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Optimal Feature Manipulation Attacks Against
Linear Regression

Fuwei Li, Lifeng Lai, and Shuguang Cui

Abstract—In this paper, we investigate how to manipulate the
coefficients obtained via linear regression by adding carefully
designed poisoning data points to the dataset or modifying the
original data points. Given the energy budget, we first provide
the closed-form solution of the optimal poisoning data point when
our target is modifying one designated regression coefficient. We
then extend the analysis to a more challenging scenario where
the attacker aims to change one particular regression coefficient
while making others to be changed as small as possible. For
this scenario, we introduce a semidefinite relaxation method to
design the best attack scheme. Finally, we study a more powerful
adversary who can perform a rank-one modification on the
feature matrix. We propose an alternating optimization method
to find the optimal rank-one modification matrix. Numerical
examples are provided to illustrate the analytical results obtained
in this paper.

Index Terms—Linear regression, adversarial robustness, poi-
soning attack, non-convex optimization.

I. INTRODUCTION

Linear regression plays a fundamental role in machine
learning and is used in a wide spectrum of applications [2]–
[6]. In linear regression, one assumes that there is a simple
linear relationship between the explanatory variables and the
response variable. The goal of linear regression is to find out
the regression coefficients through the methods of ordinary
least square (OLS), ridge regression, Lasso [7], etc. Having the
regression coefficients learned from the data points, one can
predict the response values given the values of the explanatory
variables. The regression coefficients also help us explain the
variation in the response variable that can be attributed to
the variation in the explanatory variables. They can quantify
the strength of the relationship between certain explanatory
variables and the response variable. A large magnitude of the
regression coefficient usually indicates a strong relationship,
while a small valued regression coefficient means a weak
relationship. This is especially true when linear regression
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is accomplished by the parameter regularized method such
as ridge regression and Lasso. In addition, the sign of the
regression coefficient indicates whether the value of the re-
sponse variable increases or decreases when the value of
an explanatory variable changes, which is very important in
biologic science [8], financial analysis [9], and environmental
science [10].

Machine learning is being used in various applications, in-
cluding security and safety critical applications such as medi-
cal image analysis [11] and autonomous driving [12]. For these
applications, it is important to understand the robustness of
machine learning algorithms in adversarial environments [13]–
[18]. In such an environment, there may exist a malicious
adversary. Depending on the adversary’s knowledge about
the data samples, the learning algorithm, and the defense
strategy of the learning system, the adversary can carry out
white-box, grey-box, and black-box attacks. In the white-box
attack, the adversary has the full knowledge of the machine
learning system and has the ability to observe the whole
data points. After seeing the data points, the adversary can
add some carefully designed poisoning data points or directly
modify the data points so as to corrupt the learning system
or leave a backdoor in this system [19]. If the adversary
knows nothing about the data samples, learning algorithms,
and defense strategies, the adversary can also carry out black-
box attacks, where it gains information of the system by
repeatedly sending queries to the system [20]. If the adversary
only has partial knowledge of the data samples, learning
algorithms, and defense strategies, the adversary can perform
grey-box attacks, in which it uses surrogate data samples or
classifiers to mimic the original ones [21]. In this paper, we
focus on the white-box attacks.

The goal of this paper is to investigate the optimal way
to attack linear regression methods. In the considered linear
regression system, there exists an adversary who can observe
the whole dataset and then inject carefully designed poisoning
data points or directly modify the original dataset in order
to manipulate the regression coefficients. The manipulated
regression coefficients can later be used by the adversary as a
backdoor of this learning system or mislead our interpretation
of the linear regression model. For example, changing the
magnitude of a regression coefficient to be small makes us
believe that its corresponding explanatory variable is irrel-
evant. Similarly, the adversary can change the magnitude
of a regression coefficient to a larger value to increase its
importance. Furthermore, changing the sign of a regression
coefficient can also lead us to misinterpret the correlation
between its explanatory and response variables.



Depending on the objective of the adversary and the way
the adversary changes the regression coefficients, we have
different problem formulations. We first consider a scenario
where the adversary tries to manipulate one specific regression
coefficient by adding one carefully designed poisoning data
point that has a limited energy budget to the dataset. We show
that finding the optimal attack data point is equivalent to solve
an optimization problem where the objective function is a
ratio of two quadratic functions with a quadratic inequality
constraint. Even though this type of problem is non-convex in
general, our particular problem has a hidden convex structure.
With the help of this convex structure, we further convert the
optimization problem into a quadratic constrained quadratic
program (QCQP). Since strong duality exists in this problem
[22], we manage to identify its closed-form optimal solutions
from its Karush-Kuhn-Tucker (KKT) conditions.

We next consider a more sophisticated objective where the
attacker aims to change one particular regression coefficient
while making others be changed as small as possible. We
show that finding the optimal attack data point is equivalent to
solving an optimization problem where the objective function
is a ratio of two fourth order multivariate polynomials with a
quadratic inequality constraint. This optimization problem is
much more complicated than the optimization above. We in-
troduce a semidefinite relaxation method to solve this problem.
The numerical examples show that we can find the globally
optimal solutions with a very low relaxation order. Hence, the
complexity of this method is low in practical problems.

Finally, we consider a more powerful adversary who can
directly modify the feature matrix. Particularly, we consider a
rank-one modification attack [23], where the attacker carefully
designs a rank-one matrix and adds it to the existing data
matrix. A rank-one modification attack is general enough to
capture the most common modifications, such as modifying
one feature, deleting or adding one data point, changing one
entry of the data matrix, etc. Hence, studying the rank-one
modification provides us universal bounds on these kinds of
attacks. By leveraging the rank-one structure, we develop an
alternating optimization method to find the optimal modifica-
tion matrix. We also prove that the solution obtained by the
proposed optimization method is one of the critical points of
the optimization problem.

Our study is related to several recent works on adversar-
ial machine learning. For example, Pimentel-Alarcón et al.
studied how to add one adversarial data point in order to
maximize the error of the subspace estimated by principal
component [24] and Li et al. derived a closed-form optimal
modification to the original dataset in order to maximize
the subspace distance between the original one the one after
modification [23]. These two works focused on the robustness
of subspace learning algorithms that are based on principal
component analysis (PCA). PCA is an unsupervised learning
method. By contrast, we study the robustness of linear re-
gression, which is a supervised learning method. Alfeld et al.
studied how to manipulate the training data to increase the
validation or test error for the linear regression task [25], [26]
and Biggio et al. used a gradient based algorithm to design
one poisoning data point with the aim of worsening the testing

error in a support vector machine (SVM) learning system,
and they also proposed a heuristic approach to flip parts of
the training labels in order to achieve a similar goal [27],
[28]. These works aimed to deteriorate the performance on a
specific data set. However, we concentrate on the explanation
of the linear regression model. By manipulating the regression
coefficient, we can mislead the interpretation of the depen-
dency between the features and response value. Furthermore,
a series of works focused on the adversarial robustness of deep
learning networks. Kurakin et al. proposed a gradient based
method to design adversarial noise [13], [14], [29]. By adding
this noise to the test data, it makes the machine learning system
make the wrong prediction. By contrast, we focus on adding
or modifying training data samples to maneuver the regression
coefficient. Biggio et al. corrupted the deep learning system
by inserting delicately designed poisoning data samples into
the training data [19], [30], [31]. Due to the complexity of
deep neural networks, it is hard to know whether the designed
poisoning data samples are optimal. Nevertheless, our method
is proven to be optimal with respect to certain specific goals
discussed in this paper.

