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We address the problem of determining the physically correct definition of the momentum and angular
momentum densities in a spatially structured electromagnetic field, given that the expressions are not the same
when one uses the canonical energy-momentum tensor instead of the symmetric Belinfante energy-momentum
tensor in electrodynamics. This has important consequences for the interaction of matter with structured light, for
example, twisted photons, and would give drastically different results for forces and angular momenta induced
on small test objects. We show, with numerical estimates of the size of the effects, situations where the canonical
and symmetrized forms induce very different torques or (superkick) recoil momenta on small objects or atomic
rotors, over a broad range of circumstances.
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Introduction. Disagreement over the correct expression for
the linear or angular momentum density of electromagnetic
beams remains. Light beams with nontrivial wave fronts—
structured light—in particular twisted-photon beams, give an
opportunity both for adjudicating the controversy and for dra-
matic results whatever the outcome.

Twisted photons are vortexlike solutions to the Helmholtz
equation in cylindrical coordinates which have fields swirling
around a vortex line, whose angular momentum in the direc-
tion of propagation mγ is any integer times h̄. They stand in
stark contrast to plane-wave photons where mγ = ±h̄ only.
For reviews, see [1,2], and for further discussions of momen-
tum definitions, see [2–9].

Experimentally, the large total angular momentum is ver-
ified. For example, in [10,11], where twisted photons were
absorbed by small objects suspended in a viscous fluid, the
objects were observed to acquire spins in agreement with
the heightened angular momentum of the twisted photon.
However, in these experiments the objects, although small,
are large enough to absorb the entire twisted beam and so
measured total angular momentum and not the local angular
momentum density of the beam.

Quantum-state control of trapped ions using laser beams is
presently one of the most promising techniques for quantum
computing [12]. The spatial extent of the ion’s wave function
in a harmonic oscillator trap may be, for example, about 5 nm
[13] if the ion is cooled close to the oscillator’s ground state.
With such localization of the objects compared to the micron
wavelength of light used to manipulate them, the question of
how one should calculate the linear and angular momentum
density of the electromagnetic field becomes important. There
is a canonical procedure that leads to a certain expression,
reviewed below, that can, in turn, be obtained from a canon-
ical expression for the energy-momentum tensor that is not
symmetric in its two indices. Citing both aesthetics and needs

of general relativity, one can add a total derivative to make the
energy-momentum tensor symmetric, a procedure pioneered
by Belinfante [14] and by Rosenfeld [15], and then obtain a
different expression for the angular momentum density, also
reviewed below. Because of the total derivative, the integrals
that give the total angular momentum are identical if the
surface terms cause no problem.

However, as emphasized particularly in [16,17], when
structured light shines on rings or, generally, on small objects
with open centers, the angular momentum absorbed or the
torque induced depends on the angular momentum density
expressions at radii where the matter exists, and the expres-
sions are rather different for the canonical and symmetrized
or Belinfante cases. Further, Ref. [6] suggests an alternative
geometric spin Hall effect in light, where the canonical and
Belinfante predictions are quite distinct, so that measurements
could show that either or both of them must be wrong. Refer-
ence [7] showed that one could obtain the same momentum in
a confined volume using the canonical density as the one that
would be gotten using the Belinfante density if one accounted
for the surface terms but did not, to our minds, argue deci-
sively which density was physically correct. References [8,9]
reported measurements of transverse optical forces on small
particles in Bessel beams, but at selected locations where the
canonical and Belinfante force predictions happened to be the
same. We will comment on further opportunities with this type
of measurement in the text below.

Alternatively, one may discuss the effect of twisted light
on small objects in terms of superkicks, to use a term coined
in [18], to describe the effects of the sometimes quite large
azimuthal components of the linear momentum density. Spe-
cific examples of superkicks and possibilities to observe this
quantum effect were recently considered in Refs. [19,20].
The calculated size of the superkick depends critically upon
whether one uses the canonical or Belinfante expression.
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Close to the vortex line, the canonically calculated superkick
is much larger, and farther out there are broad regions where
superkicks differ in sign.

