The Sounds of Sorting Algorithms:

Sonification as a Pedagogical Tool

Joel C. Adams

adams@calvin.edu

Mark C. Wissink

markcwissink@gmail.com

Bryce D. Allen
bryceallen121@gmail.com

Dept. of Computer Science
Calvin University

Bryan C. Fowler
bryan.fowler42@gmail.com

Joshua J. Wright

wright.jjw@gmail.com

Grand Rapids, MI, USA

ABSTRACT

Much work already exists on algorithm visualization—the
graphical representation of an algorithm’s behavior—and its
benefits for student learning. Visualization, however, offers limited
benefit for students with visual impairments. This paper explores
algorithm sonification—the representation of an algorithm’s
behavior using sound. To simplify the creation of sonifications for
modern algorithms, this paper presents a new Thread Safe Audio
Library (TSAL). To illustrate how to create sonifications, the
authors have added TSAL calls to four common sorting algorithm
implementations, so that as the program accesses a value being
sorted, the program plays a tone whose pitch is scaled to that
value’s magnitude. In the resulting sonifications, one can (in real
time) hear the behavioral differences of the different sorting
algorithms as they run, and directly experience how fast (or slow)
the algorithms sort the same sequence, compared to one another.
This paper presents experimental evidence that the sonifications
improve students’ long-term recall of the four sorting algorithms’
relative speeds. The paper also discusses other potential uses of
sonification.

CCS CONCEPTS

« Human-centered computing ~Auditory feedback « Social and
professional topics ~Computer science education

KEYWORDS

Accessibility, algorithm, audio, graphics, hearing, media,
sonification, sorting, sound, visualization

ACM Reference format:

Joel C. Adams, Bryce D. Allen, Bryan C. Fowler, Mark C. Wissink, and
Joshua J. Wright. 2022. The Sounds of Sorting Algorithms: Sonification
as a Pedagogical Tool. In Proceedings of the 53rd ACM Technical Sympo-
sium on Computer Science Education V. 1 (SIGCSE 2022), March 3-5, 2022,
Providence, RI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3478431.3499304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE 2022, March 3-5, 2022, Providence, RI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9070-5/22/03...$15.00

https://doi.org/10.1145/3478431.3499304

1 Introduction

In 1950, Claude Shannon (the “father of information theory”)
visited Alan Turing in London. In their biography of Shannon [20],
Jimmy Soni and Rob Goodman relate the following anecdote
Shannon told after visiting Turing:

“So I asked him what he was doing. And he said he was trying to

find a way to get better feedback from a computer so he would know

what was going on inside the computer. And he’d invented this
wonderful command. See in those days, ... the idea was to discover
good commands.

And [said, what is the command? And he said, the command is to
put a pulse to the hooter, put a pulse to the hooter. Now let me
translate that. A hooter ... in England is a loudspeaker ...

Now what good is this crazy command? Well ... if you're in a loop,
you can have this command in that loop and every time it goes
around the loop it will put a pulse in and you will hear a frequency
equal to how long it takes to go around that loop. And then you can
put another one in some bigger loop and so on. And so you’ll hear
all of this coming on and you’ll hear this ‘boo boo boo boo boo boo
boo’ and his concept was that you’d soon learn to listen to that and
know when it got hung up in a loop or something else or what it was
doing all the time, which he’'d never been able to tell before.”

The remarkable thing about this story is that years before the
development of high-level languages, compilers, debuggers,
graphics, or any of the other modern programming conventions,
Turing was creating a machine instruction that he could insert
into a program to hear it executing in real-time. The result would
be a new sonic language by which he could listen to a program’s
behavior. Fluency in this new language would let Turing hear if a
program was running correctly or incorrectly.

This paper builds on Turing’s idea by exploring algorithm
sonification—incorporating sound into a program to hear the
behavior of its underlying algorithm—as a tool for CS education.
Section 2 discusses related work. Section 3 describes a library the
authors have created to support sonification. Section 4 illustrates
the use of this library by presenting sonifications of select sorting
algorithms. Section 5 presents an assessment exercise and its
results; Section 6 presents the authors’ conclusions and thoughts
for future work.

