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ABSTRACT

DNA-stabilized silver nanoclusters (Ag𝑁 -DNAs) are a class of nano-

materials comprised of 10-30 silver atoms held together by short

synthetic DNA template strands. Ag𝑁 -DNAs are promising biosen-

sors and fluorophores due to their small sizes, natural compatibil-

ity with DNA, and bright fluorescenceÐthe property of absorbing

light and re-emitting light of a different color. The sequence of the

DNA template acts as a "genome" for Ag𝑁 -DNAs, tuning the size

of the encapsulated silver nanocluster, and thus its fluorescence

color. However, current understanding of the Ag𝑁 -DNA genome

is still limited. Only a minority of DNA sequences produce highly

fluorescent Ag𝑁 -DNAs, and the bulky DNA strands and complex

DNA-silver interactions make it challenging to use first principles

chemical calculations to understand and design Ag𝑁 -DNAs. Thus, a

major challenge for researchers studying these nanomaterials is to de-

velop methods to employ observational data about studied Ag𝑁 -DNAs

to design new nanoclusters for targeted applications.

In this work, we present an approach to design Ag𝑁 -DNAs by

employing variational autoencoders (VAEs) as generative models.

Specifically, we employ an LSTM-based 𝛽-VAE architecture and

regularize its latent space to correlate with Ag𝑁 -DNA properties

such as color and brightness. The regularization is adaptive to

skewed sample distributions of available observational data along

our design axes of properties. We employ our model for design

of Ag𝑁 -DNAs in the near-infrared (NIR) band, where relatively

few Ag𝑁 -DNAs have been observed to date. Wet lab experiments

validate that when employed for designing new Ag𝑁 -DNAs, our

model significantly shifts the distribution of Ag𝑁 -DNA colors to-

wards the NIR while simultaneously achieving bright fluorescence.

This work shows that VAE-based generative models are well-suited
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for the design of Ag𝑁 -DNAs with multiple targeted properties,

with significant potential to advance the promising applications of

these nanomaterials for bioimaging, biosensing, and other critical

technologies.
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1 INTRODUCTION

DNA is a sequence-encoded building block for nanomaterials. By

harnessing the well-understood base pairing rules of natural DNA,

researchers have developed ways to engineer DNA sequences to

fold DNA "origami" [29], build with DNA žbricksž [19], and wire

DNA logic circuits [9]. DNA can also imbue sequence-encoded

properties to the tiniest of nanoparticles: nanoclusters composed

of just a few metal atoms. Of particular interest are DNA-stabilized

silver nanoclusters (Ag𝑁 -DNAs), which contain 10-30 silver atoms

that are stabilized by 1 or 2 short DNA strands [10]. Ag𝑁 -DNAs are

colloidal nanomaterials that are synthesized in solution by mixing

Ag atoms and DNA template strands (Fig. 1, top panel), yielding fluo-

rescent nanoclusters with remarkable sequence-encoded properties.

The DNA sequence controls the size and shape of the silver nan-

ocluster, thereby tuning the fluorescence color of Ag𝑁 -DNAs from

blue wavelengths (∼ 400 nm) to near-infrared (NIR) wavelengths

(at least 1,000 nm) [6]. This bright, tunable fluorescence, combined

with inherent biological compatibility and sensitivity to the local

molecular environment, makes Ag𝑁 -DNAs promising for a range

of applications, from bioimaging and sensing to nanophotonics.

3593



KDD ’22, August 14ś18, 2022, Washington, DC, USA Fariha Moomtaheen et al.

Figure 1: Overview of Ag𝑁 -DNA synthesis and our regularized VAE ap-
proach for designing newDNA templateswith desiredwavelength and bright-
ness. Ag𝑁 -DNAs are formed bymixing Ag atoms (in the form of Ag salts) and
single-strand DNA in aqueous solution, followed by gentle chemical reduc-
tion. The resulting nanocluster is a fluorophore, i.e. when excited by light, it
re-emits photons with a fixed wavelength that depends on the size and shape
of the cluster stabilized by the DNA strand(s) [10]. We propose to design new
Ag𝑁 -DNAs by training a VAE that learns to encode and decode the DNA se-
quence while some of its latent dimensions are regularized to correlate with
the brightness and wavelength of training Ag𝑁 -DNAs. To design DNA se-
quences for new Ag𝑁 -DNAs of interest we perform truncated sampling in
latent space and decode them via the trained decoder in our model.

However, a major challenge faces the development of applica-

tions of Ag𝑁 -DNAs. Unlike the well-known Watson-Crick base

pairing rules of natural DNA, the sequence rules that govern how

DNA interacts with silver atoms and thereby select for Ag𝑁 -DNA

fluorescence color are not well-understood. Most researchers have

used combinatorial screening or intuition to design the DNA tem-

plate sequences for Ag𝑁 -DNAs reported in the literature, which is

a time-consuming and inefficient process. To enable data-driven

approaches to map DNA sequence onto Ag𝑁 -DNA color, we de-

veloped a high-throughput experimental platform for Ag𝑁 -DNA

synthesis and characterization, producing a library linking DNA

sequences to the fluorescence colors of Ag𝑁 -DNAs they stabilize.

