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ABSTRACT 
Much work already exists on algorithm visualization—the 
graphical representation of an algorithm’s behavior—and its 
benefits for student learning. Visualization, however, offers limited 
benefit for students with visual impairments. This paper explores 
algorithm sonification—the representation of an algorithm’s 
behavior using sound. To simplify the creation of sonifications for 
modern algorithms, this paper presents a new Thread Safe Audio 
Library (TSAL). To illustrate how to create sonifications, the 
authors have added TSAL calls to four common sorting algorithm 
implementations, so that as the program accesses a value being 
sorted, the program plays a tone whose pitch is scaled to that 
value’s magnitude. In the resulting sonifications, one can (in real 
time) hear the behavioral differences of the different sorting 
algorithms as they run, and directly experience how fast (or slow) 
the algorithms sort the same sequence, compared to one another. 
This paper presents experimental evidence that the sonifications 
improve students’ long-term recall of the four sorting algorithms’ 
relative speeds. The paper also discusses other potential uses of 
sonification. 

CCS CONCEPTS 
• Human-centered computing ~Auditory feedback • Social and 
professional topics ~Computer science education 

KEYWORDS 
Accessibility, algorithm, audio, graphics, hearing, media, 
sonification, sorting, sound, visualization 

ACM Reference format: 
Joel C. Adams, Bryce D. Allen, Bryan C. Fowler, Mark C. Wissink, and 
Joshua J. Wright. 2022. The Sounds of Sorting Algorithms: Sonification  
as a Pedagogical Tool. In Proceedings of the 53rd ACM Technical Sympo-
sium on Computer Science Education V. 1 (SIGCSE 2022), March 3–5, 2022, 
Providence, RI, USA. ACM, New York, NY, USA, 7 pages. 
https://doi.org/10.1145/3478431.3499304  

1 Introduction 
In 1950, Claude Shannon (the “father of information theory”) 
visited Alan Turing in London. In their biography of Shannon [20], 
Jimmy Soni and Rob Goodman relate the following anecdote 
Shannon told after visiting Turing: 

“So I asked him what he was doing. And he said he was trying to 
find a way to get better feedback from a computer so he would know 
what was going on inside the computer. And he’d invented this 
wonderful command. See in those days, … the idea was to discover 
good commands. 
And I said, what is the command? And he said, the command is to 
put a pulse to the hooter, put a pulse to the hooter. Now let me 
translate that. A hooter … in England is a loudspeaker… 
Now what good is this crazy command? Well … if you’re in a loop, 
you can have this command in that loop and every time it goes 
around the loop it will put a pulse in and you will hear a frequency 
equal to how long it takes to go around that loop. And then you can 
put another one in some bigger loop and so on. And so you’ll hear 
all of this coming on and you’ll hear this ‘boo boo boo boo boo boo 
boo’ and his concept was that you’d soon learn to listen to that and 
know when it got hung up in a loop or something else or what it was 
doing all the time, which he’d never been able to tell before.” 
The remarkable thing about this story is that years before the 
development of high-level languages, compilers, debuggers, 
graphics, or any of the other modern programming conventions, 
Turing was creating a machine instruction that he could insert 
into a program to hear it executing in real-time. The result would 
be a new sonic language by which he could listen to a program’s 
behavior. Fluency in this new language would let Turing hear if a 
program was running correctly or incorrectly. 

This paper builds on Turing’s idea by exploring algorithm 
sonification—incorporating sound into a program to hear the 
behavior of its underlying algorithm—as a tool for CS education. 
Section 2 discusses related work. Section 3 describes a library the 
authors have created to support sonification. Section 4 illustrates 
the use of this library by presenting sonifications of select sorting 
algorithms. Section 5 presents an assessment exercise and its 
results; Section 6 presents the authors’ conclusions and thoughts 
for future work. 
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2 Related Work 
Algorithms operate at a level of abstraction that can make them 
difficult for students to understand. Recognizing this, computer 
science educators have invested much effort in creating 
mechanisms to improve student understanding. For example, 
authors routinely use figures (e.g., flowcharts, finite state machine 
diagrams, UML diagrams) to visually depict computing 
abstractions within the static medium of a paper book.  

