 in [GM81]). Let A⟨V ⟩ be an n-dimensional elementary
extension of a DGA A. Suppose we have a diagram of DGAs

A
f
→→↙ ↖

↓↓

B

h
↓↓

A⟨V ⟩
g
→→ C

with g|A ≃ hf by a homotopy H : A → C ⊗R⟨t, dt⟩. Then the map O : V → Bn+1 ⊕Cn given
by

O(v) =
(
f(dv), g(v) +

∫ 1
0 H(dv)

)
defines an obstruction class [O] ∈ Hn+1(h : B → C;V ) to producing an extension f̃ : A⟨V ⟩ →
B of f with g ≃ h ◦ f̃ via a homotopy H̃ extending H.

Moreover, if h is surjective, then we can choose H to be a constant homotopy.
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When the obstruction vanishes, there are maps (b, c) : V → Bn⊕Cn−1 such that d(b, c) = O,
that is,

db(v) = f(dv)

dc(v) = h ◦ b(v)− g(v)−
∫ 1
0 H(dv).

Then for v ∈ V we can set f̃(v) = b(v) and

(6.5) H̃(v) = g(v) + d(c(v)⊗ t) +
∫ t
0 H(dv).

This gives a specific formula for the extension.

6.3. Homotopy groups. One important application of the obstruction theory above is to
make explicit the automorphism Vn ∼= Hom(πn(Y ),R); this approach was pioneered by Sul-
livan [Sul77, §11]. There are several ways of doing this.

First, suppose that h : B → C is a minimal model mSn : MSn → Ω∗
♭ (S

n). Given a
Lipschitz map f : Sn → Y , we would like to understand its rational homotopy class. By
repeatedly applying Proposition 6.4 to f∗mY , since mX is a quasi-isomorphism, we obtain a
map φ : M∗

Y → M∗
Sn . In particular, this restricts to a homomorphism Vn → R representing

an element of πn(Y )⊗R. Since φ|M∗
Y (n−1) is the zero map, we can equivalently think of the

resulting homotopy as a partial nullhomotopy of f∗mY which is obstructed in degree n.
Alternatively, we can take h : B → C to be the restriction homomorphism Ω∗

♭ (D
n+1) →

Ω∗
♭ (S

n). Again applying Proposition 6.4 to f∗mY , since the restriction homomorphism is

surjective, we obtain a formal extension φ : M∗
Y (n−1) → Ω∗

♭ (D
n+1) of f∗mY . At that point,

we obtain an obstruction in Hom(Vn, H
n+1(Dn+1, Sn;R)) to extending to Vn. This again

represents an element of πn(Y )⊗ R.
Both of these constructions are used in quantitative arguments further down. Quantitative

arguments of this type were first given by Gromov in [Gro98, Ch. 7].

6.4. The shadowing principle. The quantitative obstruction theory in [Man19] is built
upon a combination of the coisoperimetric Lemma 2.4 and algebraic properties of DGAs.
Thus all of the results there are true, mutatis mutandis, after expanding the universe from
smooth to flat forms. In particular, given a homomorphism M∗

Y → Ω∗
♭ (X), one can produce

a nearby genuine map X → Y whose Lipschitz constant depends on geometric properties of
the homomorphism.

To state this precisely, we first introduce more definitions. Let X and Y be finite simplicial
complexes or compact Riemannian manifolds such that Y is simply connected and has a
minimal model mY : M∗

Y → Ω∗
♭Y . Fix norms on the finite-dimensional vector spaces Vk of

degree k indecomposables of M∗
Y ; then for homomorphisms φ : M∗

Y → Ω∗
♭ (X) we define the

formal dilatation
Dil(φ) = max

2≤k≤dimX
∥φ|Vk

∥1/kop ,

where we use the L∞ norm on Ω∗
♭ (X). Notice that if f : X → Y is an L-Lipschitz map, then

Dil(f∗mY ) ≤ CL, where the exact constant depends on the dimension of X, the minimal
model on Y , and the norms. Thus the dilatation is an algebraic analogue of the Lipschitz
constant.

Given a formal homotopy
Φ : M∗

Y → Ω∗
♭ (X × [0, T ]),

we can define the dilatation DilT (Φ) in a similar way. The subscript indicates that we can
always rescale Φ to spread over a smaller or larger interval, changing the dilatation; this is
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a formal analogue of defining separate Lipschitz constants in the time and space direction,
although in the DGA world they are not so easily separable.

Now we can state some results from [Man19].

Theorem 6.6 (A special case of the shadowing principle, [Man19, Thm. 4–1]). Let φ :
M∗

Y → Ω∗
♭ (X) be a homomorphism with Dil(φ) ≤ L which is formally homotopic to f∗mY

for some f : X → Y . Then f is homotopic to a g : X → Y which is C(X,Y )(L+1)-Lipschitz
and such that g∗mY is homotopic to φ via a homotopy Φ with Dil1/L(Φ) ≤ C(X,Y )(L+ 1).

In other words, one can produce a genuine map by a small formal deformation of φ. We
also present one relative version of this result:

Theorem 6.7 (Cf. [Man19, Thm. 5–7]). Let f, g : X → Y be two nullhomotopic L-Lipschitz
maps and suppose that f∗mY and g∗mY are formally homotopic via a homotopy Φ : M∗

Y →
Ω∗
♭ (X × [0, T ]) with DilT (Φ) ≤ L. Then there is a C(X,Y )(L + 1)-Lipschitz homotopy F :

X × [0, T ] → Y between f and g.

It is important for this result that the maps be nullhomotopic, rather than just in the same
homotopy class. This is because we did not require our formal homotopy to be in the relative
homotopy class of a genuine homotopy. In the zero homotopy class, one can always remedy
this by a small modification, but in general the minimal size of the modification may depend
in an opaque way on the homotopy class.