2 Related Work

Algorithms operate at a level of abstraction that can make them
difficult for students to understand. Recognizing this, computer
science educators have invested much effort in creating
mechanisms to improve student understanding. For example,
authors routinely use figures (e.g., flowcharts, finite state machine
diagrams, UML diagrams) to visually depict computing
abstractions within the static medium of a paper book.

In contrast to static paper, the dynamic medium of computer
graphics makes it possible to create algorithm wvisualizations,
which are visual models of an algorithm’s behavior. A few samples
of the work that has been done in this area include [1]
[8][9][17][19]. Since much of a typical person’s brain is devoted to
visual processing, it has been logical for CS educators to use
visuals to model program behaviors for most students.

However, visualizations offer limited benefits for students with
visual impairments [16][18]. To better serve these students, we
might explore ways to model computing abstractions using senses
other than seeing. For these students, the sense of hearing is a
reasonable place to begin exploring the non-visual representation
of algorithmic behavior.

In the early 1990s, Digiano and Baecker explored creating
programs that play sounds, which they called auralization [10].
Their subsequent work produced a new version of Logo called
LogoMedia [11]. The work in this paper differs from their work by
exploring the alternative area of auditory display called
sonification, which Dictionary.com defines as “the production of
sound” but Kramer, et al. define as “the transformation of data
relations into perceived relations of an acoustic signal for the
purposes of facilitating communication or interpretation” [15]. This
work also differs from the work of Digiano and Baecker in: (i)
using a compiled language (C++) instead of an interpreted
language (Logo), (ii) using an object-oriented approach, and (iii)
supporting both single-threaded and multithreaded computing.

Bingmann [3,4] has developed excellent sorting algorithm
“audibilizations” [3]and visualizations. The library presented here
is more general, since it is not limited to sorting algorithms.

Human-computer interface researchers have explored the use
of sound in making program interfaces more accessible. For
example, some researchers have explored the use of earcons—the
auditory equivalent of icons—that provide sonic feedback when
the user moves the mouse over menu choices, desktop icons, and
other GUI items [5][12][13]. The work in this paper differs from
such work by focusing on the use of sound to provide feedback on
algorithmic behavior, as opposed to user behavior.

CS educators have also used sound in CS1 by having their
students write programs that process multimedia sound files. For
example, many novice students find that processing the notes in a
sound-file is a motivating way to learn about loops [14].
Processing sound files is clearly different from Turing’s idea of
adding sound to a program to hear its algorithmic behavior.
However, we find it encouraging that students find sound to be a
motivating factor in learning about programming. Perhaps
students will also find program sonifications to be more
interesting and engaging than programs that are silent?

3 A Sonification Library

The lead author first had the idea of using sound to represent
algorithmic behavior after answering a student’s question.
Whenever this student ran a multithreaded program, she noticed
that her laptop’s fan would start running, so she asked, “What is
this program doing to cause my laptop to make all that noise?”
Answering her question involved explaining that this program
was using more of her computer’s cores than a sequential
program, generating more heat than normal, causing her laptop to
turn on its fan to exhaust that heat.

In this case, the sound being generated by the student’s
computer when she ran the program was an unintended side effect
of the program’s behavior, caused by the laptop’s hardware
engineering. But this incident led the first author to begin
wondering: Could one intentionally add sound to a program in a
way that creates a meaningful sonic representation of the
program’s behavior? After subsequently reading of Shannon’s visit
to Turing, the author decided to explore this idea.

The first step was to examine existing sound libraries to see if
they could be used to safely add sound to multithreaded programs.
Some libraries offered an application programmer’s interface (API)
that was too low-level (e.g., designed for sound engineers to
interact directly with the sound hardware). Others offered an API
that was too high-level (e.g., not useful for adding sound to
programs). Very few guaranteed thread-safety. After much
fruitless searching, the authors decided to create a new library,
which we describe next.

