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Abstract—The ACM/IEEE CS 2013 curriculum 
recommendations state that every undergraduate CS major 
should learn about parallel and distributed computing (PDC). One 
way to accomplish this is to teach students about the Message 
Passing Interface (MPI), a platform that is commonly used on 
modern supercomputers and Beowulf clusters, but can also be 
used on a Network of Workstations (NoW), or a multicore laptop 
or desktop. MPI incorporates many PDC concepts and can serve 
as a platform for hands-on learning activities in which students 
must apply those concepts. The MPI standard defines language 
bindings for Fortran and C/C++, but many university instructors 
lack expertise in these languages, preventing them from using MPI 
in their courses. OpenMPI is a free implementation of the MPI 
standard that also provides Java bindings for MPI. This paper 
describes how to install OpenMPI with these Java bindings; to 
illustrate the use of these bindings, the paper also presents several 
patternlets—minimalist example programs—that show how to 
implement PDC design patterns using OpenMPI and Java. This 
provides a new means of introducing students to PDC concepts.  

Keywords—computing, distributed, education, Java, MPI, 
OpenMPI, parallel, patternlets, patterns, performance 

I. INTRODUCTION 
Many “real world” problems are sufficiently challenging 

that parallel and distributed computing (PDC) techniques are 
needed to solve those problems in a reasonable length of time. 
Examples of such problems include genetic sequence alignment, 
weather forecasting, Monte Carlo models of natural phenomena, 
seismological data analysis, and many others.  

Since CS graduates need to be able to solve such problems, 
the NSF/IEEE TCPP Curriculum Initiative [15] and the 
ACM/IEEE CS 2013 Curriculum guidelines [11] state that all 
undergraduate CS majors should learn specific aspects of PDC. 
Likewise, the Accreditation Board for Engineering and 

Technology (ABET) requires all ABET-accredited CS programs 
to expose their majors to PDC [1]. In light of this, how do we 
(CS educators) equip our students with the PDC concepts and 
hands-on skills they need to be modern software developers? 

A. The Message Passing Interface (MPI) 

Beowulf clusters [10] and modern supercomputers are 
distributed-memory multiprocessors, meaning the system is 
made up of multiple independent computers called nodes, each 
with its own local memory, but no shared memory. The nodes 
are connected together via a low-latency, high-bandwidth 
network through which the nodes can communicate. 

The Message Passing Interface (MPI) [14] is a software 
platform that is commonly used on modern supercomputers and 
Beowulf clusters, but that may also be used effectively on a 
Network of Workstations (NoW) or a multicore laptop or 
desktop. This ability to run on almost any hardware platform 
makes MPI a useful tool for introducing students to PDC.  

MPI provides: (i) a library of functions for inter-process 
communication, and (ii) a runtime environment for launching a 
multi-process computation across the nodes of a Beowulf cluster 
or supercomputer. MPI uses the Single Program, Multiple Data 
(SPMD) pattern of parallelism, in which copies of the same 
program (processes) are launched on the supercomputer’s 
nodes—the Single Program part of SPMD. The MPI runtime 
assigns each process a different number called its rank, which 
the processes can use to perform different tasks or process 
different chunks of data—the Multiple Data part of SPMD. 
There are two free, open source versions of MPI available—
MPICH [5] and OpenMPI [16]—plus commercial versions. 

The MPI Standard [14] specifies that an implementation of 
the standard must provide bindings for three languages: Fortran, 
C, and C++. (Third parties have developed bindings for other 
languages, but they are not part of the MPI standard.) When 
installing MPI, a person just specifies their preferred language 
and its compiler, and the MPI installer handles the details.  

However, very few universities teach Fortran anymore, and 
instruction in C/C++ appears to be gradually declining as new 
languages like Go and Rust provide attractive alternatives for 
systems-level programming. Additionally, the computing 
programs at many universities are heavily Java-oriented, for a 
variety of reasons, including:  

• In U.S. high schools, the Advanced Placement Computer 
Science ‘A’ course (AP CS-A) is taught in Java, so many 
universities match that language in their CS1 course.  

• Outside the U.S., the International Baccalaureate (IB) CS 
course is officially language-agnostic, but Java is 
commonly used as the hands-on programming language. 

• Java is used extensively in industry. As a result, some 
universities focus on Java to prepare their students for 
careers as Java developers. 

• Some (many?) university instructors have extensive 
expertise in Java but have limited C/C++ expertise.  

This work was supported by U.S. NSF grant DUE#1822486. 