6.5. The depth filtration. Any minimal DGA has a filtration

0 ⊆ U0 ⊆ U1 ⊆ U2 ⊆ · · ·
defined inductively as follows:

• U0 is generated by all indecomposables with zero differential.
• The product respects the filtration: if u1 ∈ Ui and u2 ∈ Uj , then u1u2 ∈ Ui+j .
• Ui contains all indecomposables whose differentials are in Ui−1.

This filtration is canonical once one fixes the vector spaces of indecomposables. We say that
an element has depth i if it is contained in Ui \ Ui−1.

The filtration {Ui} also induces a dual filtration

π∗(Y )⊗ F = Λ0 ⊇ Λ1 ⊇ Λ2 ⊇ · · ·
via the pairing between indecomposables in degree n and πn(Y ): α ∈ Λi ∩ (πn(Y )⊗ F) if for
every j < i, Un∩Vj pairs trivially with α. In particular, Λ1 is the kernel of the Hurewicz map
with coefficients in F. This leads to a neat formulation of Gromov’s distortion conjecture as
discussed in the introduction:

Definition. We say that πn(Y ) satisfies Gromov’s distortion conjecture if any element of
πn(Y ) ∩ (Λk \ Λk+1) has distortion Θ(Ln+k).

The Leibniz rule tells us that if x ∈ Ui, then dx ∈ Ui−1. By induction on i one readily sees:

Proposition 6.8. Every DGA homomorphism respects the depth filtration, that is it sends
Ui into Ui. Consequently, for every map between simply connected spaces, the induced homo-
morphism on rational homotopy groups respects the filtration {Λi}.

The depth filtration allows us to define an alternate notion of “size” for homomorphisms
φ : M∗

Y → Ω∗X, where Y is compact and simply connected and X is any metric complex.
Like dilatation above, this notion depends on the choice of norms on the spaces Vk, but
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this affects it only up to a constant depending on the dimension of X, since each Vk is
finite-dimensional. Specifically, we define the U -dilatation of φ to be

DilU (φ) := max
2≤n≤dimX

0≤k<n

∥φ|Vn∩Uk
∥

1
n+k
op ;

this is bounded above by dilatation but has significant advantages in that bounds on U -
dilatation are often easy to preserve via inductive obstruction-theoretic constructions.

Using this formalism, we can show that the upper bound in Gromov’s distortion conjecture
holds in all cases:

Proposition 6.9. For any simply connected Y , every element of πn(Y ) ∩ (Λk \ Λk+1) has
distortion O(Ln+k).

Thus Gromov’s distortion conjecture is satisfied if this bound is sharp. We will see that
this is the case for scalable spaces.

In effect, this estimate is obtained by keeping track of the size of the formal nullhomotopy
produced in §6.3. We prove it as a corollary of a useful, albeit technical, proposition for all
maps between simply connected spaces:

Proposition 6.10. Let X and Y be two simply connected finite complexes with minimal
models mX : M∗

X → Ω∗
♭ (X) and mY : M∗

Y → Ω∗
♭ (Y ). Then for every L-Lipschitz map

f : X → Y , there is a map φ : M∗
Y → M∗

X such that f∗mY ≃ mXφ and

DilU (mXφ) ≤ C(X,Y )L.

Proof of Prop. 6.9. Let f : Sn → Y be an L-Lipschitz map. Then, as described in §6.3,
the corresponding DGA homomorphism φ : M∗

Y → M∗
Sn constructed in Proposition 6.10

restricts to a homomorphism φ0 : Vn → R which represents the pairing between Vn and [f ].
In particular, if f is a representative of Nα ∈ πn(Y )∩ (Λk \Λk+1), then there is some element
x ∈ Vn ∩ Uk such that φ0(x) = N . Therefore

N ≤ DilU (φ)n+k|x| ≤ C(α)Ln+k.

In other words, the distortion of α is O(Ln+k). □

Proof of Prop. 6.10. Since mX is a quasi-isomorphism, there is a map φ which makes the
diagram

M∗
Y

φ
→→

mY

↓↓

M∗
X

mX

↓↓

Ω∗
♭ (Y )

f∗
→→ Ω∗

♭ (X)

commute up to homotopy; we would like to build such a φ with controlled U -dilatation. In
the process, we will also need to control DilU1 (Φ), where

Φ : M∗
Y → Ω∗

♭ (X)× R⟨t, dt⟩

is the formal homotopy between f∗mY and mXφ.
We start by choosing a linear map d−1 : dM∗

X → M∗
X which gives a choice of primitive

for each coboundary in M∗
X . We also choose a linear map r : H∗(X;R) → M∗

X fixing
representatives for every cohomology class. Since in every degree both the cohomology and
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the vector space of coboundaries are finite-dimensional, there are constants Cn, depending
on the choices, such that for every b ∈ dMn

X ,

∥mXd
−1b∥∞ ≤ Cn∥mXb∥∞,

and for every a ∈ Hn(X;Q),

∥mXr(a)∥∞ ≤ Cn inf{∥ω∥∞ : ω ∈ Ωn
♭ (X) and [ω] = a}.

We construct φ and Φ by induction on the stages of M∗
Y , using Proposition 6.4. Suppose

we have built φn : M∗
Y (n) → M∗

X and a homotopy

Φn : M∗
Y (n) → Ω∗

♭ (X)× R⟨t, dt⟩

between f∗mY |M∗
Y (n) and mXφn with the right estimates on dilatation. We would like to

extend both to Vn+1, the vector space of (n + 1)-dimensional indecomposables of Y . Fix a
basis {vi} for Vn+1 which respects the depth filtration, that is, each Uℓ ∩ Vn+1 is spanned by
a subbasis. For each vi ∈ Uℓ \ Uℓ−1,

ζ(vi) = mXd
−1φn(dvi)− f∗mY (vi)−

∫ 1
0 Φn(dvi)

is a closed form in Ωn+1
♭ (X). Its cohomology class has a representative a(vi) ∈ Hn+1(X;R).

