Evaluating the Reliability of Android Userland Memory Forensics

Sneha Sudhakaran?, Aisha Ali-Gombe?, Andrew Case? and Golden G Richard IlI*
1Department of Computer Science, Louisiana State University, Baton Rouge, USA
2Department of Computer Science, Towson University, Towson, USA

3Board of Directors, Volatility Foundation, Reston, USA

ssudhal@Isu.edu

aaligombe@towson.edu

andrew@dfir.org

golden@cct.Isu.edu

Abstract: Memory Forensics is one of the most important emerging areas in computer forensics. In memory forensics,
analysis of userland memory is a technique that analyses per-process runtime data structures and extracts significant
evidence for application-specific investigations. In this research, our focus is to examine the critical challenges faced by
process memory acquisition that can impact object and data recovery. Particularly, this research work seeks to address the
issues of consistency and reliability in userland memory forensics on Android. In real-world investigations, memory
acquisition tools record the information when the device is running. In such scenarios, each application’s memory content
may be in flux due to updates that are in progress, garbage collection activities, changes in process states, etc. In this paper
we focus on various runtime activities such as garbage collection and process states and the impact they have on object
recovery in userland memory forensics. The outcome of the research objective is to assess the reliability of Android userland
memory forensic tools by providing new research directions for efficiently developing a metric study to measure the
reliability. We evaluated our research objective by analysing memory dumps acquired from 30 apps in different Process
Acquisition Modes. The Process Acquisition Mode (PAM) is the memory dump of a process that is extracted while external
runtime factors are triggered. Our research identified an inconsistency in the number of objects recovered from analysing
the process memory dumps with runtime factors included. Particularly, the evaluation results revealed differences in the
count of objects recovered in different acquisition modes. We utilized Euclidean distance and covariance as the metrics for
our study. These two metrics enabled the authors to identify how the change in the number of recovered objects in PAM
impact forensic analysis. Our conclusion revealed that runtime factors could on average result in about 20% data loss, thus
revealing these factors can have an obvious impact on object recovery.

Keywords: Userland, Memory Dump Acquisition, Reliability, Metric Evaluation

1. Introduction

In a recent survey conducted, the Android operating system makes up 71.9% of the mobile operating system
market share (Market Share, 2020). The survey results prove the popularity of the operating system among end-
users. Over the last decade, there was a parallel increase in cybercrimes, causing damage that cost up to $6
trillion in February 2021 (Market Crime, 2021). Digital forensics is a branch of forensic science used for
recovering, investigating, and examining digital devices to recover evidences (Auty et al., 2007). Memory
forensics is one of the techniques in digital forensics for extracting evidence from digital media that can serve as
evidence for solving such cyber-crimes (Sylve et al., 2012). This technique can be an efficient solution to extract
evidence and solve cybercrime, thereby making end-users more secure. Among different memory forensics
techniques, userland (process memory) memory forensics is one important research area for analyzing
applications (app) and activities associated with the app is essential in today's cyber world (Auty et al., 2007).
One of the most critical components impacting evidence recovery is process memory acquisition (Pagani et al.
2019). The acquisition must be performed with utmost attention to conquer the challenges that persist. While
some research has been done on challenges faced during the memory dump acquisition(Pagani et al. 2019), to
the best of our knowledge, there is very little research that focuses on external runtime factors that can affect
evidence recovery from process dumps that includes RecOOP (Pridgen et al.). The primary focus of this paper is
to conduct a study on the impact of the external runtime factors like the Garbage Collection (GC) and the Process
States and finally develop a metric evaluation to assess the reliability of userland memory forensic tools. The
external factors like GC during process memory acquisition impact object recovery because the number of
objects allocated and recovered without GC occurring is more than objects allocated and recovered after GC's
occurrence. The object count difference is primarily because some objects are collected and lost after a GC cycle.
The difference in object count was observed in different process states and is described in detail. First, we
present a methodology to identify the impact on process memory samples with combinations of external
runtime factors on object recovery using some available and free Android userland memory forensic tools (Ali-
Gombe et al,, 2019) and (Sudhakaran et al., 2020). Next, we evaluated multiple apps and derived a metric

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
423

Sneha Sudhakaran et ak

evaluation criterion for measuring the reliability of userland forensic tools on process memory capture acquired
by incorporating the runtime factors during the dump acquisition. The study and conclusion deduced from this
research were based on the count of objects recovered from process memory dumps with runtime factors
included using current Android memory forensic tools. Developing a metric evaluation is needed because of the
noticeable changes in the number of objects retrieved. The difference in the number of objects recovered helped
us analyze the integrity, consistency, and data loss in different dumps acquired. Therefore, we could better
understand userland memory forensic tools' reliability using metrics like Euclidean distance and covariance.

1.1 Contribution
e Examining the impact of Garbage Collection and Process States on evidence recovery in userland
memory.
e Quantifying the integrity, consistency, and damage in recovered data.
e Measuring the reliability of userland memory forensics techniques using metrics like Euclidean distance
and Covariance.