There is a separate discussion, which we will not enter
into, in both the canonical and symmetrized contexts of how
to write the angular momenta for the fermions and vector
bosons in QED or QCD, with distinct spin and orbital angular
momenta for each field, while maintaining gauge invariance.
For a review of this discussion, see [21].

The goal of this Letter is to show examples, with numerical
estimates, for the forces, torques, and accelerations in situa-
tions where the canonical and Belinfante forms of the linear
or angular momentum density lead to very different results.
We will begin with a short review, followed by studies of
twisted photons axially striking hollow cylinders, of twisted
photons impinging on and accelerating a two-ion rotor, of
small particles struck while off axis in a twisted beam, and of
radiation pressure on small objects appearing as tractor beams
in limited regions.

A brief review of the formalism. The electromagnetic La-
grangian is L = −FαβFαβ/(4μ0). Studying the response of
the Lagrangian to coordinate translations leads to a canonical
and conserved (in the first index) energy-momentum tensor
(see, e.g., [22,23])

T μν = − 1

μ0
Fμα∂νAα − gμνL. (1)

The tensor is not symmetric. It can be made symmetric by
adding a total derivative −∂α (FμαAν )/μ0, which by virtue of
the equations of motion leads to a symmetric, or Belinfante,
energy-momentum tensor

θμν = − 1

μ0
FμαF ν

α − gμνL. (2)

The tensor remains conserved.
The linear momentum densities Pν are the T 0ν/c or θ0ν/c

components of these tensors, so that

�P =
{
ε0 �E · ( �∇ ) �A, canonical,
ε0 �E × �B, symmetric, or Belinfante.

(3)

The last is also the Poynting vector times 1/c2, and the nota-
tion in the first line means P i

can = ε0
∑3

j=1 E j∇iA j .
Further, Lorentz and rotation transformations lead to a

canonical angular momentum tensor

Mαμν = xμT αν − xνT αμ + ∂L

∂ (∂αAβ )
	

μν

βγ Aγ , (4)

with 	
μν
βγ = gμ

βgν
γ − gμ

γ gν
β . The canonical angular momentum

densities �J come from M0i j/c. For the symmetrical, or
Belinfante, case, one just takes �r times the corresponding
momentum density, with no explicit spin term.

�J =
{
ε0 �E · (�r × �∇ ) �A + ε0 �E × �A, canonical,
ε0 �r × ( �E × �B), symmetrical, or Belinfante.

(5)

The two expressions differ by a total derivative. But they differ
locally, so they do not lead to the same torque upon small test
objects.

For the Jz components, the differences when considering
structured light are large and robust. As the discussion pro-
ceeds, we will begin with these components.

In the paraxial approximation, the transverse part of the
vector potential is

�A(�r, t ) = ε̂ u(ρ, φ, z)ei(kz−ωt ). (6)

Here ρ, φ, and z are cylindrical coordinates; z is the overall
propagation direction of the beam, and ε̂ is a polarization
vector,

ε̂ = aη̂+ + bη̂−, (7)

with η� = (−�x̂ − iŷ)/
√

2 and |a|2 + |b|2 = 1, with � =
±1. Also we will let σz ≡ |a|2 − |b|2. Using angle brackets
to denote the time average, the z components of the angular
momentum densities are

〈Jz〉can =
(

1

2
ε0ω

)
(� + σz )|u|2,

〈Jz〉Bel =
(

1

2
ε0ω

)[
(� + σz )|u|2 − σz

2ρ

∂ (ρ2|u|2)

∂ρ

]
. (8)

The total angular momentum along the beam direction is
mγ h̄ = (� + σz )h̄, on a per photon basis.

We will work with Bessel-Gauss solutions for the function
u; the results are similar to Laguerre-Gauss beams for suitable
choices of parameters. For the Bessel-Gauss beams

u(ρ, φ, z) = u(ρ, φ) = A0J�(κρ)ei�φe−ρ2/w2
0 . (9)

The monochromatic angular frequency is ω; k = ω/c; κ =
k sin θk , with θk being the pitch angle whose smallness defines
the paraxial approximation; and J� is a Bessel function. The
Gaussian width of the envelope is w0.

