SCALABLE SPACES
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ABSTRACT. Scalable spaces are simply connected compact manifolds or finite complexes
whose real cohomology algebra embeds in their algebra of (flat) differential forms. This is a
rational homotopy invariant property and all scalable spaces are formal; indeed, scalability
can be thought of as a metric version of formality. They are also characterized by particularly
nice behavior from the point of view of quantitative homotopy theory. Among other results,
we show that spaces which are formal but not scalable provide counterexamples to Gromov’s
long-standing conjecture on distortion in higher homotopy groups.

1. INTRODUCTION

Starting with the 1978 paper [Gro78] and continuing in the 1990s with [Gro98, Ch. 7]
and [Gro99], Gromov has promoted the idea that the geometry of maps between simply
connected spaces is governed by Sullivan’s minimal models in rational homotopy theory and
maps between them. In this paper, we both show that this intuition is true in the strongest
possible sense for a large class of “scalable” spaces, which includes spheres, complex projective
spaces, Lie groups and Grassmannians, and give examples showing that the general situation
is more complicated. In particular, we disprove one of the main conjectures from [Gro99].

Scalable spaces are closely related to formal spaces, a notion introduced by Sullivan in
[Sul77] and elsewhere. A formal space is one whose rational homotopy type is a “formal
consequence” of its rational cohomology ring; that is, all higher-order rational cohomology
operations are trivial. However, Sullivan gives two other characterizations: one in terms
of quasi-isomorphisms (maps preserving cohomology) and another in terms of rational self-
maps. Scalable spaces satisfy two analogous equivalent conditions, but with a metric flavor.
In addition, they satisfy two equivalent conditions regarding Lipschitz homotopies. The
precise statement of these four equivalent conditions is given in Theorem [A]

1.1. Growth, distortion, Lipschitz homotopy. Let X and Y be sufficiently nice compact
metric spaces, for example Riemannian manifolds or piecewise Riemannian simplicial com-
plexes. In [Gro99], Gromov outlines a number of homotopical invariants concerning the as-
ymptotic behavior of the Lipschitz constant as a functional on the mapping space Map(X,Y').
The Lipschitz constant tells us the scale at which the map becomes homotopically trivial, and
therefore is a good measure of homotopical information. Besides the inherent appeal of this
program, it is important for achieving an understanding of broader questions in quantitative
geometric topology, for example the questions regarding cobordism theory studied in [FW13]
and [CDMW18§].

In the past decade, a fair amount of progress has been made on this program; see [FW13|,
CDMWI18| [CMWTE|, [Gut18 Man19, MW20, Man20\ Ber1§].

A convenient language for discussing asymptotics is “big-O notation”, reviewed below:

e We write f = O(g) if the function f grows asymptotically no faster than g, i.e. f is
eventually bounded by the function Cg for some C' > 0.
1
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o We write f = o(g) if f grows asymptotically strictly more slowly than g, i.e. for every
¢ > 0, f is eventually bounded by cf.
o We write f = Q(g) if f grows asymptotically no slower than g, i.e. g = O(f).
e We write f = O(g) if f and g have the same asymptotic growth, i.e. f = O(g) and
g = O(f) both hold.
The most basic asymptotic invariant of Map(X,Y) is growth: how many elements of the
set of homotopy classes [X, Y] have representatives with Lipschitz constant < L? This line
of inquiry goes back to |Gro78], in which Gromov proved the following:

Theorem. For a simply connected compact Riemannian manifold Y, the growth of m,(Y") is
at most polynomial in L.

The proof derives from rational homotopy theory. Sullivan, following K.-T. Chen, had
showed that all real-valued invariants 7,(Y) — R could be computed by pulling back dif-
ferential forms along a map f : S™ — Y, taking wedges and antidifferentials, and finally
integrating a resulting n-form over the sphere. Gromov remarked that all steps of this pro-
cedure could be bounded polynomially in terms of the Lipschitz constant of the original
map.

In [Gro99], Gromov conjectured that the upper bounds on the homotopical complexity of
L-Lipschitz maps obtained in this way are sharp. To make this precise, it is natural to define
the distortion of an element o € m,(Y') to be

do(L) = max{k : ka has an L-Lipschitz representative}ﬂ

Then Gromov’s conjecture would imply that the distortion of any element is ©(L") where r
is an integer. Moreover, an easily stated consequence is:

Conjecture (Gromov). The distortion of an element o € m,(Y) is ©(L") if and only if «
has nontrivial image under the rational Hurewicz homomorphism, and Q(L"T') otherwise.

The “if” here is easy to see using a degree argument (see Propositions and the
“only if” has been open until now, and Gromov noted that even a proof of the first part
would be remarkable.

Finally, Gromov also defined a related relative invariant: given two homotopic L-Lipschitz
maps, we can ask for bounds on the Lipschitz constants of the intermediate maps of a homo-
topy. For example, given nice compact spaces X and Y, when can we expect two homotopic
L-Lipschitz maps X — Y to be homotopic through K L-Lipschitz maps, for some constant
K = K(X,Y)? Ferry and Weinberger noted that for the applications they were considering,
it was more useful to also bound the Lipschitz constant in the time direction. Hence:

Question. For what spaces Y is there always a constant K = K(X,Y), for any compact
metric simplicial complex X, such that any two homotopic L-Lipschitz maps X — 'Y have a
K (L + 1)-Lipschitz homotopy?

Ferry and Weinberger characterized spaces satisfying a more restrictive condition, where
the constant only depends on the dimension d of X. In that case, all homotopy groups of
Y must be finite. On the other hand, it was shown in [CDMWI18]| that spaces satisfying
the above condition include those that are rationally products of Eilenberg—MacLane spaces,
including for example odd-dimensional spheres. This paper also includes the first example

IThis is essentially the inverse function of the notion used in [Gro99], but accords with the notion of
distortion used in geometric group theory.
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of a target space Y which does not have this property. Moreover, in [CMW18] it was shown
that even even-dimensional spheres do not have the property as stated; to include them in
our class, we must consider only nullhomotopic maps.

A number of weaker, polynomial bounds on sizes of homotopies and nullhomotopies appear
in [CMWI1§] and [Manl19], but before this paper, linearity had only been additionally proven
in the case of maps S% — S2, by the first author [BerI8].

The various quantities described here are intimately connected. For example, in [CDMW1§],
it is shown that if one attaches a cell along an element of 7, (Y) with sufficiently large distor-
tion, then the resulting complex is forced to have nonlinear nullhomotopies. Conversely, the
argument of [Man20] describing the growth of [X, Y] for certain X and Y relies on estimates
on the sizes of Lipschitz homotopies.

1.2. Main results. The main result of this paper defines a new class of spaces in which the
answers to these questions are particularly nice.

Theorem A. The following are equivalent for a formal simply connected finite complex Y :

(i) There is a homomorphism H*(Y) — Y of differential graded algebras which sends
each cohomology class to a representative of that class. Here Y denotes the flat forms,
an algebra of not-necessarily-smooth differential forms studied by Whitney.

(i) There is a constant C(Y') and infinitely many (indeed, a logarithmically dense set of)
p € N such that there is a C(Y)(p + 1)-Lipschitz self-map which induces multiplication
by p™ on H"(Y; R).

(iii) For all finite simplicial complexes X, nullhomotopic L-Lipschitz maps X — Y have
C(X,Y)(L + 1)-Lipschitz nullhomotopies.

(iv) For all n < dimY’, homotopic L-Lipschitz maps S™ — Y have C(Y)(L + 1)-Lipschitz
homotopies.

Remark 1.1. The conditions (i) and (ii) imply formality of ¥ almost immediately and in
fact can be seen as geometric strengthenings of two equivalent characterizations of formality
given by Sullivan. In we give an example of a non-formal space which satisfies (iv) but
not (iii). It is not clear whether (iii) implies formality.

On the other hand, condition (i) is strictly weaker than the notion of “geometric formality”
introduced by Kotschick [Kot0I] based on Sullivan’s observation that it is satisfied by sym-
metric spaces, and studied by several others. For example, all simply connected geometrically
formal 4-manifolds are rationally equivalent to S*, CP2, or S? x S2.

We call spaces satisfying (i)—(iv) scalable based on the scaling maps of (ii). Examples of
scalable spaces include spheres, projective spaces, and other symmetric spaces of compact
type. More examples of spaces known to be scalable and those known not to be scalable are
given in Table

We summarize some properties of scalable spaces below.

Theorem B (Properties of scalable spaces).

(a) Scalability is invariant under rational homotopy equivalence.

(b) The class of scalable spaces is closed under products and wedge sums.
(c) All skeleta of scalable complexes are scalable.

(d) Scalable spaces satisfy Gromov’s distortion conjecture.

In fact, in Theorem we state a stronger result related to Theorem [B(d)), which essen-
tially says that for any simply connected domain X, we can understand the minimal Lipschitz
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S o Scalable spaces Formal spaces

mei ric ipaces CP2 4CP?, L4rCP?, > 4
7, CPT, Hwp 3CP? # 3CP2, CpPh#CP", n>3
Grassmannians Hr(S7 x S"), 7 < (2:)/2 #r(S" x S7), r > (27?)/2

TABLE 1. A Venn diagram of simply connected manifolds.

constant of maps in a homotopy class in [X, Y] purely by looking at maps between Sullivan
minimal models. We defer the statement until it can be made precise.

On the other hand, we show that the strong form of the distortion conjecture does not
always hold for non-scalable spaces, even those that are formal:

Theorem C. The class of the puncture in m5([#4CP? x S?]°) has distortion o(L").

We do not, however, know any matching lower bounds on distortion besides the trivial L?,
nor do we have upper bounds stronger than the already known LS (either of which would be
very interesting.) We merely show that the known upper bound cannot be sharp. This is
similar to the situation for Lipschitz homotopies of non-scalable formal spaces: we show that
they cannot have linear Lipschitz constant, but we do not give any other lower bound for the
sizes of homotopies. This contrasts with the examples given in [CDMWIS§| and [CMW18§],
which include an explicit lower bound.

Finally, applying Theorem [A] to maps between wedges of spheres yields the following:

Corollary 1.2. For every rational number r > 4, there are spaces X, and Y, such that the
growth of [X,,Y,] is ©(L").

The spaces X, and Y, are constructed in [Man20, Thm. 3.2], and it is shown there that the
growth of [X,,Y,] is asymptotically Q(L"~¢) for every € > 0 and O(L"). The construction of
efficient maps uses a homotopy between two O(L)-Lipschitz maps between wedges of spheres;
the remark after Example 3.1 indicates that if one had such a homotopy with Lipschitz
constant O(L), then the estimate on growth could be improved to ©(L"). The existence of
such homotopies follows from Theorem [A]

1.3. Which spaces are scalable? To decide whether a space is scalable, we typically use
condition (i) of Theorem To prove that a closed, formal n-manifold Y is not scalable,
we show the following local obstruction. A map ¢ as in (i) sends the fundamental class
[Y] € H"(Y) to a nonzero (flat) form; in particular, it has a nonzero restriction at some
point p € Y. Evaluating forms at that point, we get a mapping of graded algebras

pp: H (Y;R) 5 Q5(Y) - N\ T,

which we show to be an embedding due to the Poincaré pairing. We discuss several families
of manifolds for which such an embedding is impossible. Conversely, in some cases we are
able to extend a local embedding of H*(Y;R) in the exterior algebra on a single tangent
space to an embedding into the entire Q*(Y).

It is tempting to conjecture that this can always be done; that is, that one can always
extend an embedding of H*(Y;R) at one point (when Y is a closed manifold) or several
points (otherwise) to an embedding into Q*(Y). This would imply the following additional
criterion for scalability:
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Optimistic conjecture. A space is scalable if and only if it is formal and H*(Y;R) embeds
in N*RYN for some finite N.