In addition, there are recent works that focus on the
adversarial robustness of machine learning in various other
applications. For example, Kwon et al. proposed a gradient
based method to generate adversarial audio examples [32],
Li et al. presented an ensemble method to enhance the ro-
bustness of the malware detection system against adversarial
attacks [18], and Flowers et al. demonstrated the vulnerability
of communication systems against adversarial noises [33].
These works are limited to their specific applications. In our
paper, we target maneuvering the interpretation of a general
linear regression model by adding poisoning data points or
modifying the original data.

The work that is most relevant to our paper is [34], where
the authors develop a bi-level optimization framework to
design the attack matrix. [34] used the projected gradient
descent method to solve the bi-level optimization problem.
However, a general bi-level problem is known to be NP-hard,
and solving it depends on the convexity of the lower level
problem. In addition, the convergence of projected gradient
descent for a non-convex problem is not clear. Compared
with [34], we obtain the globally optimal solution to the
case for adding one poisoning data point, and we also prove
that the proposed alternating optimization method converges
to one of the critical points for the case where the attacker
can perform a rank-one modification attack. Furthermore, for
the projected gradient descent method, different datasets need
different parameters, which means we must do parameter
tuning before applying this algorithm. By contrast, we provide
a closed-form solution to the case for adding one poisoning
data point to attack one of the regression coefficients, and
the designed alternating optimization method for the case of
rank-one attack does not need parameter tuning. Furthermore,
compared with the projected gradient descent method, our
alternating optimization method provides smaller objective
values, faster convergence rate, and more stable behavior.

The remainder of this paper is organized as follows. In
Section II, we consider the scenario where the attacker adds
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one carefully designed poisoning data point to the dataset.
In Section III, we investigate the rank-one attack strategy.
Numerical examples are provided in Section IV to illustrate
the results we obtained in this paper. Finally, we provide
concluding remarks in Section V.

II. ATTACKING WITH ONE ADVERSARIAL DATA POINT

In this section, we consider the scenario where the attacker
can add one carefully crafted data point to the existing dataset.
We will extend the analysis to the case with more sophisticated
attacks in Section III.

A. Problem formulation
Consider a dataset with n data samples, {yi,xi}ni=1, where

yi is the response variable, xi ∈ Rm is the feature vector,
where each component of xi represents an explanatory vari-
able. In this section, we consider an adversarial setup in which
the adversary first observes the whole dataset {y,X}, in which
y := [y1, y2, . . . , yn]> and X := [x1, x2, . . . ,xn]>, and then
carefully designs an adversarial data point, {y0,x0}, and adds
it into the existing data samples. After inserting this adversarial
data point, we have the poisoned dataset {ŷ, X̂}, where
ŷ := [y0, y1, y2, . . . , yn]>, X̂ := [x0, x1,x2, . . . ,xn]>.

From the dataset, we intend to learn a linear regression
model. From the poisoned dataset, the learned model is
obtained by solving

argmin
β

: ‖ŷ − X̂β‖2, (1)

where ‖·‖ denotes the `2 norm for a vector and the induced 2-
norm for a matrix throughout this paper. Let β̂ be the optimal
solution to problem (1). The goal of the adversary is to min-
imize some objective function, f(β̂), by carefully designing
the adversarial data point. The form of f(β̂) depends on the
specific goal of the attacker. For example, the attacker can try
to reduce the importance of feature i by setting f(β̂) = |β̂i|, in
which β̂i is the ith component of β̂. Or the attacker can try to
increase the importance of feature i by setting f(β̂) = −|β̂i|.
To make the problem meaningful, in this paper, we impose the
energy constraint on the adversarial data point. Since one data
point contains a feature vector and a response value, we put
`2 norm constraint on the concatenated vector [x>0 , y0]>. With
the objective f(β̂) and the energy constraint of the adversary
data point, our problem can be formulated as

min
‖[x>

0 ,y0]‖≤η
: f(β̂) (2)

s.t. β̂ = argmin
β

: ‖ŷ − X̂β‖2,

where η is the energy budget. The objective function, f(β̂),
depends on the poisoning data point, {x0, y0}, not in a direct
way, but through a lower level optimization problem. What
makes this problem even harder is the complication of the
objective function. Depending on the goal of the adversary,
the objective can be in various forms. In the following two
subsections, we will discuss two important objectives and their
solutions, respectively. The methods and insights obtained
from these two cases could then be extended to cases with
other objectives.

B. Attacking one regression coefficient
In this subsection, the goal of the adversary is to design the

adversarial data point {y0,x0} to decrease (or increase) the
importance of a certain explanatory variable. If the goal is to
decrease the importance of explanatory variable i, we can set
f(β̂) = |β̂i|, and the optimization problem can be written as

min
‖[x>

0 , y0]‖2≤η
: |β̂i| (3)

s.t. β̂ = argmin
β

: ‖ŷ − X̂β‖2.

Similarly, if the goal of the adversary is to increase the
importance of the explanatory variable i, we can set our
objective as

min : −|β̂i| (4)

withe the same constraints as in problem (3).
To solve the optimization problems (3) and (4), we first

solve the following two optimization problems

min
‖[x>

0 , y0]‖≤η
: β̂i (5)

s.t. β̂ = min
β

: ‖ŷ − X̂β‖2, (6)

and

max
‖[x>

0 , y0]‖≤η
: β̂i (7)

s.t. β̂ = min
β

: ‖ŷ − X̂β‖2. (8)

It is easy to check that the solutions to problems (3) and (4)
can be obtained from the solutions to problem (5) and (7).
In particular, let (β̂∗i )min and (β̂∗i )max be optimal values of
problem (5) and (7) respectively. Then, if β̂i ≥ 0, we can
check that max{0, (β̂∗i )min} and max{|(β̂∗i )min|, |(β̂∗i )max|}
are the solutions to problem (3) and (4) respectively. Similar
arguments can be made if β̂i < 0.

In the following, we will focus on solving the minimization
problem (5). The solution to the maximization problem (7)
can be obtained by using a similar approach. To solve this bi-
level optimization problem, we can first solve the optimization
problem in the subjective. Assume X is full column rank.
Problem (6) is just an ordinary least squares problem, which
has a simple closed-form solution: β̂ = (X̂>X̂)−1X̂>ŷ.
Substitute in X̂ = [x0,X

>]> and ŷ = [y0,y
>]>, and we

have

β̂ = (X>X + x0x
>
0 )−1[x0,X

>][y0,y
>]>.