3.1 Design Goals
The design goals for this library were:

o Thread-safety: If a library is thread safe, then multiple threads
can use the library simultaneously without producing any race
conditions or deadlocks. Multicore processors are ubiquitous,
and multithreading is the most common technique for fully
utilizing such processors, so it is imperative that a modern
library be thread safe.

o Object-oriented: Object oriented programming (OOP) supports
the creation of highly maintainable and reusable code. Since
C++ supports OOP, is commonly used for parallel / high
performance computing, and allows one to directly interact
with a computer’s hardware, the authors chose it as the
implementation language.

e Easy to use: The library’s API should provide intuitive
abstractions that simplify the task of creating sonifications.

e Portable: The library should be useable on Linux, MacOS, and
Windows.

The authors decided to name this library the Thread Safe Audio
Library (TSAL), which is descriptive, if not very creative.

To achieve the thread-safety, OOP, and portability goals, the
authors built TSAL as a set of thread-safe C++ classes on top of
PortAudio, a free, open-source, cross-platform, low-level audio API
for the C programming language [6]. Figure 1 presents a partial
UML class diagram showing the relationships of the primary
abstractions TSAL provides:

InputDevice

Effect
AN

Sequencer

1
1

JAN
|

1
Effect
Chain

Oscillator

1

Channel
Device

Envelope

Channel Instrument

I

Sound
Font

Progress

| Poly
Octave

Synth || Synth

Thread
Synth

Figure 1: TSAL Class Structure Diagram

Figure 1 omits several TSAL classes and relationships that are
tangential to this paper (e.g., those for handling MIDI files). The
library is non-trivial, but its API allows one to create a sonification
using just two classes—shown in white in Figure 1—the Mixer and
Synth (or ThreadSynth) classes.

3.2 Library Use

TSAL can be used to turn an existing program into a sonification
by following four simple steps: Within the program...

1. Define a Mixer object: a software representation of a
multichannel mixer like those used by DJs to mix sounds.

2. Synthesizers are used to play sounds, so define a Synth object
(for single-threaded programs) or a ThreadSynth object (for
multithreaded programs) to generate sounds.

3. Add the synth object to the Mixer. Different synthesizers
have different sonic characteristics and capabilities, so a Mixer
may mix the outputs of multiple synthesizers. For example,
each thread in a multithreaded program might create and add
its own synthesizer to the Mixer, which blends the sounds
those synthesizers generate.

4. Use the synth (or ThreadSynth) object to play sounds by
invoking its play() method. For a sonification, the sounds
played should express the program’s algorithmic behavior.

If our problem involves processing the values from a data set, then
as we process a given value v, one way we might accomplish step
4 is to use play() to play a note whose pitch is scaled to the
magnitude of v—higher notes for larger values, lower notes for
smaller values.

The next section uses this approach to create sonifications of
four well-known sorting algorithms. Each sonification performs
steps 1-3 as follows:

Mixer mixer = new Mixer();
Synth synth = new Synth(); // or ThreadSynth()
mixer.add(synth);

4 Sorting Sonifications

Sorting sonifications are interesting because they let one hear the
behavioral differences of different algorithms that solve the same
problem.

4.1 Insertion Sort

For small sequences, Insertion Sort remains one of the fastest
sorting algorithms, making it an important algorithm for students
to understand. Figure 2 presents an implementation of Insertion
Sort, augmented with TSAL calls (shown in blue) to turn it into a
sonification:

void insertSort(vector<int>& data, Synth& synth) {
const int SIZE = data.size();

for (int i = 1; i < SIZE; ++i) {

int insertVal = data[il];

MidiNote notel = scaleToNote(data[i],
0, MAX_VALUE,
c3, C7);

synth.play(notel, Timing::MICROSECOND, 50);

int j = i;
while (j > 0 && data[j-1] > insertVal) {
MidiNote note2 = scaleToNote(data[j-11,

0, MAX_VALUE,
Cc3, C7);
synth.play(note2, Timing::MICROSECOND, 50);
dat_a[j] = data[j-1];
-=1;

}
data[j] = insertVal;

Figure 2: Insertion Sort Sonification

In Figure 2, the parameter data is a vector of N integer values,
randomly generated from the range 0 to MAX_VALUE. In keeping
with MIDI notation, ¢3 is a TSAL-defined constant for the C-note
one octave below middle C (C4), and ¢7 is a constant for the C-
note 3 octaves above middle C. The function call:
scaleToNote(data[i], O, MAX_ VALUE, C3, C7)
returns a MIDI note from the range ¢3. .c7, whose pitch is scaled
to the position of data[i] in the range 0. .MAX_VALUE. Once that
MIDI note has been generated, the method call:
synth.play(notel, Timing::MICROSECOND, 50);
plays that note for 50 microseconds. Within the inner loop, a
similar approach is used to play a note for data[j-1].