We previously utilized this library to train classifiers based on subse-

quence motifs to predict Ag𝑁 -DNA fluorescence brightness [3] and

fluorescence color [5] given an input DNA sequence. (Classifica-

tion schemes are motivated by the naturally discretized properties

of Ag𝑁 -DNA colors [6].) We then employed the most discrimina-

tive subsequence motifs to create new DNA templates. While this

approach led to discovery of new Ag𝑁 -DNAs, it has several limita-

tions: it relies on (i) discriminative as opposed to generative models

to sample new DNA templates, (ii) ad hoc feature generation by

sub-sequence mining, and (iii) discretization of continuous design

properties like brightness and color into balanced classes.

The discovery of Ag𝑁 -DNAs with NIR fluorescence emission is

especially important for bioimaging applications. Biological tissues

are much more transparent to NIR light than to visible light, and

there is great effort to develop small, nontoxic, and bright fluo-

rescent biolabels in the NIR spectral region. Few NIR Ag𝑁 -DNAs

were reported before 2018, when the discovery of 161 new NIR

Ag𝑁 -DNAs [7, 31, 32] suddenly presented the opportunity to ex-

tend machine learning-guided design of Ag𝑁 -DNAs into the NIR.

Because data in the NIR remains scarce, effective approaches to this

challenging problem must be sufficiently sensitive to rare data.

In this work, we set out to address the limitations of our ear-

lier Ag𝑁 -DNA design approaches and employ our new model to

enrich the space of known NIR Ag𝑁 -DNAs. We propose and de-

ploy a regularized variational autoencoder (VAE) model for the

design of Ag𝑁 -DNAs with desired properties summarized in Fig. 1,

lower panel. Inputs to our model are sequences for synthesized

Ag𝑁 -DNAs and their measured wavelengths and brightness levels.

We train the VAE to encode and decode DNA sequence by em-

ploying a bi-directional LSTM architecture. Instead of learning a

fully latent space, we regularize a subset of its dimensions to corre-

late with design properties of interest. Our regularization scheme

also accounts for bias in the observations along the design param-

eters, by compensating for rarer sample Ag𝑁 -DNAs in the NIR

band. We employ the trained model to design Ag𝑁 -DNA template

sequences by truncated sampling from latent space, thus biasing

samples towards high wavelength and brightness while obeying the

distribution of the remaining latent dimensions. We experimentally

test the proposed VAE model on 20 new DNA sequences, finding

that all of them produce Ag𝑁 -DNAs with bright fluorescence and

high wavelengths, including a bright NIR Ag𝑁 -DNA with 845 nm

peak fluorescence that has never been observed before.

Our contributions in this work are as follows:

• Novelty.We propose, test and deploy the first approach for ra-

tional design of Ag𝑁 -DNAs with multiple continuous properties

of interest via a VAE architecture.

• Generality. Our framework is general, in that it can extend to

more design properties of interest, variable length of DNAs, and

for designing other biological sequences with desired properties.

• Applicability. We experimentally demonstrate the utility of our

approach, employing it to sample and synthesize 20 newAg𝑁 -DNAs

in the lab, and discover a previously unreported NIR Ag𝑁 -DNA.

2 RELATEDWORK

Ag𝑁 -DNA design. The vast majority of studies on Ag𝑁 -DNAs

employ nanoclusters designed by a combination of combinatorial

screening and intuition, which is highly inefficient. To overcome

these challenges, we developed high-throughput experimental syn-

thesis and characterization of Ag𝑁 -DNAs [6], producing a large

training dataset that enabled early machine learning approaches

based on support vector machine classifiers [4, 5, 7]. These ap-

proaches rely on bioinformatics techniques for feature engineering

and discretization of a single design property into classes (e.g.,

high/low fluorescence yield in [4] and color in [5, 7]); as Ag𝑁 -DNA

colors are naturally discretized due to their structural properties,

this approach is motivated by physics/chemistry [6]. Perhaps most

importantly, these prior approaches rely on discriminative, as op-

posed to generative, models and ad hoc heuristics to sample from

the complex space of all possible DNA sequences. The proposed

VAE approach in this work addresses the above limitations: it maps

both DNA sequences and multiple design properties into a continu-

ous space from which one can perform truncated sampling to tune

properties of interest and decode the samples into DNA sequences.

Generative models based on VAEs. Our proposed model is a

generative VAE that builds on prior autoencoder (AE) research.

