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ABSTRACT
Current youth online safety and risk detection solutions are mostly
geared toward parental control. As HCI researchers, we acknowl-
edge the importance of leveraging a youth-centered approach when
building Artificial Intelligence (AI) tools for adolescents online
safety. Therefore, we built the MOSafely, Is that ‘Sus’ (youth slang
for suspicious)? a web-based risk detection assessment dashboard
for youth (ages 13-21) to assess the AI risks identified within their
online interactions (Instagram and Twitter Private conversations).
This demonstration will showcase our novel system that embed-
ded risk detection algorithms for youth evaluations and adopted
the human–in–the loop approach for using youth evaluations to
enhance the quality of machine learning models.

CCS CONCEPTS
• Online Safety → Artificial Intelligence ; • Youth-Centered
Artificial Intelligence→ Risk Detection Dashboard;
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1 INTRODUCTION
Adolescents’ social growth and developmental exploration are
mainly mediated through extensive social media usage [4]. Al-
though social media provides youth a unique opportunity to com-
municate and learn, it also exposes them to a wide array of risks that
could have adverse consequences [10]. A major trend of the current
approaches for adolescents’ online safety is relying on parental
control that are not only privacy-invasive to youth, but also over-
load parents with unnecessary information [1, 6]. Today, Artificial
Intelligence (AI)-based risk detection technologies present promis-
ing potentials to automatically detect risky content [20]. However,
these models could pose a digital inequity especially for socio-
economically disadvantaged youth [15]. Thus, human-computer
interaction (HCI) researchers have been advocating for building AI
online safety solutions that are youth-centric [15]. To address this,
under the auspices of an initiative called Modus Operandi Safely
(i.e., MOSafely), we built a youth-centered, web-based risk detection
dashboard called, MOSafely,“Is that Sus?,” which leverages machine
learning algorithms that we developed to detect risks within youth
online interactions and provide them the ability to give feedback
on the AI suspected risks.

2 GAPS IN EXISTING RISK DETECTION
SYSTEMS FOR YOUTH

Most of the existing commercialized automatic risk detection so-
lutions for youth have been social media platform-based that are
not available for public use or evaluation [7]. These solutions have
also been mainly developed in isolation from youth’s own perspec-
tive, resulting in high rates of false positives and hampering the
potential of applying these algorithms in real life settings [17]. Fur-
thermore, the majority of the presented risk detection approaches
in youth online safety literature lack the youth engagement of
these approaches [9, 16]. The youths’ perspective is important to
be incorporated not only in identifying ground truth for the detec-
tion models, but also in enhancing the models’ predictions based
on their evaluations [16]. In fact, recent research in Computer-
Supported Cooperative Work and Social Computing (CSCW) has
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noted that human-centered approach in computing should leverage
the personal, social, and cultural perspectives when designing and
creating technological solutions [5]. Therefore, the overarching aim
of MOSafely’s Is that Sus? dashboard is to address these limitations
by applying a youth-centric approach to give youth more agency
in their own online safety.

At the demo at CSCW, visitors will be able to navigate through
one of the first novel initiatives to engage youth in the process
of building AI risk detection systems. The presenter will have an
opportunity to upload a sample Instagram and Twitter data files
for the visitors to explore the features we designed for youths’
evaluations and the machine learning algorithms we developed for
multiple risks types (e.g., sexual messages and cyberbullying).

3 MOSAFELY, IS THAT SUS? DESIGN
OVERVIEW

MOSafely, Is that Sus? recognizes the importance of engaging youth
when building online safety tools for them. It was designed to be
customizable to allow teens upload social media files from different
platforms such as Instagram and Twitter to address the current
platform-based risk detection tools. We provide youth with step
by step instructions about how to download their data from online
platforms and then upload it our system. The following list describes
the novelty of MOSafely, Is that Sus? risk detection assessment
dashboard and how youths were engaged in assessing the AI risk
predictions of their online conversations.

Figure 1: Screenshot of the risk assessment dashboard after
users successfully uploaded their social media file.

• Theoretically grounded risk types. To design MOSafely,
Is that Sus?, we focused on the most prevalent risks that
youth encounter online, which were sexual solicitation and
cyberbullying [19]. As such, we used systematic reviews of
automatic (machine learning based) detection approaches for
these risks [9, 16] and, accordingly designed the embedded
algorithms. The algorithms classify a conversation as risky
when sexual messages/solicitation and/or cyberbullying (text
and image) were detected and safe when none of these risks
were detected. Due to the importance of contextualizing
the risks youth encounter to avoid unintentional harms [3],
the relationship type classifier was designed to only predict
the relationship types (i.e., stranger, acquaintance, friend,

significant other, family) without labeling whether the con-
versation is risky.

• Embedded algorithms for user evaluation. Due to the
lack of existing solutions that embed machine learning algo-
rithm for evaluation, we designed the MOSafely risk detec-
tion dashboard to be one of the first systems that embedded
algorithms to be publicly available for youth evaluation. We
developed our own machine learning algorithms to detect
risks using the conversations and single messages to address
a limitation in the current approaches that heavily rely on
the conversation level as an input [16]. Then these trained
classifiers were integrated in MOSafely system to predict
risks within the youth uploaded online interactions.