The static medium of a conference paper does not permit the
reader to hear a sonification; a spectrogram is a sound-chart that
graphs sonic pitch (Hz, y-axis) against time (x-axis). Figure 3
shows segments of the spectrogram (made with Sonic Visualizer
[7]) generated by the sonification in Figure 2; Figure 3a shows its
first few seconds; 3b shows its final few seconds:

‘ Ll (I 'li‘w\mmn | \\

i \\ ‘\\W I
(b) Last Two Seconds

Ll

(a) First Two Seconds
Figure 3. Insertion Sort Spectrogram Segments

Insertion Sort works by keeping a sorted subsequence (initially
length 1) at the beginning of the array. For each other item, it
repeatedly: (i) finds the next value to be inserted (data[i]), and
(i) moves it backward until it reaches its correct position within
that sorted subsequence, which takes linear time in the length of
that subsequence. When the algorithm begins, that subsequence is
very short, so step (ii) is on average very fast, as indicated in
Figure 3a. But as the algorithm runs, the length of this
subsequence increases, making step (ii) on average take longer, as
can be seen in Figure 3b. The sonification lets a person hear this
change in behavior. Put differently a sonification lets a person hear
why Insertion Sort is a good algorithm for short sequences, but not
a good algorithm for long sequences.

Using a Linux workstation equipped with a 3.0-GHz Intel i5
CPU, the sonification in Figure 2 took 117 seconds to sort 2500
integers, because the sonification plays each note for 50
microseconds. By contrast, if the same function is run without the
sonification code, it takes roughly 0.2 seconds to complete. The
sonification’s lengthy time may seem like a disadvantage: Why
would one want the sort to proceed more slowly?

When teaching students about sorting, the sonification’s longer
runtime offers a significant pedagogical advantage: Instead of
insertSort () sorting the sequence in a fraction of a second—as
does every other sorting algorithm—the sonification’s prolonged
runtime has a student experience the algorithm’s speed relative to
other sorting sonifications. Put differently, a slow sonification
creates a visceral learning experience by leveraging a typical
student’s impatience, potentially improving the student’s learning
about algorithmic (in)efficiency.

4.3 Quick Sort

For comparison, Figure 4 presents an implementation of the Quick
Sort algorithm, augmented to produce a sonification:

void quickSort(vector<int>& data, int lo, int hi,
Synth& synth) {
if (lo < hi) {
int pivotVal = data[lo];
int pivotIndex = lo;
MidiNote notel = scaleToNote(pivotVal,
0, MAX_VALUE, C3, C7);
synth.play(notel, Timing::MICROSECOND, 50);

for (int i = lo+l; i < hi; ++i) {
MidiNote note2 = scaleToNote(data[i],
0, MAX_VALUE, C3, C7);
synth.play(note2, Timing::MICROSECOND, 50);

if (data[i] < pivotValue) {
++pivotIndex;
swap(data[i], data[pivotIndex]);
}

}
swap(data[lo], data[pivotIndex]);

quickSort(data, lo, pivotIndex-1, synth);
quickSort(data, pivotIndex+l, high, synth);
}
}

Figure 4: Quick Sort Sonification

Quick Sort chooses a “pivot” value (here the first value);
reorganizes the array into the subarray of values less than the
pivot, followed by the pivot, followed by the subarray of values
greater than the pivot; recursively sorts the first subarray; and
then recursively sorts the second subarray. In Figure 4, the
sonification plays a note whose frequency is scaled to the pivot
value near the start of each recursive call. Then each iteration of
the for loop compares the pivot value to data[i], so the
sonification plays a note scaled to data[i]. Figure 5 shows a

complete spectrogram for the Quick Sort sonification:

Figure 5. Quick Sort Spectrogram (Complete)

If one compares Figures 5 and 3, Quick Sort’s behavioral
differences can be clearly seen, but when a student runs the
sonifications, the differences—descending tones vs. ascending
tones—can be clearly heard. The chaotic sections of Figure 5 are
the different recursive calls, as each call compares its pivot value
against the other values in its lo. . hi subsequence.