According to the Sherman-Morrison formula [35], we have

(X>X + x0x
>
0 )−1 = A− Ax0x

>
0 A

1 + x>0 Ax0
, (9)

where

A = (X>X)−1. (10)

The inverse of X>X + x0x
>
0 always exists because 1 +

x>0 Ax0 6= 0 and X>X is invertible. Plug this inverse in the
expression of β̂, we get

β̂ = β0 +
Ax0(y0 − x>0 β0)

1 + x>0 Ax0
, (11)
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where

β0 = AX>y. (12)

We can observe that β0 is the coefficient that is obtained from
the clean data. Problem (5) is equivalent to

min
x0,y0

:
a>x0(y0 − x>0 β0)

1 + x>0 Ax0
(13)

s.t. ‖[x>0 , y0]‖ ≤ η,

where a is the ith column of A. The optimization problem (13)
is the ratio of two quadratic functions with a quadratic con-
straint. To further simplify this optimization problem, we can
write our objective and subjective in a more compact form
by performing variable change: u = [x>0 , y0]>. Using this
compact representation, the optimization problem (13) can be
written as

min
u

:
1
2u>Hu

1 + u>[ A 0
0 0 ]u

(14)

s.t. u>u ≤ η2,

in which

H =

[
−aβ>0 − β0a

> a
a> 0

]
. (15)

(14) is a non-convex optimization problem. To solve this
problem, we employ the technique introduced in [36]. We first
perform variable change u = z

s by introducing variable z and
scalar s. Inserting this into problem (14), adding constraint
1 to the denominator of the objective and moving it to the
subjective, we have a new optimization problem

min
z,s

:
1

2
z>Hz (16)

s.t. s2 + z>[ A 0
0 0 ]z = 1, (17)

z>z ≤ s2η2. (18)

To validate the equivalence between problem (14) and (16),
we only need to check if the optimal value of problem (14) is
less than the optimal value of problem (16) when s = 0 [36].
Firstly, since H is not positive semi-definite (which will be
shown later), the optimal value of problem (14) is less than
zero. Secondly, when s = 0, the optimal value of problem (16)
is zero, which is apparently larger than the optimal value of
problem (14). Therefore, the two problems are equivalent.

To solve problem (16), we substitute s2 in equation (17) for
that in equation (18) and obtain

min
z

:
1

2
z>Hz (19)

s.t.
1

2
z>Dz ≤ η2, (20)

where

D = 2

(
I + η2

[
A 0
0 0

])
. (21)

Notice that H is not positive semi-definite; hence prob-
lem (19) is not a standard convex QCQP problem [22].
However, it is proved that strong duality holds for this type of
problem [22], [37]. Hence, to solve this problem, we can start

by investigating its KKT necessary conditions. The Lagrangian
of problem (19) is

L(z, λ) =
1

2
z>Hz + λ

(
1

2
z>Dz− η2

)
,

where λ is the dual variable. According to the KKT conditions,
we have

(H + λD) z = 0, (22)
1

2
z>Dz ≤ η2, (23)

λ

(
1

2
z>Dz− η2

)
= 0, (24)

λ ≥ 0. (25)

By inspecting the complementary slackness condition (24),
we consider two cases based on the value of λ.
Case 1: λ = 0. In this case, we must have Hz = 0 according
to (22). As a result, the objective value of (19) is zero, which
contradicts the fact that the optimal value should be negative.
Hence, this case is not possible.
Case 2: λ > 0. In this case, equality in (23) must hold based
on (24). According to the stationary condition (22), if the
matrix H + λD is full rank, we must have z = 0, for which
equality in (23) cannot hold. Hence, H + λD is not full-rank
and we have det(H + λD) = 0. As D is positive definite,
we also have det(D−1/2HD−1/2 + λI) = 0. Since λ > 0,
this equality tells us that −λ belongs to one of the negative
eigenvalues of D−1/2HD−1/2. In the following, we will show
that D−1/2HD−1/2 has one and only one negative eigenvalue.

By definition, D is a block diagonal matrix. Hence, its
inverse is also block diagonal. Let us define D−1/2 =
diag{G, g}, where G = 1/

√
2(I + η2A)−1/2 and g = 1/

√
2.

Thus, we have

D−1/2HD−1/2 =

[
−ch> − hc> gc

gc> 0

]
,

where c = Ga and h = Gβ0. Define ξ as one eigenvalue of
D−1/2HD−1/2, and compute its eigenvalues by computing
the characteristic polynomial:

det
(
ξI−D−1/2HD−1/2

)
= ξm−1

(
ξ2 + 2ξc>h + c>hh>c− g2c>c− c>ch>h

)
.

Thus, the eigenvalues of D−1/2HD−1/2 are ξ = 0 ((m − 1)
multiplicities) and ξ = −c>h ± ‖c‖

√
g2 + h>h. Since

‖c‖
√
g2 + h>h > |c>h|, the eigenvalues of D−1/2HD−1/2

satisfy: ξm+1 < 0, ξm = ξm−1 = · · · = ξ2 = 0, ξ1 > 0.
Now, it is clear that D−1/2HD−1/2 has one and only one
negative eigenvalue and one positive eigenvalue, respectively.
Thus, we have λ = −ξm+1. Assume ν1 and νm+1 are
two eigenvectors corresponding to eigenvalues ξ1 and ξm+1.
Through simple calculation, we have

νi = ki

[
−c>h + ξi

c>c
c> + h>,

gc>

ξi

(
−c>h + ξi

c>c
c + h

)]>
,

(26)
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Algorithm 1 Optimal Adversarial Data Point Design
1: Input: the data set, {yi,xi}ni=1, energy budget η, and the

index of feature to be attacked.
2: Steps:
3: compute A according to equation (10), compute β0 ac-

cording to (12).
4: compute H and D according to (15) and (21), respectively.
5: compute the smallest eigenvalue, ξm+1, of

D−1/2HD−1/2 and its corresponding eigenvector
according to (26).

6: design the adversarial data point, {x0, y0}, according to
equations (27), (28), and (29).

7: Output: return the optimal adversarial data point {x0, y0}
and the optimal value η2ξm+1 + (β0)i.

where i = 1, m+1 and scalar ki is the normalization constant
to guarantee the eigenvectors to be of unit length. According
to (22), we have

(H + λD) z = D1/2
(
D−1/2HD−1/2 + λI

)
D1/2z = 0;

thus the solution to problem (19) is

z∗ = k ·D−1/2νm+1. (27)

Since 1
2z>Dz = η2, we have k =

√
2η. Having the expression

of the optimal z∗, we can then compute s according to
equation (17):

s = ±
√

1− (z∗1:m)>A z∗1:m, (28)

where z∗1:m is the vector that comprises the first m elements
of z∗. Hence, the corresponding solution to problem (13) is

x∗0 = z∗1:m/s, y∗0 = z∗m+1/s. (29)

We now compute the optimal value of problem (16). Since
our objective function is 1

2 (z∗)>Hz∗, substituting z∗ in (27)
leads to the objective value: η2ν>m+1D

−1/2HD−1/2νm+1.
Since ν>m+1D

−1/2HD−1/2νm+1 = ξm+1, our optimal ob-
jective value is η2ξm+1.

Following similar analysis as above, we can find the optimal
z∗ for problem (7), which is z∗ =

√
2ηD−1/2ν1. Also, we

can compute the optimal x∗0 and y∗0 according to equation (29)
and its optimal objective value, which is η2ξ1.

In summary, the optimal values for problems (5) and (7)
are η2ξm+1 + (β0)i and η2ξ1 + (β0)i respectively. We have
summarized the process to design the optimal adversarial
data point in Algorithm 1 with respect to objective (5) and
the process with respect to objective (7) can be obtained
accordingly. Based on our optimal values of problems (5) and
(7), we can further decide the optimal values of problems (3)
and (4) as discussed at the beginning of this section. From our
analysis we can see that the main computation is to compute
A in (10). Hence, the complexity of our algorithm is O(m3).

Moreover, if we use the ridge regression method in linear
regression, there is only a slight difference in the matrix A in
problem (13) and the whole analysis remains the same.

