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Abstract
Kreweras words are words consisting of n A’s, n B’s, and n C’s in which every prefix
has at least asmanyA’s as B’s and at least asmanyA’s as C’s. Equivalently, a Kreweras
word is a linear extension of the poset V × [n]. Kreweras words were introduced in
1965 by Kreweras, who gave a remarkable product formula for their enumeration.
Subsequently they became a fundamental example in the theory of lattice walks in the
quarter plane. We study Schützenberger’s promotion operator on the set of Kreweras
words. In particular, we show that 3n applications of promotion on a Kreweras word
merely swaps the B’s and C’s. Doing so, we provide the first answer to a question
of Stanley from 2009, asking for posets with ‘good’ behavior under promotion, other
than the four families of shapes classified by Haiman in 1992. We also uncover a
strikingly simple description of Kreweras words in terms of Kuperberg’s sl3-webs,
and Postnikov’s trip permutation associated with any plabic graph. In this description,
Schützenberger’s promotion corresponds to rotation of the web.
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1 Introduction

The famous ballot problem, whose history stretches back to the 19th century, asks in
how many ways we can order the ballots of an election between two candidates Alice
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and Bob, who each receive n votes, so that during the counting of ballots Alice never
trails Bob. These ballot orderings co length 2n in the letters A and B, with as many A’s
as B’s, for which every prefix has at least as many A’s as B’s. Such words are called
Dyck words, and they are counted by the ubiquitous Catalan numbers

Cn :=
1

n + 1

(
2n
n

)
.

In 1965, Kreweras [16] considered the following version of a 3-candidate ballot
problem: in how many ways can we order the ballots of an election between three
candidates Alice, Bob, and Charlie, who each receive n votes, so that during the
counting Alice never trails Bob and Alice never trails Charlie—although the relative
position of Bob and Charlie may change during the counting? These ballot orderings
correspond to words of length 3n in the letters A, B, and C, with equally many A’s,
B’s, and C’s, for which every prefix has at least as many A’s as B’s and also at least
as many A’s as C’s. We call such words Kreweras words. Kreweras proved that they
are counted by the formula

Kn :=
4n

(n + 1)(2n + 1)

(
3n
n

)
.

For many years Kreweras’s formula seemed like an isolated enumerative curiosity,
although simplified proofs were presented by Niederhausen [19,20] and Kreweras–
Niederhausen [15] in the 1980s. Gessel [9] gave yet another proof which demonstrated
that the generating function

∑∞
n=0 Kn xn for this sequence of numbers is algebraic.

Interest in Kreweras’s result was revived decades later in the context of lattice walk
enumeration. Kreweras words evidently correspond to walks in Z2 with steps of the
formA = (1, 1), B = (−1, 0), and C = (0,−1) from the origin to itself which always
remain in the nonnegative orthant. Such walks are called Kreweras walks. Bousquet-
Mélou [2] gave another proof of Kreweras’s product formula countingKreweras walks
using the kernel method from analytic combinatorics. Indeed, the Kreweras walks are
nowadays a fundamental example in the study of “walks with small step sizes in the
quarter plane,” a program successfully carried out over a number of years in the 2000s
by Bousquet-Mélou and others (see, e.g., [3]). Finally, we note that Bernardi [1] gave
a purely combinatorial proof of the product formula for the number of Kreweras walks
via a bijection with (decorated) cubic maps.

In this paper we study a cyclic group action on Kreweras words.
Letw = (w1, w2, . . . , w3n) be a Kreweras word of length 3n. The promotion ofw,

denoted Pro(w), is obtained from w as follows. Let ι(w) be the smallest index ι ≥ 1
for which the prefix (w1, w2, . . . , wι) has either the same number of A’s as B’s or the
same number of A’s as C’s. Then

Pro(w):=
(
w2, w3, . . . , wι(w)−1,A, wι(w)+1, wι(w)+2, . . . , w3n, wι(w)

)
.

It is easy to verify that Pro(w) is also a Kreweras word, and that promotion is an
invertible action on the set of Kreweras words.
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Example 1.1 Let w = AAB B CACCB. Here we circled the letter wι(w), and hence
Pro(w) = ABACACCBB. We can further compute that the first several iterates of
promotion applied to w are

Pro(w) = A B ACACCBB

Pro2(w) = AACAC C BBB

Pro3(w) = A C ACABBBC

Pro4(w) = AACABB B CC

Pro5(w) = A C ABBACCB

Pro6(w) = AAB B ACCBC

Pro7(w) = A B AACCBCB

Pro8(w) = AAACCB C BB

Pro9(w) = AACCBABBC

Note that Pro9(w) is obtained from w by swapping all B’s for C’s and vice-versa.

Our first result predicts the order of promotion on Kreweras words:

Theorem 1.2 Let w be a Kreweras word of length 3n. Then Pro3n(w) is obtained
from w by swapping all B’s for C’s and vice-versa. In particular, Pro6n(w) = w.

Promotion of Kreweras words comes from the theory of partially ordered sets.
In a series of papers from the 60s and 70s, Schützenberger [28–30] introduced and
developed the theory of a cyclic action called promotion, as well as a closely related
involutive action called evacuation, on the linear extensions of any poset. Let V (n)

denote the Cartesian product of the 3-element “V”-shaped poset and the n-
element chain [n]. Then, as observed by Kreweras–Niederhausen [15], the linear
extensions of V (n) are in obvious bijection with the Kreweras words of length 3n.
And promotion of Kreweras words as described above is the same as Schützenberger’s
promotion on the linear extensions of V (n).

Previously there were only four known (non-trivial) families of posets for which the
order of promotion can be predicted; see Fig. 4. These were classified byHaiman in the
1990s [10,11]. In a survey on promotion and evacuation, Stanley [33, §4, Question 3]
askedwhether there were any other families of posets for which the order of promotion
is given by a simple formula. Our work shows that V (n) is such an example.

Dyck words of length 2n correspond to linear extensions of [2] × [n], and hence
carry an action of promotion. Figure 1 depicts a well-known bijection between Dyck
words of length 2n andnoncrossingmatchings of [2n]:={1, 2, . . . , 2n}, and showshow
under this bijection promotion of Dyck words corresponds to rotation of noncrossing
matchings (this was first observed by Dennis White: see [26, §8]). This observation
immediately implies that Pro2n(w) = w for w a Dyck word of length 2n.

Our proof of Theorem1.2 is also essentially based on a diagrammatic representation
of Kreweras words for which promotion corresponds to rotation; see Fig. 2. However,
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Fig. 1 Promotion of Dyck words as rotation of noncrossing matchings

Fig. 2 Promotion of Kreweras words as rotation of webs

these diagrams are not coming from Bernardi’s cubic map bijection. Instead, they are
related to Kuperberg’s webs.

Webs are certain trivalent bipartite planar graphs which Kuperberg [17] introduced
in order to study the invariant theory of Lie algebras. Khovanov and Kuperberg
[14] showed that a particular class of webs (namely, irreducible sl3-webs with
3n white boundary vertices) are in bijection with linear extensions of [3] × [n].
Petersen, Pylyavskyy, and Rhoades [22] (see also Tymoczko [37]) showed that, via the
Khovanov-Kuperberg bijection, rotation of webs corresponds to promotion of linear
extensions.
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We say thatW is a Kreweras web ifW is an irreducible sl3-web with all boundary
vertices white and having no internal face with a multiple of four sides. We define a
surjective map w %→ Ww from Kreweras words to Kreweras webs. This map behaves
well with respect to Schützenberger’s operators:

Theorem 1.3 Let w be a Kreweras word. Then,

(a) WPro(w) = Rot(Ww);
(b) WEvac(w) = Flip(Ww),

where Rot denotes the rotation of a web and Flip its reflection across a diameter.

The map between Kreweras words and Kreweras webs can be made bijective by
keeping track of a certain 3-edge-coloring of the web. We then obtain the following
enumerative corollaries.

Theorem 1.4 We have

∑

W
2κ(W) = Kn = 4n

(n + 1)(2n + 1)

(
3n
n

)
(c.f. http://oeis.org/A006335),

where the sum is over all Kreweras webs W with 3n boundary vertices, and κ(W)

is the number of connected components of W . Moreover, the number of connected
Kreweras webs W with 3n boundary vertices is

2n
(4n − 3)!
(3n − 1)!n! (c.f. http://oeis.org/A000260).

A curious feature of our work not present in any previous work we are aware of is
the use of trip permutations, in the sense of Postnikov’s theory of plabic graphs [24],
to study webs.

The rest of the paper is organized as follows. In Sect. 2 we review promotion and
evacuation of linear extensions. In Sect. 3 we prove Theorem 1.2 by using what we call
the Kreweras bump diagram of a Kreweras word w, and extracting from this diagram
a permutation σw which rotates under promotion. This permutation σw is in fact a trip
permutation. In Sect. 4 we discuss evacuation of Kreweras words, using the theory
of growth diagrams. In Sect. 5 we reinterpret our results in the language of webs and
plabic graphs. Finally, in Sect. 6 we briefly discuss some possible future directions.

2 Promotion and evacuation of linear extensions

In this section we quickly review background on promotion of linear extensions of
posets, and explain precisely how promotion of Kreweras words as defined in Sect.
1 fits into that framework. We assume that the reader is familiar with basic notions
from poset theory as laid out for instance in [34, Chapter 3]. Throughout, all posets
are assumed to be finite.
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Fig. 3 The poset V (n) whose
linear extensions are Kreweras
words

Let P be a poset with $ elements. For us, a linear extension of P will be a list
(p1, p2, . . . , p$) of all of the elements of P , each appearing once, for which pi ≤ p j
implies that i ≤ j . We use L(P) denote the set of linear extensions of P .

For each 1 ≤ i ≤ $ − 1, we define the involution τi : L(P) → L(P) by

τi (p1, . . . , p$):=





(p1, . . . , pi−1, pi+1, pi , pi+2, . . . , p$)

if pi and pi+1 are
incomparable;

(p1, . . . , p$) otherwise.

In other words, τi swaps the i th and (i + 1)st entries of a linear extension, if possible.

Definition 2.1 Promotion, Pro : L(P) → L(P), is the following composition of τi :

Pro :=τ$−1 ◦ τ$−2 ◦ · · · ◦ τ1.