The rest of the paper is organized as follows: Section 2 presents the Background of this paper; Section 3 provides
an overview of our Design and implementation; Section 4 presents the Evaluation of the proposed approach;
Section 5 summarizes the Related Literature and finally section 6 presents the Conclusion

2. Background

2.1 Android Runtime Environment

Android executes apps in an application runtime environment called Android Runtime (ART) (Ali-Gombe et al.,
2019) (Schwermer et al.,, 2018). ART introduced significant improvements like GC and better debugging
(Schwermer et al., 2018) (Ali-Gombe et al., 2019) (ART Space, 2017). In Android 8, the developers improved ART
by introducing features like Concurrent Copying GC (Ali-Gombe et al., 2019) enabling smaller heap sizes and
faster object allocation and deallocation (Schwermer et al., 2018). First, the technique uses a concurrent and
moving garbage collection algorithm. Utilizing region-based memory allocation(Ali-Gombe et al., 2019),
allocated objects are evacuated from a region and subsequently destroyed if and only if the region has live
objects whose count is less than some percentage threshold. Also, this algorithm creates a compacting heap by
introducing short pauses during collection. It also utilizes a read barrier configuration to ensure mutators never
see old versions of objects. This configuration allows threads to efficiently and concurrently access heap objects
during collection. The algorithm uses the RegionSpace allocator, and if the use of TLAB is enabled, the system
uses the RegionSpaceTlab allocator for movable objects. On newer Android versions, RegionSpaceTlab (Ali-
Gombe et al., 2019) is the default for most small object allocations and LargeObjectSpace (Sudhakaran et al.,
2020) for large object allocations. Second, the core Android system components and services like ART are built
from native code that relies on native libraries written in C/C++ (ART Platform, 2017). Finally, ART's memory
management does not provide a memory swap area but instead uses paging mechanisms and file mapping
(Soares, A.M.M., de Sousa Jr, RT, 2017). Overall, for end-users, ART is more beneficial than its predecessor Dalvik
by offering improved performance and faster application start-up time (ART Dalvik, 2017). In ART,
improvements like Foreground and Background collectors are used when an app is in Foreground and
Background process states (Ali-Gombe et al., 2019). This research intends to study in detail the GC and process
state improvements made in ART and identify how they impact consistency, data loss/integrity, and reliability
of forensic evidence recovery tools.

2.2 Object Allocation and Deallocation

In Android, object allocation utilizes memory management algorithms based on the size of the object
(AndroidLOS, 2017) (Ali-Gombe et al., 2019) (Sudhakaran et al., 2020). Objects with an allocation size of fewer
than 12KB are small objects like primitives, strings, arrays, and other complex objects such as InetAddress and
are allocated using the Alloc() function (Ali-Gombe et al., 2019). On the other hand, the AllocLarge() function
allocates large objects above a certain threshold of 12KB (Sudhakaran et al., 2020). The small objects are
allocated using the region-based memory management algorithm, and the large objects are allocated using the
large object space algorithm. In a region-based algorithm, objects get allocated in specific memory regions.
During GC, an entire region is garbage collected if the objects in the corresponding region alive are below a
certain threshold. The Large Object Space (LOS) gets allocated in a region in the process memory called Dalvik
Large Object Allocation. In ART, LOS uses discontinuous memory mapping, where object allocation regions are
not contiguous. LOS allocates objects in the form of arrays of types such as byte, char, string, float, and int

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
424

Sneha Sudhakaran et ak

(AndroidLOS, 2017) (Sudhakaran et al., 2020). The objects and the associated references in the allocated spaces
are freed when the allocated object is not alive with a Free() function (ART Free, 2017).

2.3 Garbage Collection

There are four major GC algorithms designed for ART. The algorithms are Semi-Space, Generational Semi-Space,
Concurrent Mark Sweep, and Concurrent Copying (Ali-Gombe et al., 2019) (Jones et al., 2016). Beginning with
Android 8, the default GC plan is Concurrent Copying (Ali-Gombe et al., 2019). The other GC plan used in ART is
Concurrent Mark Sweep (ART Developers, 2017). When utilizing region-based memory allocation, allocated
objects in the region having a live object count less than a certain threshold are evacuated from a region and
subsequently destroyed (Ali-Gombe et al., 2019). Similarly, allocated objects having an object count greater than
the threshold utilize LOS allocation and the objects are collected and destroyed if and only if the object and its
reference are no longer alive. In such situations, the function FinishGC() (FinishGC, 2017) is enabled indicates
that GC has been enabled. Otherwise, the GC is reset or disabled when the ResetGCPerformancelnfo() (ResetGC,
2017) function/method is triggered.

2.4 Process State
In an Android system, the process state is the highest-ranking active component within the app that it hosts
(Android Process, 2017). Foreground processes have highest priority & empty processes have lowest priority as
shown in Figure 1.

1. Foreground

Figure 1: Android Process States

Android's different process states are foreground, background, visible, service, and empty (Android Process,
2017). The different process states are explained below:

2.4.1 Foreground Process
Foreground processes (Android Process, 2017) are the process or the app that is currently an active process
running in the Android system and is last to be terminated by the system. A process is in foreground state if it
meets one or more of the following conditions given below:

e The process involves activities with user interaction.

e Process hosting a service-connected to user interacting activities.

e Service that is triggered by a function call to startForeground().

e Process that holds services like onCreate(), onResume() or onStart(), onReceive() calls.

2.4.2 Visible Process
A process is classified as a 'visible process' if it contains an activity visible to the user while the activity does not
involve interaction with the user (Android Process, 2017).

2.4.3 Service Process
Processes that contain a service that has already been started and is currently in execution are classified as
service process (Android Process, 2017).

2.4.4 Background Process

These processes contain activities neither visible to the user nor hosting a service. Android maintains a dynamic
list of background processes, terminating processes such that processes that were the least recently in the
foreground are killed first (Android Process, 2017).

2.4.5 Empty Process
Empty processes no longer contain any active applications but reserve memory space and serve as hosts for

newly launched applications (Android Process, 2017).