When run without the sonification code, the quickSort ()
function in Figure 4 sorts the same 2500 values in about 0.008
seconds. This is clearly faster than insertionSort()’s 0.17 secs,
but sub-second times like 0.008 and 0.17 are too similar to make an
impression on many students (see below).

However, when run as a sonification, the function in Figure 4
sorts those 2500 values in about 2 seconds. To typical students, this
short execution time is amazingly different from the 117 seconds
required by Insertion Sort. In addition to hearing the algorithms’
behavioral differences, sonification lets students directly
experience just how fast Quick Sort is.

4.4 Other Sorting Algorithms

The authors also created sonifications for Bubble Sort and Merge
Sort. Space limitations prevent us from presenting their code here,
but they follow the same approach as Figures 2 and 4: when the
algorithm accesses a given data-value, the sonification plays a note
whose pitch is scaled to that value’s magnitude. Figure 6 presents
segments from Bubble Sort’s spectrogram:

(a) Initial
Figure 6. Bubble Sort Spectrogram Segments

(b) Middle (c) Final Seconds

Bubble Sort is inefficient, but its sonic behavior is interesting:
Initially (Figure 6a), it sounds just like its name, as the larger
values “bubble” to the end of the sequence. As the algorithm loops
through the remaining values, those large values disappear from
consideration, the smaller values “sink” toward the front of the
sequence, and a “heartbeat” sound appears (6b). As the sequence of
unsorted values gets shorter, this “heartbeat” gets faster and lower

in pitch (6c). Without the sonification code, the Bubble Sort

program sorts the 2500 values in 0.49 seconds; with the

sonification code, it takes an excruciating 324 seconds.
Flgure 7 presents a complete spectrogram for Merge Sort:

M “"/ i e M / i (w

Figure 7. Merge Sort Spectrogram (Complete)

In Figure 7, the chaotic-looking sections are short subsequences
being merged; the arcs that ascend from left-to-right are the longer
subsequences being merged. As the lengths of the subsequences
increases, the merges take longer and can be clearly heard.
Without the sonification code, the Merge Sort program sorts the
2500 values in 0.013 seconds; with the sonification code, it sorts
them in about 3 seconds. These four sorting algorithms thus have
completely distinct sonifications or sonic signatures, as can be seen
in their spectrograms.

5 Assessment and Discussion

To assess the effectiveness of sonification as a learning tool, the
authors developed these research questions:

RQ1: Do sonifications improve students’ long-term recall?
RQ2: Do visualizations improve students’ long-term recall?
RQ3: Do sonifications improve student engagement?

RQ4: Do visualizations improve student engagement?

5.1 Experiment

To answer these questions, the authors designed and conducted an
experiment: CS2 students (Introductory Data Structures, where
sorting algorithms are not covered) were invited to participate in
the experiment for extra credit. 24 students volunteered and were
randomly assigned to four groups of 6 students each (Control,
Audio, Graphics, and Audio+Graphics). One student from the
Control group mistakenly attended the Audio+Graphics session,
resulting in group sizes of 5, 6, 6, and 7, respectively.