One may concern that the proposed adversarial data point
may behave as an outlier and can be easily detected by the

learning system. We can mitigate this by a simple repeating
strategy, in which we repeat the proposed adversarial data
point K times and shrink the magnitude of these poisoning
data by

√
K. This can be simply verified by

β̂ = (X̂>X̂)−1X̂ŷ

=
(
X>X + x0x

>
0

)−1
(X>y + x0y0)

=

(
X>X +

k∑
i=1

1√
K

x0
1√
K

x>0

)−1 (
X>y

+
K∑
i=1

1√
K

x0
1√
K
y0

)
= (X̃>X̃)−1X̃>ỹ,

where X̃ = [X>,
1√
K

x0, . . . ,
1√
K

x0︸ ︷︷ ︸
K times

]> and ỹ =

[y>,
1√
K
y0, . . . ,

1√
Ky0︸ ︷︷ ︸

K times

]>. By shrinking the poisoning data

points, it will make the detection of these points more difficult,
especially when the dataset is standardized.

We now analyze the impact of parameters, such as η,
on the objective value. Even though we have a closed-form
solution to the optimal adversarial data point, the objective is
a complex function of the original dataset. Hence, it will be
difficult to analyze this for the general case. Instead, we will
focus on some special cases. In particular, we analyze how
the energy budget affects the value of objective function in
the large data sample scenario. As our analysis shows, our
optimal values are η2ξ, where ξ = −c>h± ‖c‖

√
g2 + h>h,

c = Ga, h = Gβ0, G = 1/
√

2(I + η2A)−1/2, g = 1/
√

2,
A = (X>X)−1, and β0 is the original regression coeffi-
cient. In the large data sample limit and the assumption that
the features are independent and standardized, we have the
approximation A = I. Recall that a is the ith column of
A, a = ei. As the result, the objective value is η2ξ =
1
2

η2

1+η2

[
−βi0 ±

√
η2 + 1 + ||β0||2

]
. For objective (5) with

optimal value 1
2

η2

1+η2

[
−βi0 −

√
η2 + 1 + ||β0||2

]
, this func-

tion is monotonically decreasing with η. For the objective (7)
with optimal value 1

2
η2

1+η2

[
−βi0 +

√
η2 + 1 + ||β0||2

]
, it is

a monotonically increasing function of η.

C. Attacking with small changes of other regression coeffi-
cients

In Section II-B, we have discussed how to design the
adversarial data points to attack one specific regression coeffi-
cient. However, as we only focus on one particular regression
coefficient, other regression coefficients may also be changed
as well. In this subsection, we consider a more complex
objective function, where we aim to make the changes to
other regression coefficients to be as small as possible while
attacking one of the regression coefficients.

Suppose our objective is to minimize the ith regression coef-
ficient (the scenario of maximize the ith regression coefficient
can be solved using similar approach), i.e., to minimize ‖β̂i‖2.
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At the same time, we would also like to minimize the changes
to the rest of the regression coefficients, i.e., to minimize
‖β−i0 −β̂

−i
‖2, where β−i0 = [β1

0 , . . . , β
i−1
0 , 0, βi+1

0 , . . . , βm0 ]>

and β̂
−i

= [β̂1, . . . , β̂i−1, 0, β̂i+1, β̂m]>. Combine the two
objectives, we have our new objective function

f(β̂) =
1

2

∥∥∥β−i0 − β̂
−i∥∥∥2 +

λ

2

∥∥∥β̂i∥∥∥2 ,
where λ is the trade-off parameter. The larger the λ is, the
more effort will be made to keep the ith regression coefficient
small. A negative λ means the adversary attempts to make the
magnitude of the ith regression coefficient large. Again, we
assume that the attack energy budget is η. As the result, we
have the following optimization problem

min
‖[x>

0 ,y0]‖≤η
:

1

2

∥∥∥β−i0 − β̂
−i∥∥∥2 +

λ

2

∥∥∥β̂i∥∥∥2 (30)

s.t. β̂ = argmin
β

: ‖ŷ − X̂β‖2.

As the objective function is a quadratic function with respect to
β̂, we can write it in a more compact form: 1

2 (β̂−β−i0 )>Λ(β̂−
β−i0 ), where Λ = diag(1, 1, . . . , λ, . . . , 1) and λ is at the ith
coordinate. With this compact form, our optimization problem
can be written as

min
‖[x>

0 ,y0]‖≤η
:

1

2
(β̂ − β−i0 )>Λ(β̂ − β−i0 ) (31)

s.t. β̂ = argmin
β

: ‖ŷ − X̂β‖2.

To solve this problem, same as in the previous subsection, we
start by solving the lower level optimization problem. Since
we have the same lower level problem as in (5), substitute β̂
in the objective with the expression (11), and we have the one
level optimization problem

min
x0,y0

:
1

2
g>Λg

s.t.
∥∥[x>0 , y0]

∥∥ ≤ η,
where g =

Ax0(y0−x>
0 β0)

1+x>
0 Ax0

−b with A and β0 defined in (10)

and (12) respectively and b = β−i0 − β0. To further simplify
our problem, let us define

A1 = [A,0], A2 =

[
A 0
0 0

]
, c =

[
−β0

1

]
, z =

[
x0

y0

]
,

(32)

where A1 ∈ Rm×(m+1) and A2 ∈ R(m+1)×(m+1). With
the new defined variables, we can write our problem more
compactly as:

min
z

:
1

2

(
A1zc>z

1 + z>A2z
− b

)>
Λ

(
A1zc>z

1 + z>A2z
− b

)
(33)

s.t. ‖z‖ ≤ η.

Since the objective is a ratio of two quartic functions, similar
to the process we carried out from (14) to (16), we perform
variable change z = w

s by introducing the new variable

Algorithm 2 Optimal Adversarial Data Point Design while
Making Small Changes to Other Regression Coefficients

1: Input: the data set, {yi,xi}ni=1, energy budget η, and the
index of feature to be attacked, the trade-off parameter λ.

2: Steps:
3: compute A according to equation (10), compute β0 ac-

cording to (12), compute A2 according to (32).
4: follow the steps (30), (31), (33), and (34), and formulate

our problem as a polynomial optimization problem (37).
5: use Lasserre’s relaxation method to solve problem (37)

and get the optimal solution x∗ and optimal value p∗.
6: compute w∗ = U>x∗, where I + η2A2 = UU>.
7: compute s∗ = ±

√
1− (w∗)>A2w∗.

8: calculate the optimal solution x∗0 = w∗1:m/s
∗, y∗0 =

w∗m+1/s
∗.

9: Output: return the optimal adversarial data point {y∗0 ,x∗0}
and the optimal value p∗.

w and scalar s. Insert it into problem (33) and follow the
same argument we have made to transform problem (14) to
problem (16), problem (33) is equivalent to the following
problem

min
w,s

:
1

2

(
A1wc>w − b

)>
Λ
(
A1wc>w − b

)
(34)

s.t. (s2 + w>A2w)2 = 1, (35)

w>w ≤ s2η2. (36)

According to the definition of A2, it is positive semidefinite.
Hence, we have s2 = 1−w>A2w. Plug in the expression of
s2 into (36), the constraints in problem (34) can be simplified
to w>(I + η2A2)w ≤ η2. Let U>U = I + η2A2 be the
Cholesky decomposition of I + η2A2. Define H = A1U

−1,
e = U−>c, and x = Uw, we can simplify problem (34)
further as:

min
x

:
1

2

(
Hxe>x− b

)>
Λ
(
Hxe>x− b

)
(37)

s.t. x>x ≤ η2.

