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Abstract—The  ACM/IEEE CS 2013 curriculum
recommendations state that every undergraduate CS major
should learn about parallel and distributed computing (PDC). One
way to accomplish this is to teach students about the Message
Passing Interface (MPI), a platform that is commonly used on
modern supercomputers and Beowulf clusters, but can also be
used on a Network of Workstations (NoW), or a multicore laptop
or desktop. MPI incorporates many PDC concepts and can serve
as a platform for hands-on learning activities in which students
must apply those concepts. The MPI standard defines language
bindings for Fortran and C/C++, but many university instructors
lack expertise in these languages, preventing them from using MPI
in their courses. OpenMPI is a free implementation of the MPI
standard that also provides Java bindings for MPI. This paper
describes how to install OpenMPI with these Java bindings; to
illustrate the use of these bindings, the paper also presents several
patternlets—minimalist example programs—that show how to
implement PDC design patterns using OpenMPI and Java. This
provides a new means of introducing students to PDC concepts.
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I. INTRODUCTION

Many “real world” problems are sufficiently challenging
that parallel and distributed computing (PDC) techniques are
needed to solve those problems in a reasonable length of time.
Examples of such problems include genetic sequence alignment,
weather forecasting, Monte Carlo models of natural phenomena,
seismological data analysis, and many others.

Since CS graduates need to be able to solve such problems,
the NSF/IEEE TCPP Curriculum Initiative [15] and the
ACM/IEEE CS 2013 Curriculum guidelines [11] state that all
undergraduate CS majors should learn specific aspects of PDC.
Likewise, the Accreditation Board for Engineering and
Technology (ABET) requires all ABET-accredited CS programs
to expose their majors to PDC [1]. In light of this, how do we
(CS educators) equip our students with the PDC concepts and
hands-on skills they need to be modern software developers?

A. The Message Passing Interface (MPI)

Beowulf clusters [10] and modern supercomputers are
distributed-memory multiprocessors, meaning the system is
made up of multiple independent computers called nodes, each
with its own local memory, but no shared memory. The nodes
are connected together via a low-latency, high-bandwidth
network through which the nodes can communicate.

This work was supported by U.S. NSF grant DUE#1822486.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The Message Passing Interface (MPI) [14] is a software
platform that is commonly used on modern supercomputers and
Beowulf clusters, but that may also be used effectively on a
Network of Workstations (NoW) or a multicore laptop or
desktop. This ability to run on almost any hardware platform
makes MPI a useful tool for introducing students to PDC.

MPI provides: (i) a library of functions for inter-process
communication, and (ii) a runtime environment for launching a
multi-process computation across the nodes of a Beowulf cluster
or supercomputer. MPI uses the Single Program, Multiple Data
(SPMD) pattern of parallelism, in which copies of the same
program (processes) are launched on the supercomputer’s
nodes—the Single Program part of SPMD. The MPI runtime
assigns each process a different number called its rank, which
the processes can use to perform different tasks or process
different chunks of data—the Multiple Data part of SPMD.
There are two free, open source versions of MPI available—
MPICH [5] and OpenMPI [16]—plus commercial versions.

The MPI Standard [14] specifies that an implementation of
the standard must provide bindings for three languages: Fortran,
C, and C++. (Third parties have developed bindings for other
languages, but they are not part of the MPI standard.) When
installing MPI, a person just specifies their preferred language
and its compiler, and the MPI installer handles the details.

However, very few universities teach Fortran anymore, and
instruction in C/C++ appears to be gradually declining as new
languages like Go and Rust provide attractive alternatives for
systems-level programming. Additionally, the computing
programs at many universities are heavily Java-oriented, for a
variety of reasons, including:

e In U.S. high schools, the Advanced Placement Computer
Science ‘A’ course (AP CS-A) is taught in Java, so many
universities match that language in their CS1 course.

e QOutside the U.S., the International Baccalaureate (IB) CS
course is officially language-agnostic, but Java is
commonly used as the hands-on programming language.

e Java is used extensively in industry. As a result, some
universities focus on Java to prepare their students for
careers as Java developers.

e Some (many?) university instructors have extensive
expertise in Java but have limited C/C++ expertise.