• Teen-centric design to raise awareness.MOSafely was
designed for youth to review their online interactions to be
more self-aware of the risky interactions they are having
online. Therefore, the risk assessment dashboard was de-
signed for them to have an at-a-glance overview of the AI
detected risky conversations and navigate through them to
reflect about what they found risky. The dashboard cards
were designed to show the overall number of risky conver-
sations as well as the number of conversations identified for
different types of risks including sexual risks, cyberbullying,
and relationship types. These cards are also useful for youth
to filter their AI predicted risky conversations based on a
risk type they found interesting or surprising.

• Feedback mechanism to improve algorithms. We lever-
aged a human-in-the-loop approach [11] to get feedback
from end users (youth) on the accuracy of the risk predic-
tions produced, which will be used by the system to further
improve the accuracy of our trained algorithms. To this end,
we designed a conversation page for the users to thoroughly
review their conversations and give feedback on the AI de-
tected risks. The conversation page allowed youth to submit
feedback for predictions at the conversation level as well as
the message level. Each conversation and message provided
an overview of the risks, with a pop-up for feedback and
contextual information (e.g., relationship type in conversa-
tions). Youth also had the option to provide written feedback
with more details about why they disagreed with the predic-
tions. The system also helped the youth keep track of their
progress, by updating a “counter” which showed the num-
ber of risk assessment predictions not reviewed by the user
yet. Ultimately, this feedback will enable us to compare the
performances of conversations vs. message level algorithms
for risk detection.

4 TECHNICAL IMPLEMENTATION
The following sections describe the development of machine learn-
ing algorithms and the AWS technical implementation.

4.1 Predictive Machine Learning Application
Programming Interface

Due to the lack of publicly available pre-trained risk detection
models, we developed and trained models to detect risks in youth
online interactions. Prior to MOSafely risk detection dashboard,
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Figure 2: Screenshot of the conversation page, showing the edit icon for the message level feedback.

Classification
Level

Classification
Type

Model
Type Accuracy F1

Message Sexual DNN 87% 87%
Cyberbullying 82% 82%
Image CNN 60% 89%

Conversation Sexual CNN 89% 90%
Cyberbullying LSTM 68% 63%
Relationship Type CNN 80% 89%

Table 1: Conversation and message level classifiers’ accuracy
results. CNN denotes Convolutional Neural Networks, DNN
denotes Deep Neural Network, and LSTMdenotes Long Short-
Term Memory

we collected an ecologically valid dataset that consisted of youth
private conversations along with their risk flags to their conver-
sations; [14] describe the design considerations behind this data
collection. Starting from our other work that provided skeleton
machine learning algorithms for risk detection, such as sexual risk
and cyberbullying [2, 8, 13], we trained models using this dataset to
detect risks including cyberbullying, sexual solicitation, and risky
images for both conversation and message levels. For choosing
the most accurate predictive models for each risk type, we trained
traditional and deep learning models, with the best models were
listed in Table 1. The best performing models for each risk type
were then compiled as TensorFlow saved models.

The modularized models were then hosted on the machine learn-
ing server (MLAPI). Since these are modularized, no retraining is
needed each time the server runs the models. The main goal of the
MLAPI server is to serve as an Application Programming Interface
(API) that is scalable enough to incorporate several risk classifiers,
to produce predictions for any text such as messages from phone
message apps, and to be embedded in any online platform and/or
mobile application to help youth navigate their own risks instantly.

The MLAPI server responds to prediction requests with a JSON
structured object containing fields which signify if the conversation
is risky or non-risky. The response also includes the same fields
for each distinct message in the conversation thereby providing
conversation and message level risk prediction assessments.

4.2 AWS Backend
We used AWS Elastic Compute Cloud (EC2) to host the website that
control the information flow between the web-front (users input)
and the PHP back-end (data transmission to Database or storing
social media folders in AWS S3 buckets). The MLAPI server used
to store the trained machine learning models is hosted using an
EC2 instance. The AWS Simple Storage Service (S3) was used to
store the users’ social media files. AWS Lambda function code was
created and extended to parse the content of different social media
platforms files.

Figure 3: MOSafely Architecture.

The parsing process included converting the data file format
(JSON or java script) to text and it also included sending the parsed
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conversations to the MLAPI to get the predictions. AWS Relational
Database Service (RDS), a Health Insurance Portability and Account-
ability Act (HIPAA) [12] compliant service1, was used to securely
save users’ social conversations and resulting risk assessment pre-
dictions in a password protected storage. The environment variables
in Lambda functions and database passwords were encrypted using
AWS Key Management Service to achieve at-rest and in-transit
encryption. The RDS and Lambda functions were hosted under a
Virtual Private Cloud (VPC) to protect the data transmission.

5 FUTURE RESEARCH AND CONCLUSION
MOSafely, Is that Sus? has not been formally evaluated by youth.
Youths’ feedback will be valuable to inform future research about
the efficiency and applicability of the algorithms, as well as the intu-
itiveness of the presentation of the risk assessment predictions. We
plan to perform a usability evaluation of this system with a subset
of the youth population to resolve any design issues based on their
workflow/usability standpoint [18]. We also intend to investigate
the perceived utility of the risk detection dashboard based on the
perspectives of other stakeholders in youth online safety such as
parents and youth social service providers.

While existing AI tools for youth online safety are mainly de-
signed and developed behind corporatewalls, we showcasedMOSafely,
Is that Sus? as a novel system that will open machine learning algo-
rithms for public evaluation especially from youth. Youths’ feedback
and insights about themodels’ performanceswill be helpful in bring-
ing to the market not only state-of-the-art, but also youth-approved
solutions for detecting risks they encounter online.
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