Plots of these densities as a function of distance from the
vortex line, given in terms of the wavelength λ, are shown in
Fig. 1 for total angular momenta mγ = 1 and 2, θk = 0.1, po-
larization σz = 1, selected pitch angle, and Gaussian envelope
width w0 = 10λ. The canonical angular momentum density is
never negative (and with no paraxial approximation is never
zero except at ρ = 0). However, the symmetric, or Belinfante,
case has regions where the angular momentum density swirls
in a direction opposite the overall angular momentum. These
remarkable opposite-swirling regions are broad, and the pre-
dictions of their location and strength are not sensitive to
making or not making the paraxial or other approximations.

Twisted photons incident on a hollow cylinder. To see what
torques and angular velocities might be imparted to real test
objects, we consider a specific measurement situation. We
think of the twisted photon shining on a ring or in three
dimensions a test object which is a hollow cylinder with its
axis identical to the vortex axis of the twisted-photon beam,
as depicted in Fig. 2(a). We will suppose that all the light, and
the angular momentum it contains, hitting the front edge of
the cylinder is absorbed by the cylinder. We calculate first the
angular acceleration the cylinder would have if it were in free
space, and then we calculate the terminal angular velocity it
would obtain if it were suspended in a viscous fluid.

If the hollow cylinder has an average radius ρ with inner
and outer radii ρ ± (1/2)�ρ, then the torque from absorbing
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FIG. 1. Angular momentum density on a ring of radius ρ for
a twisted light beam of (a) total angular momentum mγ = 1 and
(b) mγ = 2 and circular polarization σz = 1, with angular frequency
ω and A0 normalizing the strength of the beam’s electric field. The
Belinfante case has regions where the angular momentum density
swirls in a direction opposite the overall angular momentum.

the light on the front face of area σ is

〈τz〉 = σc 〈Jz〉 = (2πρ�ρ)c 〈Jz〉 . (10)

We obtain the normalization A0 from the total power in
the Bessel-Gauss beam, which we get by integrating the z
component of the Poynting vector. (The latter gives the energy
flux whether we use the canonical or Belinfante energy-
momentum tensor.) The z component of the Poynting vector

FIG. 2. (a) Twisted light hitting a hollow cylinder, with axes
coincident. (b) A two-ion calcium rotor.

becomes, paraxially,

〈Sz〉 = ωkA 2
0

2μ0
J2

mγ −�(κρ) exp
( − 2ρ2/w2

0

)
(11)

for a polarized situation where σz = ±1 = �. The beam’s
time average power is 〈P〉, and we obtain the normalization
A0 from

〈P〉 =
∫ ∞

0
〈Sz〉 2πρdρ. (12)

We use 〈P〉 = 4 mW, wavelength λ = 729 nm, and w0 = 10λ.
The latter two numbers match conditions in [13,24], and the
first matches the quoted power of a twisted beam delivered
on a target in [10]. For definiteness, we consider the mγ = 2
case, wall thickness �ρ = 0.5 μm, and length L = 2 μm. We
will give explicit numbers for ρ = 2 μm, a value of ρ near
the peak of the angular momentum density for the mγ = 2
canonical case [see Fig 1(b)]. Results for other values of ρ

can be scaled from the results in Fig. 1.
The moment of inertia is I = Mρ2 = 2πρm ρ3�ρL, where

M is the mass of the cylindrical shell and ρm is its mass
density, which for the sake of illustration we take as two times
the density of water. The angular acceleration 〈α〉 = 〈τz〉 /I
for the cylinder in free space is

〈α〉 ≈
{

5.5 × 106 rad/s2 canonical,
2.3 × 106 rad/s2 Belinfante,

(13)

where τz is given in terms of Jz in Eq. (10).
If the cylinder is in a viscous medium, there is a drag torque

on it, τdrag = −4πηρ2��, where η is the viscosity and �

is the cylinder’s angular rotation frequency. If the medium
is kerosine (η = 1.64 × 10−3 N s/m2), the terminal rotation
frequency is

f ≈
{

0.55 Hz canonical,
0.23 Hz Belinfante. (14)

Again, this is the prediction for one radius. Using other radii
will give different results following Fig. 1. Note that the 0.5-
μm-shell thickness is narrow enough to fit within the negative
region of the Belinfante curves in that Fig. 1.