For these and other reasons, it can be challenging for some 
universities’ CS departments to teach their students about PDC 
using C/C++ and MPI. The author is a member of CSinParallel, 
an NSF-supported project to promote PDC in undergraduate CS 
education [6]. Since 2012, this project has sponsored over 
twenty faculty development workshops around the U.S.; most of 
these workshops included introductions to MPI programming 
using C/C++. At virtually every one of these workshops, one or 
more faculty participants has asked, “Is there any way to do this 

in Java? My department is heavily Java-oriented.” 

B. OpenMPI 

Those in the OpenMPI project seem to have heard similar 
comments. Since version 1.7 in 2013 (the current version is 4.1), 
OpenMPI has included Java bindings that supersede those of 
older 3rd party efforts such as mpiJava [7] or MPJ Express [8]. 

OpenMPI’s Java bindings are not enabled by default; if one 
downloads and installs an OpenMPI binary package for Linux, 
MacOS, or Windows, the Java bindings are not usually enabled. 

To use the Java bindings in OpenMPI, one must currently 
configure, build, and install OpenMPI from its source code. The 
following steps illustrate the process: 

1. Have the Java SDK and a C compiler (e.g., GNU’s gcc) 
already installed. 

2. Download the current stable OpenMPI source code package 
(e.g., openmpi-4.1.1.tar.gz) from www.open-mpi.org. 

3. Extract the OpenMPI source code from the package, e.g.: 
         tar -xcvf openmpi-4.1.1.tar.gz 
4. Configure OpenMPI to enable the Java bindings: 
          cd openmpi-4.1.1 

 ./configure --prefix=/usr/local \ 
    --enable-mpi-java --disable-mpi-fortran 

(If one has a Fortran compiler already installed, that final 
disable-mpi-fortran switch may be omitted). 

5. Build and install the OpenMPI library from its source code: 
  make all install 

This sequence of instructions should work on any Unix-
derivative system, such as Linux or MacOS, or on a Unix-
derivative subsystem such as Cygwin [17] for Windows or the 
Windows Subsystem for Linux (WSL) [13]. 

When these steps have been successfully completed, 
OpenMPI’s binary, include, and library files will have been 
installed in the directory /usr/local/. In particular: 

• an MPI compiler-script named mpijavac , and 

• an MPI run-time launcher named mpirun 

will have been installed in /usr/local/bin/. If that directory 
is present in one’s environment’s PATH variable, then the 
programs mpijavac and mpirun may be invoked from 
anywhere on one’s system. The mpijavac program is used to 
compile Java programs using the OpenMPI bindings; the 
mpirun program is used to execute the resulting Java class files. 
We will illustrate their uses in Section II. 

C. Parallel Design Patternlets 

In software engineering, design patterns are repeatable, 
general solutions to commonly occurring problems. The seminal 
work on such patterns is found in the 1994 book Design Patterns 
[9]. However, the patterns described therein are limited to 
sequential computing, so in 2004, Mattson, Sanders, and 
Massingil published Patterns for Parallel Programming [12], 
which classifies and defines patterns that are useful for solving 
problems that commonly occur in parallel computing. 

These patterns originate in the professional software 
engineering community, not academia. That is, software 
engineers have been writing parallel programs for decades; the 
parallel patterns stem from those decades of professional 
practice—they are the best practices that have been discovered 
through years of professional experience. Working parallel 
professionals think in terms of these patterns, so the more a CS 
educator can do to get her students to think in terms of these 
patterns, the more like professionals her students will be. 

The MPI standard (currently 4.0) provides function calls that 
implement for many of the parallel patterns. From this 
perspective, MPI might be seen as an application programmer’s 
interface (API) for many of the parallel design patterns. 

In 2005, the author was teaching an MPI Distributed 

Computing course at what was then the Technological 

University of Iceland. The language of instruction was English, 
but several of the author’s students were foreign-exchange 
students who were not fluent in English. However, these 
students were proficient at reading C code, so for each of the 
basic parallel patterns, the author wrote a minimalist, working 
MPI program to demonstrate that pattern to his students. These 
programs illustrated the correct MPI syntax for each pattern, and 
by comparing the program’s source code against the output it 
produced, the non-English-speaking students could deduce the 
parallel behavior produced by the MPI code. 

These minimalist programs proved to be very successful at 
helping students understand MPI functionality, so the author 
continued to develop such pattern-illustrating programs for other 
platforms (e.g., OpenMP, Pthreads, etc.). Since each program 
provided a minimalist representation of a parallel pattern, the 
author named such programs patternlets. A 2014 experiment 
indicated that replacing traditional lectures on parallel loops 
with live demos of parallel loop patternlets improved student 
engagement and understanding of that concept [2]. 

