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It was pointed out in a recent paper that the observed cooling rate of old, cold neutron stars (NS) can

provide an upper limit on the transition rate of neutron tomirror neutron (n − n0). This limit is so stringent that

it would preclude any discovery of n → n0 oscillation in the current round of terrestrial searches for the

process. Motivated by this crucially important conclusion, we critically analyze this suggestion and note an

interesting new effect present in nearly exactmirrormodels forn → n0 oscillation, which significantly affects

this bound. The new element is the β decay n0 → p0 þ e0 þ ν̄0e, which creates a cloud ofmirror particles n0,p0,

e0, and D0 inside the NS core. The e0 can “rob” the energy generated by the n → n0 transition via e − e0

scattering enabled by the presence of a (minute) millicharge in mirror particles. This energy is emitted as

unobserved mirror photons via fast mirror bremsstrahlung leading to a relaxation of this upper limit.
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Introduction.—Neutron stars (NSs) and their origin from

supernovae have played an important role in constraining

physics beyond the standard model (BSM) [1]. One class of

BSM scenarios which can lead to new effects in NSs are the

mirror models, which consist of a mirror sector coexisting

with the standard model (SM) and which contains a parity

symmetric duplicate of the particles and forces of the SM

[2]. When the mirror parity is nearly exact, all particles in

the two sectors including the neutron and mirror neutron

are nearly degenerate. This raises the possibility of neutrons

oscillating to mirror neutrons (n → n0) [3] if the sum of

ordinary (B) and mirror (B0) baryon numbers is conserved.

This phenomenon has been proposed as a solution to the

neutron lifetime anomaly [4]. There are a number of

experiments already carried out or planned to search for

this n → n0 oscillation [5]. It is therefore important to know

if there are any constraints on the n − n0 mixing parameter

ϵnn0 from astrophysical settings. Since NSs are extremely

rich in neutrons, they are a perfect laboratory for testing

implications of n → n0 oscillation.
The transition of an ordinary neutron n to a mirror

neutron n0 is followed by a migration of the latter toward

the NS center under gravity. The hole left will then be filled

by another neutron at the Fermi level, and in the process

energy is liberated [6]. If the process is fast enough, it

would lead to a fully mixed star. The resulting mass loss of

a NS will not only lead to changes in the orbital period of a

binary pulsar [7], but also affect the luminosity of a single

NS [6,8]. The observational constraints on the rate of the

binary periods for several binary pulsars were shown to

lead to upper bounds on ϵnn0 of 10
−13 eV [9]. On the other

hand, taking the coldest NS, i.e., PSR J2144-3933 [10], it

was argued in Refs. [6,8] that one gets ϵnn0 ≤ 10−17 eV.

Both the bounds are valid for n − n0 mass difference up to

15 MeV [9]. This luminosity limit is particularly important,

since currently planned terrestrial experiments are sensitive

to ϵnn0 at the level of 10−17 eV [5]. Note that in terrestrial

searches for n − n0 oscillation, to maintain coherent buildup

of the mirror neutron wave function along the neutron

beam, and allow for such sensitive measurements, one must

require a remarkably precise degeneracy between the

neutron and its mirror partner of δnn0=mn ≤ 10−26 with

δnn0 ≡ jmn0 −mnj.
In this Letter, we critically analyze the luminosity bound,

by following the evolution of the n0 generated in n→ n0

transition a bit longer. We observe that in almost exact

mirror models, the mirror neutrons generated inside the NS

β decay producing mirror fermions e0, p0, and ν̄0e leading

eventually to a cloud of e0 and deuterons D0. These mirror

particles then provide a competing cooling channel via the

emission of mirror photons γ0, and reduce the photonic

signal claimed in Ref. [8] considerably, relaxing the upper

bounds on ϵnn0 . For a relatively wide acceptable range of

interactions between the ordinary and mirror sectors,

mediated by the millicharge of mirror particles [11], the
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nucleons and electrons of the visible sector in this core

region of the NS can transfer their energy to the mirror

particles. The latter then emit this energy via mirror

photons γ0, which do not interact with the ordinary

nucleons and electrons and can freely escape. The phi-

losophy of this Letter is similar to that in Ref. [12]. The

millicharge on mirror particles arises if γ and γ0 have kinetic

mixing.