This is an optimization problem with a quartic objective
function and with a quadratic constraint. Recent progress in
multivariate polynomial optimization has made it possible
to solve this problem using the sum of squares technology
[38]–[41]. This method finds the globally optimal solutions
by solving a sequence of convex linear matrix inequality
problems. Even though this sequence might be infinitely long,
in practice, a very short sequence is enough to guarantee its
global optimality. Hence, in this subsection, we will resort to
Lasserre’s relaxation method [38]. Algorithm 2 summarizes
the process to design the adversarial data point. The complex-
ity of Algorithm 2 is dominant by the solving of the relaxation
semidefinite problem. Hence, the computational complexity of
Algorithm 2 is O(s(N)4.5), where N is the relaxation order
and s(N) =

(
N+m
N

)
[42]. Numerical examples using this

method to solve our problem with real data will be provided
in Section IV.

In this subsection, we put an `2 norm constraint on the
adversarial data point. It is possible to extend our work to
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TABLE I
CONFIGURATIONS OF c AND d AND THEIR CORRESPONDING

MODIFICATIONS.

Modification Configurations of c and d
delete the ith data sample c = −ei, b = Xi,:

delete feature i c = X>
:,i, d = −ei

add one adversarial data sample X← [X,0], c = en+1,
d = x>

n+1

modify one entry c = η · ei, d = ej

other kinds of norm constraints, such as `1 and `∞ norm
constraints. Suppose we put `p (p = 1 or p = ∞) norm
constraint on the adversarial data sample with objective (30),
following similar steps in this subsection, we can obtain ob-
jective (34) with constraint (35) and the norm cone constraint
||w||p ≤ sη. When p = 1, the norm cone constraint can
be transformed to the inequalities constraints

∑m+1
i=1 ai ≤ sη

and −ai ≤ wi ≤ ai for i = 1, . . . ,m + 1, where ai is the
auxiliary variable. When p = ∞, we can transform the norm
cone constraint to b ≤ sη and −b1 4 w 4 b1, where b
is a auxiliary variable. Both cases lead to linear inequality
constraints, which are special polynomial inequalities. Hence,
we can still use the Lasserre’s relaxation method to obtain the
optimal solution.

III. RANK-ONE ATTACK ANALYSIS

In Section II, we have discussed how to design one ad-
versarial data point to attack the regression coefficients. In
this section, we consider a more powerful adversary who can
modify the whole dataset in order to attack the regression coef-
ficients. In particular, we will consider a rank-one attack on the
feature matrix [23]. This type of attack covers many practical
scenarios, for example, modifying one entry of the feature
matrix, deleting one feature, changing one feature, replacing
one feature, etc. We summarize the these modifications and
their corresponding configurations of c and d in Table I, where
cd> is the rank one modification matrix, Xi,: denotes the ith
row of the feature matrix X, X:,i represents the ith column
of the feature matrix, ei is the standard basis vector, and η
is the scalar which denotes the modification energy budget.
Hence, the analysis of the rank-one attack provides a universal
bound for all of these kinds of modifications. Specifically,
we will consider the objective in problem (3) and (4) where
the adversary attacks one particular regression coefficient.
In the following, we will first formulate our problem and
then provide our alternating optimization method to solve this
problem.

In the considered rank one attack model, the attacker will
carefully design a rank-one feature modification matrix ∆ and
add it to the original feature matrix X. As the result, the
modified feature matrix is X̂ = X + ∆. As ∆ has rank one,
we can write ∆ = cd>, where c ∈ Rn and d ∈ Rm. Similar
to the previous section, we restrict the adversary to having
constrained energy budget, η. Here, we use the Frobenius norm
to measure the energy of the modification matrix. Hence, we
have ‖∆‖F ≤ η, where ‖ · ‖F denotes the Frobenius norm of

a matrix. If the attacker’s goal is to increase the importance
of feature i, our problem can be written as

max
‖cd>‖F≤η

: |β̂i| (38)

s.t. β̂ = argmin
β
‖y − X̂β‖2,

X̂ = X + cd>.

If the adversary is trying to minimize the magnitude of the ith
regression coefficient, our problem is

min
‖cd>‖F≤η

: |βi| (39)

s.t. β̂ = argmin
β

: ‖y − X̂β‖2,

X̂ = X + cd>.

Similar to Section II-B, the solutions to problems (38) and (39)
can be obtained by the solutions to the following two prob-
lems:

max
‖cd>‖F≤η

: β̂i (40)

and

min
‖cd>‖F≤η

: β̂i (41)

with the same constraints as in (38) and (39).
We can further write the above two problems in a more

unified form:

min
‖cd>‖F≤η

: e>β̂ (42)

s.t. β̂ = argmin
β

: ‖y − X̂β‖2,

X̂ = X + cd>.

If e = ei, in which ei is a vector with the ith entry being
1 and all other entries being zero, problem (42) is equivalent
to problem (41). If e = −ei, problem (42) is equivalent to
problem (40). Hence, in the following part, we will focus on
solving this unified problem (42).

To solve problem (42), we can first solve the lower level
optimization problem in the constraints. It admits a simple
solution that β̂ = X̂†y and X̂† is the pseudo-inverse of X̂.
This pseudo-inverse can be written as X̂† = X† + G [43],
where

G =
1

γ
X†nw> − γ

‖n‖2‖w‖2 + γ2
·(

‖w‖2

γ
X†n + v

)(
‖n‖2

γ
w + n

)>
, (43)

γ = 1 + d>X†c, v = X†c, n = (X†)>d, and w = (I −
XX†)c.

Since β̂ = X̂†y = (X†+ G)y and X† does not depend on
c and d, our problem is equivalent to

min
c,d

: e>Gy (44)

s.t. ‖c · d>‖F ≤ η.
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Suppose (c∗,d∗) is the optimal solution of (44), it is easy to
see that for nonzero k, (kc∗,d∗/k) is also a valid optimal
solution. To avoid the ambiguity, it is necessary and possible
to further reduce the feasible region. Hence, we put an extra
constraint on c, where we restrict the norm of c to be less
than or equal to 1. As the result, our problem can be further
written as

min
c,d

: e>Gy (45)

s.t. ‖c‖ ≤ 1, ‖d‖ ≤ η,

in which we use the identity ‖cd>‖F = ‖c‖‖d‖. It is clear
that problem (44) and problem (45) have the same optimal
objective value.

Since G is determined by c, d, and X, different values of
c and d may result in different objective functions. Before
further discussion, let us assume the singular value decompo-
sition of the original feature matrix is X = UΣV>, where
Σ = [diag(σ1, σ2, · · · , σm),0]> and σ1 ≥ σ2 ≥ · · · ≥ σm >
0. With this decomposition, we have X† = VΣ†U>, where
Σ† = [diag(σ−11 , σ−12 , · · · , σ−1m ),0]. In (43), if η ≥ σm, by
letting γ → 0, we have our objective being minus infinity by
setting (c,d) = (um,−σmvm) or (c,d) = (−um, σmvm),
where um and vm are the mth column of matrices U and V,
respectively. Hence, we conclude that, when η ≥ σm, the op-
timal value of problem (45) is unbounded from below. As the
result, throughout this section, we assume η < σm. Thus, we
also have γ = 1+d>X†c ≥ 1−‖c ·d>‖‖X†‖ ≥ 1− η

σm
> 0.