In contrast to static paper, the dynamic medium of computer 
graphics makes it possible to create algorithm visualizations, 
which are visual models of an algorithm’s behavior. A few samples 
of the work that has been done in this area include [1] 
[8][9][17][19]. Since much of a typical person’s brain is devoted to 
visual processing, it has been logical for CS educators to use 
visuals to model program behaviors for most students. 

However, visualizations offer limited benefits for students with 
visual impairments [16][18]. To better serve these students, we 
might explore ways to model computing abstractions using senses 
other than seeing. For these students, the sense of hearing is a 
reasonable place to begin exploring the non-visual representation 
of algorithmic behavior. 

In the early 1990s, Digiano and Baecker explored creating 
programs that play sounds, which they called auralization [10]. 
Their subsequent work produced a new version of Logo called 
LogoMedia [11]. The work in this paper differs from their work by 
exploring the alternative area of auditory display called 
sonification, which Dictionary.com defines as “the production of 
sound” but Kramer, et al. define as “the transformation of data 
relations into perceived relations of an acoustic signal for the 
purposes of facilitating communication or interpretation” [15]. This 
work also differs from the work of Digiano and Baecker in: (i) 
using a compiled language (C++) instead of an interpreted 
language (Logo), (ii) using an object-oriented approach, and (iii) 
supporting both single-threaded and multithreaded computing. 

Bingmann [3,4] has developed excellent sorting algorithm 
“audibilizations” [3]and visualizations. The library presented here 
is more general, since it is not limited to sorting algorithms. 

Human-computer interface researchers have explored the use 
of sound in making program interfaces more accessible. For 
example, some researchers have explored the use of earcons—the 
auditory equivalent of icons—that provide sonic feedback when 
the user moves the mouse over menu choices, desktop icons, and 
other GUI items [5][12][13]. The work in this paper differs from 
such work by focusing on the use of sound to provide feedback on 
algorithmic behavior, as opposed to user behavior. 

CS educators have also used sound in CS1 by having their 
students write programs that process multimedia sound files. For 
example, many novice students find that processing the notes in a 
sound-file is a motivating way to learn about loops [14]. 
Processing sound files is clearly different from Turing’s idea of 
adding sound to a program to hear its algorithmic behavior. 
However, we find it encouraging that students find sound to be a 
motivating factor in learning about programming. Perhaps 
students will also find program sonifications to be more 
interesting and engaging than programs that are silent?  

3 A Sonification Library 
The lead author first had the idea of using sound to represent 
algorithmic behavior after answering a student’s question. 
Whenever this student ran a multithreaded program, she noticed 
that her laptop’s fan would start running, so she asked, “What is 
this program doing to cause my laptop to make all that noise?” 
Answering her question involved explaining that this program 
was using more of her computer’s cores than a sequential 
program, generating more heat than normal, causing her laptop to 
turn on its fan to exhaust that heat.  

In this case, the sound being generated by the student’s 
computer when she ran the program was an unintended side effect 
of the program’s behavior, caused by the laptop’s hardware 
engineering. But this incident led the first author to begin 
wondering: Could one intentionally add sound to a program in a 
way that creates a meaningful sonic representation of the 
program’s behavior? After subsequently reading of Shannon’s visit 
to Turing, the author decided to explore this idea. 

The first step was to examine existing sound libraries to see if 
they could be used to safely add sound to multithreaded programs. 
Some libraries offered an application programmer’s interface (API) 
that was too low-level (e.g., designed for sound engineers to 
interact directly with the sound hardware). Others offered an API 
that was too high-level (e.g., not useful for adding sound to 
programs). Very few guaranteed thread-safety. After much 
fruitless searching, the authors decided to create a new library, 
which we describe next. 