Being a composition of involutions, promotion is evidently invertible. There is
another definition of promotion in terms of jeu de taquin slides, but we find the
definition as composition of the τi more convenient; see Stanley’s survey [33, §2] for
the details.

Recall that in Sect. 1 we defined V (n):= × [n] to be the poset which is the
Cartesian product of the 3-element “V”-shaped poset and the n-element chain. We
label the 3n elements of V (n) by the symbols A1,A2, . . . ,An , B1,B2, . . . ,Bn , and
C1,C2, . . . ,Cn as depicted in Fig. 3.

Now let us show that promotion of Kreweras words is the same as promotion of
linear extensions of V (n):

Proposition 2.2 “Removing the subscripts” is a bijection from linear extensions
of V (n) to Kreweras words of length 3n, and under this bijection, promotion of linear
extensions corresponds to promotion of Kreweras words as was defined in Sect. 1.

Proof The claim about removing the subscripts being a bijection is straightforward.
The comparison of the two promotions is also essentially straightforward. Let w be a
Kreweras word of length 3n, and consider the τi as acting onw via the aforementioned
bijection. Then the effect of τi on w is
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τi (w) =
{
(w1, . . . , wi−1, wi+1, wi , wi+2, . . . , w3n) if this is a Kreweras word;
w otherwise.

Consider the application of τ3n−1 ◦ · · · ◦ τ1 to w. Recall the definition of ι(w) from
Sect. 1. When applying τi for i = 1, . . . , ι(w) − 2 to w, we will never be in the
“otherwise” case above; so the effect of τι(w)−2 ◦ · · · ◦ τ1 will be to cyclically rotate
the substring (w1, . . . , wι(w)−1). In other words, we “push” the initial A in w as far
to the right as we can. Then, when applying τι(w)−1 we will for the first time be in
the “otherwise” case, so τι(w)−1 will act as the identity. Finally, when applying τi for
i = ι(w)+ 1, . . . , 3n − 1 to w, we will again never be in the “otherwise” case; so the
effect of τ3n−1 ◦ · · · ◦ τι(w) will be to cyclically rotate the substring (wι(w), . . . , w3n).
In other words, we “push” the B or C in position ι(w) all the way to the end. Thus
τ3n−1 ◦ · · · ◦ τ1 indeed acts on w in the same way as Pro, as was defined in Sect. 1. )*

Next, in order to motivate the study of (powers of) promotion, let us recall the basic
results concerning promotion and its close cousin evacuation which were established
by Schützenberger.

Definition 2.3 Evacuation, Evac : L(P) → L(P), is the following composition of τi :

Evac :=(τ1) ◦ (τ2 ◦ τ1) ◦ · · · ◦ (τ$−2 ◦ · · · ◦ τ2 ◦ τ1) ◦ (τ$−1 ◦ · · · ◦ τ2 ◦ τ1).

Again, there is an alternative definition of evacuation in terms of jeu de taquin.
Historically, interest in evacuation arose because of its close connection with the
Robinson-Schensted correspondence.

There is an obvious duality between the linear extensions of P and of its dual
poset P∗: for L = (p1, . . . , p$) ∈ L(P), we use L∗ to denote the linear extension
L∗:=(p$, p$−1, . . . , p1) ∈ L(P∗) of the dual poset.

Dual evacuation, Evac∗ : L(P) → L(P), is defined by Evac∗(L):=(Evac(L∗))∗.
In some sense, dual evacuation is “just as natural” as evacuation. In terms of the
involutions τi , we have

Evac∗ = (τ$−1 ◦ · · · ◦ τ1) ◦ (τ$−1 ◦ · · · ◦ τ2) ◦ · · · ◦ (τ$−1 ◦ τ$−2) ◦ (τ$−1)

Note that L %→ (Pro(L∗))∗ is just Pro−1, so we do not give it a different name.
The basic results of Schützenberger [28–30] on promotion and evacuation of an

arbitrary poset P are summarized in the following proposition; again, see Stanley [33,
§2] for a modern presentation.

Proposition 2.4 For any poset P, we have that:

• Evac and Evac∗ are both involutions;
• Evac ◦Pro = Pro−1 ◦Evac;
• Pro#P = Evac∗ ◦Evac.
Because Pro#P is the composition of the “natural” involutions Evac and Evac∗, this

power of Pro is somehow the “right” power to consider. (Sometimes older sources
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Fig. 4 The previously known
posets with good behavior of
promotion

(a)
(c)

(b) (d)

refer to Pro#P as total promotion, but we will eschew this terminology as it tends to
confuse.) Following [33, §4], we now review the posets P for which the behavior
of Pro#P is understood.

The fundamental properties of jeu de taquin which Schützenberger established in
[31] imply that for P = [k]× [n] a product of two chains, a.k.a. a rectangle, Pro#P is
the identity.While studying reduced decompositions in the symmetric group, Edelman
and Greene [4] showed that for P a staircase (depicted in Fig. 4b by way of example),
Pro#P is transposition (i.e., the poset automorphism that is the reflection across the
vertical axis of symmetry). Finally, Haiman [10] showed that for P a shifted double
staircase (Fig. 4c) or a shifted trapezoid (Fig. 4d), Pro#P is the identity; and he did this
using a general method (based on his notion of dual equivalence) which recaptures
the rectangle and staircase results as well. In a follow-up paper, Haiman and Kim [11]
proved moreover that among Young diagram shapes and shifted shapes, the posets in
Fig. 4 are the only families for which Pro#P is the identity or transposition.

In [33, §4, Question 3], Stanley asked whether there are any other (non-trivial)
families of posets, beyond those depicted in Fig. 4, for which Pro#P can be described.
Our main result, Theorem 1.2, shows that V (n) is such an example: for P = V (n),
Pro#P is “transposition” (i.e., reflection across the vertical axis of symmetry).

3 The order of promotion

In this section we prove Theorem 1.2. Throughout we fix a nonnegative integer n as in
the statement of that theorem. Also, from now on we adopt the notational convention
−B := C and −C:=B.

Our strategy is to associate to each Kreweras word a permutation, such that pro-
motion of the Kreweras word corresponds to rotation of the permutation.
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Definition 3.1 We use Sm to denote the symmetric group on m letters. We represent
permutations σ ∈ Sm either via cycle notation, or via one-line notation as σ =
[σ (1), . . . , σ (m)]. For σ ∈ Sm , the rotation of σ , denoted Rot(σ ), is the (right)
conjugation of σ by the long cycle (1, 2, . . . ,m) ∈ Sm ; i.e.,

Rot(σ ):=(1, 2, . . . ,m)−1 ◦ σ ◦ (1, 2, . . . ,m).

Rotation of a permutation as we have just defined it corresponds to rotation of its
functional digraph representation.

We first associate a diagram to a Kreweras word, which we will then use to obtain
the desired permutation. This diagram will be built out of arcs, and the crossings of
the arcs in the diagram will play a significant role. So let us review notions related to
arcs and crossings.

Definition 3.2 An arc is a pair (i, j) of positive integers with i < j . A crossing is a
set {(i, j), (k, $)} of two arcs such that i ≤ k < j < $.

Note that this definition slightly deviates from the usual notion, in that the pairs (i, j)
and (i, $) form a crossing. However, this modification is only relevant when consid-
ering Kreweras bump diagrams, defined below.

Definition 3.3 Let A be a collection of arcs. For a set of positive integers S, we say
that A is a noncrossing matching of S if for every (i, j) ∈ A we have i, j ∈ S, every
i ∈ S belongs to a unique arc in A, and no two arcs in A form a crossing. The set of
openers of A is {i : (i, j) ∈ A} and the set the set of closers of A is { j : (i, j) ∈ A}.

The bijection between Dyck words and noncrossing matchings suggested by Fig.
1 enters into the definition of the diagram we associate to a Kreweras word, so let us
now formalize this bijection. Let w be a Dyck word of length 2n. We associate to w

the unique noncrossing matching of [2n] whose set of openers is {i ∈ [2n] : wi = A}
and whose set of closers is {i ∈ [2n] : wi = B}. This sets up a (well-known) bijection
between the Dyck words of length 2n and the noncrossing matchings of [2n].

A Kreweras word can be thought of as two overlapping Dyck words, and hence has
two noncrossing matchings naturally associated to it. As we now explain, the diagram
for our Kreweras word will be the union of these two noncrossing matchings.

Definition 3.4 Let w be a Kreweras word of length 3n. Let ε ∈ {B,C}. We use Mε
w

to denote the noncrossing matching of {i ∈ [3n] : wi -= −ε} whose set of openers
is {i ∈ [3n] : wi = A} and whose set of closers is {i ∈ [3n] : wi = ε}.

TheKreweras bump diagramDw ofw is obtained by placing the numbers 1, . . . , 3n
in this order on a line, and drawing a semicircle above the line connecting i and j for
each arc (i, j) ∈ MB

w∪MC
w. The arc is solid blue if (i, j) ∈ MB

w and dashed crimson
(i.e., red) if (i, j) ∈ MC

w. The arcs are drawn in such a fashion that only pairs of arcs
which form a crossing intersect, and any two arcs intersect at most once.

Example 3.5 As in Example 1.1, letw = AABBCACCB. The two noncrossingmatch-
ings MB

w and MC
w, drawn as arc diagrams, are
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Fig. 5 The rules of the road
when taking a trip in a Kreweras
bump diagram: a depicts what
happens at an internal crossing,
and b depicts what happens at a
boundary crossing. Note that the
color of the arcs in the crossing
is irrelevant

(a) (b)

MB
w = 1 2 3 4 5 6 7 8 9

A A B B C A C C B

MC
w = 1 2 3 4 5 6 7 8 9

A A B B C A C C B

The Kreweras bump diagramDw is obtained by placing these two arc diagrams on
top of one another:

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

Now we extract from Dw a permutation σw ∈ S3n .

Definition 3.6 Let w be a Kreweras word of length 3n and let Dw be its associated
Kreweras bump diagram. We define the trip permutation σw ∈ S3n of w as follows.
For each i ∈ {1, . . . , 3n}, we define σw(i) by taking a trip in Dw starting at i , as we
now describe. If i is a closer of MB

w ∪ MC
w, then we start our trip by walking from i

towards i ′ along the unique arc (i ′, i) incident to i ; if i is an opener ofMB
w∪MC

w, then
we start our trip by walking from i towards i ′ along the arc (i, i ′) incident to i with the
smallest value of i ′. We continue walking until we encounter a crossing. Whenever
we encounter a crossing of arcs (a, b) and (c, d) with a ≤ c < b < d, we follow the
rules of the road: we continue towards

• b, if coming from a;
• a, if coming from c – this is a left turn;
• d, if coming from b – this is a right turn; and
• c, if coming from d.