AEs have been in use since the mid 1980s, but were initially used

for dimensionality reduction and denoising, with little generative

ability [11]. In 2014, Kingma and Welling proposed the Variational
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Autoencoder (VAE) [22], modifying the latent space of the VAE

architecture to hold latent distributions, which are then sampled

during the training process. This change allows for VAEs to be

used for generative tasks. A drawback of classical VAEs is the in-

ability to control various properties of the features in latent space

such as disentanglement, regularization, and monotonicity. Hig-

gins and colleagues proposed the 𝛽-VAE framework [16] to control

the level of entanglement in latent space by incorporating a Kull-

backśLeibler divergence term of the latent distributions from a

normal prior. Regularization of VAEs aimed to impose monotonic-

ity of the learned latent space with respect to features of the input

was originally introduced in the context of Fader Networks [24]

as part of the GLSR-VAE [14] model and later employed in the

ARVAE [30] model for image and music datasets. Our proposed

model follows a similar property monotonicity approach; however,

we apply it to DNA sequences and further consider non-uniform

coverage of properties in the training which is inherent to the prob-

lem of discovering new Ag𝑁 -DNAs where new samples are both

laborious and expensive to obtain.

Machine learning for biological sequences. Many sequence

embedding approaches build upon on word2vec [28], which was

designed to represent words as vectors by enforcing low cosine sim-

ilarity between the vector representations of semantically similar

words. FastText [1, 17] is an alternative employing 𝑛-grams within

words as opposed to whole words. Biological sequence (e.g., RNA,

DNA, and proteins) embedding techniques also utilize and extend

the above frameworks to obtain representations employed in pro-

moter region [25] and protein [36] classification, taxonomy [34]

and neural distance learning [8] and others. Generators for protein

or DNA sequences have also been of high interest [35]. Specifi-

cally, both Generative Adversarial Network (GAN) [2, 18, 20] and

VAE-based [12, 15] generators have been employed for creating

nucleotide or amino acid sequences. Gupta and Zou’s FBGAN [13]

incorporates an additional feedback component that guides the gen-

erator towards desired features, such as peptides with antimicrobial

activities. The VAE methods in this group are employed to edit

sequences for downstream targets as opposed to direct targeted

synthesis [12, 15]. Distinct from our work, the majority of these

approaches focus on large biological datasets, both in terms of the

available input data as well as the lengths of the encoded biological

sequences. Methods tuned for long, information-rich sequences

are unlikely to perform as well on shorter strands, like the short

10-base DNA strands that we employ to stabilize Ag𝑁 -DNAs. Ad-

ditionally, the incorporation of additional information is limited to

either direct annotation or a semi-supervised editing between runs

as in the FBGAN approach.

3 PROBLEM FORMULATION

Our goal is to design Ag𝑁 -DNAs of specific properties tuned by

their stabilizing DNA template sequence. The input to our prob-

lem is a training set (𝑆,𝐴) of sequences 𝑆 and their corresponding

properties represented as numeric feature vectors 𝐴. Specifically,

our training data consist of a set of 10-base DNA sequences an-

notated by (i) fluorescence emission color quantified as the peak

wavelength (WAV) of the emission spectrum of the corresponding

Ag𝑁 -DNA and (ii) its fluorescence brightness quantified as the

local integrated intensity (LII) of a Gaussian fitted to the fluores-

cence spectral peak. In other words, the input property matrix is

2-dimensional 𝐴 ∈ R |𝑆 |×2. Our past work describes the data set

acquisition, processing, and curation in detail [5].

Given that input, we aim to learn a generative model for the joint

distribution of DNA sequence and properties 𝑀 : 𝑝 (𝑆,𝐴) based on

the training observations (note that we overload the notation and

use 𝑆 and𝐴 as the corresponding random variables as well). We can

then employ 𝑀 to sample unobserved sequences 𝑆 ′ with desired

properties 𝐴′, i.e. 𝑆 ′ ∼ 𝑝 (𝑆 |𝐴 = 𝐴′). Specifically, we aim to design

DNA templates that stabilize bright Ag𝑁 -DNAs with NIR emission,

i.e.𝑊𝐴𝑉 > 800𝑛𝑚 and as high fluorescence yield (LII) as possible.

A few such Ag𝑁 -DNAs were only recently synthesized for the first

time [31, 32]. In this regime (𝑊𝐴𝑉 > 800𝑛𝑚) biological tissues

become increasingly transparent to light and the Ag𝑁 -DNAs can

be employed as effective and non-toxic biosensors.

4 METHODOLOGY

Estimating the joint distribution of DNA sequences and properties

𝑝 (𝑆,𝐴) is challenging with limited training data, since the discrete

space of all possible sequences is exponential and testing the prop-

erties of all sequences by Ag𝑁 -DNA synthesis is impossible. Hence,

we seek to learn a joint low-dimensional numeric embedding for

sequences and properties that allows for two-way transformation

to and from the input space. To this end, we employ the Variational

Autoencoders (VAEs) framework [23] which allows for the desired

two-way transformation and can flexibly incorporate appropriate

encoder/decoder architectures for sequential data such as DNA

sequences (Sec. 4.1). To enable sampling from the learned latent

space while controlling for WAV and LII of interest, we regularize

a subset of the latent dimensions in the VAE to correlate with the

observed Ag𝑁 -DNA properties from training (Sec. 4.2) and han-

dle imbalanced coverage of property samples (Sec. 4.3). Finally,

since we employ a 𝛽-VAE architecture that enforces decoupling

and normality of the latent space, we can efficiently sample from

the conditional latent distribution employing the truncated normal

distribution (Sec. 4.4).