By Proposition 2.4, we can choose a primitive σ(vi) for ζ(vi)−mXr(a(vi)) with

∥σ(vi)∥∞ ≤ C(n, Y )(1 + Cn)∥ζ(vi)∥∞.

In turn,

∥ζ(vi)∥∞ ≤ CnDilU (φn)
(n+2)+(ℓ−1) + C(Y )Ln+1 +DilU1 (Φ)

(n+2)+(ℓ−1).

Then, using (6.5), we choose

φn+1(vi) = mXd
−1φn(dvi)−mXr(a(vi))

Φn+1(vi) = f∗mY (vi) + d(σ(vi)⊗ t) +
∫ t
0Φn(dvi).

As desired, ∥φn+1(vi)∥∞ and ∥Φn+1(vi)∥∞ are both bounded by C(X,Y )Ln+ℓ+1. □

Plugging the same estimates into the proof of [Man19, Prop. 3–9] yields an additional
technical lemma:

Proposition 6.11. Suppose that Φk : M∗
Y (k) → Ω∗

♭ (X) ⊗ R⟨t, dt⟩ is a partially defined

homotopy between φ,ψ : M∗
Y → Ω∗

♭ (X), and suppose that DilU (φ), DilU (ψ), and DilU1 (Φk)
are all bounded by L > 0.

(i) The obstruction to extending Φk to a homotopy

Φk+1 : M∗
Y (k + 1) → Ω∗X ⊗ R⟨t, dt⟩

is a class in Hk(X;Vk+1) represented by a cochain whose restriction to Vk+1 ∩ Ui has
operator norm bounded by C(k + 1, Y )Lk+1+i.

(ii) If this obstruction class vanishes, then we can choose Φk+1 so that DilU1 (Φk+1) ≤
C(k, Y )L.
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6.6. Formal spaces. Many of the spaces we will be discussing in this paper are formal in
the sense of Sullivan. A space Y is formal if Ω∗Y is quasi-isomorphic to the cohomology
ring H∗(Y ;R), viewed as a DGA with zero differential. In other words, there is a map
M∗

Y → H∗(Y ;R) which is a quasi-isomorphism. (By [Sul77, Thm. 12.1], the definition using
any other ground field F ⊇ Q is equivalent.) More generally, we say a DGA is formal if it is
quasi-isomorphic to its cohomology ring.

Another way of saying this from the point of view of minimal models is this. Formal spaces
are those whose cohomology is a quotient of

⋀
U0, where U0 is the subspace of indecompos-

ables in the minimal model which have zero differential. In other words, a minimal DGA is
non-formal if and only if it has a cohomology class which is not a linear combination of cup
products of elements of U0.

It follows that, while many rational homotopy types may have the same cohomology ring,
there is exactly one formal one, and its minimal DGA can be constructed “formally” from the
cohomology ring: at stage k, one adds generators that kill the relative (k + 1)st cohomology
of the map M∗

Y (k − 1)(F) → H∗(Y ;F). This is the genesis of the term.
In fact, Halperin and Stasheff showed [HS79, §3] that for a formal space, one can choose the

vector space of indecomposable generators2 so that the depth filtration {Ui} can be refined,
non-canonically, to a bigrading M∗

Y =
⋀

iWi, where

(Ui ∩ indecomposables) =Wi ⊕ (Ui−1 ∩ indecomposables).

Spaces known to be formal include the simply connected symmetric spaces [Sul77] and
Kähler manifolds [DGMS75], but there are many other examples, some of which are given in
Table 1.

An important alternate characterization of formal spaces is that they are those Y for
which the grading automorphisms ρt : H∗(Y ;F) → H∗(Y ;F) taking w ↦→ tdegww lift to
automorphisms of the minimal model [Sul77, Thm. 12.7]. This lift is homotopically nonunique
(for example, maps S2∨S3 → S2∨S3 are characterized not only by the degrees on S2 and S3

but also by the Hopf invariant of the restriction-projection S3 → S2) but all such lifts share

certain properties. In particular, all of them send Ui to itself; moreover, given w ∈Wi∩Mj
Y ,

they send w ↦→ ti+jw + w′ where w′ ∈ Ui−1.

Given a choice of Wi, one choice of lift sends every w ∈ Wi ∩Mj
Y to ti+jw. We refer to

this as the automorphism associated to the bigrading {Wi}.
Similarly, after fixing a quasi-isomorphism hY : M∗

Y (Q) → H∗(Y ;Q), the composition
ρthY lifts to a canonical choice of automorphism of the minimal model, giving a “one-
parameter family” of such automorphisms. It turns out that we can always find enough
genuine maps Y → Y implementing this choice:

Theorem 6.12 ([Man21, Corollary 1.1]). Let Y be a formal finite CW complex. There is an
integer t0 ≥ 1, such that for every z ∈ Z, ρzt0hY is realized by a genuine map Y → Y .

A result of this type was originally stated in [Shi79]; see [Man21] for the proof as well as
the full history.