This research focuses only on Foreground and Background process states.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
425

Sneha Sudhakaran et ak

3. Analysis Setup

3.1 Experimental Setup

In this work, we used the Genymotion Android emulator in the experimental setup as the execution environment
(Genymotion, 2016) to evaluate the selected apps. We created Android Virtual Devices (AVD's) for the Samsung
S8 emulator running Android 8.0-API 26 and apps chosen from different categories like Browser, Entertainment,
SMS, Social media, Vault, Gaming, and malicious apps from Google Playstore(GooglePlay, 2021) and
VirusShare(VirusShare, 2021).

All the emulators had 4GB memory, and selected apps were installed and loaded with chat messages, multiple
images, text files, videos to simulate a series of actions performed by a user on real devices. We interacted with
all the apps selected manually, with a similar sequence of actions conducted on each app to generate consistent
activities for evaluation. E.g., The app com.appstalking.photoeditor was installed on the Genymotion emulator,
and we performed a sequence of actions in both Foreground and Background states. In the Foreground process
state, the activities include opening the app and typing a text message, then uploading an image saved in the
Genymotion emulator. Next, we uploaded and edited a pdf file, and finally uploaded a video and watched the
video. For the background process state, we repeat the same sequence of actions performed on the
com.appstalking.photoeditor when it was in the foreground, before putting it in the background with a Gmail
app made as a foreground app.

3.2 Process Acquisition Modes

As mentioned above, this research leverages two external runtime factors GC and process states. In Figure 2,
the memory layout called the vtype (Auty et al., 2007) is explained to understand the different parameters and
their memory offsets in the automated script to confirm if the process dump acquired includes the runtime
factors or not. The automated script used to check the existence of each runtime factor will be made open
source when the paper is published. The heap in the process dump acquired has the vtypes on which this work
focuses. The specific vtypes focussed in this work includes GC_collector at location 504; card_table_ at 56;
last_gc_type_at 224; next_gc_type_ at 228; desired_collector_ at 100; block_gc_count_ at 584; block_gc_time_
at 592; gc_plan_ at 440 an concurrent_ copying_ collector_ at 524 as shown in Figure 2.

T
‘Hesp' 1 [BxG3Ed, {

‘ac_plan_' 1 (4480, il
"concUrrent_copying_collector® ¢ [S24, [*'1].

M.

Figure 2: Runtime Structure for External Runtime Factors in Memory

In the case of GC, we identified that when GC is enabled the variables blocking_gc_count is 1 and
blocking_gc_time holds some integer(FinishGC, 2017). While the GC is not enabled, the variables
blocking_gc_count and blocking_gc_time are set to 0 (ResetGC, 2017) . In the case of Process State, the variable
desired_collector_ holds a value that indicates if the process was running in the Foreground or Background. The
desired_collector_ is 7 when the app is running in foreground and desired_collector_ is 8 when the app runsin
background. On executing the automated script on all the selected app for analysis each PAM mode gives the
corresponding output mentioned below

3.2.1 F-GC
The variable types with values for this memory dump are desired_collector_= 0x07; block_gc _count_ = 1;
block_gc_time_= <value>.

3.2.2 F-NGC
The variable types with values for this memory dump are desired_collector_= 0x07; block _gc_count_=0;
block_gc_time_=0.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
426

Sneha Sudhakaran et ak

3.2.3 B-GC
The variable types with values for this memory dump are desired_collector_= 0x08; block_gc_count = 1;
block_gc_time_=<value>.

3.2.4 B-NGC
The variable types with values for this memory dump are desired_collector_= 0x08; block _gc_count_ = 0;
block _gc_time_ =0.

3.2.5 Clean

This state of process dump acquisition is the fresh state when the app runs with no runtime state triggered. The
combination would be a default condition when a user opens the app and interacts in the foreground. This state
is acquired every time before acquiring the process memory with the runtime factor triggered. CleanFGC is the
process memory dump acquired before acquiring the F-GC combination dump. Similarly, we acquired a clean
dump before F-NGC, B-NGC, and B-GC, and the memory acquisition modes were called CleanFNGC, CleanBNGC,
and CleanBGC, respectively.

3.3 Process Memory Acquisition For Analysis

Figure 3 depicts the system architecture of this analysis study. The app memory dump is acquired with an
automated tool called Memfetch (Memfetch, 2009) with different runtime factors included, and the process
dumps acquired are called the process acquisition mode (PAM). The Memfetch tool is more beneficial as this
research mainly focuses on userland memory analysis. Memfetch extracts all anonymous memory blocks like
the stack and heap used for object allocation (mem pages) and pages used for files and executables mappings
(map pages) into distinct binary files called the mem*.bin and the map*.bin respectively (Memfetch, 2009).
Memfetch further provides a statistical metadata file that shows the range, size, segment of each acquired
memory block in a file called the mfetch.Ist. These files are then analyzed by forensic tools to recover all the
objects. In our research, we focus specifically on two runtime factors, the GC and Process States.

In the automated script (https://github.com/ssudhal/metrics/tree/main), before we used Memfetch for
acquiring process dumps, we initiated the two runtime factors. The GC was forced from the Android shell using
'adb shell kill -10 PID' where 'kill -10' signals SIGUSR1 (ForceGC, 2013), and PID is the process id of the application.
However, the process states during memory acquisition were based on the manual setting by the end-user. We
focus on the Foreground and Background process states which predominantly relate to user input. These states
occur when the user acquires the process dump by running the automated script. The Foreground state is where
the user interacts with the application, and the Foreground Collector gets triggered. The Background process
state is where the application under execution is not visible to the user, and the Background Collector is
triggered. E.g When the user starts the app in the Foreground process state and then executes the automated
script (https://github.com/ssudhal/metrics/tree/main), it generates a process dump without GC enabled called
Foreground and No GC enabled (F-NGC) followed by a dump with GC enabled called Foreground and GC
triggered(F-GC). Similarly, when the user starts the app in the Background state and the automated
script(https://github.com/ssudhal/metrics/tree/main) is executed, the process dump acquired would be
initially the dump without GC enabled called Background and No GC enabled (B-NGC) followed by a dump with
GC called as the Background and GC enabled (B-GC).