4.1 VAE Encoder/Decoder architecture

Our VAE model is composed of two distinct networks, an encoder

mapping DNA sequences 𝑆 to distributions in latent space 𝑝 (𝑧) and

a decoder mapping samples from latent space back to sequences

Fig. 2. Observed sequences 𝑆𝑖 , |𝑆𝑖 | = 𝑙 of length 𝑙 are encoded using

one-hot encoding into matrices 𝑋𝑖 ∈ R𝑙×4 since our DNA alphabet

can take one of 4 possible DNA base values {𝐴,𝐶,𝑇 ,𝐺}.

Encoder: The one-hot encoding input matrices𝑋𝑖 are grouped into

training batches of size 𝑏 and fed into the first block of the encoder,

followed by a many-to-many bi-directional LSTM (Bi-LSTM) with

hidden state size ℎ. We select this sequential architecture due to

its wide-adoption for sequence learning [27], yet it is among the

simplest sequential models with relatively few parameters to tune.

The bi-directionality is essential to capture the context both before

and after a given DNA base, which we expect to control the 3D

local structure of the DNA strand and its interactions with silver

atoms in the Ag𝑁 -DNAs. Each Bi-LSTM layer in the block has one

Bi-LSTM cell per base position resulting in a total of 𝑙 cells. Each cell

contains forward and backwards regular LSTM cells. The output of
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4.3 Handling imbalance in the observations

The regularized VAE model imposes a penalty in 𝐿𝑅𝐸𝐺 for pairs of

instances whose embeddings in regularized dimensions are ordered

differently than the reference values of their properties. Specifically,

the regularization loss for a given attribute 𝑎 within a batch of size

𝑏 instances is computed as an average of all instance pairs:

𝐿𝑎 =

2

𝑏 (𝑏 + 1)

𝑏−1∑

𝑖=1

𝑏∑

𝑗=𝑖+1

|tanh(𝛿𝐷𝑟 (𝑖, 𝑗)) − sign(𝐷𝑎 (𝑖, 𝑗)) |. (5)

The above definition assumes that attribute values in batches and

in the overall dataset are uniformly randomly distributed. In set-

tings where the training dataset contains non-uniformly distributed

attribute values, the regularization, and consequently the trained

VAE model, will over-represent intervals of attribute values with

high support and neglect rare values. Note that this imbalance is

especially relevant to employing VAEs for Ag𝑁 -DNA design. In

particular, we have many fewer NIR Ag𝑁 -DNAs in the training

data, while at the same time our goal is to design DNAs for NIR

Ag𝑁 -DNAs. Given the relative scarcity of training instances for de-

sired attribute values, how can we łfocusž the training on representing

that attribute value region well?

To this end, we propose a weighted MAE alternative in which

differences for rare pairs induce higher penalties. Specifically, if

𝑣 (𝑖, 𝑗) is an instance pair score function, we define a weighted MAE

attribute loss as follows:

𝐿𝑎reg = WMAE(tanh(𝛿𝐷 (𝑍𝑎)) − sign(𝐷 (𝐴𝑎)))

=

1

𝑣

𝑏−1∑

𝑖=1

𝑏∑

𝑗=𝑖+1

𝑣 (𝑖, 𝑗) |tanh(𝛿𝐷 (𝑍𝑎)𝑖 𝑗 ) − sign(𝐷 (𝐴𝑎)𝑖 𝑗 ) |,
(6)

where 𝑣 =

∑𝑏−1
𝑖=1

∑𝑏
𝑗=𝑖+1 𝑣 (𝑖, 𝑗). To over-represent rare pairs we

consider scores that are inversely proportional to the probability of

such pairs. In particular we employ the exponential function:

𝑣 (𝑖, 𝑗) = 𝑒
−𝛼𝑝𝑎𝑖 𝑝

𝑎
𝑗 ,

where 𝑝𝑎𝑖 is the probability of observing the attribute value of the

𝑖-th sample and 𝛼 ≥ 0 is a parameter controlling the rate of score

decrease with increasing pair probability. Note that as 𝛼 → 0

the score of all pairs approaches 1, regardless of their probability

and the weighted MAE loss reduces to the original unweighted

version. In our experiments, small values of 𝛼 = 0.01 improve the

representation of rare attribute instances without significant impact

on the overall reconstruction accuracy.

To estimate the probability of attribute values empirically, we

compute a fixed-bin-width frequency histogram from the attributes

of training samples and normalize each bin by the total number of

training instances. The probability of a specific instance 𝑝𝑎𝑖 is the

probability of the bin corresponding to its attribute value.