The patternlets collection has continued to grow; the full 
collection is publicly available via the author’s Github 
repository [4]. A recent addition to that repository is a set of MPI 
patternlets using OpenMPI’s Java bindings. The rest of this 
paper introduces these Java+MPI patternlets. 

II. MPI PATTERNLETS IN JAVA 
At the time of this writing, there are 25 Java+MPI patternlets 

available [4]. Each is stored in its own folder, along with a 
Makefile to simplify building it, and a run script that illustrates 
how to run it. Many of the patternlets have built-in interactive 
mini-exercises, which are detailed in the file’s header-comment. 
Space limitations prevent us from presenting even a majority of 
these patternlets; what follows is a representative sample. 



A. The Single Program Multiple Data Pattern 

As noted earlier, MPI follows the Single Program Multiple 

Data (SPMD) pattern, in which a developer writes one program 
(the SP part); running the program spawns different instances 
that get different data values to process (the MD part). The 
Spmd.java patternlet shown in Figure 1 (minus the file’s header-
comment) is a simple way to introduce this pattern to students: 
import mpi.*; 
 
public class Spmd { 
 public static void main(String [] args)  
                          throws MPIException { 
    MPI.Init(args); 
 
    int id           = MPI.COMM_WORLD.getRank(); 
    int numProcesses = MPI.COMM_WORLD.getSize(); 
    String hostName  = MPI.getProcessorName(); 
    String message   = "Greetings from process #"  
                        + id + " of "  
                        + numProcesses + " on "  
                        + hostName + "\n"; 
    System.out.print(message); 
 
    MPI.Finalize(); 
  } 
} 

Fig. 1. Spmd.java 

Similar to an C-MPI  program, each Java-MPI program contains 
a call to MPI.Init(args) that uses any provided command-
line arguments to launch the distributed computation. This 
includes creating an object named MPI.COMM_WORLD that is an 
instance of a class named Comm. In OpenMPI’s Java bindings, 
getSize() and getRank() are Comm class methods, so a 
process invokes them on the MPI.COMM_WORLD object to 
discover: (i) its process id and (ii) how many processes are 
performing the computation. Last, the program ends with 
MPI.Finalize() that shuts down the distributed computation 
created by MPI.Init(). 

To build Spmd.java manually, we may enter: 
mpijavac Spmd.java 

This compiles the Spmd.java source code to Java bytecode and 
stores that bytecode in a file named Spmd.class. To run that 
bytecode with one process, we may enter: 

mpirun -np 1 java Spmd 

On a computer named turing, this will produce: 
Greetings from process #0 of 1 on turing 

To run it with two processes, one can enter: 
mpirun -np 2 java Spmd 

On turing, doing so might produce either this: 
Greetings from process #0 of 2 on turing 
Greetings from process #1 of 2 on turing 

or this: 
Greetings from process #1 of 2 on turing 
Greetings from process #0 of 2 on turing 

To run the program with four processes on four networked 
machines named node1, node2, node3, and node4, whose names 
are stored in a text file named hosts, we can enter: 

mpirun -np 4 -machinefile hosts java Spmd 

and the output will be some variation of the following: 
Greetings from process #2 of 4 on node3 
Greetings from process #3 of 4 on node4 
Greetings from process #0 of 4 on node1 
Greetings from process #1 of 4 on node2 

We are invoking OpenMPI’s mpirun, so any of its standard 
command-line switches can be used. However, each process that 
mpirun launches is a Java virtual machine that runs the 
bytecode found in Spmd.class. Each process is running the same 
program but will get different values for its id and hostname 
variables, thus introducing students to the SPMD pattern. 

The patternlets collection also includes minimalist examples 
for other basic patterns, including the Master-Worker, Parallel 
Loop, Message-Passing, Barrier, and other patterns. In the next 
subsection, we examine two Parallel Loop patternlets. 

B. The Parallel Loop Patterns 

Long-running programs often contain one or more program 
loops that consume the majority of the run-time. A Parallel Loop 
may be useful for reducing the run-time of such programs. 