n → n0 Transition.—Initially, shortly after its birth, a NS

is relatively hot and cools down via volume emission of

neutrino pairs. At the time of observation, the star may be

still cooling off or, if some other sources of energy exist, it

may have settled into a thermal steady state, with the thermal

energy emitted as electromagnetic radiation often as a black

body radiation [13,14]. Let us apply this scenario to the

pulsar PSR J2144-3933. In a steady state, the NS black body

luminosity is given by the Stefan-Boltzmann formula

LNS ¼ 4πσSBR
2T4

s , where σSB is the Stefan-Boltzmann

constant, R is the radius of the NS, and its external surface

temperature Ts is maintained by the constant internal energy

source. If we have observational limits on the luminosity,

this implies upper bounds on the rate of internal heat

production. It is important to note that there is a ∼100

meter thick nuclear “thermal blanket” just under the surface

[15]. It causes the internal temperature, which is almost

uniform over the NS, to drop dramatically by a factor of

∼100 as we move out from the inside across the blanket

toward the surface. The estimated upper bound on surface

temperature Ts ∼ 42000 Kof the coldest pulsar PSR J2144-

3933 would then correspond to the internal temperature

T int ≃ 0.35 keV, which would play an important role in

obtaining upper bounds on any heat generating mechanism.

If the n→ n0 processes were the only source of heat

supply, then in a steady state the overall n − n0 transition

rate would be given by dN n0=dt ¼ LNS=ΔE, where ΔE ∼

30 MeV is the energy initially gained by ordinary nucleons

in each n→ n0 transition. For PSR J2144-3933, taking

R ¼ 11 km, the rate of generating new mirror neutrons

turns out to be

dN n0

dt
∼ 0.45 × 1032

�

Ts

42000 K

�

4

sec−1: ð1Þ

During its long lifetime of 330 million years, about

N n0 ∼ 1048 neutrons would have converted into mirror

neutrons. This comprises a tinyN n0=N n ∼ 10−9 fraction of

the total neutron numberN n ∼ 2 × 1057 in the star, with no

change of the gravity fields and of the local density profile

of the ordinary NS. Some pulsars have temperatures up to

100 times higher yielding dN n0=dt ∼ 1040 sec−1, and were

also used to bound high ϵnn0 values [13,14].

Neighboring neutrons rush into the “hole” formed by

n→ n0 transition, and the work done in the process is

∼30 MeV on average and becomes the kinetic energy of

these nucleons. The nucleons collide with neighboring

neutrons with density nN ∼ 1039 cm−3, and very quickly

settle into the spatially and temporally fixed internal

temperature T int (∼0.35 keV). It should be noted that only

the f ¼ kT=EF fraction of nucleons and electrons in the

high energy tail of the degenerate Fermi-Dirac energy

distribution are not Pauli blocked and can be excited (or de-

excited) to higher (or lower) empty energy states, reducing

the specific heat and the heat content Q� of the NS by a

factor of f. It is then given by

Q� ¼ N nf
2EF: ð2Þ

Upon using kT ≃ 0.35 keV for PSR J2144-3933 and

EF ¼ 30 MeV, we find Q� ∼ 1052 keV, with only the

f ∼ 10−5 fraction of these end point “active” electrons

partaking in electron scattering or any other dynamic

processes, which will play an important role in the

following calculations.

n0 Decay and the e0 −D0 fluid.—In connection with the

extreme degeneracy of n and n0, there are three extra light
neutrinos and the mirror photon in exact mirror models. To

bring about consistency between three extra neutrinos and

an extra photon contributing to the energy density in the big

bang nucleosynthesis (BBN) epoch of the universe with the

Planck data [16], we require that there be asymmetric

inflation implemented [17]. This will remove the BBN

problem by lowering the reheat temperature in the mirror

sector by a factor of 3, thus diluting the impact of the extra

mirror neutrinos and the mirror photon on BBN.