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
427

Sneha Sudhakaran et ak

1.Manual Process State by user |+ - | Chosen Apk
2. Automated script for GC — . -
SISUsRl Gen otion
‘adb shell kill -10 pid” W
3. Acquire app dump with Process Acguisition Mode
Memfetch (PAM}module
v
PAM modes
Clean F-GC F-NGC B-GC B-NGC
DroidScraper AmpleDroid
Recovers small objects - Recovers large objects
1. Identify existence of runtime 1. Identify existence of runtime
wariable types in acquired mode. variable types In acquired mode.
2. Extract small objects from each 2. Extract large objects from each
process dump acquired. process dump acquired.
3. Evaluate metrics on each process 3. Evaluate metrics on each process
dump. dump.

Figure 3: Design Architecture for Evaluation
3.4 Analysis Tools

3.4.1 DroidScraper
Ali-Gombe et al. proposed DroidScraper (Ali-Gombe et. al, 2019), a tool for analyzing the ART RegionSpace
memory allocation to extract small objects from process dumps. This tool recovers runtime data

structures by focusing on the recovery of small objects allocated in the RegionSpace. DroidScraper is a userland
in-memory object recovery and reconstruction tool to extract runtime artifacts from Android process memory
space. The evaluation of DroidScraper has shown that it can recover in-memory data allocated using Android’s
RegionSpace by using RegionSpaceTlab allocator for recovering small objects with a recovery percentage of
almost 90%. Also, DroidScraper can reconstruct and recover objects, thereby detecting evidence of file and
network activities, database accesses, and recovery of cryptographic keys.

3.4.2 AmpleDroid

Sudhakaran et al. proposed a tool AmpleDroid (Sudhakaran et. al, 2020) a tool to analyze an Android app dump
to extract the large objects allocated in the specific memory region called LargeObjectSpace. The
LargeObjectSpace allocation is studied to identify how the objects above a certain threshold are stored in
userland memory. AmpleDroid performs a complete process memory analysis on Android version 8 large object
memory allocation and extracts multimedia and text files that other tools cannot currently retrieve. This tool is
used in forensic investigations to provide an overall idea of how large object files (text, video, image, etc.) are
allocated in an app’s memory and a high recovery percentage of approximately 91%.

Lastly, in this experimental setup the forensic tools - DroidScraper (Ali-Gombe et al., 2019) and AmpleDroid
(Sudhakaran et al., 2020) are used to recover the objects allocated in each acquisition mode. The final objects
extracted from all the dumps will include a set of objects extracted from an Android app memory. Finally, the
authors were able to identify the objects recovered in each dump and determine how reliable these forensic
tools are in recovering objects from process memory.

4. Evaluation

We evaluated 30 apps in different process acquisition modes (cleanFGC, F-GC, cleanFNGC, F-NGC, cleanBGC, B-
GC, cleanBNGC, B-NGC), and the results are shown in Figure 4. We evaluated 15 benign apps from different app
categories:Browser, Editing, Entertainment, Gaming, SMS, Social Media and 15 malicious apps. Upon analysis,
we identified that the process dumps with the acquisition modes - no GC and both process states (Foreground
and background) extracted more small and large objects than the process dumps with acquisition modes GC and
both process states. We used two metrics, Euclidean distance and covariance, to evaluate the data loss. The
Euclidean distance calculated here gives the percentage of dissimilarity between two acquisition modes, e.g.
(Data recovered in a clean state, data retrieved with runtime factor triggered). We used the covariance metric
to examine the variability of data retrieved in different process acquisition modes, e.g., the variability of data
recovered in F-NGC, F-GC, B-NGC, and B-GC. The results in in Figure 4 proves a greater probability for objects
and their references get collected in the case of process acquisition modes F-GC and B-GC. On analysis with

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
428

Sneha Sudhakaran et ak

DroidScraper and AmpleDroid, we identified that the number of recovered objects in modes F-GC and B-GC was
lower than F-NGC and B-NGC. in Figure 4 shows a significant difference in the small and large objects from all
acquisition modes in certain benign entertainment apps like com.vid007.videobuddy, com.redbox.tv and
com.ezscreenrecorder. The range of data loss calculated using Euclidean distance is approximately 10-20% in the
case of GC acquisition modes while 0-10% in the case of No-GC acquisition modes. The data loss in terms of
covariance ranges between .06 to .09 in (6-9% varying) both small and large objects. Therefore, we identified
the change to be consistent in the case of entertainment apps. In the case of SMS apps, we identified the
Euclidean distance as 7-17% and 0-7% for GC and No-GC process acquisition modes, respectively. We also
determined that the covariance value was between .04 to .09 (4-9% varying). However, this consistency was not
observed in Browser and Editing apps as we observed a Euclidean metric ranging from 0-19% in the case of all
the acquisition modes and covariance variability from 0to 11 (0 to 11% varying). Therefore, we could not identify
a consistent range of percentage data loss but can conclude that the loss of data is restricted to 20% in the case
of all benign and malicious applications. Thus, the garbage collected objects removed from memory might or
might not serve as a loss of a critical piece of evidence during object recovery. In any case, if such pieces of
evidence are not recovered, it eventually leads to issues that may question the reliability of forensic investigation
tools. Such an object recovery can miss out on evidence that can also cause innocent users to be convicted.
Therefore, on analyzing the difference in the count of objects recovered it is clear from in Figure 4 that the
objects recovered using B-GC acquisition mode were fewer and had greater Euclidean distance compared to
other modes. This also made us understand that among the process states lesser objects were recovered from
Background compared to objects recovered from dumps in foreground. For E.g, on comparing F-GC and B-GC,
more objects were recovered in F-GC compared to B-GC.