3.1 Design Goals  
The design goals for this library were: 

• Thread-safety: If a library is thread safe, then multiple threads 
can use the library simultaneously without producing any race 
conditions or deadlocks. Multicore processors are ubiquitous, 
and multithreading is the most common technique for fully 
utilizing such processors, so it is imperative that a modern 
library be thread safe. 

• Object-oriented: Object oriented programming (OOP) supports 
the creation of highly maintainable and reusable code. Since 
C++ supports OOP, is commonly used for parallel / high 
performance computing, and allows one to directly interact 
with a computer’s hardware, the authors chose it as the 
implementation language. 

• Easy to use: The library’s API should provide intuitive 
abstractions that simplify the task of creating sonifications. 

• Portable: The library should be useable on Linux, MacOS, and 
Windows. 

The authors decided to name this library the Thread Safe Audio 
Library (TSAL), which is descriptive, if not very creative.  

To achieve the thread-safety, OOP, and portability goals, the 
authors built TSAL as a set of thread-safe C++ classes on top of 
PortAudio, a free, open-source, cross-platform, low-level audio API 
for the C programming language [6]. Figure 1 presents a partial 
UML class diagram showing the relationships of the primary 
abstractions TSAL provides: 



 

 
Figure 1: TSAL Class Structure Diagram 

Figure 1 omits several TSAL classes and relationships that are 
tangential to this paper (e.g., those for handling MIDI files). The 
library is non-trivial, but its API allows one to create a sonification 
using just two classes—shown in white in Figure 1—the Mixer and 
Synth (or ThreadSynth) classes. 

3.2 Library Use 
TSAL can be used to turn an existing program into a sonification 
by following four simple steps: Within the program… 

1. Define a Mixer object: a software representation of a 
multichannel mixer like those used by DJs to mix sounds. 

2. Synthesizers are used to play sounds, so define a Synth object 
(for single-threaded programs) or a ThreadSynth object (for 
multithreaded programs) to generate sounds. 

3. Add the Synth object to the Mixer. Different synthesizers 
have different sonic characteristics and capabilities, so a Mixer 
may mix the outputs of multiple synthesizers. For example, 
each thread in a multithreaded program might create and add 
its own synthesizer to the Mixer, which blends the sounds 
those synthesizers generate. 

4. Use the Synth (or ThreadSynth) object to play sounds by 
invoking its play() method. For a sonification, the sounds 
played should express the program’s algorithmic behavior. 

If our problem involves processing the values from a data set, then 
as we process a given value v, one way we might accomplish step 
4 is to use play() to play a note whose pitch is scaled to the 
magnitude of v—higher notes for larger values, lower notes for 
smaller values.  

The next section uses this approach to create sonifications of 
four well-known sorting algorithms. Each sonification performs 
steps 1-3 as follows: 

Mixer mixer = new Mixer(); 
Synth synth = new Synth(); // or ThreadSynth() 
mixer.add(synth); 

4 Sorting Sonifications 
Sorting sonifications are interesting because they let one hear the 
behavioral differences of different algorithms that solve the same 
problem.  

4.1 Insertion Sort 
For small sequences, Insertion Sort remains one of the fastest 
sorting algorithms, making it an important algorithm for students 
to understand. Figure 2 presents an implementation of Insertion 
Sort, augmented with TSAL calls (shown in blue) to turn it into a 
sonification: 

 
Figure 2: Insertion Sort Sonification 

In Figure 2, the parameter data is a vector of N integer values, 
randomly generated from the range 0 to MAX_VALUE. In keeping 
with MIDI notation, C3 is a TSAL-defined constant for the C-note 
one octave below middle C (C4), and C7 is a constant for the C-
note 3 octaves above middle C. The function call: 

  scaleToNote(data[i], 0, MAX_VALUE, C3, C7)  
returns a MIDI note from the range C3..C7, whose pitch is scaled 
to the position of data[i] in the range 0..MAX_VALUE. Once that 
MIDI note has been generated, the method call: 

  synth.play(note1, Timing::MICROSECOND, 50); 
plays that note for 50 microseconds. Within the inner loop, a 
similar approach is used to play a note for data[j-1].  