For these and other reasons, it can be challenging for some
universities’ CS departments to teach their students about PDC
using C/C++ and MPI. The author is a member of CSinParallel,
an NSF-supported project to promote PDC in undergraduate CS
education [6]. Since 2012, this project has sponsored over
twenty faculty development workshops around the U.S.; most of
these workshops included introductions to MPI programming
using C/C++. At virtually every one of these workshops, one or
more faculty participants has asked, “Is there any way to do this
in Java? My department is heavily Java-oriented.”

B. OpenMPI

Those in the OpenMPI project seem to have heard similar
comments. Since version 1.7 in 2013 (the current version is 4.1),
OpenMPI has included Java bindings that supersede those of
older 3" party efforts such as mpiJava [7] or MPJ Express [8].

OpenMPI’s Java bindings are not enabled by default; if one
downloads and installs an OpenMPI binary package for Linux,
MacOS, or Windows, the Java bindings are not usually enabled.

To use the Java bindings in OpenMPI, one must currently
configure, build, and install OpenMPI from its source code. The
following steps illustrate the process:

1. Have the Java SDK and a C compiler (e.g., GNU’s gcc)
already installed.

2. Download the current stable OpenMPI source code package
(e.g., openmpi-4.1.1.tar.gz) from www.open-mpi.org.

3. Extract the OpenMPI source code from the package, e.g.:
tar -xcvf openmpi-4.1.l1l.tar.gz
4. Configure OpenMPI to enable the Java bindings:
cd openmpi-4.1.1

./configure --prefix=/usr/local \
--enable-mpi-java --disable-mpi-fortran

(If one has a Fortran compiler already installed, that final
disable-mpi-fortran switch may be omitted).

5. Build and install the OpenMPI library from its source code:
make all install

This sequence of instructions should work on any Unix-
derivative system, such as Linux or MacOS, or on a Unix-
derivative subsystem such as Cygwin [17] for Windows or the
Windows Subsystem for Linux (WSL) [13].

When these steps have been successfully completed,
OpenMPI’s binary, include, and library files will have been
installed in the directory /usr/local/. In particular:

e an MPI compiler-script named mpijavac , and
e an MPI run-time launcher named mpirun

will have been installed in /usr/local/bin/. If that directory
is present in one’s environment’s PATH variable, then the
programs mpijavac and mpirun may be invoked from
anywhere on one’s system. The mpijavac program is used to
compile Java programs using the OpenMPI bindings; the
mpirun program is used to execute the resulting Java class files.
We will illustrate their uses in Section II.

C. Parallel Design Patternlets

In software engineering, design patterns are repeatable,
general solutions to commonly occurring problems. The seminal
work on such patterns is found in the 1994 book Design Patterns
[9]. However, the patterns described therein are limited to
sequential computing, so in 2004, Mattson, Sanders, and
Massingil published Patterns for Parallel Programming [12],
which classifies and defines patterns that are useful for solving
problems that commonly occur in parallel computing.

These patterns originate in the professional software
engineering community, not academia. That is, software
engineers have been writing parallel programs for decades; the
parallel patterns stem from those decades of professional
practice—they are the best practices that have been discovered
through years of professional experience. Working parallel
professionals think in terms of these patterns, so the more a CS
educator can do to get her students to think in terms of these
patterns, the more like professionals her students will be.

The MPI standard (currently 4.0) provides function calls that
implement for many of the parallel patterns. From this
perspective, MPI might be seen as an application programmer’s
interface (API) for many of the parallel design patterns.

In 2005, the author was teaching an MPI Distributed
Computing course at what was then the Technological
University of Iceland. The language of instruction was English,
but several of the author’s students were foreign-exchange
students who were not fluent in English. However, these
students were proficient at reading C code, so for each of the
basic parallel patterns, the author wrote a minimalist, working
MPI program to demonstrate that pattern to his students. These
programs illustrated the correct MPI syntax for each pattern, and
by comparing the program’s source code against the output it
produced, the non-English-speaking students could deduce the
parallel behavior produced by the MPI code.