A two-ion rotor. Another situation distinguishing the canon-
ical and Belinfante calculations is twisted photons striking a
two-ion rotor. Our discussion is inspired by the working rotor
described in [25].

We shall describe the mechanism in term of superkicks.
These come from the azimuthal component of the momentum
density, which paraxially is

〈Pφ〉can = ε0ωA 2
0

2ρ
(mγ − �)J2

mγ −�(κρ),

〈Pφ〉Bel = ε0ωA 2
0

2
κ Jmγ

(κρ)Jmγ −�(κρ). (15)

The photon number density in either case is

〈nγ 〉 = ε0ωA 2
0

2h̄
J2

mγ −�(κρ). (16)
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FIG. 3. Calculated angular acceleration for a two-ion calcium
rotor of varying radii, with further description given in the text

The transverse momentum kick or superkick at distance ρ

from the vortex line is then

〈pφ〉 = 〈Pφ〉
〈nγ 〉 =

{ (mγ −�)h̄
ρ

≡ � h̄
ρ

canonical,

h̄κ
Jmγ (κρ)

Jmγ −�(κρ) Belinfante.
(17)

For a rotor with two 40Ca+ ions [Fig. 2(b)], we choose
an atomic transition such as 4s1/2 → 4p3/2 or 4p1/2, where
the excited state is not metastable but has a fast spontaneous
decay. The situation is analogous to laser cooling [26]: The
spontaneous decay is isotropic, so statistically, there is no mo-
mentum kick in the decay, but the excitation always involves a
momentum kick in the same azimuthal direction. We shine the
twisted-photon beam so that its vortex line is perpendicular
to the plane of the rotor and passes through its center. If the
exciting laser is strong enough to quickly excite the ground-
state ion, the ion will receive one momentum kick per lifetime
of the excited state T . This will give a force d p/dt , a torque
τ , and for moment of inertia I an angular acceleration

α = τ

I
= 2ρ 〈pφ〉 /T

2Mρ2
= 〈pφ〉

MρT
, (18)

where M is the mass of the calcium ion. The lifetimes
are T (Ca+, 4p3/2) = 6.924(0.019) ns and T (Ca+, 4p1/2) =
7.098(0.020) ns [27].

Figure 3 shows a plot of the angular acceleration vs rotor
radius for the 4p3/2 case; the 4p1/2 case is barely different.

Small particles off axis in a twisted beam. References
[8,9] report measurements of the azimuthal kick received by
small particles sitting at various distances or various impact
parameters from the vortex line of a twisted-photon beam.
(The azimuthal kick is given in terms of �revolution in, say,
Fig. 2(b) of [9].) The size of the kicks, given in terms of
the azimuthal or transverse component of the momentum
density, is

pφ =
⎧⎨
⎩

ε0
[

ω�
ρ

|u|2 − 1
2ωσ

∂|u|2
∂ρ

]
Belinfante,

ε0ω�
ρ

|u|2 canonical.
(19)

The Belinfante expression is also given in the middle line of
Eq. (2) of [9]; the canonical expression differs in the absence
of the derivative term. The measurements reported were made
at the peaks of the intensity distribution in the rings of the
twisted-beam wave front. The intensity distribution is propor-
tional to |u|2, so these are precisely the locations where the
Belinfante and canonical predictions are the same.

FIG. 4. Azimuthal kick given in terms of �revolution vs radius
given as 1/ρ3 for a small particle in a twisted electromagnetic beam.
Dots indicate where current measurements lie [9].

Figure 4 shows how the expectations from the two cases
differ. The vertical axis shows the revolution frequency as a
small particle at radius ρ is kicked in a circular path about
the vortex line. The normalization depends on the power in
the beam and is chosen to match one of the power settings
in Fig. 2(b) of [9]. The dots show the locations of the current
measurements.