Scalability would then depend only on real homotopy type—itself an open problem:

Question. By Theorem @(@, scalability is a rational homotopy invariant. Is it also an
R-homotopy invariant?

1.4. Scaling limits. We now discuss techniques used in the proof of Theorem [A] The most
novel of these is used in showing (ii) = (i). Given a sequence of self-maps, we move to the
sequence of induced maps M3, — Q*X in the world of rational homotopy. These can be for-
mally scaled so that the corresponding geometric bounds are uniform; then by a compactness
theorem, we can find an accumulation point, although this requires us to expand the space
of forms to one which is complete. This accumulation point is the map of (i). The same
technique, in combination with the algebraic impossibility discussed above, is used to prove
Theorem [Cl

These proofs are reminiscent of the work of Wenger [Wenll] showing that there are nilpo-
tent groups whose Dehn function is not exactly polynomial. There the role of the limiting
object obtained after scaling is played by the asymptotic cone, and one can use the algebraic
structure of the nilpotent group to prove the nonexistence of a filling with certain bounds.
Since nilpotent groups can also be studied using rational homotopy theory, it would be in-
teresting to get a stronger handle on the formal similarities between these arguments.

1.5. Formal maps to genuine maps. The shadowing principle introduced in [Manl9]
allows formal, rational homotopy-theoretic maps and homotopies to be upgraded to actual
maps between spaces with only a linear deterioration in geometric bounds. This finds a
number of applications in this paper; the simplest is (i) = (ii) of Theorem

A more involved application of the shadowing principle is the direction (ii) = (iii). This is
a generalization of the first author’s argument [Ber18| proving that maps S% — S? have linear
nullhomotopies, which we summarize as follows. A map S® — S? can be “regularized” via a
short homotopy to have a nice structure: imagine a bowl of spaghetti, in which the sauce is
mapped to the basepoint of $2, while the cross-section of each noodle maps homeomorphically
onto its complement. The construction iteratively “combs” the spaghetti at larger and larger
scales: 2, 4, and so on up to 21°8LiPf)  Each step takes twice as long as the previous one, but
there are logarithmically many steps total, making for a linear bound. Finally the last map
is well-organized enough to be nullhomotoped by hand.

Here, we generalize this idea by abstracting the components: a “combed” O(L)-Lipschitz
map is the composition of an O(L/K)-Lipschitz map with a “scaling” self-map as provided by
(ii). The shadowing principle is used to produce both the intermediate maps (by “squinting
at” the original map) and the homotopies between them.

1.6. How to read this paper. The first few sections are intended to provide examples
of most of the phenomena discussed in this paper without requiring knowledge of rational
homotopy theory. Section [2] introduces flat differential forms, which are an important tech-
nical tool throughout. Section [3| proves some simple facts about linear algebra which allow
us to show that certain spaces are not scalable. Section [4] introduces the basic techniques
of quantitative homotopy theory and gives examples of some of the phenomena which occur
in non-scalable spaces, one of which is the proof of Theorem [C] In Section [5], we show that
certain high-dimensional manifolds are scalable, beyond the obvious examples of symmetric
spaces and their wedges and products.
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In Section [0, we discuss rational homotopy theory and its relationship to quantitative
results, introducing necessary facts from [Manl9] and relating them to flat forms. The re-
maining sections all use this material in an essential way. The reader who is interested in a
slower-paced introduction to the subject is invited to consult [Man19] for a treatment focusing
on quantitative results or a textbook on the subject such as [GMS8I]. Section [7| discusses an
example which demonstrates that our methods don’t extend straightforwardly to non-formal
spaces. Finally, Section [§ gives the proof of Theorem [A] and Section [J] gives the proof of
Theorem |B} one particularly technical point is banished to an additional final section.

1.7. Acknowledgements. We would like to thank Robert Young, who pointed out the
reference [Wenll], as well as Robin Elliott and Shmuel Weinberger for other useful comments.
We also thank the anonymous referee for a large number of corrections as well as clarifying
questions and remarks which greatly improved the exposition and led us to several discoveries.
The second author was supported by the NSF via the individual grant DMS-2001042.

2. FLAT DIFFERENTIAL FORMS

For technical reasons we need to introduce the flat differential forms on X, denoted by
Q¥(X). These can be defined in several ways:

e As the dual normed space to the space of flat chains on X [Whi57, §IX.7].

o As the set of L™ forms with L> differential, cf. [GKS82, Thm. 1.5]. Here the differ-
ential of a non-smooth form is defined using Stokes’ theorem applied to its action on
currents.

e As the set of (non-smooth) differential forms satisfying certain complicated “niceness”
conditions, see [Whi57, §IX.6].

We also write ©2;(X, A) to denote the subalgebra of flat forms that are identically zero on a
subcomplex A.
Flat forms have a number of attractive properties:

Lemma 2.1 (see [GKSS82, §3]). The inclusion Q*(X) — Q3 (X) induces an isomorphism on
cohomology.

Lemma 2.2 (see |[GKS82, Theorem 3.6]). Flat forms pull back to flat forms along Lipschitz
maps.

A sequence of flat forms is said to weak’ converge if its values on every flat chain converge
(this is an instance of weak™ convergence.)

Lemma 2.3. Weak’ limits commute with d and A.
Proof. The former is true by definition and the latter is shown in [Whi57, §1X.17]. O

Finally, we need a version for flat forms of a result originally stated by Gromov and proved
among other places as [Manl9, Lemma 2-2]:

Lemma 2.4 (Coisoperimetric inequality). Let A C X be a simplicial pair with a linear
metric. For every k there is a constant C'(k, X, A) such that every exact form w € Qf“(X, A)
has a primitive (an o € QF (X, A) satisfying do = w) such that oo < C(k, X, A)[|w]|os-

The proof of [Man19, Lemma 2-2] holds verbatim for flat forms once one defines fiberwise
integration for these. This can be done either directly using the L° definition, or by defining
a dual notion of shadows of flat chains.
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3. OBSTRUCTIONS TO SCALABILITY
In order to show that some spaces aren’t scalable we use the following test.

Proposition 3.1. If X is a scalable closed n-manifold, then there is an embedding of graded
algebras
H*(X;R) — A'R™.

Proof. By property (i) of scalable spaces, X admits a presentation of its cohomology algebra
via flat forms:
p: H'(X;R) — O X.

Instead of dealing with the whole algebra (2 X', we focus just on the values of these points
at some point p € X:

op ra— p(a)(p) € AT, X) = A"R™
Since X is a simply connected (and therefore orientable) closed manifold, one can consider
a fundamental class [X] # 0 € H"(X) and chose the point p from outside of the zero locus
of ¢([X]). Then whenever one has a — b = [X] in cohomology, the value ¢,(a) has to be
non-zero, since ¢,(a) A p,(b) = ¢,([X]) # 0. And since the pairing of H*(X) and H"*(X)
is non-singular by Poincaré duality, no a € H*(X) could go to 0 € AT » under @, thus ¢,
provides the required embedding.

There is a slight technical wrinkle here in that flat forms are only defined up to a measure
zero set. To make sense of the previous paragraph, one needs to choose representatives; the
equation ¢(a) A ¢(b) = ¢([X]) will then be true on a set of full measure for each choice of a
and b in a basis for the cohomology. Since ¢([X]) is nonzero on a set of positive measure, we
can find a point p at which ¢,([X]) # 0 and all the equations are satisfied. O

The criterion we just proved allows to easily rule out scalability for some manifolds by
simply comparing the ranks of H*(X) and A(R"):

Corollary 3.2. If X is a scalable closed n-manifold, then the rank of H*(X;R) is at most
(). In particular, #r(S™ x S™) is not scalable for r > (2:)/2, and #r(S™ x S™) is not

scalable for r > ("17).

This restriction only holds for closed manifolds; for example, arbitrary wedges of spheres
and manifold thickenings thereof are scalable.

Next, we point out some slightly more subtle reasons that certain cohomology algebras
cannot be embedded in the alternating algebra A"V for any finite-dimensional R-vector
space V.

Theorem 3.3. The graded algebras listed below cannot be embedded in \* V for any V =R,
The degree n of a generator = is shown by a superscript as in z(™.

(i) For allm > 1, the algebra
Qn’r = <a£n)’b(n) (1 S ) S ’I") ‘ Vi,j : aibi = ajbj,aiaj = blbj = 0; Vi 7&] . aibj = 0>

forr > %(2:) (On the other hand, Q 1) embeds in \*R?*".)
2\ n
(ii) For all even n > 2, the algebra
Yor = <a§n) (1<i<r)|Vi#j: a? = a?,aiaj = 0>

for all r > %(2:) (On the other hand, X 1(2my embeds in \*R?*".)
)2

n
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(iii) For all n > 3, the algebra

Moy = (af? (L<i <7) | Vi # )2 a} = af aja; = 0)

for allr > 1.

Corollary 3.4. The following spaces are not scalable:

(i) pCP? # qCP2 when either p > 3 or q > 3.

(ii) pHP? # qHP? when either p > 35 or ¢ > 35.
(iii) pOP? # qOP2 when either p > 6435 or ¢ > 6435.
(iv) #rCP"™ forn >3 and r > 1.

Proof. In all the cases, as above, we can restrict an embedding in A*RY to a subspace
R?"  RY on which the top class is nontrivial. Moreover, this restriction is still an embedding
since each of the algebras satisfies Poincaré duality, in the sense that its multiplication defines
a bilinear pairing between elements of degree k and degree 2n — k.

Case (i): As mentioned above, if r > (27?) /2, the number of n-dimensional generators is
greater than the dimension of A" R?", and therefore an embedding cannot exist.
Conversely, suppose that r = (2:) /2 and let R?" be generated by w1, ...,%9,. Then we

can assign the generators to the (2:) degree n monomials generated by dx1,...,dxs,, with
a; and b; assigned to complementary choices.

Case (ii): Again suppose R?" is generated by z1,...,T2,, and fix a volume form dzi A --- A
dza,. Then A induces a symmetric bilinear form on A" R?" of signature ((2:)/ 2, (27;‘) /2),
with basis vectors

dry +dzxre and dzxy— dxpe

squaring to 1 and —1 respectively. Here I is a choice of n indices between 1 and 2n and I°¢
is its positively oriented complement. Then we can assign (27’;) /2 generators to forms of the

form dxy + dzje. On the other hand, if r > (2:) /2, then an assignment of these generators
would imply the existence of a basis in which the bilinear form has I, as a minor, which
cannot happen.

Case (ii): Assume that n > 3. We would like to show that there cannot be two symplectic
forms on R?" whose wedge product is zero. For some basis 1, ..., Zao,, one of these is

w=dxy ANdxrs +drg Ndxy + -+ drop_1 N dxoy,

and the other oneisn =), <j wj;jdx; A dx; for some coefficients w;;. For convenience, denote
wW(2i—1)(2i) by wi. Then the condition w An = 0 is a system of linear equations of the form

wge = 0, for wyy other than w;,
u; +u; =0, for i # j.

The only potentially non-zero coefficients are u;, but even they vanish if n > 3: in that case
u] = —ug = uz = —u1, and same goes for any u;. Thus n = 0. O
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4. PHENOMENA IN NON-SCALABLE SPACES

In this section we give two examples in non-scalable spaces in which a rescaling and con-
vergence argument gives new asymptotic lower bounds on the Lipschitz constant of maps.
The first is a special case of Theorem [A] but is proven using a more direct method in or-
der to demonstrate the technique. The second is a counterexample to Gromov’s distortion
conjecture.

While these examples can be understood perhaps more elegantly via maps from minimal
models, we have chosen to make them accessible without any knowledge of rational homotopy
theory.