The static medium of a conference paper does not permit the 
reader to hear a sonification; a spectrogram is a sound-chart that 
graphs sonic pitch (Hz, y-axis) against time (x-axis). Figure 3 
shows segments of the spectrogram (made with Sonic Visualizer 
[7]) generated by the sonification in Figure 2; Figure 3a shows its 
first few seconds; 3b shows its final few seconds:  

 . . .  
(a) First Two Seconds (b) Last Two Seconds 
Figure 3. Insertion Sort Spectrogram Segments 

void insertSort(vector<int>& data, Synth& synth) { 
  const int SIZE = data.size(); 
 
  for (int i = 1; i < SIZE; ++i) {   
    int insertVal = data[i]; 
    MidiNote note1 = scaleToNote(data[i],  
                                  0, MAX_VALUE, 
                                  C3, C7); 
    synth.play(note1, Timing::MICROSECOND, 50); 
 
    int j = i; 
    while (j > 0 && data[j-1] > insertVal) { 
      MidiNote note2 = scaleToNote(data[j-1],  
                                    0, MAX_VALUE, 
                                    C3, C7); 
      synth.play(note2, Timing::MICROSECOND, 50); 
  
       data[j] = data[j-1];   
       --j;   
    }   
    data[j] = insertVal;   
  }   
}   
 



 

 

Insertion Sort works by keeping a sorted subsequence (initially 
length 1) at the beginning of the array. For each other item, it 
repeatedly: (i) finds the next value to be inserted (data[i]), and 
(ii) moves it backward until it reaches its correct position within 
that sorted subsequence, which takes linear time in the length of 
that subsequence. When the algorithm begins, that subsequence is 
very short, so step (ii) is on average very fast, as indicated in 
Figure 3a. But as the algorithm runs, the length of this 
subsequence increases, making step (ii) on average take longer, as 
can be seen in Figure 3b. The sonification lets a person hear this 
change in behavior. Put differently a sonification lets a person hear 
why Insertion Sort is a good algorithm for short sequences, but not 
a good algorithm for long sequences. 

Using a Linux workstation equipped with a 3.0-GHz Intel i5 
CPU, the sonification in Figure 2 took 117 seconds to sort 2500 
integers, because the sonification plays each note for 50 
microseconds. By contrast, if the same function is run without the 
sonification code, it takes roughly 0.2 seconds to complete. The 
sonification’s lengthy time may seem like a disadvantage: Why 
would one want the sort to proceed more slowly?  

When teaching students about sorting, the sonification’s longer 
runtime offers a significant pedagogical advantage: Instead of 
insertSort() sorting the sequence in a fraction of a second—as 
does every other sorting algorithm—the sonification’s prolonged 
runtime has a student experience the algorithm’s speed relative to 
other sorting sonifications. Put differently, a slow sonification 
creates a visceral learning experience by leveraging a typical 
student’s impatience, potentially improving the student’s learning 
about algorithmic (in)efficiency. 

4.3 Quick Sort 
For comparison, Figure 4 presents an implementation of the Quick 
Sort algorithm, augmented to produce a sonification: 

 
Figure 4: Quick Sort Sonification 

Quick Sort chooses a “pivot” value (here the first value); 
reorganizes the array into the subarray of values less than the 
pivot, followed by the pivot, followed by the subarray of values 
greater than the pivot; recursively sorts the first subarray; and 
then recursively sorts the second subarray. In Figure 4, the 
sonification plays a note whose frequency is scaled to the pivot 
value near the start of each recursive call. Then each iteration of 
the for loop compares the pivot value to data[i], so the 
sonification plays a note scaled to data[i]. Figure 5 shows a 
complete spectrogram for the Quick Sort sonification: 

 
Figure 5. Quick Sort Spectrogram (Complete) 

If one compares Figures 5 and 3, Quick Sort’s behavioral 
differences can be clearly seen, but when a student runs the 
sonifications, the differences—descending tones vs. ascending 
tones—can be clearly heard. The chaotic sections of Figure 5 are 
the different recursive calls, as each call compares its pivot value 
against the other values in its lo..hi subsequence.  