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
429

Sneha Sudhakaran et ak

= S [Lame i S o L [large A . tope jame:

L App Category |Clean-Frge [F-NGE | Euclid% Clean¥ge F-GC Euclid Cloannge BNGC Euclid% Clean-Bge B-GC Euclid Covarlance
com.brave. browsar Browsar 1 1ﬂ| 0.00% 1 16 i7 7 0.00% 17 1 17.65% 0.1
com.aniplex fategrandorder Browsar 16 16 0.00% 16 14 18, 15 0.00% 15 11 1333 [RL)
i i Browsar 12 12 0.00% 12 1" 12 12 0.00% " 1 [T ES .05
com. Edang 1 18 0.00% 17 16 17 7 0.00% 17 1§ 1,768 [R5
g vsmedia.imagesize Edang 16 16 0.00% 16 14 16 15| 6.25% 16 13 18.75% .07
com.vid0l] Edang " " 0.00% 1 1" 11 1 0.00% " " .85 a
com.redoox v Enter:anment 10 1L 0.00% 10] 10 0 000% 10 & 10.88% (.05
com. Emerianment 2 28 0.00% 24 2 28 Fol 0.00% 24] 14.29% 007
com.mpd.aditor.music.cutringtare Enteranment 30 25 333% 30 21 a0 i BT 3 25 16.67% [.06
com tencent iglite Gaming 14 1 0.00% 13 1 13 2 Ta0% 11 11 15,388 a2
£am. Ema 1 1 0.00% 4 13 L) it 0.00% 1 12 14, 29% L.o7
com.smsplus.app Ema 1 17 556% 14 145 it 6 5.88% 17 1§ 1,765 L.086
. kitetech Smg 3 3| paty H 3 kL] k] 284% 3 Fil .82 L4
com. sl Social Meda 2 29! 0.00% # 24 25 | 0.00% Fi] 2 B, 98% 003
gal hotovault It 14 18] 0.00% 19 17 16 ‘Si 5.26% 10 11 18,538 .05
com.nema.vidmate iahware 54 54 0.00%) i) £l : 5.56% 50 L [o7
com.gihoo Bppstare Wahware 37 k1] 000% ar £l 38 1 5714 35 o 14,79%]
wom g 4 0.00%] 8 B 4| 0.00% 9] 1113 o7
©0m.59.an 00 (d. article.news Makware 12 12 0.00% 1 a 11 TUE 9,08% n 8 18188 [
com namad Wahware i g 000% [8 [8 a00%| i | q
comandroldencentatevbah _|Mabrs) 1o oo 1) i i 1 il 1o L
: Hahware 2 E 2 a4 il] z 1t tos
e |ayjw kixhimae.r Mabware g b 0.00% 9]]] 4 B o7
arg.doviz.cevir tahware 15 18 I:':uml 1 13 '-1 W Q0% 14 12 0.4
opqmn.llfalla !thle: 13 13 D.DJ%I 13 " ‘_E_ 12 0% 13 " EIZG
com.marjanabi thanksglving Wahvare 17 17 bok 17 15 1| 6 580% 17 14 L.o&
eam.amazan. mShop. andrald shopplng had Makvare 18 17| 5.561;‘ 17 15 it 6 5885 17 14 L8
com.andredddaciorbattery Makware 1 1L I:-.D:Hal 10 9 ‘I:-I a 10.00% 10 g 5
eam. maxauls maxiplusap Makware B E E-.Dfl!;l 8 T E: 8 0.00% .ﬂ T i 12.58% E.E:8
mm.p(‘mﬁ.l‘e.\;lll.m | Makware 26 26 "I:'.D:.HB. il 24 25‘ 5 3.55"&. 26 22 ; 18, 35.?-. E‘.D’F