4.4 Truncated VAE sampling for DNA design

Recall that we proposed the regularized VAE as an approach to

represent the joint distribution 𝑝 (𝑆,𝐴) of DNA sequences and the

correspondingAg𝑁 -DNAproperties and our goal is to designDNAs

with specific properties, i.e., sample 𝑆 ′ ∼ 𝑝 (𝑆 |𝐴 ∈ [𝐴𝑙𝑏 , 𝐴𝑢𝑏 ]),

where [𝐴𝑙𝑏 , 𝐴𝑢𝑏 ] specifies some property ranges of interest for

Training Data 

Distribution in 

Latent Space

Truncated

Distribution

D
e
c
o
d
e

𝒁′

DNAWAV proxy > 𝜹𝑾

LII proxy > 𝜹
𝑳

max

𝐘′ 𝐒′

Encoding

Figure 3: Truncated sampling in regularized latent space to design DNA
templates for Ag𝑁 -DNAswith desired properties.We first fit normal distribu-
tion of the expected locations of training samples in latent space and sample
from the truncated version of the latter, where truncation is performed for
proxy dimensions for desired bands of Wavelength (WAV Proxy) and Local
Integrated Intensity (LII Proxy).

design. In our specific case, we would like to design bright NIR

Ag𝑁 -DNAs, so the range of interest is high WAV and high LII.

The process of sampling from our VAE is demonstrated in Fig. 3.

Since we cannot control directly WAV and LII, we sample 𝑍 ′ from

the latent space conditional on the property-regularized proxy di-

mensions being in specified bands. Since the latent distribution is

regularized (via the KL divergence loss term 𝐿𝐾𝐿) to approximate

a normal prior distribution, we can use the embedding of training

instances to estimate the parameters of this distribution 𝑝 (𝑍𝑡𝑟𝑎𝑖𝑛)

and then sample from it. A naive approach to obtain samples from

the bands of interest is rejection sampling: sample from the overall

distribution 𝑝 (𝑍 ) and retain samples that fall in the bands of inter-

est. However, this will be highly inefficient, especially when trying

to sample from the tail (high WAV proxy and LII proxy). Due to the

Gaussian assumption for the latent embeddings, we can employ

truncated normal samplingÐan efficient sampling approach that

does not require rejection [26].

Given a sample in latent space 𝑍 ′ we employ the trained decoder

to obtain an output approximation for a one-hot encoding 𝑌 ′ ∈

R𝑙×4 (Fig. 3). Finally, to obtain a DNA sequence 𝑆 ′ we select the

position of maximal weight for each row in 𝑌 ′ and decode it to the

corresponding DNA base. Note that this last step introduces non-

linear distortion since effectively some non-zero elements in 𝑌 ′ are

disregarded and only the maximum is taken to select a DNA base.

To quantify this distortion, we re-encode new sampled DNAs 𝑆 ′ via

the VAE encoder to obtain a re-encoded latent representation 𝑍 ′′.

Samples whose re-encoded representation 𝑍 ′′ satisfy our design

bands are selected for Ag𝑁 -DNA synthesis.

5 EXPERIMENTAL EVALUATION

This section reports on new Ag𝑁 -DNAs we experimentally synthe-

size based on sampled sequences from a trained VAE model and

discusses implications of tuning, training and deploying the model,

including effect of hyper-parameters and lessons learned from this

first deployment for design of new Ag𝑁 -DNAs.

5.1 Experimental setup

Data. Our training dataset consists of |𝑆 | = 2661 DNA sequences

of length 𝑙 = 10 together with the properties WAV and LII of their

corresponding stabilized Ag𝑁 -DNAs. The distribution of property

values in the training set can be seen in Fig. 4 (grey bars). To vi-

sualize results and to select truncation points for sampling and

synthesis of new Ag𝑁 -DNAs from higher wavelengths, we adopt

the same color class definitions from past work, motivated by the
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physical properties of Ag𝑁 -DNAs [6]. We define DNA sequences

with WAV < 580 nm to be Green, 600 nm < WAV < 660 nm to be

Red, and 660 nm <WAV < 800 nm to be Very Red (details in [5]). We

also introduce a new NIR class withWAV > 800 nm, which is the

particularly rare class (Fig. 4a) that we aim to target with sequence

generation. These color definitions play no role in VAE training but

are useful for comparing to past work on Ag𝑁 -DNAs.

Metrics. Intuitively, a well-trained VAE for targeted Ag𝑁 -DNA

design should (i) reconstruct DNA sequences well and (ii) impose

ordering in regularized (proxy) latent dimensions similar to that

of their corresponding property observations from training. To

quantify sequence reconstruction Accuracy, we measure the frac-

tion of correctly recovered DNA bases after decoding, namely:

Accuracy = 1 − 𝑑𝐻 (𝑆, 𝑆 ′)/𝑙 , where 𝑆 is the input DNA sequence,

𝑆 ′ is its reconstructed DNA sequence after taking the maximum

loadings from the VAE output encoding 𝑌 ′ (See Fig. 3), 𝑙 is the

length of sequences and 𝑑𝐻 (·, ·) is the Hamming distance between

the two argument sequences. To quantify the alignment of proxy

dimensions with their observed attribute values, we compute the

Correlation between the regularized latent dimension embedding

of training/validation instances and their corresponding proper-

ties. Note that the above measures have counterparts in the loss

function, but we use these more interpretable measures to select

hyper-parameter configurations for synthesis. In tuning the model,

we also reserve a random subset of instances for validation to gauge

if the VAE’s internal representation overfits the training data. Un-

less stated otherwise, we employ 85% of data for training when

tuning the model, but then re-train the best model with all data

before employing it for sampling and Ag𝑁 -DNA synthesis.