7. A non-formal example

In this section we discuss an example space Y which is not formal, but satisfies condi-
tion (iv) of Theorem A: for n < dimY , nullhomotopic L-Lipschitz maps Sn → Y have

2While the minimal model is unique up to isomorphism, such an isomorphism need not preserve this.
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O(L)-Lipschitz nullhomotopies. On the other hand, nullhomotopies of maps from higher-
dimensional spheres cannot be made linear (so condition (iii) is not satisfied). This demon-
strates that the method of proof of Theorem A, which relies on induction by skeleta to show
that (iv) implies the other conditions, cannot be straightforwardly extended to show that non-
formal spaces never admit linear nullhomotopies. On the other hand, we also do not have a
candidate non-formal space which could admit linear nullhomotopies from all domains. Thus
the following question remains open:

Question. Do non-formal simply connected targets ever admit linear nullhomotopies of maps
from all compact domains? For that matter, from all spheres?

Our space is 8-dimensional, although a 6-dimensional example can also be constructed.
Namely, we take the CW complex

Y = (S3
a ∨ S3

b ∨ S5) ∪f e
8,

where f : S7 → S3 ∨ S3 ∨ S5 is given by the iterated Whitehead product[
ida, idS5 +[ida, idb]

]
,

with ida and idb representing the identity maps on the two copies of S3.
Above and below we use the following conventions to define representatives of homotopy

classes with good Lipschitz constants. Let φ : Sk → Y and ψ : Sℓ → Y be maps with
Lipschitz constant ≤ L. The notation [φ,ψ] represents the standard Whitehead product of
φ and ψ, that is the C(k, ℓ)L-Lipschitz map Sk+ℓ−1 → Y given by composing φ∨ψ with the
attaching map of the (k + ℓ)-cell of Sk × Sℓ. The notation Nφ represents the composition

of φ with a degree N , O(N1/k)-Lipschitz map Sk → Sk, as constructed in Proposition 4.3.
Finally, if k = ℓ, then φ+ ψ represents the C(k)L-Lipschitz map given by composing φ ∨ ψ
with a map sending the northern and southern hemisphere to different copies of the sphere.

Proposition 7.1. For n ≤ 7, nullhomotopic maps Sn → Y have linear nullhomotopies.

Proposition 7.2. There is a sequence of nullhomotopic maps gN : S13 → Y with Lipschitz
constant O(N) but such that every nullhomotopy of gN has Lipschitz constant Ω(N17/16).

Proof of Prop. 7.1. For n ≤ 7, any L-Lipschitz map Sn → Y has an O(L)-Lipschitz homotopy
to one whose image lies in the 7-skeleton of Y , W = S3 ∨ S3 ∨ S5. Moreover, if n < 7, such
a map is nullhomotopic in Y if and only if it is nullhomotopic in W . Since this is a scalable
space, any such nullhomotopy can be made O(L)-Lipschitz by Theorem A.

There remains the case n = 7. Clearly a map g : S7 →W is nullhomotopic in Y if and only
if it is in the homotopy class N [f ] ∈ π7(W ) for some N . By Theorem B(d), the distortion of
[f ] inW is ∼ L8, meaning that if g is L-Lipschitz, it is homotopic inW to the O(L)-Lipschitz
map

g′ =
[
A idS3

a
, B

(
idS5 +[ida, idb]

)]
+ Cf

for A ≲ L3, B ≲ L5, and C ≲ L7, and again by Theorem A, this homotopy can be made
O(L)-Lipschitz.

Finally, we need to show that g′ has an O(L)-Lipschitz nullhomotopy in Y . So consider a
map p : S3 × S5 → Y sending the S3 factor to S3

a and the S5 factor to Y via idS5 +[ida, idb].
Since S3 × S5 is scalable, the map

[A idS3 , B idS5 ] + C[idS3 , idS5 ]

for A ≲ L3, B ≲ L5, and C ≲ L7 has an O(L)-Lipschitz nullhomotopy there. Pushing this
nullhomotopy to Y via p gives an O(L)-Lipschitz nullhomotopy of g′. □
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Proof of Prop. 7.2. The map

gN = [[N3 ida, N
5 idS5 ], [N3 ida, [N

3 ida, N
3 idb]]]

is O(N)-Lipschitz, and it is homotopic in S3
a∨S3

b ∨S5 to [[N3 ida, N
5 idS5 ], N9f ] and therefore

nullhomotopic in Y . We will show that any nullhomotopy has Lipschitz constant Ω(N17/16).
We will need to understand some of the rational homotopy theory of the subspace

W = S3
a ∨ S3

b ∨ S5 ⊂ Y.

We note that W is formal and therefore its minimal DGA can be computed formally. Here
are some of the generators in low dimensions (the number n in x(n) denotes the degree of a
generator x):

M∗
W ⊃

⟨ a(3), b(3), c(5), u
(5)
b da = db = dc = 0, dub = ab

u
(7)
c , v

(7)
b , w

(9)
b , v

(9)
c duc = ac, dvb = aub, dwb = avb, dvc = auc

w
(11)
c , z(13) dwc = avc, dz = ucvb − vcub − cwb + wcb

⟩
.

We will show two facts: first, ⟨z, [gN ]⟩ ∼ N17; second, if F : (D14, ∂D14) → (Y,W ) is an
L-Lipschitz map, then ⟨z, [F |∂ ]⟩ = O(L16). Therefore, if F is a nullhomotopy of gN , then its

Lipschitz constant is Ω(N17/16).
Since [gN ] = N17[[ida, idS5 ], [ida, [ida, idb]]] = N17[g1], to see that ⟨z, [gN ]⟩ ∼ N17, it is

enough to show that the pairing ⟨z, [g1]⟩ is nontrivial. As explained in [FHT12, §13(e)], the
Whitehead product is dual to the quadratic part of the differential in the minimal model.
In particular, ub is dual to [ida, idb] and uc is dual to [ida, idS5 ]; therefore vb is dual to
[ida, [ida, idb]]; and finally, since dz contains the term ucvb, z pairs nontrivially with [g1].