The β decay n0 → p0 þ e0 þ ν̄0e of n0 proceeds in the

same manner as n, and will have the same rate of

∼ð800 secÞ−1 as n decay in vacuum, so long as the

Fermi energy of the electron is much smaller than the Q
value of 0.7 MeVof the β decay [18]. The p0s, like the n0s,
are gravitationally bound to the NS, and local mirror charge

neutrality forces the number densities ne0;p0ðrÞ of e0 and p0

to be the same at all r < R, i.e., ne0ðrÞ ¼ np0ðrÞ. The mirror

neutrons and mirror protons slow down and form mirror

deuterons D0, since the process p0 þ n0 → D0 þ γ0 is faster

than the inverse beta decay e0 þ p0
→ n0 þ ν0. All the p0s

are “eaten up” to form D0, and the number of e0s that will
remain is only half the number of n0 produced. The

resulting γ0s escape taking away part of the energy released

in n → n0 transition but it does not drain the energy

generated by neutrons falling from the Fermi surface,

which is drained away via e − e0 scattering. Charge

neutrality requires that ne0ðrÞ ¼ nD0ðrÞ, with nD0ðrÞ the

number density of D0. The new processes we consider are

depicted schematically in Fig. 1.

The e0 and D0 constitute a fluid that is supported against

the gravity of the ordinary NS by degenerate pressure,

which is dominated by that of the e0. The mass density of

the fluid is dominated by the D0. The corresponding

hydrostatic equation is

∂

∂r
Pe0ðrÞ ¼ −ρðrÞgðrÞ; ð3Þ
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where ρðrÞ ¼ ne0ðrÞmD0 is the mass density of the D0, and

the e0 pressure for a given Fermi momentum pF is

Pe0 ¼
8π

3meℏ
3

Z

pF

0

dp
p4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðp=me0cÞ
2

p : ð4Þ

For the small radii considered, the gravitational acceler-

ation can be approximated by

gðrÞ ¼
GNMðrÞ

r2
¼

4π

3
GNρ0r; ð5Þ

where GN is the Newtonian constant of gravitation. For

r < 2 km the density ρ0 ≃ 1015 gr cm−3 in the center of the

NS is almost a constant. The general relativistic modifica-

tions of the hydrostatic equation are very small, at the level

of 10−3. We can solve the hydrostatic equation (3) ana-

lytically and get

ne0ðrÞ ¼
8π

3m3

e0
c3ℏ3

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
Fð0Þ þ 1

q

−
r2

2r2
0

�

2

− 1

�

3=2

; ð6Þ

where r0 ¼ ð3me0c
2=4πGNρ0mD0Þ1=2 ≃ 0.296 km, and

XFð0Þ ¼ pFð0Þ=me0c. Then the number of the e0 up to

the radius r is

N e0ðrÞ ¼

Z

r

0

4πne0ðxÞx
2dx: ð7Þ

The fluid is confined inside a sphere with radius Rc so

that ne0ðRcÞ ¼ 0. Once XFð0Þ is given, Rc, ne0ðrÞ, and the

total number N e0 ¼ N D0 are determined by pure numbers

and fundamental constants. This resembles the case of the

Chandrasekhar mass. The dimensionless constant XFð0Þ is
determined by N e0ðRcÞ ¼ 5 × 1047 so that N e0 ¼ N D0 is

half of the total n0 generated. We obtain XFð0Þ ≃ 8.9,

implying EFð0Þ ≃ 4 MeV and Rc ≃ 1.18 km. More details

can be found in the Supplemental Material [19].