4.1. First examples of Lipschitz bounds. We first go over some methods of establishing
relationships between the Lipschitz constant and homotopy class of a map which date back
to [Gro78].

Proposition 4.1. Let X and Y be Riemannian manifolds with boundary, and suppose that
[ X =Y is an L-Lipschitz map. Then for any flat form w € Q(Y),

[/ wlloo < L™|w]|oo-

Proof. If f is a smooth map and w is a smooth form, then ||f*w|~ is the supremal value of
f*w over n-frames of vectors of length at most 1. The pushforwards of these vectors have
length at most L, so this supremum is bounded above by the supremal value of w on n-frames
of vectors of length at most L. This is L"||w]|cc-

In the general case, one can think of the co-norm as dual to the mass norm on flat chains,
and use the fact that pushing forward by f multiplies the mass of a flat n-chain by at most
L™ [Fed69, 4.1.14]. This duality argument is used in [Whi57, §X.8] for flat forms in open
subsets of R”, but it works in any space in which the definitions make sense. ]

In particular, Proposition restricts the action of an L-Lipschitz map on cohomology.
That is the main tool of bounding the homotopy class of an L-Lipschitz map. Here is the
most straightforward application:

Corollary 4.2. If « € ,(Y) has nontrivial image under the rational Hurewicz homomor-
phism, the distortion of a is O(L™). That is, the Lipschitz constant of any representative of
ko is Q(kY™).

Proof. By assumption, H"(Y, Q) o H™(S™, Q) is nonzero, so there is a form w € Q*(Y') such
that for every representative f: S" =Y of a [ f*(w) = v # 0. Thus, using Proposition
we can bound the degree k of a representative g of ka by

vol(5™)[lg*w|[ee < vol(S™)(Lip g)" [|wl|oo- 0
For example, when applied to a volume form on S™, this proposition implies that the

degree of an L-Lipschitz map S™ — S™ is at most L". Gromov observed that this estimate
is sharp up to a multiplicative constant:

Proposition 4.3. For every d, there is a map S™ — S™ of degree d whose Lipschitz constant
is C(n)d"/™.

Proof. Let £ be smallest integer such that ¢ > d; then ¢ < 2dY/™. Give S™ the metric of
0[0,1]™!, which is bilipschitz to the round metric, and divide one of the faces into ¢" identical
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sub-cubes, £ to a side. We map all other faces to a base point, and map d of the sub-cubes
to the sphere by a rescaling of a standard degree 1 map

f+([0,1]",0[0,1]") — (5™, pt).

The resulting map has degree d and Lipschitz constant ¢ Lip f < (2Lip f )dl/ " U

4.2. The Hopf invariant. Gromov’s next example in [Gro78| concerns maps S% — S2. The
group m3(S?) is isomorphic to Z; this isomorphism is realized by the Hopf invariant of a map
f: 8% = S2, which can be computed in several ways:

e Hopf’s original definition: if f is a smooth map, its Hopf invariant is the linking
number between the preimages of any two regular values p and q.
e J. H. C. Whitehead’s formula: if f is a smooth map, its Hopf invariant is given by

Hopf(f) :/ aA ffw

S3

where w € Q2(S5?) is any closed form which integrates to 1 and « is any primitive for
f*w, which is a closed 2-form in S and therefore exact. (Indeed, a can even be a
primitive for f*w’, for some w’ in the same cohomology class as w.)

e The algebraic topology definition: build a 4-complex X by attaching a 4-cell to 5?2
using f. This has cohomology classes w generating H%(S?) and b generating H*(X ).
Then the Hopf invariant of f is the number Hopf(f) such that

w? = Hopf (f)b.

It is not hard to see the relationships between these definitions. In Whitehead’s formula one
can choose w and w’ to be concentrated near p and g, respectively, and then choose a to be
concentrated near an oriented surface filling f~'(¢). This shows that Hopf’s definition is a
special case of Whitehead’s.

On the other hand, Whitehead’s formula is related to the algebraic topology definition via
Stokes’ theorem. The attaching map f : S? — S? extends to a map F : D* — Xy, and ffw
extends to a 2-form & € Q?(D*). Then by Stokes’ theorem,

Hopf(f)z/sgwf*w:/mw?.

The Hopf map h : S3 — S? is the map of Hopf invariant 1 which is the attaching map of
the top cell of CP?. Gromov’s argument shows that the Hopf map S® — S? has distortion
O(L*). The upper bound uses Whitehead’s formula. By Proposition if f is L-Lipschitz,
then ||f*dvolg:||coc < L?, and by Lemma we can also choose a so that ||as. < CL2.
Therefore

Hopf(f) < vol(S?)||e||eo |l f*d volgz||ee < CL™.

Therefore the distortion of the Hopf map, whose Hopf invariant is 1, is O(L*). Conversely,
one can build an O(L)-Lipschitz map with Hopf-invariant L* by postcomposing h with the
degree L? map fr, : S? — S? of Proposition For a regular value p, (frh)~!(p) consists of
L? circles, each linking with every other one. This gives a total self-linking number of L*.
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FIGURE 1. In this example, @ and 8 are 1-forms of the form f(x)dx and
f(y)dy (where f is a bump function), and a A 8 = d~.

4.3. Homotopy classes of attaching maps. The examples in this section use generaliza-
tions of the Hopf invariant. We use all three definitions: Whitehead-like homotopy invariants
will be derived using Stokes’ theorem and used to produce geometric bounds. To generate
intuition for these bounds, one should pretend that the forms are Poincaré dual to submani-
folds, as in Hopf’s definition, and measure the thickness with which those submanifolds can
be embedded. We suggest the following dictionary for the reader’s marginal doodles:

e Cup products correspond to intersections.

e Differentials correspond to boundaries of submanifolds (and hence primitives corre-
spond to fillings).

e The oo-norm of a form corresponds to the thickness of the embedded normal neigh-
borhood of the Poincaré dual submanifold.

See Figure [1] for an illustration.

Let M be a smooth oriented n-manifold which is not a rational homology sphere, that
is the fundamental cohomology class is a nontrivial cup product. This implies that if M is
punctured, the puncture generates a nontrivial class in m,_1, since the cup product structure
distinguishes M from M° Vv S™. We can also think of this class as the top-dimensional
attaching map in a cell structure for M with one n-cell.

Let w and 7 be two forms of complementary dimension on M such that | ywAn=1,and

let f: 8" 1 — M®=1 be a map to the (n — 1)-skeleton of M. Then

1= [ anta

where « is any primitive for f*w, is a homotopy invariant of f. By Stokes’ theorem, if f is
in the homotopy class of N times the attaching map of the top cell, then I(f) = N.

4.4. Nonlinear homotopies.

Theorem 4.4. There is no C > 0 such that every nullhomotopic L-Lipschitz mapping S® —
#4CP? has a CL-Lipschitz nullhomotopy.

We first note that #4CP? can be given a CW structure with four 2-cells corresponding
to the copies of CP! inside each CP?, together with one top cell whose attaching map in
m3(\/, S?) is the sum of the elements corresponding to the Hopf fibration over each of the
spheres.
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Proof. We start with a specific family of maps fy : S% — \/, S? C #4CP? which are CyN-
Lipschitz; we will show by way of contradiction that there is no C such that each fy extends
to a C1 N-Lipschitz map D* — #4CP?2.

Let S; be a copy of CP! inside the ith copy of CP?. We define the fy so that they map
the outside of four fixed balls By, ..., By to the basepoint *x. On each B;, fy maps to S; with
Hopf invariant N*; specifically, as a composition

B3 Hopf map SZ degree N2, SZ‘,
where the degree N2 map has homeomorphic preimages of S; \ * lined up in a square grid
within a fixed square inside S2, similar to the construction in Lemma The maps fn are
nullhomotopic since they are homotopic in \/, S 2 to N* times the attaching map of the 4-cell.

Suppose now that, for some Cj, every fy extends to a CyN-Lipschitz map hy : D* —
#4CP?. Let o; be forms with disjoint support Poincaré dual to the cycles represented
by S;; then for each 4, a2 is a representative of the fundamental class of #4CP?, so let
Y1,v2,73 € 93(#4CP2) satlsfy dvi = a? — a3. By Proposition H hy changes the sup-

norm of k-forms by a factor of at most (C1 N ) . In particular, the scaled pullback forms
a; N = mzhiye; and gi v = wrhiyi satisty:

1
laivlleo < 373 (CLN)?[leilloc = CFllevillos

N—oo

1
lgi.vlloo < 377 (C1N)[illoc = 0.

Thus, we can chose a subsequence (Nj) so that a; n, and g; n, Weakb—converge to some a; o0
and 0, respectively. Moreover, since a? N — a2 '~ = dgi,n and weak” limits commute with A

and d, this means that a?__ = a3 o0 for each 1.
On the other hand, by Stokes theorem,

/ hNaz / fNaz/\n

where 7 is a form satisfying dn = f{a1|gs; that is, this integral is the Hopf invariant of the
projection of fy to Sy. Therefore, [ Dl a%oo = 1; in particular aioo is nonzero at some point.

This means that we have constructed an embedding H*(#4CP?R) — A*R% but by
Corollary this cannot exist. O

4.5. Proof of Theorem
Theorem 4.5. The distortion of the generator a € m5([(#4CP?) x S?]°) is o(L5).

This disproves the strong form of Gromov’s conjecture (that any element with trivial
Hurewicz image in 7, (Y) has distortion Q(L"*!)) and in particular shows that not all formal
spaces satisfy the conjecture.

Proof. Write Y = [(#4CP?) x S?]°. We use an argument very similar to the previous one.
Take a purported sequence of C N-Lipschitz maps fx : S° — Y representing N°a.

Let aq,...,a4 and B be forms on Y pulled back (along the natural projections) from
standard generators of H?(#4CP?) and H?(S?) respectively. We may assume that the o
have disjoint support and that 04? A B = 0 (for example by pulling back our original choice
along the deformation retraction of Y to its 4-skeleton.) Finally, as before, we define ~1, 72,

73 such that dvy; = a? — a?.
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Again by Proposition the C'N-Lipschitz maps fn change the sup-norm of k-forms by
a factor of at most (CN)¥. That implies that the norms of the forms

mff(rai» Wﬁvﬁ, mfﬁ/%
are bounded, and moreover the ﬁ favi converge to 0. So we can choose a sequence of N
such that these forms converge to some «o°, 3°°, and 0, respectively.

Moreover, the a$°® are nonzero, by the following reasoning. Let ny € Q1(S°) be such that
dnn = fxB. Then

(4.6) / fra? Any = NS,

This can be seen by Stokes’ theorem, as follows. The «; and 8 can be extended to forms
é&; and S over the unpunctured Y (#4(CP2) x S2?, retaining all their propertles except the
vanishing of a? A 3; instead, &2 A /3 represents the fundamental class of Y. Let hy be a
nullhomotopy of fy in ¥; we know that this nullhomotopy must have degree NS over the
puncture, and therefore f pe Ny a? /\6 N6. By Stokes’ theorem, ) holds.

On the other hand, by the cmsopemmetrlc inequality Lemma we can take ny so
that [[7nlee < N?; this allows us to choose a further subsequence in which the N~2ny
converge weakly to some n*° with d77 = BOO. Moreover, since A commutes with weak limits,
Jg5(@2°)? An> = 1. Therefore, [gs So )?|sod vol 2 1, and in particular (a$°)? is nonzero.

In other words, (a°)? = (« g )2 7é O for every 1 and s but af® Aag® =0 for every i # j.
By Theorem |3 - (case (ii), n = 2,7 = 4) this cannot happen locally at any point. O

5. EXAMPLES OF SCALABLE SPACES

In this section we prove that certain connected sums are in fact scalable by showing that
they have the condition (i) listed in Theorem [Al The basic idea is to use Poincaré duality,
building forms supported on the tubular neighborhoods of certain submanifolds.