We note that when η approaches σm, it does not mean to kill
all of the signals in the feature matrix but only some signals
with the energy equal to the smallest singular value of the
feature matrix.

Let h denote our objective h(c,d) = e>Gy, plug in the
expression of G, and we have

h(c,d) =
1

‖n‖2‖w‖2 + γ2
(
γe>X†nw>y − γe>vn>y

− ‖w‖2e>X†nn>y − ‖n‖2e>vw>y
)
. (46)

We need to optimize h(c,d) over c and d with the constraint
‖c‖ ≤ 1 and ‖d‖ ≤ η. However, h(c,d) is a ratio of two
quartic functions, which is known to be a hard non-convex
problem in general. To solve this problem, similar to [34], we
can use the projected gradient descent method. However, it is
hard to choose a proper step-size and its convergence is not
clear when the projected gradient descent is applied to a non-
convex problem. In the following, we provide an alternating
optimization algorithm with provable convergence.

The enabling observation of our approach is that even
though the optimization problem is a complex non-convex
problem, for a fixed c, h is a ratio of two quadratic functions
with respect to d. Similarly, for a fixed d, h is a ratio of two
quadratic functions with respect to c. A ratio of two quadratic
functions admits a hidden convex structure [44]. Inspired by
this, we decompose our optimization variables into c and d,
and then use alternating optimization algorithm described in
Algorithm 3 to sequentially optimize c and d.

Algorithm 3 Optimal Rank-one Attack Matrix Design via the
Alternating Optimization Algorithm

1: Input: data set {yi,xi}ni=1 and energy budget η.
2: Initialize: randomly initialize c0 and d0, set number of

iterations k = 0.
3: compute G according to (43).
4: plug in the expression of G into (45), and obtain our

objective, h(c,d), as in (46).
5: Do
6: update ck by solving: ck = argmin

‖c‖≤1
: h(c,dk−1),

7: update dk by solving: dk = argmin
‖d‖≤η

: h(ck,d),

8: set k = k + 1,
9: While convergence conditions are not meet.

10: compute the modification matrix ∆ = ck(dk)>.
11: Output: return the modification matrix, ∆.

The core of this algorithm is to solve the following two
problems

ck = argmin
‖c‖≤1

: h(c,dk−1), (47)

and

dk = argmin
‖d‖≤η

: h(ck,d). (48)

For a fixed d, the objective of problem (47) becomes h(c,d) =
h1(c)/h2(c), where we omit the superscript of d,

h1(c) = c>
[
e>X†nny>(I−XX†)− n>yne>X†

− e>X†nn>y(I−XX†)− ‖n‖2(X†)>ey>(I−XX†)
]
c

+
[
e>X†n(I−XX†)y − n>y(X†)>e

]>
c, (49)

and

h2(c) =c>
[
‖n‖2(I−XX†) + nn>

]
c + 2n>c + 1. (50)

Hence, problem (47) can be written as:

min
c

:
h1(c)

h2(c)
(51)

s.t. ‖c‖ ≤ 1, (52)

where the forms of hi(c) = c>Aic + 2b>i c + li, i = 1, 2 and
Ai, bi and li can be derived from (49) and (50). The objective
of this problem is the ratio of two quadratic functions. Even
though it is non-convex, it has certain hidden convex struc-
tures. The following theorem characterizes its optimal solution
by solving a semidefinite programming [44].

Theorem 1. ( [44]) If there exists µ > 0 such that[
A2 b2

b>2 l2

]
+ µ

[
I 0
0 −1

]
� 0, (53)

the optimal value of problem (51) is equivalent to the following
optimal value

max
α, ν≥0

: α (54)

s.t.
[
A1 b1

b>1 l1

]
� α

[
A2 b2

b>2 l2

]
− ν

[
I 0
0 −1

]
8



Proof. Please see [44] for detail.

We now show that our problem (51) satisfies condition (53).
As the result, we can find the solution to problem (51) by
solving problem (54).

To prove the left hand side of (53) is positive definite, we
can show the following two inequalities are true according to
Schur complement condition for positive definite matrix

l2 − µ > 0, (55)

A2 + µI− 1

1− µ
b2b

>
2 � 0, (56)

where l2 = 1. Plug in the expression of A2, the left hand of
inequality (56) can be written as

A2 + µI− 1

1− µ
b2b

>
2

= ‖n‖2(I−XX†) + µI− µ

1− µ
nn>.

Since I − XX† is a projection matrix, it is positive semi-
definite. So, we only need to prove

µI− µ

1− µ
nn> � 0. (57)

Since nn> is rank-one and its non-zero eigenvalue is ‖n‖2,
it equals to proving ‖n‖2/(1 − µ) < 1. To guarantee this
inequality, we only need to make sure µ < 1 − ‖n‖2. Since
‖X†‖ ≤ 1/σm and ‖d‖ ≤ η, we get ‖n‖2 = ‖(X†)>d‖2 ≤
‖X†‖2‖d‖2 ≤ η2/σ2

m < 1. By choosing 0 < µ < 1−‖n‖2 <
1, we can ensure (55) and (56) are both satisfied, and hence
inequality (53) is satisfied.

From Theorem 1, we know the optimal value of (51) is
equivalent to the optimal value of problem (54). Problem (54)
is a semidefinite programming problem, which is convex and
can be easily solved by modern tools such as [45] and [46].
We now discuss how to find the optimal c which achieves
this value. Suppose the optimal solution of problem (54) is
(α∗, ν∗). Since, h2(c) > 0, we have h1(c) ≥ α∗h2(c) for
any feasible c. Hence, we can compute the optimal solution
of problem (51) by solving

argmin
c

: h1(c)− α∗h2(c) (58)

s.t. ‖c‖2 ≤ 1 (59)

This problem is just a trust region problem. There are several
existing methods to solve it efficiently. In this paper, we
employ the method described in [47].

Now, we turn to solve problem (48). Since (48) and (47)
have similar structure, we can employ the methods described
in Theorem 1 and (58) to find its optimal value and optimal
solution for problem (48).

Until now, we have fully described how to solve the
intermediate problems in the alternating optimization method.
The following theorem shows that the proposed alternating
optimization algorithm will converge. Suppose the generated
sequence of solution is {ck, dk}, k = 0, 1, · · · , and we have
the following corollary:
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Fig. 1. The regression coefficients before and after attacking the fourth
regression coefficient with objective (5).

Corollary 1. The sequence {ck, dk} admits a limit point
{c̄ , d̄} and we have

lim
k→∞

h(ck,dk) = h(c̄, d̄). (60)

Furthermore, every limit point is a critical point, which means

∇h(c̄, d̄)>
[

c− c̄
d− d̄

]
≥ 0, (61)

for any ‖c‖ ≤ 1 and ‖d‖ ≤ η.

Proof. We first give the proof of (60). Since the sequence
{ck,dk} lies in the compact set, {(c,d) | ‖c‖ ≤ 1, ‖d‖ ≤
η}, and according to the Bolzano-Weierstrass Theorem [48],
{ck,dk} must have limit points. Hence, there is a subsequence
of {hk} which converges to h(c̄, d̄). As the objective is a
continuous function with respect to c and d, the compactness
of the constraint also implies the sequence of the objective
value, {hk}, is bounded from below. In addition, {hk} is a
non-increasing sequence, which indicates that the sequence of
the function value must converge. In summary, the sequence
{hk} must converge to h(c̄, d̄). For the rest of the proof, please
refer to Corollary 2 of [49] for more details.