Now suppose that F : (D14, ∂D14) → (Y,W ) is an L-Lipschitz map. We can compute
the pairing ⟨z, [F |∂ ]⟩ using the second method discussed in §6.3. Fix a minimal model mW :
(M∗

W , d) → Ω∗W ; we attempt to extend (F |∂)∗mW to a map ε : M∗
W → Ω∗D14. Since the

relative cohomology is zero through dimension 13, we do not encounter an obstruction until
we try to extend to 13-dimensional indecomposables. At that point, regardless of previous
choices, the obstruction to extending to z is given by the pairing, that is,∫

D14

ε(dz) = ⟨z, [F |∂ ]⟩.

We will use the map F to build one such extension with bounds on the sizes of the forms; in
particular we will make sure that ∥ε(dz)∥ = O(L16), so that the pairing is also O(L16).

By [FHT12, §13(d)], mW can be extended to a quasi-isomorphism mY : (M∗
W ⊕Ry, d′) →

Ω∗Y which we use as a non-minimal model for Y . Here y satisfies y2 = 0 = dy and xy = 0 for
every x ∈ M∗

W , and d′ = d except for 7-dimensional indecomposables x in M∗
W , for which

d′x = dx+ ⟨x, [f ]⟩y.

In particular, mY y is a closed form concentrated in the interior of the 8-cell, representing the
fundamental class of H8(Y,W ;R).

To build the extension of (F∂)
∗mW to Ω∗D14, we first send

a ↦→ F ∗mY a, b ↦→ F ∗mY b, c ↦→ F ∗mY c, ub ↦→ F ∗mY ub;

then choose a 7-form ω ∈ Ω∗(D14, ∂D14) satisfying dω = F ∗mY y and ∥ω∥∞ = O(L8) and
send

uc ↦→ F ∗mY uc − ⟨uc, [f ]⟩ω, vb ↦→ F ∗mY vb − ⟨vb, [f ]⟩ω;
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and finally, using Lemma 2.4, pick forms ε(wb), ε(vc), and ε(wc) satisfying

∥ε(wb)∥∞ = O(L11), ∥ε(vc)∥∞ = O(L11), ∥ε(wc)∥∞ = O(L13).

This construction gives us ∥ε(dz)∥∞ = O(L16). □

8. Proof of Theorem A

In this section we prove Theorem A together with Theorem B(a). First, we restate these
results:

Theorem. The following are equivalent for a simply connected finite complex Y :

(i) There is a DGA homomorphism i : H∗(Y ;R) → Ω∗
♭Y which sends each cohomology

class to a representative of that class.
(ii) There is a constant C(Y ) and infinitely many (indeed, a logarithmically dense set of)

p ∈ N such that there is a C(Y )(p+ 1)-Lipschitz self-map which induces multiplication
by pn on Hn(Y ;R).

(iii) Y is formal, and for all finite simplicial complexes X, nullhomotopic L-Lipschitz maps
X → Y have C(X,Y )(L+ 1)-Lipschitz nullhomotopies.

(iv) Y is formal, and for all n < dimY , nullhomotopic L-Lipschitz maps Sn → Y have
C(X,Y )(L+ 1)-Lipschitz homotopies.

Moreover, this property is a rational homotopy invariant.

Proof. We start by proving the equivalence of (i) and (ii), followed by rational invariance;
the statements on homotopies are the most involved and are deferred to the end.

(i) ⇒ (ii). We start by showing:

Lemma 8.1. A space satisfying (i) is formal.

Proof. The homomorphism i : H∗(Y ;R) → Ω∗
♭Y guaranteed by (i) is a quasi-isomorphism.

Let m′
Y : M∗

Y → Ω∗
♭Y be a minimal model. Then by repeated applications of Proposition

6.4, we get a quasi-isomorphism hY : M∗
Y → H∗(Y ;R) such that i ◦ hY ≃ mY . This shows

that hY is a quasi-isomorphism of DGAs over the reals, in other words M∗
Y is formal. □

The map i ◦ q constructed in the lemma is a minimal model mY = i ◦ hY : M∗
Y → Ω∗Y

which sends all homologically trivial elements to 0.
Let ρt : H

∗(Y ) → H∗(Y ) be the grading automorphism which multiplies Hk by tk. Then
by Theorem 6.12, there is some t > 1 such that ρt◦hY is realized by a genuine map f : Y → Y .
For every N , fN is in the rational homotopy class of the map iρtNhY : M∗

Y → Ω∗Y , whose
dilatation is O(t); therefore, by the shadowing principle 6.6, we can build an O(tN )-Lipschitz
map in this homotopy class. Therefore such maps are at least logarithmically dense.

(ii) ⇒ (i). Suppose that there is an infinite sequence of p ∈ N and C(Y )(p + 1)-Lipschitz
maps rp as given. Let mY : M∗

Y → Ω∗Y be a minimal model, and

M∗
Y =

∞⋀
ℓ=1

Wℓ

a bigrading as described in §6.6. There is an automorphism rp of M∗
Y extending the grading

automorphism on H∗(Y ) which sends a ∈Wℓ to p
deg a+ℓa.
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Now for each p the map φp = r∗pmY ρ1/p : M∗
Y → Ω∗

♭ (Y ) sends

w ↦→ 1

pℓ+degw
r∗pmY w, w ∈Wℓ.

This sequence of maps is uniformly bounded, and therefore has a subsequence which weak♭-
converges to some φ∞.

Lemma 8.2. For indecomposables w, φ∞(w) = 0 if and only if w ∈
⨁∞

ℓ=1Wℓ.