These rules of the road are depicted in Fig. 5. Finally, if j is the terminal vertex of the
trip, we set σw(i):= j .

Example 3.7 As in Example 3.5, let w = AABBCACCB.
First let us compute σw(1). We start by walking along the arc (1, 4) from 1 towards

4. We encounter the crossing {(1, 4), (2, 5)}, but following the first rule we continue
towards 4, wherewe terminate. Thus, σw(1) = 4. This trip looks pictorially as follows:
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Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

Next, let us compute σw(4). We start by walking along the arc (1, 4) from 4 towards
1. As we encounter the crossing {(1, 4), (2, 5)} we turn right, and continue along the
arc (2, 5) from 2 towards 5, where we terminate. Thus, σw(4) = 5:

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

Next, let us compute σw(3). We start by walking along the arc (2, 3) from 3 towards
2. As we encounter the boundary crossing {(2, 3), (2, 5)} we turn right, and continue
along the arc (2, 5) from 2 towards 5. Then we encounter the crossing {(1, 4), (2, 5)}
turn left, and continue along the arc (1, 4) from 4 towards 1. At the boundary crossing
{(1, 4), (1, 8)} we turn right, and continue along the arc (1, 8) from 1 towards 8. Next
we encounter the crossing {(1, 8), (6, 9)}, but continue straight along the arc (1, 8)
from 1 towards 8, where we terminate. Thus, σw(3) = 8.

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

Finally, let us compute σw(7). We start by walking along the arc (6, 7) from 7
towards 6. There we encounter the boundary crossing {(6, 7), (6, 9)} and turn right, so
that we continue along the arc (6, 9) from 6 towards 9. As we encounter the crossing
{(1, 8), (6, 9)} we turn left, and continue along the arc (1, 8) from 8 towards 1. We
encounter the boundary crossing {(1, 4), (1, 8)}, and terminate at 1. Thus, σw(7) = 1.

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B

We could further compute [σw(1), . . . , σw(9)] = [4, 3, 8, 5, 2, 7, 1, 9, 6].
Next we establish some basic properties of σw.
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Proposition 3.8 Let w be a Kreweras word of length 3n.

(a) Definition 3.6 yields a permutation σw ∈ S3n.
(b) Let 1 ≤ i ≤ 3n with wi = A. Then wσ (i) ∈ {B,C}.
(c) Let 1 ≤ i ≤ 3n with wi ∈ {B,C}. Then either wσw(i) = −wi , or wσw(i) = A and

wσw(σw(i)) = −wi .
(d) We have

{i ∈ [3n] : wi = A} = {i ∈ [3n] : σ−1
w (i) > i};

{i ∈ [3n] : wi = B or wi = C} = {i ∈ [3n] : σ−1
w (i) < i}.

In particular, σw has no fixed points.

Proof For (a): this follows from the fact that the rules of the road permute the incoming
and outgoing directions locally at each crossing.

For (b): if wi = A, then the trip in Dw starting at i will never turn at a crossing.
Hence σw(i) will be the index of the nearer B or C that is matched with the A at i .

For (c): observe that if wi -= A, then the trip in Dw starting at i starts heading
towards an index j with w j = A. Moreover, the sequence of turns such a trip makes
is a right turn, followed by a left turn, followed by a right turn, et cetera. Whenever the
trip turns right, it heads towards an index j with w j -= A, and whenever it turns left,
it heads towards a j with w j = A. If the trip turns an odd number of times in total, it
terminates at a j withw j -= A, and because only oppositely colored arcs ofDw cross,
this means in fact w j = −wi . If the trip turns an even number of times it terminates
at a j with w j = A, and again because only oppositely colored arcs of Dw cross, we
see from the proof of (b) above that wσw( j) = −wi .

For (d): wewill show that σw( j) < j if and only if σw( j) = A, for any 1 ≤ j ≤ 3n.
If w j = A then this is clear from the proof of (b) above. So suppose w j -= A. If the
trip in Dw starting at j never turns, the claim is also clear. So suppose further the trip
starting at j does turn, and suppose the arcs we traverse along the trip are, in order,
(i0, j0 = j), (i1, j1), . . . , (i$, j$). Then, first note that i0 < j < j1. Furthermore, we
claim that for all 2 ≤ k ≤ $, the arc (ik, jk) nests (ik−2, jk−2): i.e., ik < ik−2 <

jk−2 < jk . Indeed, otherwise either we would not encounter a crossing with (ik, jk)
when traveling along (ik−1, jk−1) from the crossing with (ik−2, jk−2), or we would
not turn at such a crossing. To finish the proof of the claim, note that if $ is even then
σw( j) = i$ and wi$ = A [see the proof of (c) above], and then the nesting property
implies i$ < i0 < j . Similarly, if $ is odd then σw( j) = j$ and w j$ -= A, and then the
nesting property implies j < j1 < j$. )*

The permutation σw does not quite determine the Kreweras word w. For example,
if w′ is obtained from w by swapping all B’s for C’s and vice-versa, then clearly we
have σw = σw′ . So we need to keep track of a little extra data along with σw. To that
end, we define the map εw : {1, . . . , 3n} → {B,C} by setting

εw(i):=
{
wσw(i) if wσw(i) -= A;
wσw(σw(i)) if wσw(i) = A,
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for all 1 ≤ i ≤ 3n. Proposition 3.8 (b) guarantees that εw(i) ∈ {B,C}. As a shorthand
we write εw = [εw(1), . . . , εw(3n)]. Thanks to Proposition 3.8 (d), the pair (σw, εw)
determines w:

Corollary 3.9 For any Kreweras word w of length 3n,

wi =
{
A if σ−1

w (i) > i;
εw(σ

−1
w (i)) otherwise,

for all 1 ≤ i ≤ 3n.

We now come to the key lemma in the proof of our main result, which says that σw
and εw evolve in a simple way under promotion.

Lemma 3.10 Let w be a Kreweras word of length 3n. Then,

(a) σPro(w) = Rot(σw);
(b) εPro(w) = [εw(2), εw(3), . . . , εw(3n),−εw(1)].

Before we prove Lemma 3.10, let’s see an example.

Example 3.11 As in Example 3.7, let w = AABBCACCB. We saw above that σw =
[4, 3, 8, 5, 2, 7, 1, 9, 6]. We also have εw = [B,B,C,C,B,C,B,B,C].

As we saw in Example 1.1, Pro(w) = ABACACCBB. Its associated bump diagram
is

DPro(w) = 1 2 3 4 5 6 7 8 9
A B A C A C C B B

>From the diagramDPro(w) one could compute that σPro(w) = [2, 7, 4, 1, 6, 9, 8, 5, 3]
and εPro(w) = [B,C,C,B,C,B,B,C,C], in agreement with Lemma 3.10.

We proceed to prove Lemma 3.10.

Proof of Lemma 3.10 The key to the proof is the following procedure to obtain the
Kreweras bump diagram DPro(w) from Dw.

Let (1, b) ∈ MB
w and (1, c) ∈ MC

w, and suppose that b < c without loss of
generality. Let ÑB:=(MB

w \ {(1, b)})∪ {(b, 3n+1)}. This is a noncrossing matching,
because i < b < j < 3n + 1 would imply 1 < i < b < j . Furthermore, let

ÑC:=(MC
w \ {(1, c), (i1, j1), . . . , (im , jm)}) ∪ {(i1, c), (i2, j1), . . . , (im , jm−1), (b, jm)},

where {(i1, j1), . . . , (im, jm)} is the set of arcs inMC
w with

i1 < · · · < im < b < jm < · · · < j1 < c,
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Fig. 6 Figure illustrating the proof of Lemma 3.10

that is, the set of arcs which cross (1, b). ÑC is a noncrossing matching: for example,
suppose that an arc (i, j) satisfies i < i$ < j < j$−1; then we have in fact j < b
because (i, j) cannot cross (1, b). The other cases are dealt with similarly.

Let ε ∈ {B,C} and let N ε be obtained from Ñ ε by replacing every arc (i, j) with
(i − 1, j − 1). Then N ε is a noncrossing matching of {i ∈ [3n] : Pro(w)i -= ε} with
set of openers {i ∈ [3n] : Pro(w)i = A} and set of closers {i ∈ [3n] : Pro(w)i = ε}.
Since the set of openers and the set of closers uniquely determine a noncrossing
matching, DPro(w) = NB ∪ NC.

We define the trip permutation of ÑB ∪ ÑC in the obvious way, by taking trips
starting at 2 ≤ i ≤ 3n + 1 and using the rules of the road. We now show that σw
coincides with the trip permutation of ÑB ∪ ÑC, provided we identify 1 and 3n + 1.
To do so, we subdivide every arc of Dw crossing (1, b) into an initial, a middle and
a final part, such that the middle part contains the crossing with (1, b) and no other
crossings. Additionally, slightly abusing language, we say that the arc (1, b) only has
a middle part and (1, c) consists only of a middle part (containing only the crossing
with (1, b)) and a final part.

Similarly, we subdivide every arc of ÑB ∪ ÑC in {(i1, c), (i2, j1), . . . , (im, jm−1)}
into an initial, a middle and a final part, such that the middle part contains the crossing
with (b, 3n+1) and no other crossings. Additionally, we say that (b, jm) consists only
of a middle part (containing only the crossing with (b, 3n + 1)) and a final part, and
(b, 3n + 1) only has a middle part.

We now note that the initial and the final parts of the arcs in Dw and ÑB ∪ ÑC are
identical. It therefore suffices to check that the portions of a trip proceeding in amiddle
part also begin and end at the same arcs in Dw and ÑB ∪ ÑC (provided we identify
1 and 3n + 1). Labeling the beginnings of the middle parts in Dw from left to right
with 1, s1, . . . , sm and their endings with b, tm, . . . , t1, t0 and the beginnings of the
middle parts in ÑB ∪ ÑC from left to right with s1, . . . , sm, b and their endings with
tm, . . . , t1, t0, 1 = 3n+1, we find that in both cases the trip connects these as follows:

1 → b, b → tm, t0 → 1,

sk → tk−1 and tk → sk for all k ≥ 1.