There are two forms of the Parallel Loop: a simple form that 
divides the loop’s iterations among the processes in round-robin 
fashion, and a complex form that divides the loop’s iterations 
into contiguous “chunks”. Figure 2 presents a patternlet for the 
simpler form, with the parallel loop highlighted in red: 
import mpi.*; 
 
public class ParallelLoopChunksOf1 { 
 
 public static final int REPS   = 8; 
 public static final int MASTER = 0; 
 
 public static void main(String [] args)  
                           throws MPIException { 
   MPI.Init(args); 
 
   int id           = MPI.COMM_WORLD.getRank(); 
   int numProcs     = MPI.COMM_WORLD.getSize(); 
   String message   = ""; 
 
   if (numProcs <= REPS) { 
      for (int i = id; i < REPS; i += numProcs) {  
         message = "Process " + id  
                    + " is performing iteration "  
                    + i + "\n"; 
         System.out.print(message); 
      } 
    } else if (id == MASTER) { 
        System.out.print("\nPlease run with " 
                     + "-np less than or equal to " 
                     +  REPS + "\n\n"); 
    } 
   MPI.Finalize(); 
 } 
} 

Fig. 2. ParallelLoopChunksOf1.java 



This program can be compiled by entering: 
mpijavac ParallelLoopChunksOf1.java 

To run the resulting Java bytecode with 1 process, we can enter: 
mpirun -np 1 java ParallelLoopChunksOf1 

and the traditional sequential output will be generated: 
Process 0 is performing iteration 0 
Process 0 is performing iteration 1 
Process 0 is performing iteration 2 
Process 0 is performing iteration 3 
Process 0 is performing iteration 4 
Process 0 is performing iteration 5 
Process 0 is performing iteration 6 
Process 0 is performing iteration 7 

But if we run it using 2 processes: 
mpirun -np 2 java ParallelLoopChunksOf1 

then the output will be some variation on the following, 
depending on the order in which the operating system schedules 
processes 0 and 1 relative to one another: 
Process 0 is performing iteration 0 
Process 1 is performing iteration 1 
Process 0 is performing iteration 2 
Process 1 is performing iteration 3 
Process 0 is performing iteration 4 
Process 1 is performing iteration 5 
Process 0 is performing iteration 6 
Process 1 is performing iteration 7 

With a bit of study, it can be seen that process 0 is performing 
the loop’s even iterations (0, 2, 4, and 6) and process 1 is 
performing the odd iterations (1, 3, 5, and 7). With two 
processes, this pattern thus divides the loop’s iterations so that a 
given process performs every other iteration.  

To run the program with 4 processes, we can enter: 
mpirun -np 4 java ParallelLoopChunksOf1 

and the output will be a variation on the following: 
Process 0 is performing iteration 0 
Process 1 is performing iteration 1 
Process 2 is performing iteration 2 
Process 3 is performing iteration 3 
Process 0 is performing iteration 4 
Process 1 is performing iteration 5 
Process 2 is performing iteration 6 
Process 3 is performing iteration 7 

That is, process 0 is performing iterations 0 and 4, process 1 is 
performing iterations 1 and 5, process 2 is performing iterations 
2 and 6, and process 3 is performing iterations 3 and 7. With 4 
processes, this pattern divides the loop’s iterations so that a 
given process performs every 4th iteration. Generalizing, we can 
see that when using P processes, this pattern divides the loop’s 
iterations so that a given process performs every Pth iteration. If 
we think of a parallel loop as an abstraction that divides the 
loop’s iterations into “chunks” for a process to perform, then this 
simple version of the parallel loop gives each process a series of 
chunks, each of size 1; hence the name of this patternlet. 

By contrast, the more complex form of the parallel loop 
divides the loop’s iterations into contiguous “chunks” whose 
sizes are as equal as possible. Figure 3 provides a patternlet for 
this parallel loop, with the key code highlighted in red: 
import mpi.*; 
 

public class ParallelLoopEqualChunks { 
 

 public static final int REPS = 8; 
 public static final int MASTER = 0; 
 

 public static void main(String [] args)  
                           throws MPIException { 
    MPI.Init(args); 
 

    int id           = MPI.COMM_WORLD.getRank(); 
    int numProcesses = MPI.COMM_WORLD.getSize(); 
    int start        = 0; 
    int stop         = 0; 
    String message   = ""; 

 

    if (numProcesses > REPS) { 
      if (id == MASTER) { 
          System.out.print("\nPlease run with " 
                  + "-np N less than or equal to " 
                  +  REPS + "\n\n"); 
      } 
      MPI.Finalize(); 
      System.exit(0); 
    } 

 

    double doubleReps = REPS; 
    int chunkSize1 = (int) Math.ceil(doubleReps  
                            / numProcesses); 
    int chunkSize2 = chunkSize1 - 1; 
    int remainder = REPS % numProcesses; 
 
    if (remainder == 0 ||  
          (remainder != 0 && id < remainder)) { 
        start = id * chunkSize1; 
        stop = start + chunkSize1; 
    } else { 
        start = (remainder*chunkSize1) +  
                  (chunkSize2 * (id - remainder)); 
        stop = start + chunkSize2; 
    } 
 

    for (int i = start; i < stop; i++) { 
        message = "Process " + id  
                    + " is performing iteration "  
                    + i + "\n"; 
        System.out.print(message); 
    } 
 