Sl Sl Smal |mat Sl Sl Smal Smal Sl Smal Simal smsl sal

Packagename App Calegory |Clesn-Frge |F-NGC Euclid Cleanfge |F-GC Euclid% CleanBnge | BNGC Euchidt Clean-Bge [BBC Euclid' Covarianee
com.brave. browser Bt 38158 330z 040% IBTE2 il 12.80% 33831 e 4.21% dE021 33106 12.92% C.0g
com.aniplex falegrandarder Bt 41629 47388 1652% A08Ed 3E812 12.42% 40795 0001 1.98% A0008 35487 11.31% o7
arg.moilla.fenix Bt 6197 33088 028% 35481 A0E00 14.86% 3T 3T T35% 32163 2338 16.24% 0.1
com.appstalking. photoeditor Ediing 0188 30007 0EDN 0613 26108 14.73% 3 28008 3.95%, 0765 27885 5,168 06
de.vsmadia.imagesize Ediing AE10 43008 184% 4857 41198 15.11% 43872 Friling 13.84% A0 41238 13.97% [}
com,vid007 videobuddy Ediing 7603 38 161% I&2 0008 19.01% 3458 36002 3895 JgEa7 32547 11.50% o)
com.redbox. by Enleriarmenl 7848 17082 4 4% 17167 13508 1B.46% 17185 1887 144% 17165 15078 12.17%]
com.azseroanracordar Enfuriarman| 41332 40976 0% A JEEED 1L7T% 42 30887 324% 225 35567 13.48% oo7
com.mpd.editor.music.cul ringbars Enlerarmenl 2ESET 23102 258% 28885 23681 17.33% 23040 27063 472% FERAT 24307 13.41% .08
com fencentiglitn Gaming 21761 21568 043% 21322 1TEED 17.0T% 21326 20514 371% 21583 17382 16645 01
com. g Sms 28910 33555! 012% J8654 33265 13.84% e 375 2B0% 28912 M0 12.61% .08
com.smsplus.app Ems HETH 31788 0% 3807 26573 18.46% 31985 20080 B.20% 1885 26350 17.34%]
o hitatech. Sms e 53281 1.05% 52967 4TE6L 10.20% 53082 0832 4.24% 53001 47647 18,965 (.06
cam. Social Meda 43997 42581 J04% 409680 JE03E 1.50% 4307 3005 931% 43603 I 16458 07
gallar ph . Il 39670 38374 125% JAG5 32198 17.43% 307 KIEr] 4075 39105 33396 1.95% .08
com. Makwara 43556 43183 084% 41 282 1.48% 43077 ANTE 254% 43004 37804 11.91% 007
com.gihoo.appstore Makwirg 44471 44398 0.16% 43321 JE526 121754 44188 43237 217% 44153 33801 §.74% (.06
com. Gli 278A1 25500 437% 26980 232 .07 2507 24081 10.80% 27034 2ITA0 15.81% 07
£om.56.android.articlenews Makwirg 55135 53121 0.03% 55002 0165 B.7%% 438 44131 255% 45350 42752 13,445 01
com.namad.ii Makwre 2ETEE 28008 253 28661 23760 17.07% 20 20548 1.18% 28535 23090 17248 0.1
com.android.tencent.zdevs.bah Makwsrg 33287 33188 037% 33182 73T 17.51% 33267 32668 180% 3315 27548 17.06% 01
u.delivary.collapse Makware 41880 40988 241% 41021)] 14.48% 42005 3B0g 9.28% 41785 3508 12.34% 007
COMm.iY] T Mahware 25800 25078 351% 25321 20438 19.26% 24408 22567 TI7% 25083 2\12TE| 19.19% 01
org.doviz.cavir Makware AT 42885 L3% 43755 3T 1.80% 41328 38874 3A1% AEAE 35488 13438 [E:]
oparatore.italia Mahware A18746 -11OIIE! 208% 41058 35781 12.83% 41078 Jpas2 6.30% 1198 mnai 12.42% (.06
com.marjansbi, Mahware il 2548 1.19% 208651 2356 16.36% 708 20003 L66% P 2] 16.61% ol
com.amazan.mShop.android shopping had Mak 25803 0156 TN 20318 2147 17.64% 20845 2?45.2E B02% 25845 24178 18.99% .07
wom ¥ Mahware 16660 18778 DA% 18652 L)l 17.20% 19537 18095 321% 18752 15032 18.755 o
0. manauto. Makware 15580 15118 8% 15650 TESAY 15.56% 19778 18043 B.76% 19552 16553 15258 C.O7
com.platedovizim Wahware 45650 T 1.96% 4501 07 12865 a7 43219 385 45047 354 | 11.85% LG

Figure 4: Evaluation Result

4.1 Recovery Consistency and Data Loss
On analysis, we identified that the results in Figure 5 reveal that we retrieved more non-Gui objects (Class name,
text, etc.) in case of benign (apps selected from each category) and malicious applications than Gui and network
objects. When we compared the count of Gui objects recovered from dumps with GC triggered and dumps with
No-GC triggered, we identified that in the Foreground process dumps, the Editing, Entertainment, and SMS apps
had an average of 19% reduction while the malware apps had an average of 24% reduction. When we compared
the Gui object count for B-NGC and B-GC, in the case of Editing, Entertainment and SMS, and Malware apps, the
reduction in object recovered was 19% 19.5%, 24.5%, and 21%, respectively. When we compared the count of
Non- Gui objects recovered from dumps with GC triggered and dumps with No-GC triggered, we identified that
in the Foreground process dumps, the Editing, Entertainment, and SMS apps had an average of 20% reduction.
In comparison, the malware apps had an average of 22% reduction. When we compared the Gui object count

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
430

Sneha Sudhakaran et ak

for B-NGC and B-GC, in the case of Editing, Entertainment and SMS, and Malware apps, the reduction in object
recovery count was 20%.

Similarly, the reduction in Network objects recovered ranges between 18% to 23% in all the apps studied in this
research. The histograms in Figure 6 include component-based recovery from a few apps selected from each
app category. Figure 6 depicts that we retrieved more Android Services than Android activity components and
resource files on plotting apps from each category like editing, malware, SMS, entertainment.

A isition Mode Pack Name Package type Large Gui | Non-Gui Network

com. appstalking. photoeditor Editing 18 1728! 24721 205

de.vsmedia.ir i Editing 16 2552 38119 429

com. redbox. tv Entertainment 10 1273, 11883 128

com. ezscreenrecorder Entertainment 28 2181 30449 398

com.anonymoustexting SMS 14 2003 28771 361

com.smsplus.app SMS 17 1549 21553 318

com. androiddoctor. battery Malware 10 1161 10001 102

F-NGC com. maxauto. maxiplusap Malware 8 1004} 2883 111
Mode Package Name Package type Llarge Gui | Non-Gui Metwork

com. appstalking. photoeditor Editing 16 1400 15281 134

de.vsmedia.imagesize Editing 14 1994 31108 317

com. redbox. tv Entertainment 9 991; 8329 99

com. ezscreenrecorder Entertainment 27 1772 25771 253

COm. anchny moustexting SMS 14 1558 23165 321

com.smsplus.app SMS 13 1287 16459 276

com. androiddoctor. battery Malware 9 7932} 7648 81

F-GC com_maxauto. maxiplusap Mahware 7 839! T8ROS5 87
A isk Mode Package Name Package type Large Gui | Non-Gui Network