These minimalist programs proved to be very successful at
helping students understand MPI functionality, so the author
continued to develop such pattern-illustrating programs for other
platforms (e.g., OpenMP, Pthreads, etc.). Since each program
provided a minimalist representation of a parallel pattern, the
author named such programs patternlets. A 2014 experiment
indicated that replacing traditional lectures on parallel loops
with live demos of parallel loop patternlets improved student
engagement and understanding of that concept [2].

The patternlets collection has continued to grow; the full
collection is publicly available via the author’s Github
repository [4]. A recent addition to that repository is a set of MPI
patternlets using OpenMPI’s Java bindings. The rest of this
paper introduces these Java+MPI patternlets.

II. MPI PATTERNLETS IN JAVA

At the time of this writing, there are 25 Java+MPI patternlets
available [4]. Each is stored in its own folder, along with a
Matkefile to simplify building it, and a run script that illustrates
how to run it. Many of the patternlets have built-in interactive
mini-exercises, which are detailed in the file’s header-comment.
Space limitations prevent us from presenting even a majority of
these patternlets; what follows is a representative sample.



A. The Single Program Multiple Data Pattern

As noted earlier, MPI follows the Single Program Multiple
Data (SPMD) pattern, in which a developer writes one program
(the SP part); running the program spawns different instances
that get different data values to process (the MD part). The
Spmd.java patternlet shown in Figure 1 (minus the file’s header-
comment) is a simple way to introduce this pattern to students:

import mpi.*;

public class Spmd {
public static void main(String [] args)
throws MPIException {
MPI.Init(args);

int id MPI.COMM_WORLD.getRank();
int numProcesses = MPI.COMM_WORLD.getSize();
String hostName = MPI.getProcessorName();
String message "Greetings from process #"

+ id + " of "

+ numProcesses + " on "

+ hostName + "\n";
System.out.print (message);

MPI.Finalize();

}
}

Fig. 1. Spmd.java

Similar to an C-MPI program, each Java-MPI program contains
a call to MPI.Init(args) that uses any provided command-
line arguments to launch the distributed computation. This
includes creating an object named MPI .COMM_WORLD that is an
instance of a class named Comm. In OpenMPI’s Java bindings,
getSize() and getRank() are Comm class methods, so a
process invokes them on the MPI.COMM WORLD object to
discover: (i) its process id and (ii) how many processes are
performing the computation. Last, the program ends with
MPI.Finalize() that shuts down the distributed computation
created by MPI.Init ().

To build Spmd.java manually, we may enter:
mpijavac Spmd.java

This compiles the Spmd.java source code to Java bytecode and
stores that bytecode in a file named Spmd.class. To run that
bytecode with one process, we may enter:

mpirun -np 1 java Spmd
On a computer named furing, this will produce:
Greetings from process #0 of 1 on turing
To run it with two processes, one can enter:
mpirun -np 2 java Spmd
On turing, doing so might produce either this:

Greetings from process #0 of 2 on turing
Greetings from process #1 of 2 on turing

or this:

Greetings from process #1 of 2 on turing
Greetings from process #0 of 2 on turing

To run the program with four processes on four networked
machines named nodel, node2, node3, and node4, whose names
are stored in a text file named hosts, we can enter:

mpirun -np 4 -machinefile hosts java Spmd
and the output will be some variation of the following:

Greetings from process #2 of 4 on node3
Greetings from process #3 of 4 on node4
Greetings from process #0 of 4 on nodel
Greetings from process #1 of 4 on node2

We are invoking OpenMPI’s mpirun, so any of its standard
command-line switches can be used. However, each process that
mpirun launches is a Java virtual machine that runs the
bytecode found in Spmd.class. Each process is running the same
program but will get different values for its id and hostname
variables, thus introducing students to the SPMD pattern.

The patternlets collection also includes minimalist examples
for other basic patterns, including the Master-Worker, Parallel
Loop, Message-Passing, Barrier, and other patterns. In the next
subsection, we examine two Parallel Loop patternlets.

B. The Parallel Loop Patterns

Long-running programs often contain one or more program
loops that consume the majority of the run-time. A Parallel Loop
may be useful for reducing the run-time of such programs.