Theorem 5.1. For anyn <m and r < ("+m 1) the space #r(S™ x S™) is scalable.

In particular, once we combine this result with Prop. we know the exact cutoff for
scalability for spaces of the form #r(S™ x S™); for m # n there remains a gap. One corollary
is as follows:

Corollary 5.2. The following spaces are scalable:
e pCP?# qCP2,0<p,q<3.
o pHP? # qHP2, 0 < p,q < 35.
o pOP? # qOP2, 0 < p,q < 6435.

Proof. We start by “symmetrizing” #r(S™ x S™) by adding (n + 1)-cells which make the two
factors of each S™ x S™ homotopic to each other. The resulting space X, , is still scalable
because the inclusion map

#r(S" x S") = Xy,
induces an injection on cohomology, and the corresponding forms are easy to extend over the
additional cells.
Recall that formal spaces, which will be discussed in more detail in the next section, have a
rational homotopy type that is a “formal consequence” of their rational cohomology algebra.
In particular, two formal spaces that have the same rational cohomology algebra are rationally
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equivalent, as is the case for #rCP? and Y2,. Thus by Theorem , #2CP? and #3CP?
are scalable. -

Similarly, CP? # CP? is formal and has the same rational cohomology algebra as S? x S2.
More generally, pCP? # qCP? is rationally equivalent to # max(p, q)(S? x S?) with |¢ — p| of
the connected summands “symmetrized”.

The quaternionic and octonionic cases are similar. O

On the other hand, our results say nothing about “mixed” connected sums such as (S? x
S2) # CP?, since while their real cohomology algebras are isomorphic to ones we understand,
their rational cohomology algebras are not. If we knew that scalability is a real homotopy
invariant, we would understand it for all simply connected 4-manifolds.

One can make a more general statement than Theorem to treat the case of different
summands, although the condition on r becomes a bit convoluted. We say a family Z of
subsets I C {0,1,...,k} is intersection-complete if for any I,J € Z all four intersections of I
or I¢ with J or J¢ are non-empty.

Theorem 5.3. For any intersection-complete family T of subsets I C {0,1,...,k}, the fol-
lowing space s scalable:

X7 = #[EI(SM X Sk+17\l|)‘

We use the notation Sy and Sye for the two spheres in the summand corresponding to 1.

Theorem is recovered from this statement by choosing as Z any subcollection of the
(”Z’i‘l_l) subsets of {0,...,n 4+ m — 1} of cardinality n that contain 0. This, together with
the inequality n < m, ensures that the family is intersection-complete.

Proof. We start by explaining why the combinatorial formulation makes sense. To show that
condition (i) from Theorem [A| holds we need to present the cohomology ring H*(X7z) by
forms w € €27(Xz). The space X7 has a simple cell decomposition: it is a disk DFF1 attached
to a wedge of spheres \/; St by the sum of Whitehead products [idg,,idsg,.].

So we start building these forms near the center of the disk DFt! ¢ R*¥+! by sending the
generator of HI'I(Sy) to the form w; := Nicr dxi, for each I € TUZ® (where Z° represents the
set of all complements of elements of Z, not the complement of Z). The fact that the family
is intersection-complete then implies that any two such forms have a common dz; and hence
multiply to 0, unless they are w; A wre = A\, dx;. This way we get a multiplicative structure
isomorphic to that of H*(X7z).

Now it remains to extend the forms w; from a region [—1,1]¥*! ¢ D*+1 to the rest of the
disk so that on the boundary OD**! they turn out to be pullbacks along the attaching map
of the volume forms on the spheres S;. We summarize this in the following lemma, which we
take the rest of the section to prove.

Lemma 5.4. For any intersection-complete family T of subsets of {0, ..., k}, the forms wr,
I € TUIC, can be extended to closed forms on D**1 so that
CL)[‘aDIH»l = f*Oq,
where the forms ay are the volume forms of
Src \/(Srv Sp) C Xz,
IeT

and f is the previously mentioned attaching map, and such that the product of the forms is
zero outside [—1,1]F+1. O



SCALABLE SPACES 15

5.1. Proof of lemma Let’s overview the rough idea of the construction. First we
extend the forms w; from the cube [—1,1]**! to a much larger cube via the same formula

wr = /\Xxie[—l,udlﬁi-
el
In other words, on any large sphere around the origin, wye is concentrated near, and Poincaré
dual to, the coordinate sphere

S(I):={xeS8*|z;=0,i€eIY.

Taking Z to be the closure of Z U Z¢ under intersections, the coordinate spheres S(J) for
J € T\ 0 are the closed strata of a stratification of S*. (By a stratification here, we mean
a collection of submanifolds X (I) C X associated to elements I of a semilattice Z, where
X(I)nX(J) = X(INJ), and with conditions on the neighborhood of a point of X(I).
We don’t need to make the concept completely precise because the general notion of such a
stratification is only used to build intuition.)

Outside this cube, we will construct forms that are again more or less Poincaré dual
to closed submanifolds in a stratification of an annular region in D**!, which we equate to
S* %[0, T]. This stratification restricts to the stratification by coordinate spheres on S* x {0},
and the strata indexed by all J outside of Z U Z¢ have trivial intersection with S* x {T'}.

We describe this as a kind of stratified framed bordism, that is we examine the intersections
of the strata with concentric spheres centered at the origin and describe their evolution as
“time”, i.e. radius, increases. Over time, the strata are “peeled off” one by one, starting
with the maximal ones. These maximal strata are stored aside after being detached, while
all subsequent lower ones are peeled off and then collapsed.

Each time a stratum departs, however, it leaves behind a small part of itself, concentated
near and held in place by lower strata. We reinterpret the leftover pieces as data associated
to fibers over the lower strata: here we actually keep track of the forms rather than the
strata themselves. Luckily, the exact shapes that are added this way don’t matter, as all the
lower-dimensional strata eventually collapse. But we do use the fact that they are globally
almost products, in a sense which we now describe.

Definition. A thickening of the stratification by coordinate spheres described above is de-
termined by a choice of numbers 1 < ;7 < Rad(S¥) for every I € T which satisfy e; > ¢;
whenever J C I. Then the (closed) membrane Sy is defined to be the e-neighborhood of the
coordinate sphere S(I). The open membrane S§is Sy \ |J S,.
JCI

To start, we must pick the initial £;’s small enough that we can pass to significantly thicker
membranes a number of times over the course of the argument.

The membrane Sy is canonically diffeomorphic to S(I)x D*1=1 with coordinates (z, r, §)
representing the point at distance r along the geodesic from = € S(I) to 0 € S(I¢). We say
that a form w agrees with our thickening if on any open membrane

S = S(I) x D(e)\ | Ss
JGI

it depends only on the D(ej) coordinates, i.e., w is the pullback of some wp € Q*(D(ey))
under the projection to the second factor.

This notion of agreement is crucial for the description of the construction, so it will be
maintained throughout the rest of the section.
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FIGURE 2. An example of pinching off a 2-membrane (gray) with 1- and 0-
membranes (black) standing still. The 2-membrane leaves behind some tubes
that are inherited by the lower membranes and are incorporated into them.

As the procedure consists of peeling off the membranes, we need to specify a way to detach
them.

Definition. Given a thickening and closed forms w;jo which agree with it, a pinching off of
a membrane Sy in the direction of p; € S(I€) is a new thickening (with new forms w;;) such
that:

(1) All the change in the forms is supported in a small neighborhood of S;, and outside
all Sy for J # 1.

(2) The membrane Sy is replaced by a parallel thickened sphere S’ which is shifted slightly
in the direction of p; and doesn’t cross any other membranes. This carries forms that
agree with its product structure. The new thickening does not have a membrane
corresponding to I.

(3) For J C I, the S; are thickened in a consistent way, and the forms are changed in
such a way that they agree with the new thickening; for other J, the thickening does
not change.

(4) The forms wyo and wy extend to closed forms wy; € Q*(S* x [0, 1]) whose pairwise
products are still zero.

Lemma 5.5. Let J be a set of subsets of [0,..., k| which is closed under intersection. For
a sufficiently thin thickening of the stratification of S* by coordinate spheres S(J), J € J,
any mazimal membrane Sy can be pinched off in any direction py such that the shift of Sy in
that direction wouldn’t intersect other membranes.

This is the main technical lemma, but its proof is just a wordy description of Figure[2] So
we put it in a separate section With this tool at hand, we are ready to prove Lemma [5.4

The forms on the cylinder S* x [0, 7] are constructed on cylinders S* x [t,t + 1], one after
the other, half of which are pinch-off cylinders.

First we pinch off the maximal membranes. Since Z is intersection-complete, no two sets
of indices in Z UZ¢ are contained in one another. Therefore the supports of the forms w; are
precisely the maximal membranes. Given a maximal membrane Sy, pick a point p; € S(I°)
that is far away from any lower membranes. That ensures that the geodesic disk D with
center pr and boundary S(I) only intersects the open membranes S9~; and S§.. So we pinch
off S; in the direction of p; and contract it along D to be a tight loop around p;. Then we
pinch off Sjc in a similar way and contract it along an analogous disk to be tightly linked
with the new Sj.
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After every maximal membrane is dealt with in this way, we have a set of Whitehead-linked
spheres, as required by the conclusion of the lemma. We move them all to a small ball so they
can be ignored for the rest of the construction; it remains to kill the remaining membranes.

This is done inductively, from the top down. Any now-maximal membrane S; can be
pinched off in the direction of the p; that was picked earlier for one of the original maximal
membranes Sz, J D I. The geodesic disk D with center p; and boundary S(I) only intersects
membranes near its boundary, since we have already gotten rid of S9.. Thus after pinching
off, we can extend the resulting sphere to a disk in S* x [t,t + 1] which does not intersect
any other membranes. The normal bundle extends to the trivial bundle on this disk, so we
can extend the forms to ones on S* x [t,¢ 4 1] which agree with this bundle structure. On
the remaining thickened stratification, the forms do not change on this interval.

After collapsing all the lower-order membranes, all that remains is the linked spheres, as
required by the statement of the lemma.

5.2. Pinch-off lemma. It remains to prove Lemma[5.5] Recall that the aim is to pinch off a
maximal membrane S; so that it splits into a parallel disjoint sphere S’, plus some leftovers
that are brushed under the set |J;-;S;. First, observe that on a neighborhood K of Sy
(which includes S’) we can choose coordinates

(5.6) S(I) x D* Wl x [—&,6 4 €],

which preserve trivializations, such that S; ¢ S(I) x D*~Il x [—¢, ¢] and such that the last
coordinate represents roughly the direction from S(I) to pr, which is angled away from other
membranes intersecting S(I). In particular, we can arrange it so that S is just Sy shifted
by d in the direction of the last coordinate, and S(I) x D*~I x [¢,§ + ¢] does not intersect
any membranes.

We now define forms on K x [0, 1] which extend the wy on K x {0} and are time-invariant
on the Sy, J' C I. Recall that on S9, the wy are independent of the sphere coordinate,
that is wJ]s}a is the pullback of a compactly supported form a; € Q*(Dkﬂ*'”) along the
projection to the disk coordinate. Let K° = K\ |J;c;S,. We define w; on K° x [0, 1] via

wy = (7 X T)*ay, where m(x,y,7,t) = y is the projection to D*~HI and
7:8(I) x DFH x [—e, 6 + ] x [0,1] = [—&,0 + €]
is a Lipschitz function satisfying:

(a) 7(x,y,7,0) = for all z and y (so that wy|x oy is as desired).

(b) For t € (0,1), 7(x,y,r t) interpolates linearly between r and 7(z,y,r,1).