When run without the sonification code, the quickSort() 
function in Figure 4 sorts the same 2500 values in about 0.008 
seconds. This is clearly faster than insertionSort()’s 0.17 secs, 
but sub-second times like 0.008 and 0.17 are too similar to make an 
impression on many students (see below). 

However, when run as a sonification, the function in Figure 4 
sorts those 2500 values in about 2 seconds. To typical students, this 
short execution time is amazingly different from the 117 seconds 
required by Insertion Sort. In addition to hearing the algorithms’ 
behavioral differences, sonification lets students directly 
experience just how fast Quick Sort is. 

4.4 Other Sorting Algorithms 
The authors also created sonifications for Bubble Sort and Merge 
Sort. Space limitations prevent us from presenting their code here, 
but they follow the same approach as Figures 2 and 4: when the 
algorithm accesses a given data-value, the sonification plays a note 
whose pitch is scaled to that value’s magnitude. Figure 6 presents 
segments from Bubble Sort’s spectrogram: 

 …  …  
 (a) Initial  (b) Middle (c) Final Seconds 
Figure 6. Bubble Sort Spectrogram Segments 

Bubble Sort is inefficient, but its sonic behavior is interesting: 
Initially (Figure 6a), it sounds just like its name, as the larger 
values “bubble” to the end of the sequence. As the algorithm loops 
through the remaining values, those large values disappear from 
consideration, the smaller values “sink” toward the front of the 
sequence, and a “heartbeat” sound appears (6b). As the sequence of 
unsorted values gets shorter, this “heartbeat” gets faster and lower 

void quickSort(vector<int>& data, int lo, int hi,  
                  Synth& synth) { 
  if (lo < hi) { 
    int pivotVal = data[lo]; 
    int pivotIndex = lo; 
    MidiNote note1 = scaleToNote(pivotVal,  
                             0, MAX_VALUE, C3, C7); 
    synth.play(note1, Timing::MICROSECOND, 50); 
 
    for (int i = lo+1; i < hi; ++i) { 
      MidiNote note2 = scaleToNote(data[i],  
                             0, MAX_VALUE, C3, C7); 
      synth.play(note2, Timing::MICROSECOND, 50); 
 
      if (data[i] < pivotValue) { 
        ++pivotIndex; 
        swap(data[i], data[pivotIndex]); 
      } 
    } 
    swap(data[lo], data[pivotIndex]); 
     
    quickSort(data, lo, pivotIndex-1, synth); 
    quickSort(data, pivotIndex+1, high, synth); 
  } 
} 



 

in pitch (6c). Without the sonification code, the Bubble Sort 
program sorts the 2500 values in 0.49 seconds; with the 
sonification code, it takes an excruciating 324 seconds. 

Figure 7 presents a complete spectrogram for Merge Sort: 

 

Figure 7. Merge Sort Spectrogram (Complete) 

In Figure 7, the chaotic-looking sections are short subsequences 
being merged; the arcs that ascend from left-to-right are the longer 
subsequences being merged. As the lengths of the subsequences 
increases, the merges take longer and can be clearly heard. 
Without the sonification code, the Merge Sort program sorts the 
2500 values in 0.013 seconds; with the sonification code, it sorts 
them in about 3 seconds. These four sorting algorithms thus have 
completely distinct sonifications or sonic signatures, as can be seen 
in their spectrograms. 

5 Assessment and Discussion 
To assess the effectiveness of sonification as a learning tool, the 
authors developed these research questions: 

RQ1: Do sonifications improve students’ long-term recall? 
RQ2: Do visualizations improve students’ long-term recall? 
RQ3: Do sonifications improve student engagement? 
RQ4: Do visualizations improve student engagement? 