There are two forms of the Parallel Loop: a simple form that
divides the loop’s iterations among the processes in round-robin
fashion, and a complex form that divides the loop’s iterations
into contiguous “chunks”. Figure 2 presents a patternlet for the
simpler form, with the parallel loop highlighted in red:

import mpi.*;

public class ParallelLoopChunksOfl {

public static final int REPS
public static final int MASTER

8;
0;

public static void main(String [] args)
throws MPIException {
MPI.Init(args);

int id = MPI.COMM_WORLD.getRank();
int numProcs = MPI.COMM_WORLD.getSize();
String message ="";

if (numProcs <= REPS) {
for (int i = id; i < REPS; i += numProcs) {
message = "Process " + id
+ " is performing iteration
+ i+ "\n";
System.out.print (message);
}
} else if (id == MASTER) {
System.out.print("\nPlease run with
+ "-np less than or equal to
+ REPS + "\n\n");

}

MPI.Finalize();

}
}

Fig. 2. ParallelLoopChunksOfl.java



This program can be compiled by entering:
mpijavac ParallelLoopChunksOfl.java

To run the resulting Java bytecode with 1 process, we can enter:
mpirun -np 1 java ParallelLoopChunksOf1l

and the traditional sequential output will be generated:

Process 0 is performing iteration O
Process 0 is performing iteration 1
Process 0 is performing iteration 2
Process 0 is performing iteration 3
Process 0 is performing iteration 4
Process 0 is performing iteration 5
Process 0 is performing iteration 6
Process 0 is performing iteration 7

But if we run it using 2 processes:
mpirun -np 2 java ParallelLoopChunksOf1l

then the output will be some variation on the following,
depending on the order in which the operating system schedules

processes 0 and 1 relative to one another:

Process 0 is performing iteration O
Process 1 is performing iteration 1
Process 0 is performing iteration 2
Process 1 is performing iteration 3
Process 0 is performing iteration 4
Process 1 is performing iteration 5
Process 0 is performing iteration 6

Process 1 is performing iteration 7

With a bit of study, it can be seen that process 0 is performing
the loop’s even iterations (0, 2, 4, and 6) and process 1 is
performing the odd iterations (1, 3, 5, and 7). With two
processes, this pattern thus divides the loop’s iterations so that a
given process performs every other iteration.

To run the program with 4 processes, we can enter:
mpirun -np 4 java ParallelLoopChunksOf1l
and the output will be a variation on the following:

Process 0 is performing iteration O

Process 1 is performing iteration 1
Process 2 is performing iteration 2
Process 3 is performing iteration 3
Process 0 is performing iteration 4
Process 1 is performing iteration 5
Process 2 is performing iteration 6
Process 3 is performing iteration 7

That is, process 0 is performing iterations 0 and 4, process 1 is
performing iterations 1 and 5, process 2 is performing iterations
2 and 6, and process 3 is performing iterations 3 and 7. With 4
processes, this pattern divides the loop’s iterations so that a
given process performs every 4" iteration. Generalizing, we can
see that when using P processes, this pattern divides the loop’s
iterations so that a given process performs every P iteration. If
we think of a parallel loop as an abstraction that divides the
loop’s iterations into “chunks” for a process to perform, then this
simple version of the parallel loop gives each process a series of
chunks, each of size 1; hence the name of this patternlet.

By contrast, the more complex form of the parallel loop
divides the loop’s iterations into contiguous “chunks” whose
sizes are as equal as possible. Figure 3 provides a patternlet for
this parallel loop, with the key code highlighted in red:

import mpi.*;
public class ParallelLoopEqualChunks {

public static final int REPS = 8;
public static final int MASTER = O;

public static void main(String [] args)
throws MPIException {
MPI.Init(args);

int id = MPI.COMM_WORLD.getRank();
int numProcesses = MPI.COMM_WORLD.getSize();
int start = 0;

int stop = 0;

String message ="";

if (numProcesses > REPS) {
if (id == MASTER) {
System.out.print("\nPlease run with
+ "-np N less than or equal to
+ REPS + "\n\n");

}

MPI.Finalize();
System.exit (0);
}

double doubleReps = REPS;

int chunkSizel = (int) Math.ceil (doubleReps
/ numProcesses);

int chunkSize2 = chunkSizel - 1;

o

int remainder = REPS % numProcesses;

if (remainder == 0 ||
(remainder != 0 && id < remainder)) {
start = id * chunkSizel;
stop = start + chunkSizel;
} else {
start = (remainder*chunkSizel) +