(c) 7(x,y,r, 1) depends only on 7 and the distance d from x to the set J ;,; S(J'). Moreover,
as a function of  and d it is the piecewise linear function described by Figure

The membrane pinched off in Figure [2] is the preimage under 7 of a small neighborhood of
zero. In Figure [3| we see that at time ¢ = 1, this preimage splits into a shifted copy S’ and a
bubble surrounding the lower strata. We expand all the S, J C I, so that they have radius
between 3¢ and ¢ — € and therefore encompass this bubble. This can be done as long as 9 is
sufficiently larger than e.

We argue that the new forms at time 1 agree with this new thickening. Indeed, if (z,y,r)
is contained in the newly thickened S¢, then the closest point to z € S(I) in the lower strata
is in some S(J') such that J* 2 J. Then the values of the forms at (z,y,r, 1) only depend
on the distance from x to this point and on y and r. All of these depend only on the fiber
coordinate in S ;. On the other hand, outside all of the S, the forms are zero except on S/.
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Ujcr Sy fits in here
(and 7 is independent of ¢
on this subdomain)

FIGURE 3. A graph of 7(z,y,7,1) as a function of r and d. It is not to scale,
but faithfully shows the linear pieces. The range is [—¢, ].

Finally, on S, 7 is independent of x, and therefore w; agrees with the product structure

(5.6)-

6. RATIONAL HOMOTOPY THEORY

In this section we introduce Sullivan’s formulation of rational homotopy theory using dif-
ferential forms, emphasizing the quantitative aspects outlined in [Manl9]. We also explain
why these results apply to flat as well as smooth forms. We recommend the book by Griffiths
and Morgan [GMSI] for a more thorough introduction to the algebraic aspects.

The basic category of Sullivan’s theory is that of differential graded algebras (DGAs). A
DGA is a chain complex over a field F (in our case, always Q or R) equipped with a graded-
commutative multiplication satisfying the (graded) Leibniz rule. The prototypical examples
are:

e The smooth forms 2*(X) on a smooth manifold X, or the simplexwise smooth forms
on a simplicial complex.

e Sullivan’s minimal DGA M5, (F) for a simply connected space Y, which is a free
algebra generated in degree n by the indecomposable elements V,, = Hom(m,(Y);F)
and with a differential determined by the k-invariants in the Postnikov tower of Y.
We will write M3, to mean M5, (R).

The cohomology of a DGA is the cohomology of the underlying chain complex. The correct
notion of an equivalence between DGAs is a quasi-isomorphism, a map which induces an
isomorphism on cohomology. In particular, for every simply connected manifold or simplicial
complex Y there is a quasi-isomorphism, which we call the minimal model,

my : My — Q*(Y),

constructed by induction on the indecomposable elements of MS3,.

When Y is compact, Q*(Y) is finite-dimensional and M3, is finitely generated in every
degree; so a reductionist perspective is that my is simply a choice of a finite number of forms
on Y satisfying certain relations. Nevertheless, the perspective of shifting between maps
f: X — Y and homomorphisms ¢ : M} — Q*(X) via the correspondence

[ ffmy
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turns out to be quite powerful. We think of homomorphisms M3 — ©*(X), most of which
are not images of genuine maps under this correspondence, as “formal” maps from X to Y.

6.1. Flat forms and minimal models. Here we demonstrate the advantages of using flat
forms Q7(X) rather than smooth forms to define our minimal models. First, Lemmas
and [2.2] imply the following:

e Any minimal model for *(X) is also a minimal model for {2 (X).
e Any minimal model my : M3, — Q7(Y’) induces an algebraicization map f > f*my
sending
{Lipschitz maps X — Y} — Hom(M5,, Q) (X)).

Given finite complexes X and Y, we define a weak” topology on Hom (M3, (X)) gener-
ated by the topologies on the restrictions to each indecomposable. In other words, a sequence
of maps converges if and only if it converges on every indecomposable.

Lemma 6.1. A sequence of maps in Hom(M5,, 07 (X)) whose L> norm on each indecom-
posable is bounded has a weak’-convergent subsequence.

Proof. We note that this also bounds the flat norm on each indecomposable, since the differ-
ential is generated by indecomposables in lower degrees. By the Banach—Alaoglu theorem,
the restriction of the sequence to every indecomposable has a weak’- -convergent subsequence.
Since we can choose a finite basis of indecomposables of degree < dim X, this gives us a sub-
sequence which weak’-converges on all indecomposables. By Lemma [2 . this subsequence in
fact converges to a DGA homomorphism. U

Together with Lemma [2.4] these observations are enough to show that the machinery of
[Man19| still works when we substitute flat forms for smooth ones.

6.2. Obstruction theory. Classical obstruction theory describes the obstruction to con-
structing a lifting-extension

—Y

A
A
L]
Ve
X ——B,

where p : Y — B is a principal fibration with fiber K(m,n): this obstruction lies in
H" (X, A;7) and is obtained by pulling back the k-invariant of the fibration, which lies
in H"*1(B; 7). In particular, it is often fruitful to take Y and B to be adjacent stages of the
Postnikov tower of a space.

A similar obstruction theory for minimal DGAs is described in |[GMS8I, §10]. In this
case, the role of a Postnikov stage of M3 is played by the sub-DGA M3, (k) generated by
indecomposables of degree < k. More generally, the obstruction theory can be stated for
elementary extensions A — A(V'), where V' is a vector space of indecomposables in degree k
with differentials in A™*!,

To give the precise statements, we must introduce other ideas. First define homotopy of
DGA homomorphisms as follows: f,g: A — B are homotopic if there is a homomorphism

H: A— BoR(t,dt),
where t is of degree zero, such that H|;—o = f and H\t 1 = g. We think of R(t, dt) as an
dt=0 =0

algebraic model for the unit interval and this notion as an abstraction of the map induced
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by an ordinary smooth homotopy. In particular, it defines an equivalence relation [GMSI],
Cor. 10.7]. Moreover, for any piecewise smooth space X there is a map

p QX) @R(L, dt) — (X x [0,1))

given by “realizing” this interval, that is, interpreting the ¢ and dt the way one would as
forms on the interval. When the target is a space ;(X) of flat forms, we can obtain the
same homotopy theory by replacing DGA homotopies with “formal” homotopies with images
in (X x [0,77). We often use these two notions of homotopy interchangeably in this paper.

To help define concrete DGA homotopies, we introduce some extra notation. For any DGA
A, define an operator fg AR, dt) - AR R(t,dt) by

[lawti=0, [la®tidt = (—1)deg@a(§9ﬂ
0 0 i+1
and an operator fol A R(t,dt) — A by
1 i 1 P 14 d a
fo a®tz = O,fo a ®tldt = (_1) egam.

These provide a formal analogue of fiberwise integration; in particular, they satisfy the iden-
tities

(6.2) d(fyu) + fodu=u— ul = ®1
6.3 a( [ Ydu = ul =1 — u| =0 .
(6.3 o) + Jodow =l g, = vl

The relative cohomology of a DGA homomorphism ¢ : A — B is the cohomology of the
cochain complex

Cn“o) A" ¢ Bn—l
with the differential given by d(a,b) = (da,p(a) — db). This cohomology fits, as expected,
into an exact sequence involving H*(A) and H*(B). Given a coefficient vector space V,
H*(C*,V) is the cohomology of the cochain complex Hom(V, C*).

Now we state the main lemma of obstruction theory, which states the conditions under
which a map can be extended over an elementary extension.

Proposition 6.4 (10.4 and 10.5 in |[GMS&I]). Let A(V) be an n-dimensional elementary
extension of a DGA A. Suppose we have a diagram of DGAs

ALB

J»

Avy-2L ¢

with gl 4 ~ hf by a homotopy H : A — C@R(t,dt). Then the map O : V — BT o C" given
by

O(v) = (f(dv),g(v) + o H(dv))

defines an obstruction class [0] € H" ' (h : B — C; V) to producing an extension f : A(V) —

B of f with g~ ho f via a homotopy H extending H.
Moreover, if h is surjective, then we can choose H to be a constant homotopy.
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When the obstruction vanishes, there are maps (b, c) : V — B*®C" ! such that d(b,¢) = O,
that is,

db(v) = f(dv)

de(v) = hob(v) — g(v) — [y H(dv).
Then for v € V we can set f(v) = b(v) and
(6.5) H(v) = g(v) + d(c(v) @ t) + [ H(dv).
This gives a specific formula for the extension.

6.3. Homotopy groups. One important application of the obstruction theory above is to
make explicit the automorphism V;, = Hom(m,(Y),R); this approach was pioneered by Sul-
livan [Sul77) §11]. There are several ways of doing this.

First, suppose that h : B — C is a minimal model mgn : Mgn — Q7(S™). Given a
Lipschitz map f : S™ — Y, we would like to understand its rational homotopy class. By
repeatedly applying Proposition to f*my, since mx is a quasi-isomorphism, we obtain a
map ¢ : M5 — M¥%,. In particular, this restricts to a homomorphism V;, — R representing
an element of 7,(Y) ® R. Since ¢| Mj, (n—1) 18 the zero map, we can equivalently think of the
resulting homotopy as a partial nullhomotopy of f*my which is obstructed in degree n.

Alternatively, we can take h : B — C to be the restriction homomorphism QF(D"*!) —
Qx(S™). Again applying Proposition to f*my, since the restriction homomorphism is
surjective, we obtain a formal extension ¢ : M3 (n—1) — QF (D™1) of f*my. At that point,
we obtain an obstruction in Hom(V,,, H***(D"*! S™:R)) to extending to V,. This again
represents an element of m,(Y) @ R.

Both of these constructions are used in quantitative arguments further down. Quantitative
arguments of this type were first given by Gromov in [Gro98, Ch. 7].

6.4. The shadowing principle. The quantitative obstruction theory in [Manl9] is built
upon a combination of the coisoperimetric Lemma [2.4] and algebraic properties of DGAs.
Thus all of the results there are true, mutatis mutandis, after expanding the universe from
smooth to flat forms. In particular, given a homomorphism M3, — QF(X), one can produce
a nearby genuine map X — Y whose Lipschitz constant depends on geometric properties of
the homomorphism.

To state this precisely, we first introduce more definitions. Let X and Y be finite simplicial
complexes or compact Riemannian manifolds such that Y is simply connected and has a
minimal model my : Mj, — Y. Fix norms on the finite-dimensional vector spaces Vj, of
degree k indecomposables of M3 ; then for homomorphisms ¢ : M3, — Q7 (X) we define the
formal dilatation "

Dil(p) =, _max  l¢lvillop”
where we use the L>° norm on €} (X). Notice that if f : X — Y is an L-Lipschitz map, then
Dil(f*my) < CL, where the exact constant depends on the dimension of X, the minimal
model on Y, and the norms. Thus the dilatation is an algebraic analogue of the Lipschitz
constant.

Given a formal homotopy

O My — Q) (X x[0,T]),
we can define the dilatation Dily(®) in a similar way. The subscript indicates that we can
always rescale ® to spread over a smaller or larger interval, changing the dilatation; this is
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a formal analogue of defining separate Lipschitz constants in the time and space direction,
although in the DGA world they are not so easily separable.
Now we can state some results from [Man19].

Theorem 6.6 (A special case of the shadowing principle, [Manl9, Thm. 4-1]). Let ¢ :
M5 — (X)) be a homomorphism with Dil(e) < L which is formally homotopic to f*my
for some f: X =Y. Then f is homotopic to a g : X — Y which is C(X,Y)(L+1)-Lipschitz
and such that g*my is homotopic to ¢ via a homotopy ® with Dil;,r(®) < C(X,Y)(L +1).