This is depicted in Fig. 6.
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This proves (a). For (b): define ε′
w = [ε′

w(1), . . . , ε
′
w(3n)] by

ε′
w(i):=

{
wi if wi -= A;
wσw(i) if wi = A,

Recall [see the proof of Proposition 3.8(b)] that for i with wi = A, σw(i) is just the
index of the nearer B or C that is matched with the A at i . Hence

ε′
Pro(w) = [ε′

2(w), ε′
3(w), . . . , ε′

ι(w)−1(w),−ε′
ι(w)(w), ε′

ι(w)+1(w), . . . , ε′
3n(w), ε′

1(w)]

Together with (a), this observation proves (b). )*

Theorem 1.2 follows easily from Lemma 3.10:

Proof of Theorem 1.2 Lemma 3.10 says εPro3n(w) = [−εw(1),−εw(2), . . . ,−εw(3n)]
and σPro3n(w) = σw. Thus Corollary 3.9 implies that Pro3n(w) is obtained from w by
swapping all B’s for C’s and vice-versa, as claimed. )*

4 Evacuation of Kreweras words

Via the bijection between Kreweras words of length 3n and linear extensions of V (n)
described in Proposition 2.2, we can also view evacuation as acting on the set of
Kreweras words. In this section we will describe the evacuation of a Kreweras word,
using some of the machinery from Sect. 3. As we will see, just as with promotion,
evacuation has a very simple effect on σw and εw.

In order to study evacuation ofKreweraswords,wewill employ another formulation
of promotion and evacuation of linear extensions in terms of growth diagrams. This
approach is discussed in [33, §5]; it is essentially due toFomin (see, e.g., [32,Chapter 7:
Appendix 1]).

Let P be a poset with $ elements. An order ideal of P is a subset I ⊆ P that is
downwards-closed, i.e., for which q ∈ I and p ≤ q ∈ P implies that p ∈ I . The set
of order ideals of P is denoted J (P). A linear extension (p1, p2, . . . , p$) ∈ L(P)
corresponds to a chain I0 ⊂ I1 ⊂ · · · ⊂ I$ ∈ J (P) of order ideals of length $, where
we set Ii :={p1, p2, . . . , pi } for 0 ≤ i ≤ $. This sets up a (well-known) bijection
between linear extensions of P and maximal chains of order ideals of P .

Definition 4.1 Let L ∈ L(P) be a linear extension. The growth diagram of L is a
labeling of the subset D:={(x, y) ∈ Z2 : − y − $ ≤ x ≤ −y} of the two-dimensional
gridZ2 by order ideals I(x,y) ∈ J (P), (x, y) ∈ D, subject to the following conditions:

• I(−$+k,−k) = ∅ and I(k,−k) = P for all k ∈ Z;
• I(−$,0) ⊂ I(−$+1,0) ⊂ · · · ⊂ I(0,0) is the chain corresponding to L;
• for any four points (x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1) ∈ D, the labeling
obeys the following local rule: if I(x,y) = I , I(x,y+1) = I ∪ {p}, and I(x+1,y+1) =
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Fig. 7 The local rule for growth
diagrams of linear extensions

I ∪ {p, q}, then

I(x+1,y) =
{
I ∪ {q} if p and q are incomparable in P;
I ∪ {p} if p < q in P.

This rule is depicted in Fig. 7.

In the following proposition we summarize the basic results about growth diagrams
of linear extensions. The essential idea is that all paths of length $ from a point of the
form (−$+ k,−k) to a point of the form ( j,− j) correspond to linear extensions, and
the local rule in Fig. 7 reflects the behavior of the involutions τi from Sect. 2. See [33,
§5] for the details and references.

Proposition 4.2 For any L ∈ L(P),

• The growth diagram of L is well-defined, i.e., there is a unique order ideal labeling
I(x,y) ∈ J (P), (x, y) ∈ D satisfying the conditions in Definition 4.1;

• For any k ∈ Z, the chain I(−$+k,−k) ⊂ I(−$+k+1,−k) ⊂ · · · ⊂ I(k,−k) corresponds
to Prok(L);

• The chain I(0,−$) ⊂ I(0,−$+1) ⊂ · · · ⊂ I(0,0) corresponds to Evac(L).

Example 4.3 Let P be the following three-element poset:

p

q

r

Consider the linear extension L = (p, q, r) ∈ L(P). Then, writing subsets as
strings for shorthand, the portion of the growth diagram of L with y coordinate
between 0 and −3 is
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. . .

∅ p pq pqr

∅ p pr pqr

∅ r pr pqr

∅ p pq pqr
. . .

>From this diagram we can read off Pro3(L) = L and Evac(L) = (r , p, q).

Proposition 4.2 implies that simple geometric operations on growth diagrams have
combinatorial meaning:

Corollary 4.4 For any L ∈ L(P),
(a) For any k ∈ Z, the growth diagram for Prok(L) is obtained from the growth

diagram for L by translating by the vector (−k, k);
(b) The growth diagram for Evac(L) is obtained from the growth diagram for L by

reflecting across the line y = x.

Proof The first bulleted item is an immediate consequence of Proposition 4.2. The
second is also an immediate consequence of Proposition 4.2, as soon as one observes
that the local rule in Fig. 7 is symmetric under swapping x- and y-coordinates. )*

Via the geometric operations described in Corollary 4.4, the basic properties con-
cerning promotion and evacuation summarized in Proposition 2.4 are easily obtained
via this growth diagram approach.

Now let’s think about what growth diagrams look like for our poset of interest,
V (n). There is an obvious bijection

J (V (n)) 2 J (n):={(a, b, c) ∈ N3 : b, c ≤ a ≤ n},

which sends I to (a, b, c) where a = max{i ∈ N : {A1,A2, . . . ,Ai } ⊆ I } and
similarly for b and c. We consider growth diagrams for linear extensions of V (n)
labeled by elements of J (n) via this bijection. The local rule then becomes: if I(x,y) =
(a, b, c), I(x,y+1) = (a, b, c)+ ei , and I(x+1,y+1) = (a, b, c)+ ei + e j , then

I(x+1,y) =
{
(a, b, c)+ e j if (a, b, c)+ e j ∈ J (n);
(a, b, c)+ ei otherwise.

Here we have i, j ∈ {A,B,C}, and we use the conventions that eA:=(1, 0, 0),
eB:=(0, 1, 0), and eC:=(0, 0, 1). This is depicted in Fig. 8.
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Fig. 8 The local rule for growth
diagrams of Kreweras words

Fig. 9 A decorated growth diagram for a Kreweras word

Let us further decorate the growth diagram of a linear extension of V (n) in the
following way. We refer to (x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1) as the square
in position (x, y). If in a growth diagram of a linear extension of V (n) these four points
constitute an “otherwise” case in Fig. 8, then we fill this square with j ∈ {B,C}, where
e j is as in that figure.

Via the bijection of Proposition 2.2, linear extensions of V (n) are the same as
Kreweras words of length 3n. In this way, for such a Kreweras word w we obtain a
labeling of {(x, y) ∈ Z2 : − y − 3n ≤ x ≤ −y} by J (n) = {(a, b, c) ∈ N3 : b, c ≤
a ≤ n}, which furthermore has some of its squares filled with B’s and C’s. We call
this whole object the decorated growth diagram of w.

>From now on in this section we will work with decorated growth diagrams of
Kreweras words of length 3n.

Example 4.5 As in Example 3.11, let w = AABBCACCB. Then Fig. 9 depicts the
portion of the decorated growth diagram for w with y coordinate between 0 and −9.
In this figure we use the string abc as shorthand for (a, b, c) ∈ J (n).

For i ∈ Z, let us refer to the set of squares in positions of the form (x,−i) as the
i th row of a diagram. Similarly, for j ∈ Z, let us refer to the set of squares in positions
of the form (−3n − 1+ j, y) as the j th column of a diagram. Example 4.5 may have
suggested that in every row of the decorated growth diagram of a Kreweras word there
is a unique filled square. This is true:

Proposition 4.6 Let w be a Kreweras word of length 3n and consider its decorated
growth diagram. Recall the definition of ι(w) from Sect. 1. Then for any i ∈ Z, the
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square in the i th row and (ι(w′)+ i −1)th column is filled with the letterw′
ι(w′), where

w′:=Proi−1(w). This is the unique filled square in the i th row.

Proof By the translation symmetry of growth diagrams, Corollary 4.4 (a), it is enough
to prove this for i = 1. As mentioned above, the local rule defining growth diagrams
of linear extensions reflects the behavior of the involutions τi . In particular, a square
in the 1st row and j th column corresponds to an application of τ j−1 when carrying
out the product τ$ ◦ · · · ◦ τ2 ◦ τ1 to perform promotion. We can view these τi as acting
directly on the Kreweras word w as in the proof of Proposition 2.2, and we will be in
an “otherwise” for a square in Fig. 8 exactly when we are in an “otherwise” case for
corresponding τi . As the proof of that proposition explains, the unique τi for which
an “otherwise” case occurs is i = ι(w) − 1. )*

Thanks to the x /y symmetry of growth diagrams in Corollary 4.4 (b), Proposition
4.6 also implies that every column of a decorated growth diagram contains a unique
filled square.

Now we will demonstrate how σw and εw from Sect. 3 can easily be read off from
decorated growth diagrams.

Lemma 4.7 Letw be a Kreweras word of length 3n and consider its decorated growth
diagram. Let 1 ≤ i ≤ 3n, and suppose the unique filled square in the i th row is in the
j th column and is filled with ε ∈ {B,C}. Then we have εw(i) = ε and σw(i) = 〈 j〉3n,
where 〈k〉3n denotes the unique element of {1, . . . , 3n} congruent to k modulo 3n.

Proof By Proposition 4.6, we need to show that σw(i) = 〈ι(Proi−1(w)) + i − 1〉3n
and εw(i) = Proi−1(w)ι(Proi−1(w)) for all 1 ≤ i ≤ 3n.

First let us explain why this holds for i = 1. Note that (1, ι(w)) is the “near” arc
emanating from 1 in the Kreweras bump diagramDw. Moreover, the rules of the road
are such that in the trip starting at 1 we will never make any turns on our way from 1
towards ι(w). So indeed σw(1) = ι(w), and εw(1) = wι(w).