    MPI.Finalize(); 
  } 
} 

Fig. 3. ParallelLoopEqualChunks.java 

This “equal chunks” parallel loop is more complex than the 
simpler loop because: (i) the iteration range must be divided 
among the P processes as evenly as possible, and (ii) each 
process must compute the start and stop numbers for its 
“chunk” of the iteration range. Unlike the simpler parallel loop, 
this “equal chunks” parallel loop is preferable for processing 
data stored in arrays because when the contiguous iteration-
ranges it produces are used as array indexes, this loop will take 
full advantage of the caching mechanisms of modern CPUs. 



This patternlet may be built and run in a manner similar to the 
previous examples; when run with 2 processes, it produces 
output that is a variation of the following: 
Process 0 is performing iteration 0 
Process 0 is performing iteration 1 
Process 0 is performing iteration 2 
Process 0 is performing iteration 3 
Process 1 is performing iteration 4 
Process 1 is performing iteration 5 
Process 1 is performing iteration 6 
Process 1 is performing iteration 7 

In this form of the loop, process 0 performs the contiguous 
“chunk” of iterations 0-3, while process 1 performs the 
contiguous “chunk” of iterations 4-7. If we instead use 4 
processes, this patternlet produces output such as this: 
Process 0 is performing iteration 0 
Process 0 is performing iteration 1 
Process 1 is performing iteration 2 
Process 1 is performing iteration 3 
Process 2 is performing iteration 4 
Process 2 is performing iteration 5 
Process 3 is performing iteration 6 
Process 3 is performing iteration 7 

Using 4 processes, process 0 performs iterations 0 and 1; process 
1 performs iterations 2 and 3, process 2 performs iterations 4 and 
5, and process 3 performs iterations 6 and 7.  

When the number of processes P divides evenly into the number 
of iterations N, each process gets an equal “chunk” of the 
iterations whose size is N/P. When this is not the case—when 
remainder == R and R > 0—this pattern gives each of 
processes 0..R-1 one additional iteration to perform, thus 
spreading the remainder iterations evenly across those first R 
processes. To illustrate, if we run this program with 3 processes, 
the program produces output that is a variation on the following: 
Process 0 is performing iteration 0 
Process 0 is performing iteration 1 
Process 0 is performing iteration 2 
Process 1 is performing iteration 3 
Process 1 is performing iteration 4 
Process 1 is performing iteration 5 
Process 2 is performing iteration 6 
Process 2 is performing iteration 7 

With 8 iterations to divide among 3 processes, there are 2 
remainder iterations, so processes 0 and 1 each get one extra 
iteration resulting in “chunks” of size 3, while process 2 gets a 
“chunk” whose size is 2. 

This may be too complex for first-year students. For them, 
the patternlets collection also includes a much simpler “equal 
chunks” parallel loop that assumes the number of iterations N is 
evenly divisible by the number of processes P, so each process 
just gets a “chunk” of size N/P. 

C. Communication and Sychronization Patterns 

The patternlets also includes examples that illustrate the 
various communication patterns supported in MPI, including: 

• Barriers, for synchronizing all processes. 

• Send-Receive message passing, for both arrays of values and 
individual values. 

• Broadcast for efficiently sending the same value(s) to all of 
a computation’s processes. 

• Reduce for efficiently combining distributed partial results 
into an overall result. 

• Scatter for distributing the values of an array from one 
process amongst all the processes. 

• Gather for combining distributed arrays from all processes 
to a single array in one process. 

To illustrate, Figure 4 presents Barrier.java that illustrates how 
to synchronize all of an MPI computation’s processes, with the 
MPI barrier() call highlighted in red: 
import mpi.*; 
import java.nio.CharBuffer; 
 

public class Barrier { 
 

 public static void main(String [] args)  
                          throws MPIException { 
   MPI.Init(args); 
 
   int numProcs  = MPI.COMM_WORLD.getSize(); 
   int id        = MPI.COMM_WORLD.getRank(); 
   String host   = MPI.getProcessorName(); 
 

   sendReceivePrint(id, numProcs, host, "BEFORE"); 
 

//   MPI.COMM_WORLD.barrier(); 
 

    sendReceivePrint(id, numProcs, host, "AFTER"); 
 