In other words, one can produce a genuine map by a small formal deformation of . We
also present one relative version of this result:

Theorem 6.7 (Cf. [Manl9, Thm. 5-7]). Let f,g: X — Y be two nullhomotopic L-Lipschitz
maps and suppose that f*my and g*my are formally homotopic via a homotopy ® : M5, —
(X x [0,T]) with Dilp(®) < L. Then there is a C(X,Y)(L + 1)-Lipschitz homotopy F :
X x[0,T] =Y between f and g.

It is important for this result that the maps be nullhomotopic, rather than just in the same
homotopy class. This is because we did not require our formal homotopy to be in the relative
homotopy class of a genuine homotopy. In the zero homotopy class, one can always remedy
this by a small modification, but in general the minimal size of the modification may depend
in an opaque way on the homotopy class.

6.5. The depth filtration. Any minimal DGA has a filtration
0CUyClU; CUzC---
defined inductively as follows:

e Uy is generated by all indecomposables with zero differential.
e The product respects the filtration: if u; € U; and us € Uj, then ujug € U;y;.
e U; contains all indecomposables whose differentials are in U;_1.

This filtration is canonical once one fixes the vector spaces of indecomposables. We say that
an element has depth i if it is contained in U; \ U;_;.
The filtration {U;} also induces a dual filtration

T(Y)®F=A DA DAy D

via the pairing between indecomposables in degree n and m,(Y): a € A; N (m,(Y) @ F) if for
every j < i, U,NVj pairs trivially with «.. In particular, A; is the kernel of the Hurewicz map
with coefficients in F. This leads to a neat formulation of Gromov’s distortion conjecture as
discussed in the introduction:

Definition. We say that m,(Y") satisfies Gromov’s distortion conjecture if any element of
7 (Y) N (Ag \ Agr1) has distortion ©(L"+F).

The Leibniz rule tells us that if z € U;, then dz € U;_1. By induction on ¢ one readily sees:

Proposition 6.8. Every DGA homomorphism respects the depth filtration, that is it sends
U; into U;. Consequently, for every map between simply connected spaces, the induced homo-
morphism on rational homotopy groups respects the filtration {A;}.

The depth filtration allows us to define an alternate notion of “size” for homomorphisms
o M5 — Q*X, where Y is compact and simply connected and X is any metric complex.
Like dilatation above, this notion depends on the choice of norms on the spaces Vi, but
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this affects it only up to a constant depending on the dimension of X, since each Vj is
finite-dimensional. Specifically, we define the U-dilatation of ¢ to be
1
n+k .
s max  llelvnolle™
0<k<n

DilY () :=

this is bounded above by dilatation but has significant advantages in that bounds on U-
dilatation are often easy to preserve via inductive obstruction-theoretic constructions.

Using this formalism, we can show that the upper bound in Gromov’s distortion conjecture
holds in all cases:

Proposition 6.9. For any simply connected Y, every element of m,(Y) N (Ag \ Axt1) has
distortion O(L"*F).

Thus Gromov’s distortion conjecture is satisfied if this bound is sharp. We will see that
this is the case for scalable spaces.

In effect, this estimate is obtained by keeping track of the size of the formal nullhomotopy
produced in We prove it as a corollary of a useful, albeit technical, proposition for all
maps between simply connected spaces:

Proposition 6.10. Let X and Y be two simply connected finite complexes with minimal
models mx : My — Q(X) and my : My — Q(Y). Then for every L-Lipschitz map
f: X =Y, there is a map ¢ : M5 — M such that f*my ~mxe and

DilY (mx¢) < C(X,Y)L.

Proof of Prop.[6.9. Let f : S™ — Y be an L-Lipschitz map. Then, as described in §6.3]
the corresponding DGA homomorphism ¢ : Mj — MF, constructed in Proposition
restricts to a homomorphism ¢ : V,, — R which represents the pairing between V,, and [f].
In particular, if f is a representative of Naw € 7, (Y) N (Ag \ Ag+1), then there is some element
x € V, N Uy such that po(x) = N. Therefore

N < DilY (p)""*|2| < C(a) L.
In other words, the distortion of a is O(L"¥). O

Proof of Prop.[6.10. Since mx is a quasi-isomorphism, there is a map ¢ which makes the
diagram

* ¥ *
M - =5 M

m‘{ me
f*

Q(Y) —— Q4 (X)

commute up to homotopy; we would like to build such a ¢ with controlled U-dilatation. In
the process, we will also need to control Dil{ (®), where

O My — QF(X) x R{t, dt)

is the formal homotopy between f*my and mxp.

We start by choosing a linear map d~' : dM% — MY which gives a choice of primitive
for each coboundary in MY%. We also choose a linear map r : H*(X;R) — M fixing
representatives for every cohomology class. Since in every degree both the cohomology and
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the vector space of coboundaries are finite-dimensional, there are constants C),, depending
on the choices, such that for every b € dM?%,

Imxd™"blloo < Cnllmxbllco,
and for every a € H"(X;Q),
mx7(a)|o < Cpinf{||w]les : w € '(X) and [w] = a}.

We construct ¢ and @ by induction on the stages of M3, using Proposition Suppose
we have built ¢, : Mj (n) - M?% and a homotopy

B, : M (n) — QF(X) x R{t, dt)

between f*my | M (n) and mxyy, with the right estimates on dilatation. We would like to
extend both to V41, the vector space of (n + 1)-dimensional indecomposables of Y. Fix a
basis {v;} for V,,+1 which respects the depth filtration, that is, each Uy N'V,,41 is spanned by
a subbasis. For each v; € Uy \ Uy_1,

C(vr) = mxd L pn(dvy) — frmy (v;) — [} @u(dv;)

is a closed form in QSH(X ). Tts cohomology class has a representative a(v;) € H" 1 (X;R).
By Proposition we can choose a primitive o(v;) for {(v;) — mxr(a(v;)) with

lo(vi)lloe < C(n, Y)(1 + C)l[C(vi) | o-
In turn,
16 (vi)llso < Co DI (i) ™ HHHED 4 C(¥V) L 4+ Dl (),
Then, using , we choose
1 (vi) = mxd™ pn(dv;) — mxr(a(v;))
D,1(v;) = ffmy (v;) + d(o(v;) @ t) + fot@n(dvi).
As desired, [|gns1(01) oo and |41 (07) oo are both bounded by C(X, ¥)Lm++1, :

Plugging the same estimates into the proof of [Manl9, Prop. 3-9] yields an additional
technical lemma:

Proposition 6.11. Suppose that ®; : M5 (k) — Q(X) @ R(t,dt) is a partially defined
homotopy between o, : My — Q(X), and suppose that DilY (), DilY(¢), and Dil{ (®y)
are all bounded by L > 0.

(i) The obstruction to extending i to a homotopy
Bjpr s Mo (k+1) = QX @ R(t, dt)

18 a class in Hk(X; Vit1) represented by a clochain whose restriction to Vi1 NU; has
operator norm bounded by C(k + 1,Y)LF+1+1,

(ii) If this obstruction class vanishes, then we can choose ®py1 so that DilY (@) <
C(k,Y)L.
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6.6. Formal spaces. Many of the spaces we will be discussing in this paper are formal in
the sense of Sullivan. A space Y is formal if Q*Y is quasi-isomorphic to the cohomology
ring H*(Y;R), viewed as a DGA with zero differential. In other words, there is a map
M3 — H*(Y;R) which is a quasi-isomorphism. (By [Sul77, Thm. 12.1], the definition using
any other ground field F O Q is equivalent.) More generally, we say a DGA is formal if it is
quasi-isomorphic to its cohomology ring.

Another way of saying this from the point of view of minimal models is this. Formal spaces
are those whose cohomology is a quotient of A Uy, where Uy is the subspace of indecompos-
ables in the minimal model which have zero differential. In other words, a minimal DGA is
non-formal if and only if it has a cohomology class which is not a linear combination of cup
products of elements of Uj.

It follows that, while many rational homotopy types may have the same cohomology ring,
there is exactly one formal one, and its minimal DGA can be constructed “formally” from the
cohomology ring: at stage k, one adds generators that kill the relative (k + 1)st cohomology
of the map M3, (k — 1)(F) — H*(Y;F). This is the genesis of the term.

In fact, Halperin and Stasheff showed [HS79) §3] that for a formal space, one can choose the
vector space of indecomposable generatorsﬂ so that the depth filtration {U;} can be refined,
non-canonically, to a bigrading M3 = A, W;, where

(U; Nindecomposables) = W; @ (U;—1 N indecomposables).

Spaces known to be formal include the simply connected symmetric spaces [Sul77] and
Kéhler manifolds [DGMST5], but there are many other examples, some of which are given in
Table [

An important alternate characterization of formal spaces is that they are those Y for
which the grading automorphisms p; : H*(Y;F) — H*(Y;F) taking w ~ t48%y lift to
automorphisms of the minimal model [Sul77, Thm. 12.7]. This lift is homotopically nonunique
(for example, maps S?V S3 — §2V 53 are characterized not only by the degrees on S? and 3
but also by the Hopf invariant of the restriction-projection S — S2) but all such lifts share
certain properties. In particular, all of them send U; to itself; moreover, given w € W; N M,
they send w — t"w + w’ where w' € U;_;.

Given a choice of W;, one choice of lift sends every w € W; N ./\/l{, to tHiw. We refer to
this as the automorphism associated to the bigrading {W;}.

Similarly, after fixing a quasi-isomorphism hy : M3 (Q) — H*(Y;Q), the composition
pihy lifts to a canonical choice of automorphism of the minimal model, giving a “one-
parameter family” of such automorphisms. It turns out that we can always find enough
genuine maps Y — Y implementing this choice:

Theorem 6.12 ([Man21l, Corollary 1.1]). Let Y be a formal finite CW complex. There is an
integer to > 1, such that for every z € Z, pu,hy is realized by a genuine map ¥ —Y.

A result of this type was originally stated in [Shi79]; see [Man21] for the proof as well as
the full history.

7. A NON-FORMAL EXAMPLE

In this section we discuss an example space Y which is not formal, but satisfies condi-
tion (iv) of Theorem for n < dimY, nullhomotopic L-Lipschitz maps S™ — Y have

2While the minimal model is unique up to isomorphism, such an isomorphism need not preserve this.
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O(L)-Lipschitz nullhomotopies. On the other hand, nullhomotopies of maps from higher-
dimensional spheres cannot be made linear (so condition (iii) is not satisfied). This demon-
strates that the method of proof of Theorem [A] which relies on induction by skeleta to show
that (iv) implies the other conditions, cannot be straightforwardly extended to show that non-
formal spaces never admit linear nullhomotopies. On the other hand, we also do not have a
candidate non-formal space which could admit linear nullhomotopies from all domains. Thus
the following question remains open:

Question. Do non-formal simply connected targets ever admit linear nullhomotopies of maps
from all compact domains? For that matter, from all spheres?

Our space is 8-dimensional, although a 6-dimensional example can also be constructed.
Namely, we take the CW complex

Y = (S2vSyvS®) Uy ed,
where f: S7 — 83V 83V S® is given by the iterated Whitehead product
lidg, idgs +[idq, ids]],

with id, and idy representing the identity maps on the two copies of S3.

Above and below we use the following conventions to define representatives of homotopy
classes with good Lipschitz constants. Let ¢ : S¥ — Y and ¥ : S* — Y be maps with
Lipschitz constant < L. The notation [p, 1] represents the standard Whitehead product of
@ and 1, that is the C(k, ) L-Lipschitz map S¥**~1 — Y given by composing ¢ V1) with the
attaching map of the (k + £)-cell of S* x S¢. The notation N¢ represents the composition
of ¢ with a degree N, O(Nl/k)-LipSChitZ map S* — S*. as constructed in Proposition
Finally, if £ = ¢, then ¢ + 1 represents the C(k)L-Lipschitz map given by composing ¢ V ¢
with a map sending the northern and southern hemisphere to different copies of the sphere.