Then we have thanks to Lemma 3.10 that σw(i) = 〈σProi−1(w)(1) + i − 1〉3n and
εw(i) = εProi−1(w)(1) for any 1 ≤ i ≤ n. Thus, by the result in the previous paragraph
applied to Proi−1(w), we are done. )*

Example 4.8 As in Example 4.5, let w = AABBCACCB. We saw in Example 3.11
that σw = [4, 3, 8, 5, 2, 7, 1, 9, 6] and εw = [B,B,C,C,B,C,B,B,C]. In agreement
with Lemma 4.7, we can also easily read off this σw and εw fromw’s decorated growth
diagram, which is depicted in Fig. 9.

We could have defined σw by setting σw(i):=〈ι(Proi−1(w))+ i − 1〉3n in light of
Lemma 4.7. However, if we did so, it would not be at all clear that σw is a permutation.
This is why we defined σw in terms of trips in Kreweras bump diagrams.

Let us record just a few more basic properties of decorated growth diagrams in the
following proposition.

Proposition 4.9 Let w be a Kreweras word of length 3n and consider its decorated
growth diagram. Then,
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(a) For any (x, y) ∈ Z2, if the square in position (x, y) is filled with ε, then the square
in position (x + 3n, y − 3n) is filled with −ε;

(b) For any i ∈ Z, if the unique filled square in the i th row is filled with ε, then the
unique filled square in the i th column is filled with −ε.

Proof For (a): this is an immediate consequence of the translation symmetry of growth
diagrams in Corollary 4.4 (a), and our main result, Theorem 1.2.

For (b): by the translation symmetry of Corollary 4.4 (a) it is enough to prove this
statement for a single row/column pair. Let us prove it for the σw(1)th row. For the
σw(1)th row, this statement is a consequence of the interpretation of εw in Lemma 4.7
and Proposition 3.8 (c). )*

We now state our main results about evacuation of Kreweras words. For these we
need the notion of reverse-complementation of permutations.

Definition 4.10 For a permutation σ ∈ Sm , the reverse-complement of σ , denoted
RevComp(σ ), is the conjugation of σ by the longest element of the symmetric group
w0:=[m,m − 1, . . . , 1] ∈ Sm ; i.e.,

RevComp(σ ):=w−1
0 ◦ σ ◦ w0.

Note that reverse-complementation commutes with inversion because w0 is an invo-
lution.

Lemma 4.11 Let w be a Kreweras word of length 3n. Then,

(a) σEvac(w) = RevComp(σ−1
w );

(b) εEvac(w) = [−εw(3n),−εw(3n − 1), . . . ,−εw(1)].

Theorem 4.12 Let w be a Kreweras word of length 3n. Then

Evac(w) = (wσw(3n), wσw(3n−1), . . . , wσw(1)).

One nice property of the operations in Lemma 4.11 is that they are evidently invo-
lutive. It is also easy to see that they have the “right” interaction (in the sense of
Proposition 2.4) with the operations in Lemma 3.10.

On the other hand, from the definition of σw in terms of trips in Kreweras bump
diagrams it is far from clear why theword (wσw(3n), wσw(3n−1), . . . , wσw(1)) appearing
in Theorem 4.12 is a Kreweras word.

Before we prove these results, let us do an example.

Example 4.13 As in Example 4.8, let w = AABBCACCB. We saw above that σw =
[4, 3, 8, 5, 2, 7, 1, 9, 6] and εw = [B,B,C,C,B,C,B,B,C].

Thanks to Proposition 4.2, we can read off Evacw fromw’s growth diagram, which
is depicted in Fig. 9: we have Evacw = ABACACCBB. This agrees with Theorem
4.12.

The Kreweras bump diagram of Evac(w) is
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DEvac(w) = 1 2 3 4 5 6 7 8 9
A B A C A C C B B

>From thediagramDEvac(w) one could compute thatσEvac(w) = [2, 7, 4, 1, 6, 9, 8, 5, 3]
and εEvac(w) = [B,C,C,B,C,B,B,C,C], in agreement with Lemma 4.11.

By comparing this example with Example 3.11, we see that Pro(w) = Evac(w) in
this case, but that’s a coincidence for this particular Kreweras word w which does not
always happen.

We proceed to prove Lemma 4.11 and Theorem 4.12.

Proof of Lemma 4.11 Thanks to the x /y symmetry of growth diagrams in Corollary
4.4 (b), Lemma 4.7 says that for 1 ≤ j ≤ 3n, if the unique filled square in the
3n+ 1− j th column of the decorated growth diagram of w is in the 3n+ 1− i th row,
thenσEvac(w)( j):=〈i〉3n ; and if this square is filledwith ε ∈ {B,C} then εEvac(w)( j):=ε.

Then, the periodicity property of decorated growth diagrams in Proposition 4.9 (a)
(along with the interpretation of σw in Lemma 4.7) gives σEvac(w) = RevComp(σ−1

w ).
Meanwhile, Proposition 4.9 (b) (along with the interpretation of εw in Lemma 4.7)

gives εEvac(w) = [−εw(3n),−εw(3n − 1), . . . ,−εw(1)]. )*

Proof of Theorem 4.12 This is easy enough to see from the decorated growth diagram
of w directly, but we can also deduce it from Lemma 4.11.

For any permutation σ ∈ Sm , a straightforward unraveling of the definitions shows
that

{i : i ∈ [m], (RevComp(σ−1))−1(i) > i} = {m − σ (i) : i ∈ [m], σ−1(i) > i}.

Hence Corollary 3.9 and Lemma 4.11 (a) imply that at least the positions of the A’s
are the same in Evac(w) and (wσw(3n), wσw(3n−1), . . . , wσw(1)).

Now let 1 ≤ i ≤ 3n be such that Evac(w)i ∈ {B,C}. Then Corollary 3.9 and
Lemma 4.11 imply that Evac(w)i = −εw(σw(3n+ 1− i)). Since Evac(w)i -= A, the
previous paragraph tells us that wσw(3n+1−i) ∈ {B,C}, and hence Proposition 3.8 (c)
tells us that −εw(σw(3n + 1 − i)) = wσw(3n+1−i). Thus Evac(w)i = wσw(3n+1−i) in
this case as well. )*

Of course, it is also reasonable to ask how dual evacuation acts on Kreweras words.
But Proposition 2.4 says that Evac∗(w) = Evac(Pro3n(w)) for any Kreweras word w
of length 3n, and thus our main result, Theorem 1.2, says that Evac∗(w) is obtained
from Evac(w) by swapping all B’s for C’s and vice-versa. Similarly, we can see that
σEvac∗(w) = RevComp(σ−1

w ) and εEvac∗(w) = [εw(3n), εw(3n−1), . . . , εw(1)] thanks
to Lemmas 3.10 and 4.11.
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(a) (b)

Fig. 10 Breaking apart the crossings in a Kreweras bump diagram to obtain a web. In a we show what
happens at an internal crossing, and in b we show what happens at a boundary crossing

5 Webs

In this section we reinterpret our results from the previous sections in the language of
webs. We recall the notion of an sl3-web, which is due to Kuperberg [17]:

Definition 5.1 An sl3-web W is a planar graph, embedded in a disk, with boundary
vertices labeled 1, 2, . . . ,m arranged on the rim of the disk in counterclockwise order,
and any number of (unlabeled) internal vertices such that

• W is trivalent: all the boundary vertices have degree one, while all the internal
vertices have degree three;

• W is bipartite: the vertices (both boundary and internal) are colored white and
black, with edges only between oppositely colored vertices.

We call the face of W containing the boundary vertices the outer face, and all other
faces internal. We say thatW is irreducible (or non-elliptic) if it has no internal faces
with fewer than 6 sides.

Among all the sl3-webs, the irreducible ones play a distinguished role. For instance,
there are only finitelymany irreducible webswith a fixed number of boundary vertices.

We will now explain how to convert a Kreweras bump diagram of a Kreweras word
into a web by “breaking apart” its crossings.

Construction 1 Let w be a Kreweras word and Dw its associated Kreweras bump
diagram. We obtain a planar graph Ww, embedded into a disk, together with a 3-
coloring cw of its edges as follows.

We replace each crossing of two arcs inDw with a pair of a vertices, one white and
one black, joined by a wavy avocado (i.e. green) edge, as in Fig. 10. The white vertex
in this pair is “to the left” of the black vertex, that is, closer to the openers ofDw. We
color all vertices of degree one in the resulting graph, corresponding to the openers
and closers of Dw, white, and keep the labels of these vertices. Finally, the color of
the non-avocado edges ofWw is inherited from Dw.

Example 5.2 As in Example 4.13, let w = AABBCACCB. Recall that the Kreweras
bump diagram Dw of w is:

Dw = 1 2 3 4 5 6 7 8 9
A A B B C A C C B
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Fig. 11 For the proof of Proposition 5.3: how faces of Dw correspond to faces ofWw

Breaking apart the crossings of Dw gives the following 3-edge-colored web:

1 2 3 4 5 6 7 8 9

Forgetting the 3-edge-coloring, and drawing the graph embedded in a disk, we obtain
the web Ww:

Ww =

1

2

3

4
5

6

7

8

9

Proposition 5.3 Let w be a Kreweras word and let (Ww, cw) be the 3-edge-colored
graph obtained by Construction 1.

Then Ww is an irreducible sl3-web with 3n boundary vertices, all of which are
white. Moreover, Ww has no internal face having a multiple of four sides.

The 3-coloring cw of the edges of Ww is proper, i.e., each vertex is incident to at
most one edge in each color class.

Finally, the construction is injective, that is, given (Ww, cw) we can recover w:
the boundary vertices incident to an avocado edge correspond to the A’s in w, those
incident to a blue edge correspond to B’s, and those incident to a crimson edge
correspond to C’s.