Each session was held in a computer lab and consisted of four
15-minute segments, on Bubble Sort, Insertion Sort, Merge Sort,
and Quick Sort, respectively. In each segment, students were:

a. Given a 30-second “elevator pitch” introduction to that
sorting algorithm (1 minute).

b. Directed to read a detailed online tutorial about that
algorithm from www.tutorialspoint.com (5 minutes).

c. Directed to run a program implementing that algorithm. A
pseudocode version of the algorithm was displayed /
projected on a screen at the front of the lab, and the students
were invited to use it as a reference (4 minutes).

d. Directed to re-read the online tutorial for that algorithm to
better understand the observed behavior (5 minutes).
In step c, each group was shown how to run a given program
from the command-line, for example:

$./quick_sort
Each program sorted the same C++ vector of 2500 pseudorandom
integers and then displayed the sort-time—the time it took the
program to sort the sequence.
The key difference in the treatment of each group came in step
¢, in how they were instructed to run the programs:

- Control: Students used no command-line switches.

- Audio: Students used the -a switch was used, making each
program run a TSAL sonification as it sorted (see Section 4).

- Graphics: Students used the -g switch, making each program
run a TSGL [1] visualization as it sorted.

- Audio+Graphics: Students used the —ag switch, making each
program run a sonification and visualization as it sorted.

The Control group thus saw each sorting program’s sort-time; the
Audio group heard each program sort the sequence, then saw its
sort-time; the Graphics group saw each program sort the sequence
and then saw its sort-time; the Audio+Graphics group heard and
saw each program sort before seeing its sort-time.

Note that the sort-times for a given algorithm were not
uniform for the four groups. In the Control group, all sort-times
were fractions of a second. The sonifications in the Audio and
Audio+Graphics groups produced sort-times of minutes or seconds,
depending on the algorithm, as described in Section 4. The sort-
times of the Graphics group’s visualizations were similar to those
of the Audio+Graphics group but slightly shorter.

After two weeks, each subject was emailed a link to a quiz. To
assess RQ1 and RQ3, the quiz had 12 multiple-choice questions,
organized as three 4-question blocks: 4 questions in which
students had to match an algorithm’s pseudocode to its name, 4 in
which students had to identify the fastest or slowest of a subset of
the algorithms, and 4 in which students had to match an algorithm
to its Big-Oh time-complexity. To assess RQ2 and RQ4, the quiz
also had a 13t question in which each student was asked to rate
how engaging she found her session on a 1 (Boring, uninteresting)
to 10 (I loved it!) scale.

5.2 Results and Discussion

The students’ quiz scores fit a (roughly) normal distribution. Out
of 12 possible points, the maximum score was 12; the minimum
score was 2, the mean was 7.125 and the median was 7.5.

For RQ1 and RQ2, the null hypotheses were that sonifications
and visualizations would have no significant effect on students’
long-term recall of sorting details. To analyze the responses, the
authors used T-tests (2-tailed, homoscedastic) to compare the
performances of the students in each experimental group to the
performances of the students in the Control group, using a p-value
of 0.05 as the threshold for significance.

As can be seen in Figure 8, all experimental groups did better
on the quiz than the Control group, and the Audio group did the
best of all groups, but none of the differences were significant
(p=0.418 [Audio), 0.561 [Graphics), 0.786 [Graphics+Audio)):

Quiz Overall Average %

100%

X 80% 53.33% 65.28% 61.11% 57.14%
g 60%
9 40%
0%

Control Audio Graphics Audio+

Graphics

- J

Figure 8: Comparing Groups Overall Quiz Performance

The students in the experimental groups also did better than
the students in the Control group on most individual questions, but
the differences did not meet the significance threshold. This is not
surprising, given our small group-sizes (5, 6, 6, and 7).

We also analyzed the groups’ performances on each of the
three 4-question blocks (pseudocode, fastest/slowest, big-oh). For
the second block, in which students were given subsets of the
algorithms and asked to identify the fastest or slowest, the Audio
group did significantly better than the Control group (p=0.043). The
other two experimental groups also did better than the Control
group but did not meet our significance threshold (p=0.165
[Graphics], p=0.077 [Audio+Graphics]). Figure 9 shows the four
groups’ performances on this 4-question block:

4 N\

4-Q Block: Slowest/Fastest Algorithm
100% 79.17% 70.83% 75.00%
X 80%
= 60% 50.00%
o 40%
S 0%
0%
Control Audio Graphics Audio+
Graphics

-
Figure 9: Slowest/Fastest Algorithm 4-Question Block

This result lets us reject the null hypothesis for RQ1, providing
evidence that sonification can indeed improve a student’s long-
term memory. We believe that the greater differences in the sort-
times that the students in the Audio and Audio+Graphics groups
experienced helped those students better remember the four
algorithms’ speeds, relative to one another.