Proposition 7.1. Forn <7, nullhomotopic maps S™ — Y have linear nullhomotopies.

Proposition 7.2. There is a sequence of nullhomotopic maps gn : S — Y with Lipschitz
constant O(N) but such that every nullhomotopy of gy has Lipschitz constant Q(N'7/16),

Proof of Prop.[71 Forn <7, any L-Lipschitz map S™ — Y has an O(L)-Lipschitz homotopy
to one whose image lies in the 7-skeleton of Y, W = S v §3 v §5. Moreover, if n < 7, such
a map is nullhomotopic in Y if and only if it is nullhomotopic in W. Since this is a scalable
space, any such nullhomotopy can be made O(L)-Lipschitz by Theorem

There remains the case n = 7. Clearly a map g : S” — W is nullhomotopic in Y if and only
if it is in the homotopy class N[f] € m7(W) for some N. By Theorem @, the distortion of
[f] in W is ~ L8, meaning that if ¢ is L-Lipschitz, it is homotopic in W to the O(L)-Lipschitz
map

g = [Aidgs, B(idgs +[idg, ids]) | + Cf

for A< L3, B < L% and C < L7, and again by Theorem this homotopy can be made
O(L)-Lipschitz.

Finally, we need to show that ¢’ has an O(L)-Lipschitz nullhomotopy in Y. So consider a
map p: S% x S5 — Y sending the S factor to S2 and the S° factor to Y via idgs +[idy, idp].
Since 52 x S is scalable, the map

[Aidgs, Bidgs| + Clidgs, idgs]

for A < L3, B < L%, and C < L7 has an O(L)-Lipschitz nullhomotopy there. Pushing this
nullhomotopy to Y via p gives an O(L)-Lipschitz nullhomotopy of ¢'. O
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Proof of Prop.[7.3 The map
gn = [[N?ida, N®idgs], [N?ida, [N? ida, N id]]]

is O(N)-Lipschitz, and it is homotopic in S5V S3V S to [[N3id,, N°idgs], N? f] and therefore
nullhomotopic in Y. We will show that any nullhomotopy has Lipschitz constant Q(N 17/ 16y,
We will need to understand some of the rational homotopy theory of the subspace

W=8Vvsivs cy.

We note that W is formal and therefore its minimal DGA can be computed formally. Here
are some of the generators in low dimensions (the number n in (™) denotes the degree of a
generator x):

(M (7, 9) (9)

a®, b3, 0(5), ul(;)) da =db=dc=0,du, = ab
My D < Ue U Wy, Ve du. = ac, dvy, = auy, dwy = avy, dv, = au, >

11
w£ ), 2(13) dwe = ave, dz = u.vp — veup — cwy + web

We will show two facts: first, (2, [gn]) ~ N'7; second, if F : (D, 0D") — (Y,W) is an
L-Lipschitz map, then (z, [F|s]) = O(L'%). Therefore, if F is a nullhomotopy of gy, then its
Lipschitz constant is Q(N17/16),

Since [gn] = N'7[[idg,idgs], [ida, [ida, idp]]] = N'7[g1], to see that (z,[gn]) ~ N7, it is
enough to show that the pairing (z, [g1]) is nontrivial. As explained in [FHT12, §13(e)], the
Whitehead product is dual to the quadratic part of the differential in the minimal model.
In particular, wup is dual to [id,,idp] and u. is dual to [id,,idgs]; therefore vy is dual to
lidg, [idg, idp)]; and finally, since dz contains the term wu.vp, z pairs nontrivially with [g;].

Now suppose that F': (D', 0D) — (Y,W) is an L-Lipschitz map. We can compute
the pairing (z, [F'|g]) using the second method discussed in Fix a minimal model myy :
(M3, d) — W we attempt to extend (F|g)*mw to a map e : Mj;, — Q*D'. Since the
relative cohomology is zero through dimension 13, we do not encounter an obstruction until
we try to extend to 13-dimensional indecomposables. At that point, regardless of previous
choices, the obstruction to extending to z is given by the pairing, that is,

/ e(dz) = (= [Fl]).
Dl4

We will use the map F' to build one such extension with bounds on the sizes of the forms; in
particular we will make sure that ||e(dz)| = O(L'%), so that the pairing is also O(L*).

By [EHTI2, §13(d)], mw can be extended to a quasi-isomorphism my : (Mj, @ Ry, d') —
Q*Y which we use as a non-minimal model for Y. Here y satisfies 4> = 0 = dy and zy = 0 for
every x € My, and d’ = d except for 7-dimensional indecomposables x in M7y, for which

dx = du + (2,[f])y.

In particular, myy is a closed form concentrated in the interior of the 8-cell, representing the
fundamental class of H3(Y, W;R).
To build the extension of (Fy)*my to Q*D', we first send

a— F*mya, b— F'myb, c+— F'myc, up+— Fmyup;

then choose a 7-form w € Q*(D, dD) satisfying dw = F*myy and ||w||e = O(L®) and
send
Ue — Frmyue — (ue, [flw, vy = F my vy — (o, [f])w;
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and finally, using Lemma [2.4] pick forms e(wy), £(v.), and e(w,.) satisfying
le(ws)lloe = OL™),  le(ve) o = O(LM),  [le(we) [l = O(L™).
This construction gives us ||e(dz)| s = O(L'). O

8. PROOF OF THEOREM

In this section we prove Theorem [A| together with Theorem a). First, we restate these
results:

Theorem. The following are equivalent for a simply connected finite complex Y :

(i) There is a DGA homomorphism i : H*(Y;R) — QY which sends each cohomology
class to a representative of that class.

(ii) There is a constant C(Y) and infinitely many (indeed, a logarithmically dense set of)
p € N such that there is a C(Y)(p + 1)-Lipschitz self-map which induces multiplication
by p" on H™(Y;R).

(iii) Y is formal, and for all finite simplicial complexes X, nullhomotopic L-Lipschitz maps
X =Y have C(X,Y)(L + 1)-Lipschitz nullhomotopies.

(iv) Y is formal, and for all n < dimY, nullhomotopic L-Lipschitz maps S™ — Y have
C(X,Y)(L + 1)-Lipschitz homotopies.

Moreover, this property is a rational homotopy invariant.

Proof. We start by proving the equivalence of (i) and (ii), followed by rational invariance;
the statements on homotopies are the most involved and are deferred to the end.

(i) = (ii). We start by showing:
Lemma 8.1. A space satisfying (i) is formal.

Proof. The homomorphism 7 : H*(Y;R) — Q'Y guaranteed by (i) is a quasi-isomorphism.
Let my : M} — Y be a minimal model. Then by repeated applications of Proposition
we get a quasi-isomorphism hy : M5, — H*(Y;R) such that i o hy ~ my. This shows
that hy is a quasi-isomorphism of DGAs over the reals, in other words M35, is formal. O

The map ¢ o ¢ constructed in the lemma is a minimal model my = io hy : M5 — Q'Y
which sends all homologically trivial elements to 0.

Let p; : H*(Y) — H*(Y) be the grading automorphism which multiplies H* by t*. Then
by Theorem [6.12] there is some ¢ > 1 such that p;ohy is realized by a genuinemap f : Y — Y.
For every N, f¥ is in the rational homotopy class of the map ip,nhy : M% — QY whose
dilatation is O(t); therefore, by the shadowing principle we can build an O(t")-Lipschitz
map in this homotopy class. Therefore such maps are at least logarithmically dense.

(i) = (i). Suppose that there is an infinite sequence of p € N and C(Y)(p + 1)-Lipschitz
maps 7, as given. Let my : M5, — Q*Y be a minimal model, and

oo
My = \ Wy
=1
a bigrading as described in There is an automorphism 7, of M3 extending the grading
automorphism on H*(Y") which sends a € Wy to pieeetia.
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Now for each p the map ¢, = rymypy/, : My — Q7 (Y) sends

1,

w pé-i-degw Tp

myw, w € Wy.
This sequence of maps is uniformly bounded, and therefore has a subsequence which weak’-
converges to some @Y.

Lemma 8.2. For indecomposables w, poo(w) =0 if and only if w € @po, Wy.

other hand, if w € Wy, then it is cohomologically nontrivial, and thus there is a flat cycle
A and a Cy > 0 such that [, ramyw = Capies™ for every p. Thus J 4 Poc(w) = C4 and so

Poo(w) # 0. U

Now, if an element w € A Wy is zero in H*(Y; R), then it is the differential of some element
of W1 and therefore again o (w) = 0. Thus o : M3 — Q7 (Y) factors through H*(Y;R),
showing (i).

Proof. If w € @;2; Wy, then its image is zero since |[[rimyw||o < [C(Y)(p+1)]98™. On the

Rational homotopy invariance of (ii). Suppose that Y has property (ii) and Z is a rationally

equivalent finite complex. By [Man21l Theorem B], there are maps Z i> vy % 7 inducing
rational homotopy equivalences such that g o f induces the automorphism p, for some g.
Then we can get a sequence of maps verifying (ii) for Z by composing

2Ly 2y 4
for each p in the sequence verifying (ii) for Y.
(#4i) = (iv). This is clear.

(iv) = (ii). Suppose that Y is formal and admits linear nullhomotopies of maps from S™.
Theorem [6.12] gives a way of realizing the grading automorphism p; of Y by amapr;: Y — Y
for some infinite, logarithmically dense sequence of ¢, but without geometric constraints. It
thus remains to construct homotopic maps with Lipschitz constant O(L). We defer the details
to the next section as they require some additional technical machinery from [Man19].

In fact, our construction will give a more general result, which may be thought of as a
strengthening of the shadowing principle for scalable spaces:

Lemma 8.3. Suppose Y admits linear nullhomotopies of maps from S*, k <n—1. Let X be
an n-dimensional simplicial complez, and let ¢ : M5, — Q(X) be a homomorphism which
satisfies

DilY (¢) < L,
and which is formally homotopic to f*my for some f: X —Y. Then thereisag: X —Y

which is C'(n,Y)(L+ 1)-Lipschitz and homotopic to f, where C(n,Y’) depends on the choices
of morms on V.

As a special case, in combination with Theorem we see that such a Y satisfies (ii).
Formally, this lemma also implies Gromov’s distortion conjecture for Y, Theorem @ In
fact, though, we will prove this separately and use it in the proof.
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(i) = (iii). Let X be a finite simplicial complex and f : X — Y a nullhomotopic L-Lipschitz
map. Choose a natural number ¢ > 1 such that there is an map r; : Y — Y which induces
the grading automorphism p; on cohomology.

We will define a nullhomotopy of f by homotoping through a series of maps which are
more and more “locally organized”. Specifically, for 1 < k < s = [log, L], we build a
C(X,Y)(L/p* 4 1)-Lipschitz map fx : X — Y by applying the shadowing principle to
the map

f*mypp—k : ./\/l;/ — Q" X.

We will build a nullhomotopy of f through the sequence of maps

f rpo fi Tp2 © f2 .. .\T'ps o fs ——— const.
TpOTpo fo Tps—10Tp O f

As we go right, the length (Lipschitz constant in the time direction) of the kth intermediate
homotopy increases—it is O(pk)—while the thickness (Lipschitz constant in the space direc-
tion) remains O(L). Thus all together, these homotopies can be glued into an O(L)-Lipschitz
nullhomotopy of f.

Informally, the intermediate maps r,x o fx look at scale pF /L like thickness-p* “bundles”
or “cables” of identical standard maps at scale 1/L. This structure makes them essentially
as easy to nullhomotope as L/p*-Lipschitz maps.