5.1 Experiment 
To answer these questions, the authors designed and conducted an 
experiment: CS2 students (Introductory Data Structures, where 
sorting algorithms are not covered) were invited to participate in 
the experiment for extra credit. 24 students volunteered and were 
randomly assigned to four groups of 6 students each (Control, 
Audio, Graphics, and Audio+Graphics). One student from the 
Control group mistakenly attended the Audio+Graphics session, 
resulting in group sizes of 5, 6, 6, and 7, respectively. 

Each session was held in a computer lab and consisted of four 
15-minute segments, on Bubble Sort, Insertion Sort, Merge Sort, 
and Quick Sort, respectively. In each segment, students were: 

a. Given a 30-second “elevator pitch” introduction to that 
sorting algorithm (1 minute). 

b. Directed to read a detailed online tutorial about that 
algorithm from www.tutorialspoint.com (5 minutes). 

c. Directed to run a program implementing that algorithm. A 
pseudocode version of the algorithm was displayed / 
projected on a screen at the front of the lab, and the students 
were invited to use it as a reference (4 minutes). 

d. Directed to re-read the online tutorial for that algorithm to 
better understand the observed behavior (5 minutes). 

In step c, each group was shown how to run a given program 
from the command-line, for example: 

 $ ./quick_sort 
Each program sorted the same C++ vector of 2500 pseudorandom 
integers and then displayed the sort-time—the time it took the 
program to sort the sequence. 

The key difference in the treatment of each group came in step 
c, in how they were instructed to run the programs: 

- Control: Students used no command-line switches.  

- Audio: Students used the -a switch was used, making each 
program run a TSAL sonification as it sorted (see Section 4). 

- Graphics: Students used the -g switch, making each program 
run a TSGL [1] visualization as it sorted. 

- Audio+Graphics: Students used the -ag switch, making each 
program run a sonification and visualization as it sorted. 

The Control group thus saw each sorting program’s sort-time; the 
Audio group heard each program sort the sequence, then saw its 
sort-time; the Graphics group saw each program sort the sequence 
and then saw its sort-time; the Audio+Graphics group heard and 
saw each program sort before seeing its sort-time. 

Note that the sort-times for a given algorithm were not 
uniform for the four groups. In the Control group, all sort-times 
were fractions of a second. The sonifications in the Audio and 
Audio+Graphics groups produced sort-times of minutes or seconds, 
depending on the algorithm, as described in Section 4. The sort-
times of the Graphics group’s visualizations were similar to those 
of the Audio+Graphics group but slightly shorter. 

After two weeks, each subject was emailed a link to a quiz. To 
assess RQ1 and RQ3, the quiz had 12 multiple-choice questions, 
organized as three 4-question blocks: 4 questions in which 
students had to match an algorithm’s pseudocode to its name, 4 in 
which students had to identify the fastest or slowest of a subset of 
the algorithms, and 4 in which students had to match an algorithm 
to its Big-Oh time-complexity. To assess RQ2 and RQ4, the quiz 
also had a 13th question in which each student was asked to rate 
how engaging she found her session on a 1 (Boring, uninteresting) 
to 10 (I loved it!) scale. 

5.2 Results and Discussion 
The students’ quiz scores fit a (roughly) normal distribution. Out 
of 12 possible points, the maximum score was 12; the minimum 
score was 2, the mean was 7.125 and the median was 7.5.  

For RQ1 and RQ2, the null hypotheses were that sonifications 
and visualizations would have no significant effect on students’ 
long-term recall of sorting details. To analyze the responses, the 
authors used T-tests (2-tailed, homoscedastic) to compare the 
performances of the students in each experimental group to the 
performances of the students in the Control group, using a p-value 
of 0.05 as the threshold for significance. 