VAE training, hardware and implementation. We train our

model employing a batch size of 𝑏 = 32 and over 2000 epochs using

the Adam optimizer [21] with a learning rate of 0.0001. We tune

other parameters in order to strike a balance between good DNA

reconstruction Accuracy and Correlation with training properties

(Details of hyperparameter tuning are available in the Supplement).

Our method is implemented in PyTorch, and we train our models on

a Dell server equipped with NVIDIA Tesla V100 (16GB) GPUs. Our

code is available at http://www.cs.albany.edu/~petko/lab/code.html.

Wet lab synthesis and spectroscopy. Ag𝑁 -DNAs are synthe-

sized and characterized by the same methods used for the train-

ing data library for NIR Ag𝑁 -DNAs [31]. DNA and silver nitrate

(AgNO3) are mixed in an aqueous solution of ammonium acetate

(NH4OAc) at neutral pH. After 18 min incubation at room tempera-

ture for 18minutes, themixture is reducedwith sodium borohydride

(NaBH4). Final concentrations are 20 𝜇M DNA, 140 𝜇M AgNO3, 70

𝜇M NaBH4, and 10 mM NH4OAc. Solutions are stored in the dark

at 4ºC for 7 days, and fluorescence emission spectra are collected

on two well plate fluorimeter, from 400 - 850 nm on a commercial

Tecan Spark, and from 700 - 1,300 nm on a customized plate reader

with enhanced NIR sensitivity [32], using UV excitation at 260 nm

to universally excite all fluorescent Ag𝑁 -DNAs. To determine the

WAV and LII properties of each designed Ag𝑁 -DNA, we used the

same spectral fitting procedures outlined in our past works [5, 31].

5.2 Results from wet lab Ag𝑁 -DNA synthesis

Because high-throughput experiments on hundreds of Ag𝑁 -DNAs

is a costly process, we select a smaller set of DNA sequences to

Figure 4: Wet lab synthesis results: Probability density distributions of (a)
WAV (units of wavelength in nanometers, representing Ag𝑁 -DNA color) and
(b) LII (brightness) for training (grey) and newly synthesized Ag𝑁 -DNAs.

test experimentally following our sampling approach (Sec. 4.4).

We employ a VAE trained on all instances (no validation set) and

with hyper-parameters 𝛼 = 0.01, 𝛽 = 0.007, 𝛾 = 1, 𝛿 = 1, |𝑧 | =

19, ℎ = 13,𝑤 = 16, single LSTM layer, and no dropout. We tune

hyper-parameters by performing a grid search and select the model

with both high Accuracy and Correlation for properties (details in

the Supplement). We generate 1000 samples of DNA templates and

rank them by their re-encodedWAV proxy𝑍 ′′
𝑊𝐴𝑉

. Specifically, each

sample 𝑍 ′ is first decoded and translated to a DNA sequence 𝑆 ′,

which is then re-encoded by the encoder to obtain the re-encoded

WAV proxy. The top-20 sequences of highest 𝑍 ′′
𝑊𝐴𝑉

are selected

for synthesis.

We experimentally synthesized Ag𝑁 -DNAs using the selected

20 strands and measured their fluorescence properties, finding that

all 20 sequences yield brightly fluorescent Ag𝑁 -DNAs withWAV

between 695nm and 845nm. One Ag𝑁 -DNA falls into our targeted

region of WAV > 800nm, a 240% increase in NIR frequency com-

pared to the training data. Notably, the other generated sequences

form fluorescent Ag𝑁 -DNAs very close to the NIR WAV threshold,

without a single nonfluorescent sample or Ag𝑁 -DNA at Green or

Red WAV values (Fig. 4a). Furthermore, the distribution of fluores-

cence brightness values (LII ) also increases substantially compared

to training data (Fig. 4b).

5.3 Training, latent space and sampling

We next provide more insight into the best model employed for

synthesis (Sec. 5.2). Fig. 5 summarizes various metrics of the model

during training over 𝑒 = 2000 epochs, using 85% of the data for train-

ing to also allow characterization of validation statistics. Fig. 5(a)

shows the break-down of the loss components. The reconstruction

𝐿𝑅𝐸𝐶 and regularization 𝐿𝑅𝐸𝐺 loss components monotonically de-

crease as the VAE is learning to both encode-decode sequences and

also training properties in their corresponding proxy dimensions

in 𝑍 . This effect is also evident from Accuracy (Fig. 5(b)) and Corre-

lation (Fig. 5(c),5(d)) profiles. It is important to note that both proxy

dimensions tend to retain significant correlation with both WAV

and LII. This is because the training WAV and LII are inherently

correlated and so are their proxies, regardless of the KLD loss that

łworksž to de-correlate the latent space.