    MPI.Finalize(); 
  } 
 
  private static  
  void sendReceivePrint(int id, int numProcesses,  
                       String host, String position) 
                           throws MPIException { 
    if ( id != MASTER ) { // Worker 
       CharBuffer buf = MPI.newCharBuffer(SIZE); 
       String msg = "Process " + id  
                     + " of " + numProcs 
       //              + " on " + host 
                     + " is " + position 
                     + " the barrier."; 
       buf.put(msg); 
       MPI.COMM_WORLD.send(buf, msg.length(), 
                           MPI.CHAR, 0, 0); 
    } else {              // Master 
       for (int i = 1; i < numProcs; ++i) { 
          CharBuffer buf = MPI.newCharBuffer(SIZE); 
          MPI.COMM_WORLD.recv(buf, SIZE, MPI.CHAR, 
                               MPI.ANY_SOURCE,  
                               MPI.ANY_TAG); 
          System.out.println( buf.toString() ); 
       } 
    } 
  } 
 

  private static final int SIZE   = 128; 
  private static final int MASTER = 0; 
} 

Fig. 4. Barrier.java 



In Figure 4, the main() method contains two calls to a method 
named sendReceivePrint(), one before and one after a 
barrier, which is initially commented out. In each of these calls, 
each worker process builds a unique message and sends it to the 
master process. As its part of the method, the master process 
receives and prints the messages the worker processes send it. 
The method includes a position parameter that a worker uses to 
indicate whether the method was called before or after the 
barrier. The header comment exercise instructs the user to build 
and run the program with varying numbers of processes, 
uncomment the barrier call, and then rerun the program. 

When run with 4 processes (with the barrier commented 
out), the patternlet displays chaotically interleaved before-and-
after output, such as this: 
Process 2 of 4 is BEFORE the barrier. 
Process 2 of 4 is AFTER the barrier. 
Process 1 of 4 is BEFORE the barrier. 
Process 1 of 4 is AFTER the barrier. 
Process 3 of 4 is BEFORE the barrier. 
Process 3 of 4 is AFTER the barrier. 

The more processes are used, the more chaotic the output. For 
example, an 8-process run might produce this:  
Process 2 of 8 is BEFORE the barrier. 
Process 1 of 8 is BEFORE the barrier. 
Process 2 of 8 is AFTER the barrier. 
Process 3 of 8 is BEFORE the barrier. 
Process 5 of 8 is BEFORE the barrier. 
Process 6 of 8 is BEFORE the barrier. 
Process 7 of 8 is BEFORE the barrier. 
Process 1 of 8 is AFTER the barrier. 
Process 3 of 8 is AFTER the barrier. 
Process 5 of 8 is AFTER the barrier. 
Process 6 of 8 is AFTER the barrier. 
Process 7 of 8 is AFTER the barrier. 
Process 4 of 8 is BEFORE the barrier. 
Process 4 of 8 is AFTER the barrier. 

However, if we uncomment the barrier call, rebuild and run the 
program, then all ‘before’ and ‘after’ calls are cleanly separated: 
Process 1 of 8 is BEFORE the barrier. 
Process 3 of 8 is BEFORE the barrier. 
Process 6 of 8 is BEFORE the barrier. 
Process 7 of 8 is BEFORE the barrier. 
Process 5 of 8 is BEFORE the barrier. 
Process 4 of 8 is BEFORE the barrier. 
Process 2 of 8 is BEFORE the barrier. 
Process 1 of 8 is AFTER the barrier. 
Process 2 of 8 is AFTER the barrier. 
Process 4 of 8 is AFTER the barrier. 
Process 7 of 8 is AFTER the barrier. 
Process 6 of 8 is AFTER the barrier. 
Process 5 of 8 is AFTER the barrier. 
Process 3 of 8 is AFTER the barrier. 

Barrier.java thus provides a simple way to introduce students to 
the barrier mechanism for synchronizing processes. Note that 
barrier is a collective communication pattern: all processes must 
perform it; otherwise, the processes that do perform it will 
deadlock, waiting for the processes that do not. 