(chunkSize2 * (id - remainder));
stop = start + chunkSize2;

}
for (int i = start; i < stop; i++) {
message = "Process " + id
+ " is performing iteration "
+ i+ "\n";
System.out.print (message);
}
MPI.Finalize();

}
}

Fig. 3. ParallelLoopEqualChunks.java

This “equal chunks” parallel loop is more complex than the
simpler loop because: (i) the iteration range must be divided
among the P processes as evenly as possible, and (ii) each
process must compute the start and stop numbers for its
“chunk” of the iteration range. Unlike the simpler parallel loop,
this “equal chunks” parallel loop is preferable for processing
data stored in arrays because when the contiguous iteration-
ranges it produces are used as array indexes, this loop will take
full advantage of the caching mechanisms of modern CPUs.



This patternlet may be built and run in a manner similar to the
previous examples; when run with 2 processes, it produces
output that is a variation of the following:

Process 0 is performing iteration O
Process 0 is performing iteration 1
Process 0 is performing iteration 2
Process 0 is performing iteration 3
Process 1 is performing iteration 4
Process 1 is performing iteration 5
Process 1 is performing iteration 6
Process 1 is performing iteration 7

In this form of the loop, process 0 performs the contiguous
“chunk” of iterations 0-3, while process 1 performs the
contiguous ‘“chunk” of iterations 4-7. If we instead use 4
processes, this patternlet produces output such as this:

Process 0 is performing iteration O

Process 0 is performing iteration 1
Process 1 is performing iteration 2
Process 1 is performing iteration 3
Process 2 is performing iteration 4
Process 2 is performing iteration 5
Process 3 is performing iteration 6
Process 3 is performing iteration 7

Using 4 processes, process 0 performs iterations 0 and 1; process
1 performs iterations 2 and 3, process 2 performs iterations 4 and
5, and process 3 performs iterations 6 and 7.

When the number of processes P divides evenly into the number
of iterations N, each process gets an equal “chunk” of the
iterations whose size is N/P. When this is not the case—when
remainder == R and R > (O—this pattern gives each of
processes 0..R-/ one additional iteration to perform, thus
spreading the remainder iterations evenly across those first R
processes. To illustrate, if we run this program with 3 processes,
the program produces output that is a variation on the following:

Process 0 is performing iteration O

Process 0 is performing iteration 1
Process 0 is performing iteration 2
Process 1 is performing iteration 3
Process 1 is performing iteration 4
Process 1 is performing iteration 5
Process 2 is performing iteration 6
Process 2 is performing iteration 7

With 8 iterations to divide among 3 processes, there are 2
remainder iterations, so processes 0 and 1 each get one extra
iteration resulting in “chunks” of size 3, while process 2 gets a
“chunk” whose size is 2.

This may be too complex for first-year students. For them,
the patternlets collection also includes a much simpler “equal
chunks” parallel loop that assumes the number of iterations NV is
evenly divisible by the number of processes P, so each process
just gets a “chunk” of size N/P.

C. Communication and Sychronization Patterns

The patternlets also includes examples that illustrate the
various communication patterns supported in MPI, including:

o Barriers, for synchronizing all processes.

o Send-Receive message passing, for both arrays of values and
individual values.

Broadcast for efficiently sending the same value(s) to all of
a computation’s processes.

Reduce for efficiently combining distributed partial results
into an overall result.

Scatter for distributing the values of an array from one
process amongst all the processes.

Gather for combining distributed arrays from all processes
to a single array in one process.