com. lking. photoeditor Editing 17 1806 21904 191

de.vsmedia.irr i Editing 15 2469 36881 431

com. redbox. tv Entertainment 10 1309 12115 133

com. ezscreenrecorder Entertainment 28 2471, 31985 405

COm.anonymot] SMS 14 2096 29001 380

com.smsplus.app SMS 16 1602 20998 338

com. androiddoctor. battery Malware 9 1201 11998 119

B-NGC com. maxauto. maxiplusap Malware 8 1188/ 12006 97
Acquisition Mode Package Name Package type Large Gui 'Non-Gui Network

com.appstalking. photoeditor Editing 15 1489 1 16098 148

de.vsmedia.imagesize Editing 13 1992 31116 338

com. redbox, tv Entertainment 9 997 2003 102

com. ezscreenrecorder Entertainment 24 2097 : 25993 297

com.anohymoustexting SMS 12 1496 25669 319

com.smsplus.app SMS 15 1274 16889 269

com. androiddoctor. battery Malware 9 992 ; 8003 a7

B-GC com. maxauto. maxiplusap Mal 7y 907! 8251 83

Figure 5: Component based Analysis

Component based recovery Companant bated redowvery
for editing apps in O-200 Mear SRS apps in 0-200 scala
LT 18 3EN

EERGC E FuL [b (L= EEMIC E I HAKIT M

Commponent basod rocovarnry

Componunt based recowvery
Tor rmalvesre epps in =200

for entertammeant Apps n -
200 scala

1401 1

1m0 135 -

us

SCale

WERNGE W OFGL LT TE. BWEMLEE W T TRt Tee

Figure 6: Histogram analysis of various files in selected apps

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
431

Sneha Sudhakaran et ak

5. Related Literature

The analysis of software tools' reliability is inevitable in today's digital world (Ilvanov, et. al, 2018)}. The reliability
assessment is more critical if the analyzed tool is used for solving cyber-related cases. Reliability assessment of
such tools is required to analyze if the tool is unreliable, then the evidence extracted by the tool also becomes
unreliable, thereby ending up generating incorrect evidence. Hence the reliability assessment of such tools is
mandatory, and this research provides a methodology for one such assessment. We identified multiple
published works on reliability assessment; however, only a few were related to reliability testing of memory
dump acquisition for forensic analysis. Most of the reliability measurement works were based on multiple
approaches to develop software reliability growth models using techniques like fuzzy models, regression
analysis, neural networks, and machine learning (Ivanov et al., 2018). Another technique for reliability testing is
by methodologies like training and testing neural networks (Fisch et. al, 2010) (Park et. al, 2013). However, in
this work, we focus on issues about software that focus on the extraction of all types of objects (small and large)
from smartphone app memory. This is difficult due to the challenges faced during process dump acquisition
(Sylve et. al, 2012) (Pagani et. al, 2019) (Schatz et. al, 2007). There are many works associated with the recovery
of forensic data. However, only a few works address the challenges faced by forensic investigators with memory
acquisition (Pagani et. al, 2019), are more useful in this work. Among different memory dump acquisition
technigues mentioned in works like Volatility (Auty et. al, 2007), (Schatz et al., 2007) - Schatz, in his work,
explained his technique for reliable volatile memory dump recovery. Also, Pagani et al., in their work, explained
how memory forensics should consider the time in which each memory dump was acquired (Pagani et. al, 2019).
Pagani et al. in their work provided a way to assess the reliability of a result obtained thereby minimizing the
effect of the acquisition time or detect inconsistencies in the data. While our research closely relates to the idea
of reliability (Huelsbergen et. al, 1993) but focuses primarily on external runtime factors, we could not find any
work that mentioned runtime factors as critical during memory dump acquisition. Therefore, our research
provides a new research dimension of focusing on the critical memory dump acquisition. Hasanbadi et al.
proposed an approach to determine approximately how much sequential memory acquisition at a designated
time-intervals can mitigate the current challenges in memory forensics (Hasanbadi et al., 2018).

6. Conclusion

In this paper, the methodology identified two runtime factors that can impact Android application dump
acquisitions. We presented the analysis results highlighting the changes in the count of objects recovered in
every app dump analyzed using userland memory forensic tools. We evaluated multiple apps and identified a
difference in object recovery rate during the analysis of app dumps with the runtime factors included during
memory acquisition. Finally, we calculated the reliability of userland memory forensic tools using Euclidean
distance and covariance metrics. Our evaluation of 30 apps (benign and malicious apps) shows these process
states can impose data loss of approximately 20% with a metric Euclidean distance and less than 18% data loss
with covariance metric. Furthermore, our comparative analysis found that the count of objects recovered from
Foreground acquisitions modes are greater than objects recovered from Background acquisition modes in most
of the apps analyzed. The userland forensic analysis's reliability study was conducted on both small and large
object recovery tools. The result will be more reliable in object recovery for a forensic investigator who can
extract all the objects allocated in memory from the app startup. Also, this research highlights runtime factors
and helps investigators explain the environment during memory acquisition, thereby providing a better
understanding of reliability factors when dealing with forensic tools during memory dumps acquisition.

References

AndroidLOS, 2017 http://androidxref.com/8.0.0 r4/xref/art/runtime/gc/space/large object space.cc#180 [Online:
accessed 13-March 2021]

Market Crime, 2021 “300 terrifying cybercrime and cybersecurity statistics trends” Online:
https://www.comparitech.com/vpn/cybersecurity\ protect\discretionary

Android 8.0 ART Improvements, 2017 Online: https://source.android.com/devices/tech/dalvik/improvements. [Online:
accessed 13-March 2021].