IV. NUMERICAL EXAMPLES

In this section, we test our adversarial attack strategies on
practical regression problems. In the first regression task, we
use seven international indexes to predict the returns of the
Istanbul Stock Exchange [50]. The data set contains 536 data
samples, which are the records of the returns of Istanbul Stock
Exchange with seven other international indexes starting from
Jun. 5, 2009 to Feb. 22, 2011. Also, we demonstrate how our
attack impacts the quality of a regression task using the wine
dataset [51].

A. Attacking one specific regression coefficient

In this experiment, we attack the fourth regression coef-
ficient of the Istanbul Stock Exchange dataset and try to
make its magnitude large by solving problem (4). We use
two strategies to attack this coefficient with a fixed energy
budget η = 0.2. The first strategy is the one proposed in this
paper. As a comparison, we also use a random strategy to
approximate the exhaustive search algorithm. In the random
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Fig. 2. The scatter plot of the original data, the designed poisoning data, and
the poisoning data after the repeating strategy. The x-axis and y-axis are two
features that are specified by their corresponding axes labels (including the
response value). The blue circle represents the original data, the solid red dot
denotes the data point designed by our proposed method in Algorithm 1, and
the solid green circle indicates our proposed poisoning data after 16 times of
repeating.

strategy, we randomly generate the adversarial data point
with each entry being i.i.d. generated from a standard normal
distribution. Then, we normalize its energy to be η. We repeat
this random attack 10000 times and select the one with the
smallest objective value. Hence, the random strategy is an
approximation of the exhaustive search algorithm.

Fig. 1 shows the regression coefficients before and after
our attack. The x-axis denotes the index of the regression
coefficients and the y-axis indicates the value of the regression
coefficients. In this figure, the ‘orig’ denotes the original re-
gression coefficient, ‘opt’ represents the regression coefficient
after attacking by our proposed optimal attack strategy, and
‘rand’ indicates the regression coefficient after attacking by
the random attack strategy. From the figure we can see that
our proposed adversarial attack strategy is much more efficient
than the random attack strategy. One can also observe that
by only adding one adversarial example, designed by the
approach characterized in this paper, one can dramatically
change the value of a regression coefficient and hence change
the importance of that explanatory variable.

Fig. 2 shows the original data points (in blue), the optimal
adversarial data point (in red), and the adversarial data points
after the 16 times repeating strategy (in green) in this exper-
iment. The figure demonstrates that the proposed adversarial
data point may behave as an outlier. However, after our simple
repeating strategy, the adversarial data points act just like
normal data points. Hence, our repeating strategy can mitigate
the adversarial data point being detected by the regression
system.

B. Attacking without changing untargeted regression coeffi-
cients too much

From the numerical examples in the previous subsection,
we can see the untargeted regression coefficients may change
greatly while attacking one specific regression coefficient with
an adversarial data point. For example, as demonstrated in
Fig. 1, the sixth and seventh regression coefficients change
significantly when we attack the fourth regression coefficient.
To mitigate the undesirable changes of untargeted regression
coefficients, we need more sophisticated attacking strategies.
In this subsection, we will test different strategies with a more
general objective function as demonstrated in Section II-C. We
also use the same data set as described in the previous sub-
section. We first try to attack the fourth regression coefficient
to increase its importance while making only small changes
to the rest of the regression coefficients. To accomplish this
task, we aim to solve problem (30) with λ = −1. Given the
energy budget, firstly, we use our semidefinite relaxation based
algorithm to solve problem (37), and then follow Algorithm 2
to find the adversarial data point. For comparison, we also
carry out the random attack strategy, in which we randomly
generate the data point with each entry being i.i.d. according
to the standard normal distribution. Then, we normalize its
energy being η and added it to the original data points.
We repeat these random attacks 10000 times and select the
one with the smallest objective value. The third strategy is
the projected gradient descent based strategy, where we use
the projected gradient descent algorithm to solve (37) and
follow similar steps of Algorithm 2 to find the adversarial data
point. Projected gradient descent works much like the gradient
descent except with an additional operation that projects the
result of each step onto the feasible set after moving in the
direction of negative gradient [52]. In our experiment, we use
diminishing step-size, 1/(t+ 1). Since the projected gradient
descent algorithm depends on the initial points heavily, given
the energy budget, we repeat it 100 times with different
random initial points and treat the average of its objective
values as the objective value of this algorithm. Also, among
the 100 times attacks, we record the one with the smallest
objective value.

Fig. 3 shows the objective values under different energy
budgets with different attacking strategies and Fig. 4 demon-
strates the regression coefficients after one of the attacks of
different strategies with η = 1. In these figures, ‘orig’ is
the original regression coefficient, ‘rand’ means the random
strategy, ‘poly’ indicates our semidefinite relaxation strategy,
‘grad-avg’ is the average objective value of the 100 times
attacks based on the projected gradient descent algorithm,
and ‘grad-min’ is the one with the smallest objective value
among the 100 times attacks based on the projected gradient
descent algorithm. From these two figures, we can see that our
semidefinite relaxation based strategy performs much better
than the other two strategies. Among the 100 times attacks
based on the projected gradient descent, the minimal one can
achieve similar objective values as our proposed attacks based
on the semidefinite relaxation. In addition, in our experiment,
our semidefinite relaxation method with relaxation order 2 or
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Fig. 3. Attack the fourth regression coefficient with objective (30) and λ = −1 under different energy budgets.
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Fig. 4. The regression coefficients before and after different kinds of strategies
that attack the fourth regression coefficient with energy budget η = 1.

3 can always lead to globally optimal solutions. Hence, the
computational complexity of this method is still low. Fig. 4
also shows that our relaxation based method leads to the largest
magnitude of the fourth regression coefficient while keeping
other regression coefficients almost unchanged.

In the second experiment, we attack the sixth regression
coefficient and attempt to make its magnitude small while
keeping the change of the rest of the coefficients to be
small. So, we set λ = 1 in problem (30) to achieve this
goal. The settings of each strategy are similar to the ones
in the first experiment. Fig. 5 shows the objective values
with different strategies under different energy budgets and
Fig. 6 demonstrates the regression coefficients after one of
the attacks of those strategies respectively with energy budget
η = 1. From Fig. 5 we know the projected gradient descent
based strategy and the semidefinite relaxation based strategy
achieve much lower objective values compared to the random
attack strategy. Specifically, when the energy budget is smaller
than 0.7, both strategies behave similarly. However, when the
energy budget is larger than 0.7, the projected gradient descent
based strategy leads to larger objective values as the energy
budget grows. This is because the projected gradient descent
algorithm tends to find solutions at the boundary of the feasible
set. Only some attacks with good initialization can lead to
the global minimum. By contrast, our semidefinite relaxation
based strategy can find the globally optimal solutions with
relaxation order 2 or 3. Thus, it gives the best performance
among the three strategies. Fig. 6 also demonstrates our

relaxation based method achieves the global optimum when
η = 1 as it leads the sixth regression coefficient to zero and
other regression coefficients to be unchanged.