To illustrate, Figure 4 presents Barrier.java that illustrates how
to synchronize all of an MPI computation’s processes, with the
MPI barrier () call highlighted in red:

import mpi.*;
import java.nio.CharBuffer;

public class Barrier {

public static void main(String [] args)
throws MPIException {
MPI.Init (args);

int numProcs MPI.COMM_WORLD.getSize();
int id MPI.COMM_WORLD.getRank();
String host = MPI.getProcessorName();

sendReceivePrint (id, numProcs, host, "BEFORE");
// MPI.COMM_WORLD.barrier();
sendReceivePrint (id, numProcs, host, "AFTER");

MPI.Finalize();

}

private static
void sendReceivePrint(int id, int numProcesses,
String host, String position)
throws MPIException {

if ( id != MASTER ) { // Worker
CharBuffer buf = MPI.newCharBuffer (SIZE);
String msg = "Process " + id
+ " of " + numProcs
// + " on " + host
+ " is " + position

+ " the barrier.";
buf.put (msg);
MPI.COMM_WORLD.send(buf, msg.length(),
MPI.CHAR, 0, 0);
} else { // Master
for (int i = 1; i < numProcs; ++i) {
CharBuffer buf = MPI.newCharBuffer (SIZE);
MPI.COMM_WORLD.recv(buf, SIZE, MPI.CHAR,
MPI.ANY_SOURCE,
MPI.ANY_TAG);
System.out.println( buf.toString() );

}
}
}
private static final int SIZE = 128;
private static final int MASTER = 0;

}
Fig. 4. Barrierjava



In Figure 4, the main () method contains two calls to a method
named sendReceivePrint (), one before and one after a
barrier, which is initially commented out. In each of these calls,
each worker process builds a unique message and sends it to the
master process. As its part of the method, the master process
receives and prints the messages the worker processes send it.
The method includes a position parameter that a worker uses to
indicate whether the method was called before or after the
barrier. The header comment exercise instructs the user to build
and run the program with varying numbers of processes,
uncomment the barrier call, and then rerun the program.

When run with 4 processes (with the barrier commented
out), the patternlet displays chaotically interleaved before-and-
after output, such as this:

Process 2 of 4 is BEFORE the barrier.
Process 2 of 4 is AFTER the barrier.
Process 1 of 4 is BEFORE the barrier.
Process 1 of 4 is AFTER the barrier.
Process 3 of 4 is BEFORE the barrier.

Process 3 of 4 is AFTER the barrier.

The more processes are used, the more chaotic the output. For
example, an 8-process run might produce this:

Process 2 of 8 is BEFORE the barrier.
Process 1 of 8 is BEFORE the barrier.
Process 2 of 8 is AFTER the barrier.
Process 3 of 8 is BEFORE the barrier.
Process 5 of 8 is BEFORE the barrier.
Process 6 of 8 is BEFORE the barrier.
Process 7 of 8 is BEFORE the barrier.
Process 1 of 8 is AFTER the barrier.
Process 3 of 8 is AFTER the barrier.
Process 5 of 8 is AFTER the barrier.
Process 6 of 8 is AFTER the barrier.
Process 7 of 8 is AFTER the barrier.
Process 4 of 8 is BEFORE the barrier.
Process 4 of 8 is AFTER the barrier.

However, if we uncomment the barrier call, rebuild and run the
program, then all ‘before’ and ‘after’ calls are cleanly separated:

Process 1 of 8 is BEFORE the barrier.
Process 3 of 8 is BEFORE the barrier.
Process 6 of 8 is BEFORE the barrier.
Process 7 of 8 is BEFORE the barrier.
Process 5 of 8 is BEFORE the barrier.
Process 4 of 8 is BEFORE the barrier.
Process 2 of 8 is BEFORE the barrier.
Process 1 of 8 is AFTER the barrier.
Process 2 of 8 is AFTER the barrier.
Process 4 of 8 is AFTER the barrier.
Process 7 of 8 is AFTER the barrier.
Process 6 of 8 is AFTER the barrier.
Process 5 of 8 is AFTER the barrier.
Process 3 of 8 is AFTER the barrier.

Barrier.java thus provides a simple way to introduce students to
the barrier mechanism for synchronizing processes. Note that
barrier is a collective communication pattern: all processes must
perform it; otherwise, the processes that do perform it will
deadlock, waiting for the processes that do not.