For RQ2, none of our results met the 0.05 significance threshold
needed to reject the null hypothesis.

For RQ3 and RQ4, the null hypotheses were that sonifications
and/or visualizations would have no effect on students’ session-
ratings in question 13. Figure 10 summarizes the groups’ ratings:

4 N\

How Engaging Was Your Session?
oo
9.00
£ 7.67 8.14
3 5.80
€ -
g o l
S 3
1
Control Audio Graphics Audio+
Graphics
- J

Figure 10: Engagement Ratings

While the Audio group rated their experience more highly than
the Control group, the difference did not meet our significance
threshold (p=0.178), so we were unable to reject the null
hypothesis for RQ3.

However, the responses of both the Graphics and
Audio+Graphics groups ratings met the significance threshold
(p=0.007 and 0.037, respectively) when compared to the Control
group, despite our small group sizes. This lets us reject the null
hypothesis for RQ4, and it adds to the evidence that students find
algorithm visualizations to be engaging learning tools.

6 Conclusions and Future Work

This paper has introduced the Thread Safe Audio Library
(TSAL)—a new tool for adding sounds to working programs—and
used it to generate sonifications of four common sorting
algorithms. Using spectrograms, we have shown that each sorting
algorithm has a distinct sonic signature that offers insights into the
algorithms’ behavioral differences.

We have presented experimental evidence that sonification can
improve students’ long-term recall of algorithmic details, plus new
evidence that students find visualizations to be engaging ways to
learn. These results were statistically significant, despite our small
sample sizes and none of our students having visual impairments.
We also presented other positive results (e.g., students finding
sonifications engaging) that might prove significant with larger
groups or among students with visual impairments. For anyone
interested in repeating our experiments, our sonifications,
materials, and data are freely available from the authors by
request. TSAL may be freely
https://github.com/Calvin-CS/TSAL.

In adding sound to sorting algorithms, we have scarcely
scratched the surface of the potential of sonification. Other
possible uses of sound that we hope to explore include:

downloaded from

e Hearing the differences between single-threaded and multi-
threaded versions of the same algorithm.

e Tracing the execution of a recursive function through its
“winding” phase, anchor case, and “unwinding” phase.

e Tracing a program’s execution via sonic checkpoints.

e Auditory alerts: generating distinct (and appropriate) sonic
feedback when different exceptions are thrown.

o Ilustrating the concept of a side-channel attack [2].

Sonification thus opens up many new possibilities, including
the creation of a new sonic “language” by which a program can
communicate its behavior to its users. By gaining fluency in such a
language, CS students and faculty may gain new insights into a
program’s underlying algorithm.

Thanks to the rich set of tools that have been developed in the
years since Turing first sought to “put a pulse to the hooter’, we
can now realize his idea and venture even further. We invite
others to use TSAL to explore algorithm sonification and look
forward to (literally) hearing their results.

ACKNOWLEDGMENTS
This work was supported by NSF-DUE#1822486.

REFERENCES

(1]

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]

[11]

J. Adams, P. Crain, C. Dilley, C. Hazlett, E. Koning, S. Nelesen, J.
Unger. TSGL: A Tool for Visualizing Multithreaded Behavior, Journal
of Parallel and Distributed Computing, Volume 118, Issue P1, Aug
2018, pp. 233-246.

S. Bhunia and M. Tehranipoor, Chapter 8—Side-Channel Attacks, in
Hardware Security: A Hands-On Learning Approach, Morgan-
Kaufmann, 2019, pp. 193-218.

T. Bingmann, The Sound of Sorting - "Audibilization" and Visualization
of Sorting Algorithms. Online, accessed 2021-12-01:
https://panthema.net/2013/sound-of-sorting/.