As can be seen in Figure 8, all experimental groups did better 
on the quiz than the Control group, and the Audio group did the 
best of all groups, but none of the differences were significant 
(p=0.418 [Audio], 0.561 [Graphics], 0.786 [Graphics+Audio]): 



 

 

 

Figure 8: Comparing Groups Overall Quiz Performance 

The students in the experimental groups also did better than 
the students in the Control group on most individual questions, but 
the differences did not meet the significance threshold. This is not 
surprising, given our small group-sizes (5, 6, 6, and 7). 

We also analyzed the groups’ performances on each of the 
three 4-question blocks (pseudocode, fastest/slowest, big-oh). For 
the second block, in which students were given subsets of the 
algorithms and asked to identify the fastest or slowest, the Audio 
group did significantly better than the Control group (p=0.043). The 
other two experimental groups also did better than the Control 
group but did not meet our significance threshold (p=0.165 
[Graphics], p=0.077 [Audio+Graphics]). Figure 9 shows the four 
groups’ performances on this 4-question block: 

 

Figure 9: Slowest/Fastest Algorithm 4-Question Block 

This result lets us reject the null hypothesis for RQ1, providing 
evidence that sonification can indeed improve a student’s long-
term memory. We believe that the greater differences in the sort-
times that the students in the Audio and Audio+Graphics groups 
experienced helped those students better remember the four 
algorithms’ speeds, relative to one another. 

For RQ2, none of our results met the 0.05 significance threshold 
needed to reject the null hypothesis. 

For RQ3 and RQ4, the null hypotheses were that sonifications 
and/or visualizations would have no effect on students’ session-
ratings in question 13. Figure 10 summarizes the groups’ ratings:  

 

Figure 10: Engagement Ratings 

While the Audio group rated their experience more highly than 
the Control group, the difference did not meet our significance 
threshold (p=0.178), so we were unable to reject the null 
hypothesis for RQ3.  

However, the responses of both the Graphics and 
Audio+Graphics groups ratings met the significance threshold 
(p=0.007 and 0.037, respectively) when compared to the Control 
group, despite our small group sizes. This lets us reject the null 
hypothesis for RQ4, and it adds to the evidence that students find 
algorithm visualizations to be engaging learning tools. 

6 Conclusions and Future Work 
This paper has introduced the Thread Safe Audio Library 

(TSAL)—a new tool for adding sounds to working programs—and 
used it to generate sonifications of four common sorting 
algorithms. Using spectrograms, we have shown that each sorting 
algorithm has a distinct sonic signature that offers insights into the 
algorithms’ behavioral differences.  

We have presented experimental evidence that sonification can 
improve students’ long-term recall of algorithmic details, plus new 
evidence that students find visualizations to be engaging ways to 
learn. These results were statistically significant, despite our small 
sample sizes and none of our students having visual impairments. 
We also presented other positive results (e.g., students finding 
sonifications engaging) that might prove significant with larger 
groups or among students with visual impairments. For anyone 
interested in repeating our experiments, our sonifications, 
materials, and data are freely available from the authors by 
request. TSAL may be freely downloaded from 
https://github.com/Calvin-CS/TSAL. 

In adding sound to sorting algorithms, we have scarcely 
scratched the surface of the potential of sonification. Other 
possible uses of sound that we hope to explore include: 
• Hearing the differences between single-threaded and multi-

threaded versions of the same algorithm. 
• Tracing the execution of a recursive function through its 

“winding” phase, anchor case, and “unwinding” phase. 
• Tracing a program’s execution via sonic checkpoints. 
• Auditory alerts: generating distinct (and appropriate) sonic 

feedback when different exceptions are thrown. 
• Illustrating the concept of a side-channel attack [2]. 

Sonification thus opens up many new possibilities, including 
the creation of a new sonic “language” by which a program can 
communicate its behavior to its users. By gaining fluency in such a 
language, CS students and faculty may gain new insights into a 
program’s underlying algorithm.  

Thanks to the rich set of tools that have been developed in the 
years since Turing first sought to “put a pulse to the hooter”, we 
can now realize his idea and venture even further. We invite 
others to use TSAL to explore algorithm sonification and look 
forward to (literally) hearing their results. 
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