Proof The only non-trivial claim is that the number of sides of any face cannot be a
multiple of 4. As depicted in Fig. 11, internal faces of Dw with k sides correspond to
internal faces ofWw with 2k − 2 sides. Since Dw only has crossings between arcs of
different colors, the number of sides of any internal face of Dw is even. )*

ThewebWw without its 3-edge-coloring is not quite enough to recoverw. However,
as we now explain, it gives information equivalent to the permutation σw. In fact, we
can associate a permutation to any sl3-web by taking trips in the web, similar to what
we did in Sect. 3 for Kreweras bump diagrams.
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Fig. 12 The rules of the road
when taking a trip in a web

Definition 5.4 Let W be an sl3-web with m boundary vertices. The trip permutation
of W , denoted tripW ∈ Sm , is obtained as follows. For 1 ≤ i ≤ m we take a trip
in W starting at i . To do this, we start by walking from boundary vertex i along the
unique edge incident to it. When we come to any internal vertex in W , we continue
our trip by following the rules of the road:

• If the vertex is black, we turn right, i.e., we walk out along the next edge counter-
clockwise from where we came in;

• If the vertex is white, we turn left, i.e., we walk out along the next edge clockwise
from where we came in.

These rules of the road are depicted in Fig. 12. We stop our trip when we reach a
boundary vertex. If j is the boundary vertex we reach from the trip starting at i , then
we set tripW (i):= j .

That tripW is genuinely a permutation again follows from the fact that the rules of
the road around any vertex locally permute the entry and exit points.

Our reason for considering trip permutations is the follow proposition:

Proposition 5.5 Let w be a Kreweras word. Then σw = tripW .

Proof This is simply a matter of checking that locally at a crossing of arcs, the rules of
the road for trips in the Kreweras bump diagram Dw agree with the rules of the road
for the trips in the webWw. And to do that, we just need to look at Figs. 5, 10 and 12.

)*

The notion of trip permutations is due to Postnikov [24], and comes from his theory
of plabic graphs. A plabic (“planar bicolored”) graph is a planar graph, embedded in
a disk, whose internal vertices are colored black or white, andwhose boundary vertices
have degree one. There are some differences between plabic graphs and sl3-webs:

• The boundary vertices of a plabic graph are not colored;
• The internal vertices of a plabic graph need not be trivalent;
• The coloring of internal vertices of a plabic graph does not have to be proper, i.e.,
vertices of the same color may be adjacent.

Except for the small technicality about boundary vertices being colored, an sl3-web
is a special case of a plabic graph. Postnikov [24, §13] defined trip permutations for
plabic graphs in exactly the same way as we have done for webs in Definition 5.4
above: turn right at black vertices and left at white vertices.1

1 Technically Postnikov considered decorated permutations, which have their fixed points colored either
black or white. None of the trip permutations we obtain from irreducible webs will have fixed points (see
the proof of Lemma 5.6), so this issue of fixed point decoration will not concern us.
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If W and W ′ are two sl3-webs with m boundary vertices, and they differ only in
the way their boundary vertices are colored, then tripW = tripW ′ , since the color of
boundary vertices does not enter into the definition of trip permutations in any way.
However, note that the color of any boundary vertex which is adjacent to an internal
vertex has its color determined by the bipartiteness condition. Hence, if W and W ′

differ only in the way their boundary vertices are colored, then W ′ is obtained from
W by swapping the colors of pairs of oppositely colored, adjacent boundary vertices.
In particular, if W has all its boundary vertices the same color, then there is no web
that differs fromW ′ only in the way its boundary vertices are colored.

We now explain how Postnikov’s work implies that for irreducible webs, the situ-
ation discussed in the previous paragraph is the only way that trip permutations can
coincide.

Lemma 5.6 LetW andW ′ be irreducible sl3-webs with m boundary vertices. Suppose
that tripW = tripW ′ . ThenW andW ′ differ at most in the way their boundary vertices
are colored. In particular, if all the boundary vertices of W are the same color, then
W = W ′.

Proof Postnikov [24, §12] defined certain transformations of plabic graphs he called
moves and reductions. IfW is an irreducible sl3-web (viewed as a plabic graph), then
the only moves or reductions we can apply to it are “trivial” moves which add 2-valent
vertices by subdividing an edge, or remove such 2-valent vertices by un-subdividing
edges. (Crucially, the fact that all internal faces have at least 6 sides means we will
never be able to carry out a square move, which is the fundamental, nontrivial move
in the theory.) In particular, we will never be able to apply a reduction to W , so W
is reduced. Then [24, Theorem 13.2(4)] says that tripW has no fixed points, so we
don’t have to worry about the issue of decorated fixed points. Finally, a key result [24,
Theorem 13.4] from Postnikov’s paper says that two reduced plabic graphs have the
same trip permutation if and only if they are related via a series of moves. Since, as
mentioned, the only moves we can apply either add or remove 2-valent vertices, we
will not be able to reach any other web than W via these moves. Hence, Postnikov’s
result tells us that any other web with the same trip permutation as W is equal to
W—except in the way the boundary vertices are colored, which the plabic graph story
does not see. )*

Lemma 5.6 lets us apply our knowledge about how Pro and Evac affect σw to
understand how they affect Ww (Theorem 1.3 from Sect. 1). We just need to define
the corresponding web operations.

Definition 5.7 Let W be an sl3-web with m boundary vertices. The rotation of W ,
denote Rot(W), is obtained fromW be relabeling its vertices according to the inverse
long cycle (m,m − 1, . . . , 2, 1) ∈ Sm . The flip of W , denoted Flip(W), is obtained
from W by drawing a chord in the disk separating 1 and m, reflecting W across
this chord, and then relabeling its vertices according to the longest element [m,m −
1, . . . , 1] ∈ Sm .

Theorem 5.8 Let w be a Kreweras word. Then,
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(a) WPro(w) = Rot(Ww);
(b) WEvac(w) = Flip(Ww).

Proof We have tripWw
= σw because of Proposition 5.5. Thus Lemmas 3.10 and

4.11 imply tripWPro(w)
= Rot(tripWw

) and tripWEvac(w)
= RevComp(trip−1

Ww
). For

any sl3-web W , it is straightforward to verify that tripRot(W) = Rot(tripW ) and
tripFlip(W) = RevComp(trip−1

W ). But then thanks to Lemma 5.6, we know that
Rot(Ww) and Flip(Ww) are the only irreducible sl3-webs with trip permutations
equal to tripWPro(w)

and tripWEvac(w)
. Therefore, we must have WPro(w) = Rot(Ww)

and WEvac(w) = Flip(Ww), as claimed. )*
Example 5.9 As in Example 5.2, let w = AABBCACCB. We saw in Example 4.13
that Pro(w) = Evac(w) = w′ where w′ = ABACACCBB. Recall that the Kreweras
bump diagram Dw′ of w′ is:

Dw′ = 1 2 3 4 5 6 7 8 9
A B A C A C C B B

Breaking apart the crossings of Dw′ gives the following 3-edge-colored web:

1 2 3 4 5 6 7 8 9

Forgetting the 3-edge-coloring, and drawing the graph embedded in a disk, we see
that the web Ww is:

Ww′ =

91

2

3

4
5

6

7

8

Comparing with Example 5.2, we can see that Ww′ = Rot(Ww) = Flip(Ww), in
agreement with Theorem 5.8.

It is also possible to describe how promotion and evacuation affect the 3-edge-
coloring cw (briefly: we “swap” colors of edges along trips), but we will not go into
details about that here.

However, a question we will answer in the following subsection is: which websW
are equal to Ww for some Kreweras word w? As we will see, the restriction coming
from Proposition 5.3 is the only restriction.



Promotion of Kreweras words Page 27 of 38 10

5.1 Kreweras webs

Definition 5.10 A Kreweras web is an irreducible sl3-web such that all boundary
vertices are white and there are no internal faces with a multiple of 4 sides.

We note that a simple counting argument shows that any sl3-web with all white
boundary vertices has a multiple of 3 boundary vertices.

We have already seen from Proposition 5.3 that any web Ww corresponding to a
Kreweras wordw must be a Kreweras web. Our goal in this subsection is to show that
all Kreweras webs arise this way.

Theorem 5.11 Let W be an sl3-web. Then there is a Kreweras word w for which
W = Ww if and onlyW is a Kreweras web. Moreover, ifW is a Kreweras web, then
the number of Kreweras words w for which W = Ww is 2κ(W), where κ(W) is the
number of connected components ofW .

Let us first note an enumerative consequence (which is stated as part of Theorem
1.4 in Sect. 1):

Corollary 5.12 We have

∑

W
2κ(W ) = 4n

(n + 1)(2n + 1)

(
3n
n

)
,

where the sum is over all Kreweras websW with 3n boundary vertices.

Proof This follows from combining Theorem 5.11 with Kreweras’s product formula
enumerating Kreweras words [16]. )*

For more discussion of enumeration of webs (including an explanation of the rest
of Theorem 1.4), see Sect. 6.2.

We prove Theorem 5.11 by demonstrating that we can appropriately edge-color
any Kreweras web W . This is achieved via the following construction:

Construction 2 LetW be Kreweras web with boundary vertices labeled counterclock-
wise 1 to 3n, and let c1, . . . , cκ(W) be a choice of color, either blue or crimson, for each
connected component ofW .We create a proper3-edge-coloring ofW (with colors avo-
cado, blue, and crimson), anda systemof2n coloreddirectedpaths1L , 1R, . . . , nL , nR
inW , with the following properties:

• Paths iL and iR begin at the same boundary vertex, and iL turns left when leaving
the unique edge e incident to this vertex, while iR turns right when leaving e;

• The first and every other edge of a path is colored avocado, and all the other edges
of the path have the same color (either blue or crimson) – which we call the color
of the path;

• Every avocado edge is traversed by precisely two paths, and every other edge is
traversed by precisely one path;

• Any two paths share at most one (necessarily avocado) edge, and if they do, they
are of different color;
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• If two paths iX and jY with i < j share an (avocado) edge e, then the path iX
turns to the left when visiting e, and continues the the right when leaving it.

The system of paths is created inductively. Once paths 1L , 1R, . . . , i−1L , i−1R are
determined, the paths iL and iR start at the boundary vertex with smallest label
incident to an uncolored edge. If iL is in a connected component of W different from
the connected components containing 1L , . . . , i−1L , the color of iL is ck , where k is
the number of connected components containing 1L , . . . , iL . The 3-edge-coloring is
then inherited from the colors of the paths.

We say that Construction 2 succeeds onW if the requested properties can be satisfied
when creating the paths.