Energy drain from the visible sector to the mirror

fluid.—In deriving the strict bound by using the electro-

magnetic luminosity L ¼ dW=dt of the NS, a key point is

that the rate of n→ n0 transition is constant and indepen-

dent of any thermal or other variations (except for stopping

when the mixed star forms, which happens after many

Hubble times for the small values of ϵnn0 considered). The

∼50% of the heat generated which resides in the SM

component is then radiated via a fixed black body lumi-

nosity [8]. Having all the mirror particles segregated in a

“core region” (the orange region in Fig. 1) comprising

∼0.1% of the star volume would have seemed to minimize

their ability to intercept and impede ordinary heat emission

and photon radiation from the mirror free, large outer

region. This, in turn, would have suggested only minor

luminosity reduction and no relaxing of the bounds on ϵnn0 .

However, a more careful scrutiny shows that this simplistic

argument is misleading.

The energy emission from the core will be dominated by

the radiation of mirror photons, while the heat is contin-

uously transferred from the normal sector to the mirror

sector by scatterings of the normal and mirror electrons in

the core region. For sufficiently large millicharge ϵ, the heat

emission rate from the mirror particles may overtake the

FIG. 1. A schematic depiction of what happens after the n → n0 transition takes place in a NS. In the right panel we enlarge the “mirror

star” region in the left panel.
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normal emission rate from the external surface by an

appreciable factor. The ordinary photonic energy may then

account only for a small part of the energy generated inside

the star. Furthermore, the cumulative effect of this over

most of the star’s history will reduce its heat content and

push the internal and external surface temperatures to zero,

quenching the photonic emission and destroying the steady

state model envisioned.

Thanks to the mutual mirror electromagnetic scattering

of the mirror particles inside the core region and attendant

emission of the fast escaping mirror photons, the time

required for their cooling off and equilibrating at a temper-

ature T 0 is very short on a typical thermal timescale of

tthermal ¼ W�=ðdW=dtÞ, where W� ¼ Q� is the total heat

content of the star. Using Eq. (2) we find tthermal∼

3 × 1015 sec, which happens to be close to the age of

the star.

Since the emission of heat from the mirror sector is much

faster than heat transfer between the sectors, any amount of

heat in the mirror sector will be emitted rather than go back

to the normal sector, which also implies that T 0 ≤ T. To
avoid a detailed discussion at the particle scattering level,

we first view the core region as a black body for the mirror

photons with temperature T 0, as indeed it absorbs any such

photon falling on it. The surface of area 4πR2
c of the inner

“core region” serves effectively as an additional boundary,

through which the heat in the normal component of the

surrounding star can be emitted. The mirror electrons in the

core will then radiate their heat content to the outside with

the rate of black body luminosity: L0 ¼ 4πσSBR
2
cT

04.

Relative to the internal core region surface 4πR2
c, the stellar

surface is larger—by roughly a factor of 100. However, the

thermal blanket makes the internal temperature about one

hundredfold bigger than the surface temperature. Thanks to

the possibility that T 04 ≥ 108T4
s , even if we keep T 0 < T to

make e→ e0 energy transfers more than the reverse trans-

fer, we can still, in principle, have the rate of mirror photon

emission almost 6 orders of magnitude bigger than that of

the ordinary photons, so long as Rc ≥ 1 km.

However, to verify that this indeed happens, we need to

check how many e − e0 collisions occur per second (which

we denote by _N col) between the N e0ðr < RcÞ ∼
1038R3

c cm−3 electrons in the core region and the N e0 ∼

5 × 1047 mirror electrons. If the total energy transferred per

second via these collisions from the ordinary to mirror

electrons much exceeds the stellar luminosity, namely the

inequality

_N colΔE ∼ _N colΔT ≫ LNS ∼ 2 × 1036 keV sec−1 ð8Þ

holds, then the mirror luminosity dominates and the

scenario envisioned in deriving the strict upper bounds

on ϵnn0 becomes inoperative. On the other hand, if the

inequality in Eq (8) is (strongly) reversed, then the scenario

above involving the β decay of the mirror neutron will be

irrelevant.

For the average energy transfer of ΔT ∼ 0.35 keV,

Eq. (8) becomes _N col ≥ 1037 sec−1. Each electron and

also each mirror electron move with the speed of light c.