Proof. If w ∈
⨁∞

ℓ=1Wℓ, then its image is zero since ∥r∗pmY w∥∞ ≤ [C(Y )(p+1)]degw. On the
other hand, if w ∈ W0, then it is cohomologically nontrivial, and thus there is a flat cycle
A and a CA > 0 such that

∫
A r

∗
pmY w = CAp

degw for every p. Thus
∫
A φ∞(w) = CA and so

φ∞(w) ̸= 0. □

Now, if an element w ∈
⋀
W0 is zero in H∗(Y ;R), then it is the differential of some element

of W1 and therefore again φ∞(w) = 0. Thus φ∞ : M∗
Y → Ω∗

♭ (Y ) factors through H∗(Y ;R),
showing (i).

Rational homotopy invariance of (ii). Suppose that Y has property (ii) and Z is a rationally

equivalent finite complex. By [Man21, Theorem B], there are maps Z
f−→ Y

g−→ Z inducing
rational homotopy equivalences such that g ◦ f induces the automorphism ρq for some q.
Then we can get a sequence of maps verifying (ii) for Z by composing

Z
f−→ Y

rp−→ Y
g−→ Z

for each p in the sequence verifying (ii) for Y .

(iii) ⇒ (iv). This is clear.

(iv) ⇒ (ii). Suppose that Y is formal and admits linear nullhomotopies of maps from Sn.
Theorem 6.12 gives a way of realizing the grading automorphism ρt of Y by a map rt : Y → Y
for some infinite, logarithmically dense sequence of t, but without geometric constraints. It
thus remains to construct homotopic maps with Lipschitz constant O(L). We defer the details
to the next section as they require some additional technical machinery from [Man19].

In fact, our construction will give a more general result, which may be thought of as a
strengthening of the shadowing principle for scalable spaces:

Lemma 8.3. Suppose Y admits linear nullhomotopies of maps from Sk, k ≤ n−1. Let X be
an n-dimensional simplicial complex, and let φ : M∗

Y → Ω∗
♭ (X) be a homomorphism which

satisfies

DilU (φ) ≤ L,

and which is formally homotopic to f∗mY for some f : X → Y . Then there is a g : X → Y
which is C(n, Y )(L+1)-Lipschitz and homotopic to f , where C(n, Y ) depends on the choices
of norms on Vk.

As a special case, in combination with Theorem 6.12, we see that such a Y satisfies (ii).
Formally, this lemma also implies Gromov’s distortion conjecture for Y , Theorem B(d). In
fact, though, we will prove this separately and use it in the proof.
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(ii) ⇒ (iii). Let X be a finite simplicial complex and f : X → Y a nullhomotopic L-Lipschitz
map. Choose a natural number t > 1 such that there is an map rt : Y → Y which induces
the grading automorphism ρt on cohomology.

We will define a nullhomotopy of f by homotoping through a series of maps which are
more and more “locally organized”. Specifically, for 1 ≤ k ≤ s = ⌈logp L⌉, we build a

C(X,Y )(L/pk + 1)-Lipschitz map fk : X → Y by applying the shadowing principle 6.6 to
the map

f∗mY ρp−k : M∗
Y → Ω∗X.

We will build a nullhomotopy of f through the sequence of maps

f rp ◦ f1 rp2 ◦ f2 . . . rps ◦ fs const.

rp ◦ rp ◦ f2 . . . rps−1 ◦ rp ◦ fs

As we go right, the length (Lipschitz constant in the time direction) of the kth intermediate
homotopy increases—it is O(pk)—while the thickness (Lipschitz constant in the space direc-
tion) remains O(L). Thus all together, these homotopies can be glued into an O(L)-Lipschitz
nullhomotopy of f .

Informally, the intermediate maps rpk ◦ fk look at scale pk/L like thickness-pk “bundles”
or “cables” of identical standard maps at scale 1/L. This structure makes them essentially
as easy to nullhomotope as L/pk-Lipschitz maps.

We now build the aforementioned homotopies:

Lemma 8.4. There is an O(pk)-Lipschitz homotopy Fk : Y × [0, 1] → Y between rpk and
rpk−1 ◦ rp.

Lemma 8.5. There is a thickness-O(L/pk), constant length homotopy Gk : X × [0, 1] → Y
between fk and rp ◦ fk+1.

This induces homotopies of thickness O(L) and length O(pk):

• Fk ◦ (fk × id) from rpk−1 ◦ rp ◦ fk to rpk ◦ fk;
• rpk ◦Gk from rpk ◦ fk to rpk ◦ rp ◦ fk+1.

Finally, the map fs is C(X,Y )-Lipschitz and therefore has a short homotopy to one of a finite
set of nullhomotopic simplicial maps X → Y . For each map in this finite set, we can pick a
fixed nullhomotopy, giving a constant bound for the Lipschitz constant of a nullhomotopy of
fs and therefore a linear one for rps ◦ fs.

Adding up the lengths of all these homotopies gives a geometric series which sums to O(L),
completing the proof of the theorem modulo the two lemmas above. □

Proof of Lemma 8.4. We use the fact that the maps rpi were built using the shadowing prin-
ciple. Thus, there are formal homotopies Φi of length C(X,Y ) between mY ρpi and r∗

pi
mY .