Lemma 5.13 Construction 2 succeeds on W if and only if W = Ww for some Krew-
eras word w. And in this case, the 2κ(W) 3-edge-colorings produced by applying
Construction 2 toW with different choices of c1, . . . , cκ(W) are exactly all the cw for
such Kreweras words w.

Proof Let w be a Kreweras word. Proposition 5.3 says that Ww must be a Kreweras
web. Moreover, it is easy to see that the arcs of Dw determine a system of colored
paths inWw satisfying the properties required in Construction 2.

Conversely, letW be a Kreweras web on which Construction 2 succeeds. Then, by
the properties of the construction, the paths of the same color form two noncrossing
perfect matchings, with the same set of openers. Thus, they yield a Kreweras bump
diagram of a Kreweras word. )*

Corollary 5.14 The set of Kreweras webs W on which Construction 2 succeeds is
closed under Rot and Flip.

Lemma 5.15 Suppose that the boundary vertices 1 and 2 are in the same connected
component of a Kreweras webW , and suppose that the shortest path from 1 to 2 (i.e.,
the one that turns right at every vertex) consists of 4k + 2 edges, for k ≥ 1. Then, if it
succeeds, the coloring produced by Construction 2 colors the edges incident to 1 and
2 avocado. Moreover, the path 1R and the path 2L have the same color.

Proof The edge incident to 2 will be colored a non-avocado color if and only if the
distance between vertices 1 and 2 is two: if not, the path 1R turns left after the second
edge and therefore does not visit vertex 2. Thus, after the paths 1L and 1R are created,
the edge incident to vertex 2 is uncolored, and is therefore chosen as the initial edge
of paths 2L and 2R .

So now let us focus on the claim about the colors of 1R and 2L . Let x be the first
white non-boundary vertex on the colored path 1R . It suffices to show that every other
edge of the shortest path from 2 to x is colored avocado, and the colors of the remaining
edges alternate.

Suppose that a non-avocado edge on this path belongs to the colored path iX and
the two following edges, e$ to the left and er to the right, belong to the colored path jY .
Then, since colored paths share at most one (avocado) edge, we have 2 < i < j . This
situation is depicted in Fig. 13.
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Fig. 13 The situation in Lemma
5.15

It follows that the colored path iX continues on edge e$, which is therefore colored
avocado. Furthermore, the left edge after e$ belongs to path jY , whose color is therefore
different from the color of iX . )*

Lemma 5.16 A planar cubic bipartite simple graph has at least six 4-cycles.

Proof Let G be a planar cubic bipartite simple graph. Without loss of generality, we
can assume that G is connected.

By the handshaking lemma, a cubic graph has an even number of vertices, say 2n,
and 3n edges. For k ≥ 2, let f2k be the number of faces bounded by 2k edges of G.
By Euler’s formula, the total number of faces of G equals 3n − 2n + 2 = n + 2.

Since G is cubic, every vertex is contained in three faces. Thus

6n =
∑

k≥2

2k f2k ≥ 4 f4 + 6(n + 2 − f4)

which implies that f4 ≥ 6. )*

Lemma 5.17 Let W be a Kreweras web with at least one internal face. Then there is
an internal face ofW which has at least three consecutive sides on its boundary with
the outer face.

Proof Let G be the graph obtained fromW by removing all vertices not contained in
any internal face. Let v1, . . . , vk be the list of vertices of degree 2 in G. The lemma’s
claim is equivalent to the assertion that there are two vertices among v1, . . . , vk which
are adjacent, which we now show.

Let G ′ be a copy of G, and let v′
1, . . . , v

′
k be the vertices of G ′ corresponding to

v1, . . . , vk . We construct a planar bipartite cubic graph H by adding edges {vi , v′
i } to

G ∪ G ′ for i ∈ {1, . . . , k}, as depicted in Fig. 14.
Suppose that G has no pair of adjacent vertices of degree 2. Then H contains no

4-cycles, which is impossible by Lemma 5.16. )*

Lemma 5.18 Construction 2 succeeds on any Kreweras webW .

Proof We use induction on the number of internal faces and the number of vertices of
W . We also freely relabel the boundary vertices via Corollary 5.14.

If W has a white vertex which is not contained in an internal face, we replace this
vertex by three independent boundary vertices and obtain three graphs W1, W2, and
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Fig. 14 For the proof of Lemma
5.17: how to obtain a bipartite
cubic graph from a web

Fig. 15 For the proof of Lemma 5.18: how to break apart and reattach faces for the coloring in Construction2

W3, ordered counterclockwise. We label the boundary vertices of W1 and W2 such
that the split vertex is the last boundary vertex and those of W3 such that the split
vertex has label 1.

By induction, Construction 2 succeeds on all three graphs. Moreover, we can color
W1 and W2 such that the colors of the edges incident to their last boundary vertices
are distinct. Finally, we choose the coloring of W3 so that the edge to the left of the
first boundary edge has the same color as the edge incident to the last boundary vertex
ofW2, and, accordingly, the edge to the right of the first boundary edge has the same
color as the edge incident to the last boundary vertex of W1. It is now clear that we
obtain a coloring which coincides with the coloring produced by Construction 2.

Therefore, we can assume that all white vertices of W are contained in internal
faces. By Lemma 5.17, there is an edge separating an internal face from the outer face,
such that one of its vertices is black and adjacent to a boundary vertex, and the other
vertex is white and adjacent to a black internal vertex which in turn is adjacent to two
boundary vertices. Via Corollary 5.14, we may assume that these latter two boundary
vertices are labeled 1 and 2, and the former boundary vertex is labeled 3.

We constructW ′ by removing the edge incident to the white internal vertex and the
attached boundary vertices, and then splitting this white vertex into two independent
boundary vertices. By construction, the number of internal faces ofW ′ is one less than
the number of faces ofW . We label its boundary vertices so that the two split vertices
have labels 1 and 2. By induction, Construction 2 succeeds onW ′.

Using the properties of this coloring guaranteed by Lemma 5.15, we can obtain
a coloring of W which coincides with the coloring produced by Construction 2, as
depicted in Fig. 15. )*

Lemmas 5.13 and 5.18 implies Theorem 5.11.
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6 Future directions

In this section we discuss some potential connections and possible threads of future
research.

6.1 Relation of our work to previous work on webs and promotion

Webs were introduced by Kuperberg [17] to study invariant tensors of representations
of simple Lie algebras (and their relatives like quantumgroups). In [14], Khovanov and
Kuperberg described a bijection between the set of linear extensions of [3]× [n] (i.e.,
standard Young tableaux (SYTs) of 3×n rectangular shape) and irreducible sl3-webs
with 3n white boundary vertices. In [22] Petersen, Pylyavskyy, and Rhoades showed
that, under the bijection of Khovanov–Kuperberg, promotion of linear extensions
of [3] × [n] corresponds to rotation of webs. This should be seen as directly analo-
gous to the fact, mentioned in Sect. 1, that promotion of linear extensions of [2]× [n]
(i.e., promotion of Dyck words) corresponds to rotation of noncrossing matchings:
indeed, noncrossing matchings can be seen as “sl2-webs.” Later, Tymoczko [37] gave
a different, simpler description of the Khovanov–Kuperberg bijection and used this
description to reprove the results of Petersen–Pylyavskyy–Rhoades as well. Building
on Tymoczko’s work, Russell [27] (see also Patrias [21]) related rotation of irre-
ducible sl3-webs with arbitrarily colored boundary vertices to promotion of 3-rowed
semistandard (as opposed to standard) tableaux.

At its core, the proof of our main results boils down to showing that for a Kreweras
wordw, the webWPro(w) is the rotation of the webWw. Hence, our work would seem
to be closely related to the aforementioned work relating webs and promotion. And
indeed, our procedure of obtaining a web from a Kreweras bump diagram by breaking
apart its crossings is very similar to Tymoczko’s procedure of converting a so-called
“m-diagram” into a web. However, the exact relation between our work and prior work
is not clear to us. Let us emphasize some points of contrast.

In the same way that linear extensions of [2] × [n] naturally correspond to Dyck
words, linear extensions of [3] × [n] naturally correspond to words of length 3n in
the letters A, B, and C, with equally many A’s, B’s, and C’s, for which every prefix
has at least as many A’s as B’s and at least as many B’s as C’s (this representation is
usually called the lattice word or Yamanouchi word of the tableau). In this way, the
linear extensions of [3] × [n] can be viewed as a subset of the Kreweras words of
length 3n. However, promotion of a linear extension of [3] × [n] is not the same as
promotion of its corresponding Kreweras word. Furthermore, the web obtained from
a linear extension of [3] × [n] via the Khovanov–Kuperberg/Tymoczko bijection is
not the same as the web Ww for its corresponding Kreweras word w. Indeed, as we
have already seen with Theorem 5.11, only a subset of irreducible sl3-webs with 3n
white boundary vertices arise as Ww for some Kreweras word w of length 3n. And,
on the other hand, unlike the situation with SYTs, we also need extra decoration (the
3-edge-coloring) to recover w from Ww.

Another way that our work differs from the work mentioned above is that for us,
the trip permutation σw associated to the web Ww plays a central role, in contrast
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to previous work on webs and promotion. In fact, it seems that viewing a web as a
plabic graph in order to extract a trip permutation is a new idea, although Lam [18] and
Fraser, Lam and Le [7] discuss some relationships between webs and plabic graphs.
We also note that one could adapt the argument in Lemma 4.7 to show that for a linear
extension of [3] × [n], the trip permutation of its Khovanov–Kuperberg/Tymoczko
web can similarly be read off from its growth diagram.

At any rate, it would certainly be interesting to understand more precisely the
connection between our work and the previous work on webs and promotion, if there
is some precise connection.

6.2 More enumeration, and connection with planar maps

As we just saw in Sect. 6.1, the total number of irreducible sl3-webs with 3n white
boundary vertices is the same as the number of standard Young tableaux of 3 × n
rectangular shape, for which there is a well-known product formula 2 (3n)!

n!(n+1)!(n+2)!
(sometimes these numbers are called “three-dimensional Catalan numbers”). Corol-
lary 5.12 gives a product formula for a weighted enumeration of Kreweras webs. Let
us now explain how one can enumerate Kreweras webs, without this weighting. As we
will see, certain famous sequences of numbers counting planar maps naturally arise.