Fig. 6 presents a visualization of the learned latent representa-

tions in terms of the Ag𝑁 -DNA color classes defined in Sec. 5.1.

Note that our VAE models the properties (WAV and LII) in continu-

ous space, and we introduce this natural (and physically-motivated)

binning into classes only to aid the visualization. The latent embed-

dings of training samples (both centroids and individual samples)

follow the natural WAV order of classes (Fig. 6(a)). Note that the
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Figure 8: Ablation analysis. (a): Lack of correlation of latent dimensions with training WAV when the attribute regularization is omitted; (b): class-based
comparison of the distributions of regularized and unregulated latent representations of training instances. (c): Separation of color class means in latent space as
a function of 𝛼 . (d): Mean shift due to weighted regularization.

importance of rare observations) increases, the centroid of the rare

NIR class first diverges from the Very Red centroid, then approaches,

and then diverges again for large 𝛼 . Note that at very large 𝛼 , the

overall correlation of all instances with WAV deteriorates. In partic-

ular, we determine an optimal setting for 𝛼 of 0.01 (discussed in the

following section). If we łzoom inž on the effect of 𝛼 values from 0

(no weighting) to 0.01 (our optimal setting) in Fig. 8(d), the distri-

butions of both Very Red and NIR diverge (their means increase)

and that of Red decreases slightly. Overall, weighting allows for

improved decoupling at the class level and is especially important

for equitable representation of rare samples like NIR.

5.5 Varying sequence length

Ideally, our model should be generalizable to other sequence lengths.

Thus, we ask: Can the model trained for sequences of length 𝑙 =

10 be employed for other values of 𝑙? To study this, we employ a

small sample of Ag𝑁 -DNAs stabilized by sequences of lengths 𝑙 =

8, 12, 16 with measured WAV and LII from our recent work [7]. We

investigate the quality of embedding for different length sequences

in our model trained for 𝑙 = 10. For this, we must first choose how

to represent variable length sequences within a 𝑙 = 10 VAE model.

For 𝑙 = 8, we pad the sequence to increase length to 𝑙 = 10. The

padding characters can be placed on either side of the sequence (8-

FB), the front only (8-F) and in the back only (8-B). Padding positions

feature uniform distributions in the one-hot encoding (i.e. all four

positions have a value of 0.25). For sequences of lengths longer

than 𝑙 = 10, we apply a sliding window approach and represent

a single long sequence as a set of its sliding size-10 windows, all

sharing the same WAV and LII properties.

We encode the sequences with our trained 𝑙 = 10 model to char-

acterize how the model embeds them. Fig. 9 presents the accuracy

and correlation values for all 𝑙 and padding options. While accura-

cies are comparable to validation results for sequence 𝑙 = 10 (note

that the expected Accuracy of 𝑙 = 8 sequences is 0.8 as successful

matching of padding characters is random), the WAV and LII corre-

lations, however, are significantly lower than validation results for

𝑙 = 10. This outcome suggests that simple padding and sliding win-

dow approaches are insufficient to generalize to varying 𝑙 . It may

be necessary to consider alternatives in which 𝑙 and łdo-not-matterž

positions are explicitly modeled.

6 DISCUSSION

Compared to past machine learning models for Ag𝑁 -DNA de-

sign [4, 5, 7], the VAE generative model presented here has several

Accuracy WAV Corr LII Corr
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Figure 9: Accuracy, WAV and LII correlation for Ag𝑁 -DNAs of sequence
length 8 (8-FB, 8-B, 8-F), 12 and 16, encoded by our model trained on length
𝑙 = 10.

new advantages. First, past models learned only a single Ag𝑁 -DNA

property (WAV or LII ), while the generative model here can dis-

tinctly target multiple Ag𝑁 -DNA properties, namely both WAV

and LII. It is advantageous to design DNA sequences correlated

with multiple Ag𝑁 -DNA properties (e.g. fluorescence color, bright-

ness, chemical stability, and sensitivity to an analyte of interest).

Thus, multi-objective design methods like the models introduced

here are critically needed to advance Ag𝑁 -DNA applications. Sec-

ond, this method does not require strictly defined Ag𝑁 -DNA "color

classes" to learn Ag𝑁 -DNA color; this is particularly ideal for rare

Ag𝑁 -DNAs in the newly explored NIR spectral range, where little

chemical information exists to motivate learning Ag𝑁 -DNA color

as a classification problem. Also of note is that our VAE model is

more successful in targeting the high WAV space for generated se-

quences (despite no explicit "class" targeting), and in particular the

high LII space. Finally, future examination of the latent space may

provide new insights into howDNA sequence selects for Ag𝑁 -DNA

properties, advancing fundamental science of these nanomaterials.

While the current implementation of our model yields strong

experimental performance, expansions for future work can lead to

further improvements. Among these are expanding the attributes

used to yield further classifying information, and more aggressive

truncation of the sampling distribution to more strongly target the

higher end of the WAV scale.