Another collective communication pattern is the Reduction 
pattern by which distributed, partial results can be combined into 
a total result. Figure 5 presents Reduction.java that, for P 
processes, computes and displays both P2 and the sum 12 + 22 + 
… + (P-1)

 2 + P2, with the reduction steps highlighted: 
import mpi.*; 
import java.nio.IntBuffer; 
 

public class Reduction { 
 

 public static void main(String [] args)  
                            throws MPIException { 
    MPI.Init(args); 
 

    Comm comm        = MPI.COMM_WORLD; 
    int id           = comm.getRank(); 
    int numProcesses = comm.getSize(); 
 

    int square       = (id+1) * (id+1); 
    IntBuffer squareBuf = MPI.newIntBuffer(SIZE); 
    squareBuf.put(square); 
 

    IntBuffer sumBuf = MPI.newIntBuffer(SIZE); 
    comm.reduce(squareBuf, sumBuf, SIZE, 
                 MPI.INT, MPI.SUM, MASTER); 
 

    IntBuffer maxBuf = MPI.newIntBuffer(SIZE); 
    comm.reduce(squareBuf, maxBuf, SIZE, 
                 MPI.INT, MPI.MAX, MASTER); 
 

    if (id == MASTER) { 
        String squareMsg =  
               "\nThe sum of the squares from 1 to " 
                + numProcesses + " is "  
                + sumBuf.get(0) + "\n"; 
        String maxMsg    =  
               "The max of the squares from 1 to " 
                + numProcesses + " is "  
                + maxBuf.get(0) + "\n\n"; 
        System.out.print(squareMsg); 
        System.out.print(maxMsg); 
    } 
 
    MPI.Finalize(); 
  } 
 
  private static int SIZE    = 1; 
  private static int MASTER  = 0; 
} 

Fig. 5. Reduction.java 

One detail to note in Figures 4 and 5 is that where MPI’s C 
bindings send and receive data using pointers (to scalars or 
arrays), OpenMPI’s Java bindings use references to subclasses 
of Java’s Buffer class (CharBuffer, DoubleBuffer, 
IntBuffer, etc.). To send or receive a scalar int value, one 
defines an IntBuffer of size 1; to transmit multiple values, one 
just defines a larger buffer. To interact with a buffer, one uses 
Java’s standard Buffer methods: put(), get(), and so on.  

In Reduction.java, each of the P processes uses its unique id 
number (0..P-1) to compute the value (id+1)2. The sum of these 
values will be the sum of the squares, so the patternlet performs 
a reduction using the MPI.SUM operator to sum these values in 
parallel. The maximum of these values will be P

2, so the 
patternlet performs a reduction using the MPI.MAX operator to 
find the maximum of these values in parallel. In each case, the 
master process collects and displays the result.  



To illustrate, if we run this program using 1 process, it displays: 
The sum of the squares from 1 to 1 is 1 
The max of the squares from 1 to 1 is 1 

If we run it using 3 processes, it displays: 
The sum of the squares from 1 to 3 is 14 
The max of the squares from 1 to 3 is 9  

If we run it using 4 processes, it displays: 
The sum of the squares from 1 to 4 is 30 
The max of the squares from 1 to 4 is 16  

If we run it using 32 processes, it displays: 
The sum of the squares from 1 to 32 is 11440 
The max of the squares from 1 to 32 is 1024  

This patternlet thus illustrates two different ways to use MPI’s 
reduce operation to combine partial results distributed across 
multiple processes into an overall result at one process. 

Another important collective communication pattern is the 
Broadcast, by which one process can efficiently send the same 
value(s) to all processes. Figure 6 presents Broadcast2.java that 
demonstrates how to broadcast multiple values:  
import mpi.*; 
import java.nio.IntBuffer; 

 

public class Broadcast2 { 
 

 public static void main(String [] args)  
                          throws MPIException { 
   MPI.Init(args); 
 

   Comm comm         = MPI.COMM_WORLD; 
   int id            = comm.getRank(); 
   IntBuffer buf     = MPI.newIntBuffer(SIZE); 
 

   if ( id == MASTER ) { fill(buf); } 
 

   printBuffer("BEFORE", id, buf);                        
   printSeparator("----", id, comm); 
 

   comm.bcast(buf, buf.capacity(), MPI.INT, 0); 
 

   printBuffer("AFTER", id, buf);                         
 

   MPI.Finalize(); 
 } 
 
 private static void fill(IntBuffer buf) { 
   for (int i = 0; i < buf.capacity(); ++i) { 
         buf.put(i, i+11); 
   } 
 } 
 
 private static void  
 printBuffer(String label, int id, IntBuffer buf) { 
   String msg = label  
                + " the broadcast, proc " + id 
                + "'s buffer contains:"; 
   for (int i = 0; i < buf.capacity(); ++i) { 
      msg += (" " + buf.get(i)); 
   } 
   msg += "\n"; 
   System.out.print(msg);  
 } 
  