We now build the aforementioned homotopies:

Lemma 8.4. There is an O(p")-Lipschitz homotopy F), : Y x [0,1] — Y between r,x and

p
Tpk—1 OTp.

Lemma 8.5. There is a thickness-O(L/p*), constant length homotopy G : X x [0,1] = Y
between fi, and rp o fry1.

This induces homotopies of thickness O(L) and length O(p"):

o I o (fy xid) from ryk—107p 0 fi to Tk © fi;

e 7,6 0 Gy from 7,k o fi, t0 7k 07 0 fri1.
Finally, the map f, is C(X,Y')-Lipschitz and therefore has a short homotopy to one of a finite
set of nullhomotopic simplicial maps X — Y. For each map in this finite set, we can pick a
fixed nullhomotopy, giving a constant bound for the Lipschitz constant of a nullhomotopy of
fs and therefore a linear one for r,s o f;.
Adding up the lengths of all these homotopies gives a geometric series which sums to O(L),
completing the proof of the theorem modulo the two lemmas above. ]

Proof of Lemma 8.4 We use the fact that the maps rpi were built using the shadowing prin-
ciple. Thus, there are formal homotopies ®; of length C(X,Y’) between my p,; and r;imy.
This allows us to construct the following formal homotopies:

e ®; time-reversed, between r;k my and my p,, of length C(X,Y);

e ®1p,k1 between my p,r and rymy pyr-1, of length C(X,Y)pF1
e and (T;k,l ®1id)®y 1 between rymy p,e-1 and T;T;k,lmy, of length C(X,Y).
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Concatenating these three homotopies and applying the relative shadowing principle to
the resulting map M3} — Q*(Y x [0, 1]) rel ends, we get a linear thickness homotopy of length
O(p*~1) between the two maps. O

Proof of Lemma[8.5 We use the fact that the maps f and fz1; were built using the shad-
owing principle. Thus there are formal homotopies ¥; of length C'(X,Y’) between f*myp,-:
and f;. This allows us to construct the following formal homotopies:

e Uy, time-reversed, between f and f*myp,-«, of length C(X, Y);
o Uy 1pp between f*myp,-« and fi,  mypp, of length C(X,Y)p;
e and (fy,; ®id)®y between f;, mypp and rp fr ymy, of length C(X,Y).

Concatenating these three homotopies and applying the relative shadowing principle to
the resulting map M3 — Q*(X x [0, 1]) rel ends, we get a linear thickness homotopy of length
O(p) between the two maps. O

9. PROOF OF THEOREM [B]

Now we prove Theorem [B] which we again restate:

Theorem (Properties of scalable spaces).

(a) Scalability is invariant under rational homotopy equivalence.

(b) The class of scalable spaces is closed under products and wedge sums.

(¢) All n-skeleta of scalable complexes are scalable, for n > 2.

(d) Scalable spaces satisfy Gromov’s distortion conjecture. That is, if Y is scalable, all ele-
ments a € mp(Y) N Ay outside Ay have distortion ©(LFFY).

In fact, we will show this for spaces that satisfy (i) and (ii) of Theorem [A] Thus it doesn’t
matter that we are not done proving that (iii) and (iv) are equivalent to (i) and (ii), and
indeed we will use part (d) in the proof of Lemma

We already showed (a) in the previous section. For part (b), if (ii) holds for spaces X and
Y, then we can take the product and wedge sum of the respective scaling maps to get scaling
maps of X xY and X VY.

To show part (c), we use (i). Let Y be a complex satisfying (i), and let n > 2. The
inclusion i : Y™ < Y induces isomorphisms for H* for k < n and an injection on H™.
Then the homomorphism H*(Y;R) — Q(Y’) composed with the restriction to forms on y (™)
gives a homomorphism from i* H*(Y;R) C H*(Y(™;R) to (Y (™). To extend to the rest of
H ”(Y(”); R), we can choose any n-forms representing a basis for a complementary subspace
and extend by linearity. Since these forms are top-dimensional, their wedge product with any
other form is zero, as desired.

Part (d) is a mild generalization of [Manl9, Theorem 5-4] showing that symmetric spaces
satisfy Gromov’s distortion conjecture, whose proof already uses the fact that they satisfy
(i). Suppose first that a € m(Y) is contained in Ay. We will show that its distortion is
Q(LF*). Let f : S¥ — Y be a representative of o, and let rp be maps realizing (ii) for any p
for which they exist. Then ry,f is an O(L)-Lipschitz representative of ¢"tta. Such a map Tp
exists for at least a logarithmically dense set of integers p, so all other multiples can also be
represented with a similar Lipschitz constant.

The other side of the inequality follows immediately from Proposition



32 A. BERDNIKOV AND F. MANIN

10. MAPS TO SCALABLE SPACES

The purpose of this section is to prove Lemma [8.3 which we restate here:

Lemma. Suppose Y admits linear nullhomotopies of maps from S*, k < n —1. Let X be
an n-dimensional simplicial complez, and let ¢ : M5 — Q;‘(X) be a homomorphism which
satisfies

DilY(p) < L,

and which is DGA homotopic to f*my for some f: X — Y. Then thereisamapg: X — Y
which is C(n,Y)(L + 1)-Lipschitz and homotopic to f, where the constant C(n,Y) depends
on the choices of norms on Vj,.

Both scalability and Gromov’s distortion conjecture follow as corollaries of this lemma.
These should be thought of as instances of a wider principle that the lemma facilitates
the construction of maximally efficient maps. While the original shadowing principle gives
a close relationship between the (usual) dilatation of the “most efficient” homomorphism
M5, — QX and the best Lipschitz constant of a map X — Y in a given homotopy class,
the homomorphisms involved can be as difficult to construct as the maps. On the other
hand, in light of Proposition homomorphisms with optimal U-dilatation can always
be constructed by factoring through maps between minimal models. This means that for
scalable spaces, the Lipschitz norm of a homotopy class can be computed by studying the
maps between minimal models which represent it. Although the set of such maps may be
quite complicated in general, computing it is at least a finite obstruction-theoretic problem.
We summarize this as a theorem:

Theorem 10.1. Given two simply connected spaces X and Y and a minimal model mx :
My — (X)), we can define two norms on the set of homotopy classes o € [X,Y]:

laluip = inf{Lip(f) | f: X = Y,[f] = o}
la|upi = inf{DilY (m% ) | ¢ : M} — M, mi@ ~ f*my where [f] = a}.
If'Y is a scalable space, then there are constants ¢,C > 0 such that for every o € [X,Y],
clalupi < |ofLip < C(lajupi + 1).

Note that this is true regardless of the choice of mx, and therefore the norm |a|upi
essentially only depends on information about minimal models.
We prove Lemma by induction using the following statements:

(an) Lemma holds through dimension n (we make this more precise during the proof, but
in particular it holds for n-dimensional X).

(by) If Z is an n-complex which is formal and admits linear nullhomotopies of maps from
Sk k < n, then it satisfies (ii).

Clearly, (a,) implies (b,). In particular, since any skeleton of a formal space is formal

[Shi79, Lemma 3.1], Y™ satisfies (ii). Therefore, according to Theorem (d), it also satisfies

Gromov’s distortion conjecture. In addition, we need the following easy extension of that
result:

Lemma 10.2. Suppose that Y is an n-complex and the distortion conjecture holds for
71, (Y=Y, Then it holds for m,(Y).
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Proof. This follows from the exact sequence
(Y)Y S e (VY L (Y, Y (D)

Since im j C H,(Y"), all elements of 7, (Y") not in ker j are undistorted. Conversely, elements
in the image of ¢ are at least as distorted as their preimages. To show that this is consistent
with the distortion conjecture, we must analyze the induced map M3 — M{ ). In fact,
this map is injective in degrees < n — 1 (and hence preserves the filtration by the U;) and
all extra n-dimensional generators of M3 have zero differential; see [FHT12l §13(d)]. This

completes the proof of the lemma. ]
We now proceed with the proof of the inductive step.

Proof of Lemma[8.3. The structure of this proof is very similar to the original proof of the
shadowing principle in [Man19, §4]. That is, we pull f to a map with small Lipschitz constant
skeleton by skeleton, all the while using ¢ as a model to ensure that we don’t end up with
overly large obstructions at the next stage (as might occur if we pulled in an arbitrary way.)
The biggest difference is that we don’t need to subdivide before performing the induction.

The details follow. Suppose, as an inductive hypothesis, that we have constructed the
following data:

e A map g, : X — Y, homotopic to f, whose restriction to X*) is C(k,Y)(L + 1)-
Lipschitz.
e A homotopy @ : M3 — Q(X) ® R(t,dt) from g;my to ¢ such that

Dil{ ((Pkl atz (1)) xwr) < C(k, Y)(L 4 1).
We write 3y, = fol ®;; note that for v € Vj,

dBr(v) = p(v) — gimy (v) — [, Pr(dv)

and S (v)[a = 0.

We then construct the analogous data one dimension higher, starting with gx11. Let
b € C*(X;mp41(Y)) be the simplicial cochain obtained by integrating B|v,,, over k-simplices
and choosing an element of 7511 (Y") whose image in Vi1 is as close as possible in norm (but
otherwise arbitrary.) Note that the values of b are not a priori bounded in any way. We use
b to specify a homotopy Hy11: X x [0,1] = Y from g to a new map ggi1.

We start by setting Hy11 to be constant on X =1 On each k-simplex ¢, we set Hitlg
to be a map such that

Ik+1lg = Hiv1lgx {1y = Hir1lgx {0y = 9klgs
but such that on the cell ¢ x [0,1], the map traces out the element (b,q) € my1(Y). This
is well-defined since Hyy1|p(gx[0,1]) is canonically nullhomotopic by precomposition with a
linear contraction of the simplex.

Now, relative homotopy classes of extensions to p of gi|sp, where p is a (k + 1)-simplex,
have a free action by mi41(Y); in particular, differences between them can be labeled by
elements of 7;41(Y) giving the obstruction to homotoping one to the other. No matter how
we extend Hy; over p x [0, 1], this obstruction will be gxt1|p, — gklp = (9b,p). We would like
to show that we can do so in such a way that gxi1|p is C(k 4+ 1,Y)(L + 1)-Lipschitz.

Note first that by assumption we can extend gi11|gp to p via a C(k+1,Y")(L+1)-Lipschitz
map u : DFT! — Y. However, this map may be in the wrong homotopy class. To build the
extension we want, we first estimate the size of the obstruction in 7511 (Y) to homotoping u
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to gr+1lp; Lemma applied to Y51 then implies that this obstruction is represented by
a C(k+1,Y)(L+ 1)-Lipschitz map S¥*! — Y which we then glue into the original extension
to define gp1/p-

Lemma 10.3. The obstruction above can be written as o =), o; where a; € mp1(Y) N A;
and its coefficients in terms of a generating set for this subgroup are O(LF+1+7).

In other words, it is contained in a subset of 7;11(Y) whose elements, by Lemma can
be represented by C(k,Y)(L 4 1)-Lipschitz map. The proof is exactly that of Lemma 4-2
in [Man19], except that Proposition (instead of Proposition 3-9 of that paper) is used
to give a bound.

After fixing gi+1|p for each (k + 1)-cell p, we can extend Hjy; to higher-dimensional cells
arbitrarily. The final task is to build a second-order homotopy from ®; to a homotopy ®j1
from ¢ to gx+1 such that

Dil{ ((Pk1|amg (k1)) x i) < Ck+1,Y)(L+1).

Intuitively, this can be done since ®xly,,, and H} |y, ,, have, by construction, very similar
integrals over (k + 1)-cells; hence the obstruction to constructing such a homotopy is easy
to kill. The details are once again the same as in the proof of the shadowing principle in
[Man19]. O
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