Another collective communication pattern is the Reduction
pattern by which distributed, partial results can be combined into
a total result. Figure 5 presents Reduction.java that, for P
processes, computes and displays both P? and the sum 1% + 22 +
...+ (P-1)? + P2, with the reduction steps highlighted:

import mpi.*;
import java.nio.IntBuffer;

public class Reduction {

public static void main(String [] args)
throws MPIException {
MPI.Init(args);

Comm comm MPI.COMM_WORLD;
int id comm.getRank () ;
int numProcesses = comm.getSize();

int square (id+1) * (id+1);
IntBuffer squareBuf = MPI.newIntBuffer (SIZE);
squareBuf.put (square);

IntBuffer sumBuf = MPI.newIntBuffer (SIZE);
comm.reduce (squareBuf, sumBuf, SIZE,
MPI.INT, MPI.SUM, MASTER);

IntBuffer maxBuf = MPI.newIntBuffer (SIZE);
comm.reduce (squareBuf, maxBuf, SIZE,
MPI.INT, MPI.MAX, MASTER);

if (id == MASTER) {

String squareMsg =
"\nThe sum of the squares from 1 to
+ numProcesses + " is
+ sumBuf.get(0) + "\n";

String maxMsg =
"The max of the squares from 1 to
+ numProcesses + " is
+ maxBuf.get(0) + "\n\n";

System.out.print (squareMsqg);

System.out.print (maxMsg) ;

}

MPI.Finalize();
}
private static int SIZE =1;
private static int MASTER = 0;

}

Fig. 5. Reduction.java

One detail to note in Figures 4 and 5 is that where MPI’s C
bindings send and receive data using pointers (to scalars or
arrays), OpenMPI’s Java bindings use references to subclasses
of Java’s Buffer class (CharBuffer, DoubleBuffer,
IntBuffer, etc.). To send or receive a scalar int value, one
defines an IntBuffer of size 1; to transmit multiple values, one
just defines a larger buffer. To interact with a buffer, one uses
Java’s standard Buf fer methods: put (), get (), and so on.

In Reduction.java, each of the P processes uses its unique id
number (0..P-1) to compute the value (id+1)?. The sum of these
values will be the sum of the squares, so the patternlet performs
a reduction using the MPI . SUM operator to sum these values in
parallel. The maximum of these values will be P, so the
patternlet performs a reduction using the MPI .MAX operator to
find the maximum of these values in parallel. In each case, the
master process collects and displays the result.



To illustrate, if we run this program using 1 process, it displays:

The sum of the squares from 1 to 1 is 1
The max of the squares from 1 to 1 is 1

If we run it using 3 processes, it displays:

w

The sum of the squares from 1 to is 14
The max of the squares from 1 to 3 is 9

If we run it using 4 processes, it displays:

The sum of the squares from 1 to 4 is 30
The max of the squares from 1 to 4 is 16

If we run it using 32 processes, it displays:

The sum of the squares from 1 to 32 is 11440
The max of the squares from 1 to 32 is 1024

This patternlet thus illustrates two different ways to use MPI’s
reduce operation to combine partial results distributed across
multiple processes into an overall result at one process.

Another important collective communication pattern is the
Broadcast, by which one process can efficiently send the same
value(s) to all processes. Figure 6 presents Broadcast2.java that
demonstrates how to broadcast multiple values:

import mpi.*;
import java.nio.IntBuffer;

public class Broadcast2 {

public static void main(String [] args)
throws MPIException {
MPI.Init(args);

Comm comm
int id
IntBuffer buf

MPI.COMM WORLD;
comm.getRank () ;
= MPI.newIntBuffer(SIZE);

if ( id == MASTER ) { fill(buf); }

printBuffer ("BEFORE", id, buf);

printSeparator("----", id, comm);
comm.bcast (buf, buf.capacity(), MPI.INT, O0);
printBuffer ("AFTER", id, buf);

MPI.Finalize();

}

private static void fill(IntBuffer buf) {
for (int i = 0; i < buf.capacity(); ++i) {
buf.put(i, i+11l);
}
}

private static void
printBuffer(String label, int id, IntBuffer buf) {
String msg = label
+ " the broadcast, proc
+ "'s buffer contains:";
for (int i = 0; i < buf.capacity(); ++i) {
msg += (" " + buf.get(i));

"+ id

}
msg += "\n";
System.out.print (msg);

public static
void printSeparator(String sep, int id, Comm comm)
throws MPIException {
comm.barrier();

if (id == MASTER) { System.out.println(sep); }
comm.barrier();