7 CONCLUSIONS

In this paper we proposed, evaluated and deployed a 𝛽-VAE gener-

ative model for the design of Ag𝑁 -DNA nanomaterials. Our model

was able to learn a joint representation for stabilizing DNA tem-

plates and Ag𝑁 -DNA properties, including fluorescence color and

fluorescence brightness, from a highly imbalanced training data

set by regularizing the latent space to correlate with Ag𝑁 -DNA

properties. To counteract imbalanced training samples, our model
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employed weighting scheme to over-represent such instances. To

test the model’s efficacy, we targeted the design of DNA template

sequences for especially rare NIR-fluorescent Ag𝑁 -DNAs, which

represent only 2% of training instances. Our experiments showed

that out of 20DNA template sequences generated by the VAE-based

model, all succeeded in producing Ag𝑁 -DNAs with both bright

and high wavelength fluorescence, including a new NIR-emissive

Ag𝑁 -DNA with 840 nm peak fluorescence. The successful selection

of a NIR Ag𝑁 -DNA in this test set represents a 240% increase in

the target Ag𝑁 -DNA color class, an improvement upon past ma-

chine learning models for Ag𝑁 -DNA design despite a significantly

imbalanced training data. In addition to enhanced predictive power,

our model is the first to learning multiple Ag𝑁 -DNA properties,

with significant implications for the advancement of Ag𝑁 -DNA

applications in bioimaging and biosensing. Our results show that

VAE-based generative models are highly promising for the design

of nanomaterials whose properties are encoded by biomolecular

sequence and for which only sparse experimental observations

may be available. As the fields of DNA and protein nanotechnol-

ogy [29, 33] continue to expand, such computational models may be

crucial in the advancement of biomolecule-based nanotechnologies.
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SUPPLEMENTAL MATERIAL

Our model includes multiple hyperparameters (listed in Table 1)

that can be grouped into two categories:

(1) Architectural hyperparameters: (|𝑧 |, 𝐿𝑤 , 𝐿𝑑 , ℎ/2,𝑤 ) control-

ling the shape and function of layers in the architecture;

and

(2) Loss hyperparameters: (𝛼 , 𝛽 , 𝛾 , 𝛿) controlling the behavior

of the loss function.

Hyperparameters have varying impacts on different metrics. We

perform a grid search across all our hyperparameters to optimize

our model for both accuracy and latent space correlation. Tested

value of each parameter are listed in Table 1 and optimal parameters

denote with bold font.

Hyper-parameter Values used for grid search

𝛼 0.005, 0.01, 0.02
𝛽 0.001, 0.003, 0.005, 0.006, 0.007, 0.008, 0.06, 0.07, 0.08
𝛾 1.0, 3.0, 5.0, 10.0
𝛿 1.0, 5.0, 10.0

Latent Dimensions ( |𝑧 |) 10.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 30.0
LSTM Layers (𝐿𝑤 ) 1.0, 3.0, 5.0
LSTM Dropout (𝐿𝑑 ) 0.0, 0.3, 0.5
LSTM Info (ℎ/2) 5.0, 10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 20.0, 22.0, 26.0, 30.0

Encoder Width (𝑤) 12.0, 16.0, 20.0

Table 1: Table of hyperparameters that were used during the model testing
phase, highlighted values represent the chosen hyperparameters. Note: ℎ is
the size of the concatenated output of both the forward and backward LSTM
cells, hence the size of each LSTM cell hidden state (LSTM info) is ℎ/2.

To illustrate the effect of individual hyperparameters on the

model’s reconstruction accuracy and correlations, we plot changes

of these metrics in an interval around the optimal hyperparameters

value while keeping the rest of the parameters set to their optimal

values (bold in Tbl. 1).

We present results from this experiment in Figure 10, and indi-

cate the optimal hyperparameter values by red squares. Consider

first the figures on reconstruction accuracy as a function of hy-

perparameters. For 𝛼 , 𝛾 and 𝛿 it is evident that, as these hyperpa-

rameters increase in value, both training and validation accuracy

decrease (𝑤 has a similar trend, as the change from 12 to 16 starkly

increases training and validation accuracy, though stays stagnant

upon further increase). |𝑧 | has the opposite effect: as we increase

the values of this hyperparameter, training and validation accuracy

both increase. Finally, our chosen 𝛽 results in marginally smaller

training and validation accuracy when compared to the other val-

ues of 𝛽 , and our chosen value for LSTM Info (h/2) results in larger

training and validation accuracy than its counterpart values. The

corresponding correlation figures, however, (WAV and LII Proxies

represented by solid and dashed lines here, respectively) demon-

strate that increases in reconstruction accuracy often results in

deteriorated correlation. To achieve a good balance between recon-

struction accuracy and latent correlation, we therefore choose our

optimal hyperparameters indicated in Table 1.
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Figure 10: Effect of hyper parameters on reconstruction accuracy and cor-
relations. All parameters, apart from the one varied in each figure, are set to
the optimal regimes denoted by bold values in Tbl. 1.
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