It would be worth having measurements at other radii.
The zeros of intensity coincide with the zeros of canonical
�revolution, so there are regions of good intensity where the
canonical and Belinfante predictions differ significantly.

Radiation pressure from structured light. Let us turn now
to discussing the longitudinal component of the linear mo-
mentum density and the radiation pressure forces engendered
by that component. The differences between the canonical
and Belinfante predictions can be dramatic. However, the
dramatic differences are only in narrow regions and are sen-
sitive to detail. We will here work with exact Bessel beam
expressions. We also omit for now the Gaussian or other
envelope. The Bessel beam is built from photons that all
have the same longitudinal momentum and same transverse
momentum magnitude but varying azimuthal angles. For the
case where all the component photons have helicity �, the
vector potential is [28–30]

Aμ

κmγ kz�
(ρ, φ, z)

= −i� A ei(kzz−ωt+mγ φ)

{
e−i�φ cos2 θk

2
Jmγ −�(κρ) η

μ
�

+ i√
2

sin θk Jmγ
(κρ) η

μ
0 −ei�φ sin2 θk

2
Jmγ +�(κρ) η

μ
−�

}
,

(20)

where kz = k cos θk and κ = k sin θk .
The longitudinal components of the momentum density are

〈Pz〉can = ε0ωkzA 2
0

2

[
cos4 θk

2
J2

mγ −�(κρ)

+ sin4 θk

2
J2

mγ +�(κρ) + 1

2
sin2 θk J2

mγ
(κρ)

]
,
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FIG. 5. Force from a twisted light beam on a small dielectric
particle at distance ρ from the photon’s vortex line for parameters
indicated on the plots. (a) gives a broad view, and (b) gives a detailed
view. The canonical expression (solid gold line) and Poynting vector
expression (dashed black line for positive values, dashed red line
for negative values) give similar results except in regions near force
minima. Note especially the red dashed curve in (b), where the Be-
linfante force becomes negative, i.e., points opposite the propagation
direction of the beam.

〈Pz〉Bel = ε0ωkA 2
0

2

×
[

cos4 θk

2
J2

mγ −�(κρ) − sin4 θk

2
J2

mγ +�(κρ)

]
.

(21)

A test object of cross section σ absorbing this momentum
density feels a force 〈Fz〉 = σc 〈Pz〉.

The momentum expressions are paraxially the same and
are very close numerically over broad regions. Paraxially, the
states have σz = �. However, in the full expressions 〈Pz〉can
can never be negative for these modes, while 〈Pz〉Bel is neg-
ative at and near radii ρ where coefficient of the usually
dominant cos4(θk/2) term becomes zero.

Figure 5 shows, for selected mγ , �, and θk , the longitudinal
force vs distance from the vortex line for the two cases on a
small test particle of cross section σ that fully absorbs the
beam that strikes it. The results are nearly the same for long
stretches of ρ, but the difference near the force minimum is
dramatic. Figure 5(b) focuses on a narrow region to emphasize
the difference. The canonical case continues pushing in the
propagation direction, but in the Belinfante case the radiation
pressure becomes a tractor beam at these locations, that is, it
pulls toward the source rather than pushes away.

Summary. The canonical and symmetric, or Belinfante,
forms of the electromagnetic energy-momentum tensor give
identical results for integrated quantities such as the total mo-
mentum and total angular momentum of the field. However,
they differ point by point in space, and this matters for calcu-
lating the force or torque of an electromagnetic wave on a test
object of finite size. One requires light with a structured wave
front in order to see the differences, and we have worked out
examples using Bessel-Gauss beams of twisted photons. In
certain regions the differences are dramatic, including tractor-
beam effects—also noticed in Ref. [31]—and counterrotating
torques predicted when using forces or torques derived from
the symmetric momentum tensor. The dramatic contrasts in
the force lie in limited spatial regions and are sensitive to
details of the beam preparation. The dramatic torque differ-
ences, however, are robust and exist over broad spatial regions
and could well be confirmed or denied experimentally using
ringlike or end-weighted rotor test objects. Numerical re-
sults suggest that the generated spin-rate differences could be
observable on micron-sized objects, using available twisted-
photon beams.
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