  

 public static  
 void printSeparator(String sep, int id, Comm comm) 
                       throws MPIException { 
   comm.barrier(); 
   if (id == MASTER) { System.out.println(sep); } 
   comm.barrier(); 
 } 
 

 private static final int MASTER = 0; 
 private static final int SIZE   = 8; 
} 

Fig. 6. Broadcast2.java 

If we run Broadcast2 using 4 processes, it might display: 
BEFORE the broadcast, proc 3's buffer contains: 
0 0 0 0 0 0 0 0 
BEFORE the broadcast, proc 0's buffer contains: 
11 12 13 14 15 16 17 18 
BEFORE the broadcast, proc 2's buffer contains: 
0 0 0 0 0 0 0 0 
BEFORE the broadcast, proc 1's buffer contains: 
0 0 0 0 0 0 0 0 
---- 
AFTER the broadcast, proc 0's buffer contains: 
11 12 13 14 15 16 17 18 
AFTER the broadcast, proc 2's buffer contains: 
11 12 13 14 15 16 17 18 
AFTER the broadcast, proc 1's buffer contains: 
11 12 13 14 15 16 17 18 
AFTER the broadcast, proc 3's buffer contains: 
11 12 13 14 15 16 17 18 

This allows students to clearly see the effects of a broadcast: 
before the broadcast, each worker’s buffer contains all zeros; 
afterwards, its buffer contains the values sent by the master. 

D. Pedagogical Uses 

Figures 1-6 present just 6 of the 25 patternlets currently 
available in the patternlets GitHub repository [4]. Space 
limitations prevent us from presenting additional examples, but 
each patternlet is designed to help students understand the 
syntax for and the subtle semantic details of a particular parallel 
pattern. The pedagogical advantages of the patternlets include: 

• Their minimalist nature eliminating (most) extraneous 
details, helping students grasp the pattern’s key concept. 

• Instructors can use the patternlets in different ways, ranging 
from embedding them in closed lab exercises where the 
students run and experiment with them on their own, to the 
instructor running a patternlet during a lecture to illustrate a 
particular concept in an interactive, engaging way. 

• Instructors and/or students can “play” with the code to see 
the effects of changing key parameters, such as the number 
of processes used, the number of iterations of a loop, etc. 

• Students’ “What if…?” questions can be answered by 
altering the source code to see the effects of a modification. 

• Students can use a patternlet’s syntactically correct, 
working code as a model when writing their own code. 

Patternlets have proven successful for introducing both faculty 
(in CSinParallel workshops) and students (in courses) to PDC. 



III. CONCLUSIONS 
Previously, instructors wanting to teach their students PDC 

concepts using standard MPI were limited to the standard-
supported languages: Fortran, C, and C++. Recognizing the 
popularity of Java, OpenMPI has added Java support to their 
implementation of the MPI standard; this paper has shown how 
to configure and install OpenMPI with Java support enabled. 

Professional software engineers—whether sequential or 
parallel programmers—think in terms of programming patterns. 
The more that CS instructors can do to help their students grasp 
and incorporate these patterns into their own thought processes, 
the closer to professionals the students will be. Patternlets 
provide a simple mechanism for introducing students (or 
instructors) to many of the parallel patterns. Each patternlet 
focuses on a particular parallel pattern to help a student grasp the 
essential nature of that pattern and see the syntax needed to 
implement the pattern.  

Previously, the MPI patternlets were only available in 
C/C++, limiting their utility to instructors and students who were 
reasonably proficient in those languages. By providing Java 
versions of the MPI patternlets, instructors and students who are 
proficient in Java have a new way to introduce and explore PDC 
concepts without having to learn a new language.  

It is important to note that the patternlets are designed to 
introduce students to parallel patterns. That is, a patternlet 
generally avoids using its pattern to solve a significant problem, 
so that a student can learn the pattern’s core concept in a way 
that minimizes the student’s cognitive load. For students to see 
why a particular pattern is important, we recommend that 
instructors follow a patternlet-based introduction with an 
exemplar—a non-trivial MPI program in which the pattern is 
used to solve a socially-relevant problem—so that the students 
see why the pattern is important by seeing it “in action” in the 
context of solving a significant problem [3]. 

There are a variety of exemplars available from the NSF-
supported site CSinParallel.org, but these are currently mostly 
written in C or C++. The information presented in this paper 
may be used to create Java versions of those or other exemplars; 
the author encourages the interested reader: (i) to create such 
Java exemplars, (ii) to submit them to the CSinParallel.org site 
for inclusion, and (iii) to publish the results in a venue such as 
the one in which this paper appears. The author looks forward to 
reading about such work in the future. 
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