}

private static final int MASTER = 0;

private static final int SIZE = 8;

}
Fig. 6. Broadcast2.java

If we run Broadcast2 using 4 processes, it might display:

BEFORE the broadcast, proc 3's buffer contains:
000O00O0OOO

BEFORE the broadcast, proc 0's buffer contains:
11 12 13 14 15 16 17 18

BEFORE the broadcast, proc 2's buffer contains:
000O0O0O0OOO

BEFORE the broadcast, proc 1's buffer contains:
000O00O0OOO

AFTER the broadcast, proc 0's buffer contains:
11 12 13 14 15 16 17 18

AFTER the broadcast, proc 2's buffer contains:
11 12 13 14 15 16 17 18

AFTER the broadcast, proc 1's buffer contains:
11 12 13 14 15 16 17 18

AFTER the broadcast, proc 3's buffer contains:
11 12 13 14 15 16 17 18

This allows students to clearly see the effects of a broadcast:
before the broadcast, each worker’s buffer contains all zeros;
afterwards, its buffer contains the values sent by the master.

D. Pedagogical Uses

Figures 1-6 present just 6 of the 25 patternlets currently
available in the patternlets GitHub repository [4]. Space
limitations prevent us from presenting additional examples, but
each patternlet is designed to help students understand the
syntax for and the subtle semantic details of a particular parallel
pattern. The pedagogical advantages of the patternlets include:

e Their minimalist nature eliminating (most) extraneous
details, helping students grasp the pattern’s key concept.

e Instructors can use the patternlets in different ways, ranging
from embedding them in closed lab exercises where the
students run and experiment with them on their own, to the
instructor running a patternlet during a lecture to illustrate a
particular concept in an interactive, engaging way.

o Instructors and/or students can “play” with the code to see
the effects of changing key parameters, such as the number
of processes used, the number of iterations of a loop, etc.

o Students’ “What if...?” questions can be answered by
altering the source code to see the effects of a modification.

e Students can use a patternlet’s syntactically correct,
working code as a model when writing their own code.

Patternlets have proven successful for introducing both faculty
(in CSinParallel workshops) and students (in courses) to PDC.



III. CONCLUSIONS

Previously, instructors wanting to teach their students PDC
concepts using standard MPI were limited to the standard-
supported languages: Fortran, C, and C++. Recognizing the
popularity of Java, OpenMPI has added Java support to their
implementation of the MPI standard; this paper has shown how
to configure and install OpenMPI with Java support enabled.

Professional software engineers—whether sequential or
parallel programmers—think in terms of programming patterns.
The more that CS instructors can do to help their students grasp
and incorporate these patterns into their own thought processes,
the closer to professionals the students will be. Patternlets
provide a simple mechanism for introducing students (or
instructors) to many of the parallel patterns. Each patternlet
focuses on a particular parallel pattern to help a student grasp the
essential nature of that pattern and see the syntax needed to
implement the pattern.

Previously, the MPI patternlets were only available in
C/C++, limiting their utility to instructors and students who were
reasonably proficient in those languages. By providing Java
versions of the MPI patternlets, instructors and students who are
proficient in Java have a new way to introduce and explore PDC
concepts without having to learn a new language.

It is important to note that the patternlets are designed to
introduce students to parallel patterns. That is, a patternlet
generally avoids using its pattern to solve a significant problem,
so that a student can learn the pattern’s core concept in a way
that minimizes the student’s cognitive load. For students to see
why a particular pattern is important, we recommend that
instructors follow a patternlet-based introduction with an
exemplar—a non-trivial MPI program in which the pattern is
used to solve a socially-relevant problem—so that the students
see why the pattern is important by seeing it “in action” in the
context of solving a significant problem [3].

There are a variety of exemplars available from the NSF-
supported site CSinParallel.org, but these are currently mostly
written in C or C++. The information presented in this paper
may be used to create Java versions of those or other exemplars;
the author encourages the interested reader: (i) to create such
Java exemplars, (ii) to submit them to the CSinParallel.org site
for inclusion, and (iii) to publish the results in a venue such as
the one in which this paper appears. The author looks forward to
reading about such work in the future.
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