C. Rank-one attack

In this subsection, we carry out different rank-one attack
strategies. Our goal is to minimize the magnitude of the fourth
regression coefficient with objective (41). We compare two
strategies: the projected gradient descent based strategy dis-
cussed in Section IV-B and our proposed alternating optimiza-
tion based strategy. For the projected gradient descent based
strategies, we use different step sizes: 1/(1+t), 10/(1+t), and
100/(1 + t). As our analysis shows, when the energy budget
is larger than the smallest singular value, our objective can be
minus infinity. Hence, in our experiment, we vary the energy
budget from 0 to the smallest singular value, which is 0.053.
Given a specific energy budget, we set all the algorithms with
the same randomly initialized point and run them until they
stop with the same convergence condition: two consecutive
function values change too small, or the algorithm reaches the
maximal allowable iterations. We repeat this process 100 times
and record their average objective values.

Fig. 7 (a) shows the averaged run times and Fig. 7 (b)
illustrates objective values of the four algorithms, where ‘GD-
1’, ‘GD-10’ and ‘GD-100’ stand for the projected gradient
descent with stepsizes 1/(1 + t), 10/(1 + t), and 100/(1 + t),
respectively, and ‘AO’ denotes the proposed alternating opti-
mization method. We carry out this experiment on a PC with
four Intel E3 CPUs. All the four algorithms have the same
convergence condition: the absolute value of the difference of
two consecutive objective values is less than 10−5. Fig. 7 (a)
shows that, as the energy budget increases, the run times of the
alternating optimization, GD-1, and GD-10 increase. However,
as the energy budget increases, the run times of GD-100 first
decrease and then increase. This is due to the fact that a larger
stepsize will result in a faster convergence rate while it may
cause oscillation. Fig. 7 (b) shows that when the energy budget
increases, the objectives decrease for both of these algorithms.
Furthermore, the proposed alternating optimization based algo-
rithm provides much smaller objective values, especially when
the energy budget approaches the smallest singular value.
When the energy budget approaches the smallest singular
value, the gradient descent based algorithm becomes very
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Fig. 5. Attack the sixth regression coefficient with objective (30) and λ = 1 under different energy budgets.
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Fig. 6. The regression coefficients after different kinds of strategies that attack
the sixth regression coefficient with energy budget η = 1.

unstable. This is because when the energy budget is large,
the objective is very sensitive to the energy budget. So, a
small stepsize may result in significant objective value change.
This phenomena can be observed in Fig. 8, where it depicts
the evolution of the objective values of ‘AO’ and ‘GD-100’
with the energy budget being η/σm = 0.5, η/σm = 0.9 and
η/σm = 0.95, respectively, and σm is the smallest singular
value of the original feature matrix. From this figure we can
see the alternating optimization based algorithm converges
very fast while the projected gradient descent based algorithm
becomes unstable when the energy budget is large. This is
due to the fact that the objective of our alternating optimization
based algorithm is guaranteed to be monotonically decreasing.

In the second experiment, we test our rank-one attack
strategy on the wine dataset [51], which includes 11 chemical
analysis of the red wine and its corresponding quality (ranging
from 3 to 8). In this dataset, we have 1599 data samples, and
we randomly choose 80 percent of the data as the training
set and the rest as the test data. We use linear regression to
learn the regression coefficients on the training data and then
use these regression coefficients on the test data to predict
the quality of the test data. We use the root mean square error
(RMSE) to measure the goodness of predicting on the training
and test data. We use the rank-one attack strategy proposed in
this paper on the training data with the target of maximizing
the eighth regression coefficient (corresponding to the density
feature). We carry out the attack with different energy budgets
ranging from 0 to the smallest singular value of the feature
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Fig. 7. The averaged run times (Subfigure (a)) and the objective values
(Subfigure (b)) of the projected gradient descent and the proposed alternating
optimization method with different stepsizes.

matrix of training data.
Fig. 9 (a) illustrates the original regression coefficients with-

out attack. The magnitude of the eighth regression coefficient
is very small. It reveals that the eighth feature is not important
compared to other features. Fig. 9 (b) shows the RMSE on
the training data and test data and the magnitude of the eighth
modified regression coefficient under different energy budgets.
‘train-orig’ and ‘test-orig’ represent the RMSE on the training
and test data without attacking the training data. ‘train-modi’
and ‘test-modi’ denote the RMSE on the training and test data
when we conduct our rank-one attack on the training dataset.
This figure demonstrates that, even though the RMSE on the
attacked training data is low, the model based on the attacked
features performs extremely badly on the test data. It illustrates
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Fig. 9. Figure (a) shows the regression coefficient on the original data set.
Figure (b) illustrates the RMSE on the training and test data set and the
magnitude of the eighth modified regression coefficient with different attack
energy budgets.

that attacking the regression coefficient not only misleads the
interpretation of the model but also has a significant impact
on the performance of the model. We note that a large value
of RMSE shown in Fig. 9 (b) does not necessarily imply
that the user can detect the attack easily. In particular, in
this experiment, in order to calculate RMSE, we assume that
we know the ground-truth response values in the test data.
However, in practice, when the user utilizes the trained model
to perform testing, the testing data usually does not contain
response values. As a result, the user will not know the RMSE
and hence will not be able to use RMSE to detect whether
there is an attack or not without additional information.

V. CONCLUSION

In this paper, we have investigated the adversarial robustness
of linear regression problems. Particularly, we have given the
closed-form solution when we attack one specific regression
coefficient with a limited energy budget. Furthermore, we have
considered a more complex objective where we attack one of
the regression coefficients while trying to keep the rest of the
regression coefficients to be unchanged. We have formulated
this problem as a multivariate polynomial optimization prob-
lem and introduced the semidefinite relaxation method to solve
it. Finally, we have studied a more powerful adversary who
can make a rank-one modification on the feature matrix. To
take advantage of the rank-one structure, we have proposed an
alternating optimization algorithm to solve this problem. The
numerical examples demonstrated that our proposed closed-

form solution and the semidefinite relaxation based strategies
could find the globally optimal solutions, and the alternating
optimization based strategy provides better solutions, faster
convergence, and more stable behavior compared to the pro-
jected gradient descent based strategy. We should also note
that the solutions are “optimal” under the specific objectives
mentioned in the paper. Clearly, if the goal of the attacker is
changed, then the optimal attack strategy will be different.

In terms of future work, it is of interest to study how to de-
sign multiple adversarial data points and efficiently design the
modification matrix without the rank-one constraint. Another
interesting future research direction is to study the defense
strategies to mitigate this kind of attack. If we consider the
defense strategy, one possible problem formulation is

β̂ = argmin
β

`def (X̂, ŷ,β)

s.t. X̂, ŷ = argmin
X∈Cx,y∈Cy

`adv(X,y),

where `def (·) is the objective of the defender , `adv(·) is the
objective of the adversary, and Cx and Cy are the modifica-
tion constraints of the feature matrix and response values,
respectively. We should also note that `adv(·) may also depend
on the defense strategy, which will then render the problem
as a competing game between the defender and attacker.
With an appropriately designed loss function of the defender,
solving this optimization problem leads to the best defense
strategy under the optimal attack strategy. The complexity of
this problem depends on the forms of `def (·), `adv(·) and
their relationship. In some special cases, we can analyze this
problem. For example, our paper solved this problem when
`def (·) is the MSE loss function and `adv(·) is the objective
of manipulating one of the regression coefficients. When
`def (·) = −`adv(·), it is a minmax problem and Jagielski
et al. studied this problem when `def (·) = −`adv(·) and
`def (·) equals to the MSE loss function [26]. Generally, this
problem is very complicated as the upper-level and lower-level
optimization problems are interconnected. We will investigate
this important problem with more sophisticated objectives of
the defender in our future work.
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