This allows us to construct the following formal homotopies:

• Φk, time-reversed, between r∗
pk
mY and mY ρpk , of length C(X,Y );

• Φ1ρpk−1 between mY ρpk and r∗pmY ρpk−1 , of length C(X,Y )pk−1;
• and (r∗

pk−1 ⊗ id)Φk−1 between r∗pmY ρpk−1 and r∗pr
∗
pk−1mY , of length C(X,Y ).
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Concatenating these three homotopies and applying the relative shadowing principle 6.7 to
the resulting map M∗

Y → Ω∗(Y × [0, 1]) rel ends, we get a linear thickness homotopy of length

O(pk−1) between the two maps. □

Proof of Lemma 8.5. We use the fact that the maps fk and fk+1 were built using the shad-
owing principle. Thus there are formal homotopies Ψi of length C(X,Y ) between f∗mY ρp−i

and fi. This allows us to construct the following formal homotopies:

• Ψk, time-reversed, between fk and f∗mY ρp−k , of length C(X,Y );
• Ψk+1ρp between f∗mY ρp−k and f∗k+1mY ρp, of length C(X,Y )p;
• and (f∗k+1 ⊗ id)Φ1 between f∗k+1mY ρp and r∗pf

∗
k+1mY , of length C(X,Y ).

Concatenating these three homotopies and applying the relative shadowing principle 6.7 to
the resulting map M∗

Y → Ω∗(X×[0, 1]) rel ends, we get a linear thickness homotopy of length
O(p) between the two maps. □

9. Proof of Theorem B

Now we prove Theorem B, which we again restate:

Theorem (Properties of scalable spaces).

(a) Scalability is invariant under rational homotopy equivalence.
(b) The class of scalable spaces is closed under products and wedge sums.
(c) All n-skeleta of scalable complexes are scalable, for n ≥ 2.
(d) Scalable spaces satisfy Gromov’s distortion conjecture. That is, if Y is scalable, all ele-

ments α ∈ πk(Y ) ∩ Λℓ outside Λℓ+1 have distortion Θ(Lk+ℓ).

In fact, we will show this for spaces that satisfy (i) and (ii) of Theorem A. Thus it doesn’t
matter that we are not done proving that (iii) and (iv) are equivalent to (i) and (ii), and
indeed we will use part (d) in the proof of Lemma 8.3.

We already showed (a) in the previous section. For part (b), if (ii) holds for spaces X and
Y , then we can take the product and wedge sum of the respective scaling maps to get scaling
maps of X × Y and X ∨ Y .

To show part (c), we use (i). Let Y be a complex satisfying (i), and let n ≥ 2. The

inclusion i : Y (n) ↪→ Y induces isomorphisms for Hk for k < n and an injection on Hn.
Then the homomorphism H∗(Y ;R) → Ω∗

♭ (Y ) composed with the restriction to forms on Y (n)

gives a homomorphism from i∗H∗(Y ;R) ⊆ H∗(Y (n);R) to Ω∗
♭ (Y

(n)). To extend to the rest of

Hn(Y (n);R), we can choose any n-forms representing a basis for a complementary subspace
and extend by linearity. Since these forms are top-dimensional, their wedge product with any
other form is zero, as desired.

Part (d) is a mild generalization of [Man19, Theorem 5–4] showing that symmetric spaces
satisfy Gromov’s distortion conjecture, whose proof already uses the fact that they satisfy
(i). Suppose first that α ∈ πk(Y ) is contained in Λℓ. We will show that its distortion is
Ω(Lk+ℓ). Let f : Sk → Y be a representative of α, and let rp be maps realizing (ii) for any p

for which they exist. Then rpf is an O(L)-Lipschitz representative of qk+ℓα. Such a map rp
exists for at least a logarithmically dense set of integers p, so all other multiples can also be
represented with a similar Lipschitz constant.

The other side of the inequality follows immediately from Proposition 6.9.
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10. Maps to scalable spaces

The purpose of this section is to prove Lemma 8.3, which we restate here:

Lemma. Suppose Y admits linear nullhomotopies of maps from Sk, k ≤ n − 1. Let X be
an n-dimensional simplicial complex, and let φ : M∗

Y → Ω∗
♭ (X) be a homomorphism which

satisfies

DilU (φ) ≤ L,

and which is DGA homotopic to f∗mY for some f : X → Y . Then there is a map g : X → Y
which is C(n, Y )(L + 1)-Lipschitz and homotopic to f , where the constant C(n, Y ) depends
on the choices of norms on Vk.

Both scalability and Gromov’s distortion conjecture follow as corollaries of this lemma.
These should be thought of as instances of a wider principle that the lemma facilitates
the construction of maximally efficient maps. While the original shadowing principle gives
a close relationship between the (usual) dilatation of the “most efficient” homomorphism
M∗

Y → Ω∗X and the best Lipschitz constant of a map X → Y in a given homotopy class,
the homomorphisms involved can be as difficult to construct as the maps. On the other
hand, in light of Proposition 6.10, homomorphisms with optimal U -dilatation can always
be constructed by factoring through maps between minimal models. This means that for
scalable spaces, the Lipschitz norm of a homotopy class can be computed by studying the
maps between minimal models which represent it. Although the set of such maps may be
quite complicated in general, computing it is at least a finite obstruction-theoretic problem.
We summarize this as a theorem:

Theorem 10.1. Given two simply connected spaces X and Y and a minimal model mX :
M∗

X → Ω∗
♭ (X), we can define two norms on the set of homotopy classes α ∈ [X,Y ]:

|α|Lip = inf{Lip(f) | f : X → Y, [f ] = α}
|α|UDil = inf{DilU (m∗

Xφ) | φ : M∗
Y → M∗

X ,m
∗
Xφ ≃ f∗mY where [f ] = α}.

If Y is a scalable space, then there are constants c, C > 0 such that for every α ∈ [X,Y ],

c|α|UDil ≤ |α|Lip ≤ C(|α|UDil + 1).

Note that this is true regardless of the choice of mX , and therefore the norm |α|UDil

essentially only depends on information about minimal models.
We prove Lemma 8.3 by induction using the following statements:

(an) Lemma 8.3 holds through dimension n (we make this more precise during the proof, but
in particular it holds for n-dimensional X).