We will employ a small amount of generatingfunctionology for this task. When
dealing with combinatorial generating functions it is often useful to reduce to “con-
nected” objects. We say a (non-empty) Kreweras word w is connected if it contains
no proper consecutive substring which is a Kreweras word. Evidently,

w is connected ⇔ Dw is connected ⇔ Ww is connected.

Let us form the generating functions

K (x):=
∞∑

n=0

Kn x3n = 1+ 2x3 + 16x6 + 192x9 + 2816x12 + 46592x15 + · · · ;

Kc(x):=
∞∑

n=1

Kc
n x

3n = 2x3 + 4x6 + 24x9 + 208x12 + 2176x15 + · · · ,

where

Kn :=# Kreweras words of length 3n;
Kc
n :=# connected Kreweras words of length 3n.

As we have seen in Sect. 1, Kn = 4n
(n+1)(2n+1)

(3n
n

)
(http://oeis.org/A006335). Note

that every Kreweras word is obtained, in a unique way, from a connected Kreweras
word w by inserting an arbitrary (possibly empty) Kreweras word after each letter of
w. This yields the generating function equation

K (x) = 1+ Kc(xK (x)).

http://oeis.org/A006335
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>From the above equation, and the formula for Kn , it is possible to use Lagrange
inversion to deduce that Kc

n = 2n+1 (4n−3)!
(3n−1)!n! .

Next, we do the same but with Kreweras webs instead of Kreweras words. That is,
we form the generating functions

W (x):=
∞∑

n=0

Wn x3n = 1+ x3 + 5x6 + 42x9 + 459x12 + 5871x15 + . . . ;

Wc(x):=
∞∑

n=1

Wc
n x3n = x3 + 2x6 + 12x9 + 104x12 + 1088x15 + . . . ,

where

Wn :=# Kreweras webs with 3n boundary vertices;
Wc

n :=# connected Kreweras webs with 3n boundary vertices.

It follows from Theorem 5.11 that Wc
n = 1

2K
c
n . Moreover, the same reasoning as in

the case of Kreweras words implies the generating function equation

W (x) = 1+Wc(xW (x)).

>From the above equation, and the formula for Wc
n , it is possible to use Lagrange

inversion to obtain the coefficients Wn , although the answer one obtains is not as nice
as for Kn .

Finally, let us explain the connection with planar maps. Recall that a planar map
is a topological equivalence class of embeddings of a connected planar graph in the
sphere. The number of rooted, bridgeless, cubic planar maps with 2n vertices is

2n

(n + 1)(2n + 1)

(
3n
n

)
= 2−n · Kn (http://oeis.org/A000309).

Bernardi [1] defined abijection fromKreweraswords of length 3n to rooted, bridgeless,
cubic planar maps with 2n vertices decorated with a depth tree, which is a certain kind
of spanning tree. He also explained why every such map has exactly 2n depth trees,
and thus combinatorially explained the above equality.

Meanwhile, the number of rooted, 3-connected, cubic planar maps with 2n vertices
is

2
(4n − 3)!
(3n − 1)!n! = 2−n · Kc

n = 2−(n−1) ·Wc
n (http://oeis.org/A000260).

We believe that under Bernardi’s bijection, a Kreweras word is connected if and only
if its corresponding cubic planar map is 3-connected. Thus Bernardi’s bijection also
explains, combinatorially, the above equality.However, itwould bedesirable todirectly
explainwhy the enumeration of connectedKreweraswebs is related to the enumeration
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of rooted, 3-connected, cubic planar maps, without going through Kreweras words.
There is some reason to hope this is possible because webs seem at least superficially
similar to cubic planar maps.

6.3 An algebraic model

Is there an algebraic model which explains the behavior of promotion on Kreweras
words?

TheHenriques–Kamnitzer cactus group action [12] on the tensor product of crystals
of representations of a (simple, finite-dimensional) Lie algebra gives rise to a notion
of promotion acting on the highest weight words of weight zero for such a tensor
product: see [6,23,38]. For example, letting V be the vector representation of slk , this
cactus group promotion action on the weight zero highest weight words of ⊗knV
corresponds to promotion of linear extensions of [k] × [n] (i.e., promotion of SYTs
of k × n rectangular shape). Moreover, there are general results (see the references
above) which imply that cactus group promotion of weight zero highest weight words
always has good behavior.

As mentioned in the previous subsection, Kuperberg first defined webs in order to
study invariant tensors in tensor products of representations of Lie algebras. So it is
not so unreasonable to think that promotion of Kreweras words could be connected
to invariant tensors and the Henriques–Kamnitzer cactus group action in some way.
Perhaps the proper algebraicmodel forKreweraswordswill come from representations
of some variant of a simple, finite-dimensional Lie algebra, like a Lie superalgebra
or a Kac–Moody algebra. A better understanding of the algebraic significance of the
“no 4k-sided internal faces” condition for the Kreweras webs could be the key to
uncovering the proper algebraic model for Kreweras words.

We note that the cactus group promotion of highest weight words can be described
via local rules: see [23, §4.2]. As we saw in Sect. 4, promotion of Kreweras words
can also be described via local rules. However, local rules alone are not enough to
guarantee good behavior of promotion: again, as we saw in Sect. 4, promotion of the
linear extensions of any poset can be described by local rules, but most posets have
bad behavior of promotion.

6.4 Cyclic sieving

Diagrammatic and/or algebraic models are often useful for establishing cyclic sieving
results. Let us recall this notion from Reiner–Stanton–White [25]:

Definition 6.1 Let X be a finite set. Let C = 〈c〉 be a cyclic group of order $ acting
on X , generated by element c ∈ C . Let f (q) ∈ N[q] be a polynomial in q with
nonnegative integer coefficients. Then we say the triple (X ,', f (q)) exhibits cyclic
sieving if for all k we have

#{x ∈ X : ck(x) = x} = f (ωk),

where ω:=e2π i/$ is a primitive $th root of unity.
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Cyclic sieving phenomena (CSPs) involving polynomials which have an expression
as a ratio of products of q-numbers are especially valued, because they imply that every
symmetry class has a product formula.

In the case of promotion of SYTs of k×n rectangular shape, Rhoades [26] obtained
such a CSP. He showed ({SYTs of shape k × n}, 〈Pro〉, f (q)) exhibits cyclic sieving,
where f (q) is themajor index generating function for the SYTs of shape k×n, which
has the product formula

f (q) =
qn(

k
2)

∏kn
j=1(1 − q j )

∏k
j=1(1 − q j ) j

∏n
j=k+1(1 − q j )k

∏n+k
j=n+1(1 − q j )n+k− j

,

assuming by symmetry that k ≤ n. Note that this product formula is the well-known
q-hook length formula [32, Cor. 7.21.5].

We conjecture the following CSP for promotion of Kreweras words:

Conjecture 6.2 For all n ≥ 1, the rational expression

f (q):=
∏3n

j=1(1 − q2 j )
∏2n+1

j=2 (1 − q j )
∏n+1

j=2(1 − q2 j )

is a polynomial in q with nonnegative integer coefficients, and the triple

({Kreweras words of length 3n}, 〈Pro〉, f (q))

exhibits cyclic sieving.

Conjecture 6.2 strongly suggests that some good algebraic model for Kreweras
word promotion should exist, although we do not know of the precise algebraic or
combinatorial significance of the polynomial f (q) appearing in the conjecture.

We also conjecture similarly that there is a product formula for the number of
Kreweras words fixed by Evac and Evac∗:

Conjecture 6.3 For all n ≥ 1, the number of Kreweras words of length 3n with
Evac∗(w) = w is

37n/2849n/2: ∏7n/28
j=1 (3 j − 1)

∏9n/2:
j=1 (3 j − 2)

(n + 1)! .

The number of Kreweras words of length 3n with Evac(w) = w is this same number
if n is even, and is 0 if n is odd.

It is possible that Conjecture 6.3 could be phrased as a “q = −1” result for a
polynomial which has a product formula as a rational expression, although we do not
have a candidate for such a polynomial. Note that every poset has a “q = −1” result
for counting self-evacuating linear extensions, where the polynomial is essentially the
major index generating function: see [33, §3].
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6.5 Order polynomial product formulas

It is reasonable to ask “where is this Kreweras word promotion really coming from?,”
or in other words, “what is it about the poset V (n) that would lead one to suspect that
it has good promotion behavior?” Let us attempt to answer this question.

Let P be a poset. A P-partition of height m is a weakly order-preserving map
π : P → {0, 1, . . . ,m}. It is well-known that the number of P-partitions of height m
is given by a polynomial*P (m) inm, called the order polynomial of P , whose degree
is #P and whose leading coefficient is 1/#P! times the number of linear extensions
of P (see, e.g., [34, §3.12]).

In [15], Kreweras–Niederhausen obtained the following product formula for the
entire order polynomial of the poset V (n):

*V (n)(m) =
∏n

i=1(m + 1+ i)
∏2n

i=1(2m + i + 1)
(n + 1)!(2n + 1)! .

They deduced the product formula counting Kreweras words (i.e., linear extensions
of V (n)) as a corollary.

In [13], the first author (S.H.) presented the following heuristic: “posets with good
dynamical behavior = posets with order polynomial product formulas.” Here “good
dynamical behavior” includes good behavior of promotion of linear extensions. It is
via this heuristic that promotion for Kreweras words was discovered: S.H. asked a
question on MathOverflow about posets with order polynomial product formulas, and
was lead to the paper [15] and the V (n) poset by an answer of Ira Gessel [8].

6.6 Rowmotion

Rowmotion is a certain invertible action on the order ideals of any poset P which
has been studied by many authors over a number of years, with a renewed interest
especially in the last 10 or so years. Rowmotion and promotion are “similar” in many
respects. For an overview and history of rowmotion see, e.g., [35] or [36]. Einstein and
Propp [5] introduced a piecewise-linear extension of rowmotion, which in particular
yields a (piecewise-linear) action of rowmotion on the set of P-partitions of heightm.

In the “posets with good dynamical behavior = posets with order polynomial prod-
uct formulas” heuristic just mentioned, “good dynamical behavior” also includes
good behavior of rowmotion of order ideals, and more generally good behavior of
(piecewise-linear) rowmotion of P-partitions.

In agreement with this heuristic, it (experimentally) appears that the poset V (n) has
good behavior of rowmotion of order ideals and P-partitions. Conjectures concerning
rowmotion for V (n) appeared in the aforementioned paper [13].
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