Then we can express _N cal with energy transfer of

∼0.35 keV in a manner that is symmetric between the

ordinary and mirror sectors:

_N cal ¼
cff0N eðr < RcÞN e0σee0

ð4π=3ÞR3
c

; ð9Þ

where f0 ¼ kT 0=E0
F ∼ 10−4 is the fraction of the “active”

mirror electrons. For Rc ¼ 1.2 km, the condition _N c ≫

1037 sec−1 translates into the following requirement on the

e − e0 scattering cross section:

σee0 ≃ ϵ2σee ≫ 10−50 cm2; ð10Þ

where σee is the standard Rutherford scattering cross

section of electrons in the same kinematic configuration.

For the formula for σee0, see the Supplemental Material

[19]. Including only the Feynman diagram for the t-channel
photon exchange, the cross section σee0 is calculated by

having the relativistic e and e0 with energies EF ≃ 10E0
F ≃

35 MeV collide at random relative direction in the labo-

ratory frame and transferring an energy of T ∼ 0.35 keV

between them. Using a plasmon mass as the cutoff, we

estimate this cross section to be σee0 ≃ 4πα2ϵ2=EFT≃

10−23ϵ2 cm2, which leaves us with the rather weak, easy

to satisfy requirement

ϵ2 ≫ 10−27: ð11Þ

The strongest upper bounds ϵ ≤ 10−12 [20] do not apply

here, as in mirror models the dark matter (DM) is made of

neutral objects such as the p0 − e0 composite mirror hydro-

gen, deuteron, or helium. On the other hand, ϵ ≤ 10−9

required for cosmological constraint consistent with BBN

limits is more directly applicable here [21] whereas a

weaker limit of ϵ ≤ 10−7 comes from the consistency of

asymmetric inflation [22]. This still leaves 9 orders of

magnitude margin for satisfying Eq. (11).

We also note that even though the photonic cooling of

ultracold NS (UCNS) is not a reliable way to set bounds on

the n → n0 transition rate for near exact mirror models and

slow n→ n0 transition, there are situations when it works:

e.g., we could have (i) a near exact mirror symmetry but the

millicharge of the mirror fermions ϵ ≤ 10−13 or (ii) an

asymmetric mirror model with mp0 ≥ mn0 where n0 is the

DM of the universe, so that β decay of the mirror neutron is

forbidden. It can also work in other dark baryon contexts,

such as those suggested in connection with the neutron

lifetime anomaly.
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An advantage of the heating up argument as compared

with the orbital period stability method [9] is that in the

former one can use all pulsars, whereas the latter case

requires binary pulsars [7,9]. Unfortunately, unlike the

misquote in Ref. [8], the spinning period changes of single

pulsars—which, as part of the ambitious nanogravity

project, is determined in many cases with stunning accu-

racy—cannot be used, as it is affected by relatively large

and incalculable changes due to magnetic braking, etc. This

is the reason why binary pulsars were used in Refs. [7,9].

Conclusion.—To summarize our main result, the pho-

tonic luminosities of UCNSs do not necessarily imply

robust bounds on ϵnn0 . In particular, they do NOT exclude

discovery via terrestrial measurements of the tiny

ϵnn0 ∼Oð10−17 eVÞ. This happens due to the beta decay

of n0 following n→ n0 transition and the subsequent

deuteron formation. Our main assumption, the existence

of a millicharge ϵ, is definitely allowed and possibly even

favored within mirror models. In this scenario, under the

joint effect of the weight of the mirror deuterons and the

Fermi energy of the mirror electrons, the mirror deuterons

and electrons form a configuration resembling that of a

“mini white dwarf” inside the NS. A remarkable feature of

this configuration is its universality stemming from, and in

analogy with, the features of NSs and actual white dwarfs.

Within this structure, heat is transferred relatively fast (on

characteristic thermal timescales of the NS) from the heat

reservoir in the normal matter of the NS to the mirror sector,

and is radiated via mirror photons.
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