Android platform architecture, 2017 URL: https://developer.android. com/guide/platform. [Online: accessed 10-March
2021].

Androidxrefspace URL: http://androidxref.com/8.0.0_ r4/xref/art/runtime/gc/space/. [Online: accessed 10-March 2021].

AndroidLOS, 2017 http://android xref/art/runtime/gc/space/large_object_space.h

Android Dal, 2017 URL:https://source.android.com/devices/tech/dalvik/gc- debug.

Zalewski, M. (2002) from http://Icamtuf.coredump.cx/soft/memfetch. tgz [Online; accessed 17-February 2021].

Market Share, 2020 https:// gs.statcounter.com/os-market-share/mobile/worldwide. [Online: accessed 10-March 2021].

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
432

Sneha Sudhakaran et ak

Android Process, 2017,URL: https://learncswithandroid.blogspot.com/2017/ 12/android- process- states.html [Online:
accessed 10-March 2021].

Ali-Gombe, A., Sudhakaran, S., Case, A., Richard Ill, G.G., 2019. “DroidScraper: A tool for android in-memory object
recovery and reconstruction”, in: 22nd International Symposium on Research in At- tacks, Intrusions and Defenses
({RAID} 2019), pp. 547-559.

Auty, M., Case, A., Cohen, M., Dolan-Gavitt, B., Ligh, M.H., Levy, J., Walters, A., (2007). “Volatility-an advanced memory
forensics framework”.

Fisch, D., Hofmann, A., Sick, B., 2010. “On the versatility of radial basis function neural networks: A case study in the field of
intrusion detection”, Information Sciences 180, 2421-2439.

Hasanabadi, S.S., Lashkari, A.H. and Ghorbani, A.A., 2018, October. “The Next Generation of Robust Linux Memory
Acquisition Technique via Sequential Memory Dumps at Designated Time Intervals.” In 2018 International Carnahan
Conference on Security Technology (ICCST) (pp. 1-6). IEEE.

ResetGC, 2017, http://androidxref.com/8.0.0_r4/xref/art/runtime/gc/heap.cc#1147

Ivanov,V.,Reznik,A.,Succi,G.,.2018, “Comparing the reliability of software systems: A case study on mobile operating
systems”’. Information Sciences 423.

Jones,R.,Hosking,A.,Moss,E., 2016, “The garbage collection handbook: the art of automatic memory management”, CRC
Press.

Pagani,F.,Fedorov,0.,Balzarotti,D.,2019, “Introducing the temporal dimension to memory forensics. ACM Transactions on
Privacy and Security (TOPS)” 22, 1-21.

Park, B.J., Oh, S.K., Pedrycz, W., 2013, “The design of polynomial function-based neural network predictors for detection of
software defects”, Information Sciences 229, 40-57.

Schatz, B.,2007, “ Toward reliable volatile memory acquisition by software” URL:
https://www.dfrws.org/2007/proceedings/p126-schatz. pdf. [Online: accessed 10-March 2021].

Schwermer, P., 2018, “Performance evaluation of Kotlin and Java on Android Runtime”

Soares, A.M.M., de Sousa Jr, R.T., 2017. “A technique for extraction and analysis of application heap objects within android
runtime (ART)”, in: ICISSP, pp. 147-156.

Sudhakaran, S., Ali-Gombe, A., Orgah, A., Case, A. and Richard, G.G., 2020, December. “AmpleDroid recovering large object
files from Android application memory”. In 2020 IEEE International Workshop on Information Forensics and Security
(WIFS) (pp. 1-6). IEEE.

Sylve, J., Case, A., Marziale, L., Richard, G.G., 2012. “Acquisition and analysis of volatile memory from android devices”.
Digital Investigation 8, 175-184

Pridgen, A., Garfinkel, S., Wallach, D. S, “Picking up the trash: Exploiting generational GC for memory analysis”, DFRWS,
2017

Memfetch, 2009, http://shellcoders.blogspot.com/2009/05/using-memfetch-page-37.html

Genymotion Emulator, 2016, https://www.genymotion.com [Online: accessed 10- September2021]

FinishGC, 2017, http://androidxref.com/8.0.0 r4/xref/art/runtime/gc/heap.cc#2804

GooglePlay, 2021, https://play.google.com/store?hl=en US&gl=US

VirusShare, 2021, https://virusshare.com

ForceGC, 2013, http://www.codeflow.fi/2013/09/21/force-gc-from-shell/

Proceedings of the 17th International Conference on Information Warfare and Security, 2022
433

	ZX- Sudhakaran 014
	1. Introduction
	1.1 Contribution

	2. Background
	2.1 Android Runtime Environment
	2.2 Object Allocation and Deallocation
	2.3 Garbage Collection
	2.4 Process State
	2.4.1 Foreground Process
	2.4.2 Visible Process
	2.4.3 Service Process
	2.4.4 Background Process
	2.4.5 Empty Process

	3. Analysis Setup
	3.1 Experimental Setup
	3.2 Process Acquisition Modes
	3.2.1 F-GC
	3.2.2 F-NGC
	3.2.3 B-GC
	3.2.4 B-NGC
	3.2.5 Clean

	3.3 Process Memory Acquisition For Analysis
	3.4 Analysis Tools
	3.4.1 DroidScraper
	3.4.2 AmpleDroid

	4. Evaluation
	4.1 Recovery Consistency and Data Loss

	5. Related Literature
	6. Conclusion
	References