T. Bingmann, 15 Sorting Algorithms in 6 Minutes. Online, accessed
2021-12-01: https://www.youtube.com/watch?v=kPRAOW 1kECg,

M. Blattner, D. Sumikawa and R. Greenberg. Earcons and icons: their
structure and common design principles. Human Computer
Interaction, 4:1 (March 1989), pp. 11-44.

P. Burk, et al. PortAudio: Portable, Cross-Platform Audio I/O. Online,
accessed 2021-12-01: http://www.portaudio.com.

C. Cannam, C. Landone, and M. Sandler. Sonic Visualiser: An Open
Source Application for Viewing, Analysing, and Annotating Music
Audio Files, Proceedings of the ACM Multimedia 2010 International
Conference, October, 2010, pp. 1467-1468.

S. Carr, J. Mayo, and C.K. Shene. ThreadMentor: a Pedagogical Tool
for Multithreaded Programming, Journal on Educational Resources in
Computing (JERIC), 3(1), March 2003, Article 1.

A. Danner, T. Newhall, K. Webb. ParaVis: A Library for Visualizing
and Debugging Parallel Applications, Proc. of 9th NSF/TCPP
Workshop on Parallel and Distributed Computing Education (EduPar-
19), in conjunction with IEEE IPDPS'19, Rio de Janeiro, Brazil, May
2019.

C. DiGiano and R. Baecker. Program Aurelization: Sound
Enhancements to the Programming Environment. Proc. of the
Conference on Graphics Interface *92. Morgan Kaufmann Publishers,
1992, pp. 44-52.

C. DiGiano and R. Baecker. LogoMedia: A Sound-Enhanced
Programming Environment for Monitoring Program Behavior. Proc.
of the 1993 Conference on Human Factors in Computing Systems
(CHI'93), pp. 301-302.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

S. Garzonis, S. Jones, T. Jay, E. O'Neill. Auditory icon and earcon
mobile service notifications: intuitiveness, learnability, memorability
and preference. Proc. SIGCHI Conf. on Human Factors in Computing
Systems, April 2009. pp. 1513-1522.

W. Gaver. The SonicFinder: an interface that uses auditory icons.
Human Computer Interaction. 4:1 (March 1989), pp. 67-94.

M. Guzdial, D. Ranum, B. Miller, B. Simon, B. Ericson, S. Rebelsky, J.
Davis, K. Deepak, D. Blank. Variations on a theme: role of media in
motivating computing education. Proc. of the 41st ACM SIGCSE
Symposium on CS Education, March 2010, pp. 66-67.

G. Kramer, B. Walker. T. Bonebright, P. Cook,]J. Flowers, N. Miner
and J. Neuhoff. "Sonification Report: Status of the Field and Research
Agenda" (2010). Faculty Publications, Department of Psychology,
University of Nebraska-Lincoln. Online, accessed 2021-12-01:
https://digitalcommons.unl.edu/psychfacpub/444.

C. Morrison, N. Villar, A. Thieme, Z. Ashktorab, E. Taysom, O.
Salandin, D. Cletheroe, G. Saul, A. Blackwell, D. Edge, M. Grayson &
H. Zhang. Torino: A Tangible Programming Language Inclusive of
Children with Visual Disabilities, Human—Computer Interaction, 35:3
(2020). pp. 191-239.

T. Naps, S. Rogers, G. Roflling and R. Ross, Animation and
visualization in the curriculum: opportunities, challenges, and
successes. Proc. of the 37th ACM SIGCSE Symposium on Computer
Science Education (SIGCSE’06), March 2006. pp. 328-329.

A Thieme, C Morrison, N Villar, M Grayson, and S Lindley (June
2017). Enabling collaboration in learning computer programing
inclusive of children with vision impairments.
Proc. of the 2017 Conference on Designing Interactive Systems, June,
2017. pp. 739-752.

C. Shaffer, M. Cooper, A. Alon, M. Akbar, M. Stewart, S. Ponce, S.
Edwards. Algorithm Visualization: The State of the Field ACM
Transactions on Computing Education, 10(3), Aug. 2010. Article 9.

J. Soni and R. Goodman, A Mind At Play, Simon & Schuster, 2017, pp.
108-109.