(bn) If Z is an n-complex which is formal and admits linear nullhomotopies of maps from
Sk, k < n, then it satisfies (ii).

Clearly, (an) implies (bn). In particular, since any skeleton of a formal space is formal

[Shi79, Lemma 3.1], Y (n) satisfies (ii). Therefore, according to Theorem B(d), it also satisfies
Gromov’s distortion conjecture. In addition, we need the following easy extension of that
result:

Lemma 10.2. Suppose that Y is an n-complex and the distortion conjecture holds for
πn(Y

(n−1)). Then it holds for πn(Y ).
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Proof. This follows from the exact sequence

· · · → πn(Y
(n−1))

i−→ πn(Y )
j−→ πn(Y, Y

(n−1)) → · · · .
Since im j ⊆ Hn(Y ), all elements of πn(Y ) not in ker j are undistorted. Conversely, elements
in the image of i are at least as distorted as their preimages. To show that this is consistent
with the distortion conjecture, we must analyze the induced map M∗

Y → M∗
Y (n−1) . In fact,

this map is injective in degrees ≤ n − 1 (and hence preserves the filtration by the Uj) and
all extra n-dimensional generators of M∗

Y have zero differential; see [FHT12, §13(d)]. This
completes the proof of the lemma. □

We now proceed with the proof of the inductive step.

Proof of Lemma 8.3. The structure of this proof is very similar to the original proof of the
shadowing principle in [Man19, §4]. That is, we pull f to a map with small Lipschitz constant
skeleton by skeleton, all the while using φ as a model to ensure that we don’t end up with
overly large obstructions at the next stage (as might occur if we pulled in an arbitrary way.)
The biggest difference is that we don’t need to subdivide before performing the induction.

The details follow. Suppose, as an inductive hypothesis, that we have constructed the
following data:

• A map gk : X → Y , homotopic to f , whose restriction to X(k) is C(k, Y )(L + 1)-
Lipschitz.

• A homotopy Φk : M∗
Y → Ω∗

♭ (X)⊗ R(t, dt) from g∗kmY to φ such that

DilU1 ((Φk|M∗
Y (k))|X(k)) ≤ C(k, Y )(L+ 1).

We write βk =
∫ 1
0 Φk; note that for v ∈ Vi,

dβk(v) = φ(v)− g∗kmY (v)−
∫ 1
0 Φk(dv)

and βk(v)|A = 0.
We then construct the analogous data one dimension higher, starting with gk+1. Let

b ∈ Ck(X;πk+1(Y )) be the simplicial cochain obtained by integrating βk|Vk+1
over k-simplices

and choosing an element of πk+1(Y ) whose image in Vk+1 is as close as possible in norm (but
otherwise arbitrary.) Note that the values of b are not a priori bounded in any way. We use
b to specify a homotopy Hk+1 : X × [0, 1] → Y from gk to a new map gk+1.

We start by setting Hk+1 to be constant on X(k−1). On each k-simplex q, we set Hk+1|q
to be a map such that

gk+1|q = Hk+1|q×{1} = Hk+1|q×{0} = gk|q,
but such that on the cell q × [0, 1], the map traces out the element ⟨b, q⟩ ∈ πk+1(Y ). This
is well-defined since Hk+1|∂(q×[0,1]) is canonically nullhomotopic by precomposition with a
linear contraction of the simplex.

Now, relative homotopy classes of extensions to p of gk|∂p, where p is a (k + 1)-simplex,
have a free action by πk+1(Y ); in particular, differences between them can be labeled by
elements of πk+1(Y ) giving the obstruction to homotoping one to the other. No matter how
we extend Hk+1 over p× [0, 1], this obstruction will be gk+1|p − gk|p = ⟨δb, p⟩. We would like
to show that we can do so in such a way that gk+1|p is C(k + 1, Y )(L+ 1)-Lipschitz.

Note first that by assumption we can extend gk+1|∂p to p via a C(k+1, Y )(L+1)-Lipschitz

map u : Dk+1 → Y . However, this map may be in the wrong homotopy class. To build the
extension we want, we first estimate the size of the obstruction in πk+1(Y ) to homotoping u
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to gk+1|p; Lemma 10.2 applied to Y (k+1) then implies that this obstruction is represented by

a C(k+1, Y )(L+1)-Lipschitz map Sk+1 → Y which we then glue into the original extension
to define gk+1|p.

Lemma 10.3. The obstruction above can be written as α =
∑

i αi where αi ∈ πk+1(Y ) ∩ Λi

and its coefficients in terms of a generating set for this subgroup are O(Lk+1+i).

In other words, it is contained in a subset of πk+1(Y ) whose elements, by Lemma 10.2, can
be represented by C(k, Y )(L + 1)-Lipschitz map. The proof is exactly that of Lemma 4–2
in [Man19], except that Proposition 6.11 (instead of Proposition 3–9 of that paper) is used
to give a bound.

After fixing gk+1|p for each (k + 1)-cell p, we can extend Hk+1 to higher-dimensional cells
arbitrarily. The final task is to build a second-order homotopy from Φk to a homotopy Φk+1

from φ to gk+1 such that

DilU1 ((Φk+1|M∗
Y (k+1))|X(k+1)) ≤ C(k + 1, Y )(L+ 1).

Intuitively, this can be done since Φk|Vk+1
and H∗

k+1|Vk+1
have, by construction, very similar

integrals over (k + 1)-cells; hence the obstruction to constructing such a homotopy is easy
to kill. The details are once again the same as in the proof of the shadowing principle in
[Man19]. □
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