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Yunfei Wang ,1 Jia-Hui Zhang ,1 Yuqing Li ,1,2,* Jizhou Wu,1,2 Wenliang Liu,1,2 Feng Mei,1,2,† Ying Hu,1,2,‡

Liantuan Xiao,1,2 Jie Ma ,1,2,§ Cheng Chin ,3 and Suotang Jia1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy,

Shanxi University, Taiyuan 030006, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

3James Franck Institute, Enrico Fermi Institute, Department of Physics, University of Chicago, Illinois 60637, USA

(Received 26 April 2022; accepted 11 July 2022; published 1 September 2022)

A mobility edge, a critical energy separating localized and extended excitations, is a key concept for
understanding quantum localization. The Aubry-André (AA) model, a paradigm for exploring quantum
localization, does not naturally allow mobility edges due to self-duality. Using the momentum-state lattice
of quantum gas of Cs atoms to synthesize a nonlinear AA model, we provide experimental evidence for a
mobility edge induced by interactions. By identifying the extended-to-localized transition of different
energy eigenstates, we construct a mobility-edge phase diagram. The location of a mobility edge in the low-
or high-energy region is tunable via repulsive or attractive interactions. Our observation is in good
agreement with the theory and supports an interpretation of such interaction-induced mobility edge via a
generalized AA model. Our Letter also offers new possibilities to engineer quantum transport and phase
transitions in disordered systems.
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Introduction.—The concept of a mobility edge (ME), a
critical energy separating extended and exponentially
localized energy eigenstates in the excitation spectrum,
is key for understanding Anderson localization [1–13]
induced by the random disorders in three dimensions
[14]. In low dimensions, arbitrarily weak random disorders
can make all single-particle eigenstates localize, hence the
ME is absent. The localization phenomena have also been
actively studied in the quasiperiodic lattice systems with
incommensurate modulations [15–24], such as those
described by the Aubry-André (AA) model [15].
Realization of the AA model in cold atoms has led to the

first observation of the localization transition of a non-
interacting Bose-Einstein condensate (BEC) [25]. As the
AA model has self-dual symmetry [15], the localization
transition is energy independent (i.e., no ME), with all
eigenstates being localized across a single critical point.
Intriguingly, variants of the AA model with broken self-
duality, such as the generalized Aubry-André (GAA) model
[26], can host a ME already in one dimension. So far,
the existence of MEs has been mainly conjectured in
noninteracting quasiperiodic lattice systems [26–35] and
experimentally confirmed with cold atoms in optical
lattices [36].
Beyond noninteracting systems, the realization and

control of MEs are of fundamental interest, but are
generally challenging. Recently, some atomic experiments
in this direction have been carried out, showing how single-
particle MEs are affected by weak interactions [37,38],
and many-body MEs have been discussed in the context of

the many-body localization [39]. In these experiments,
however, a ME is already expected without interactions. It
is thus highly desired to understand MEs based on systems
with tunable interactions.
In this Letter, we demonstrate that a ME can be induced

and tuned by interaction; the physical picture is shown in
Fig. 1(a): weak interaction can have different dressing
effects on different energy eigenstates of the AA model,
resulting in a suppressed or enhanced localization of an
eigenstate, thus a critical energy (i.e., ME) is expected in
the excitation spectrum.
Experimentally, we observe signatures of MEs based on

the momentum-state lattice of quasi-1D 133Cs BEC that
simulates a nonlinear AA model [Fig. 1(b)]. Exploiting the
tunable scattering length of Cs atoms with Feshbach
resonances [40–44], we realize a nonlinear AA model
under a wide range of interactions and observe the
extended-to-localized transitions that depend on the energy
of the excited states. In particular, the controllability of all
the system parameters including interactions allows us to
access the highest excited state, which can be viewed as the
ground state of the associated negative Hamiltonian.
We demonstrate that interactions can enhance the locali-
zation of either low- or high-energy eigenstates, depending
on the sign of the interactions. We further construct a
mobility-edge phase diagram, which agrees well with the
theory.
Such interaction-induced ME can be understood through

an effective noninteracting GAA model. While the non-
linear AA model and its variants [45–48] have been studied
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before in optical and atomic setups [6,8,45–51], the
exploration of MEs in the model remains elusive.
ME in the nonlinear AA model.—We start by theoreti-

cally showing how a ME arises in the nonlinear AA
model,

iℏ _φj ¼ Jðφjþ1 þ φj−1Þ
þ Δ cosð2πβjþ ϕÞφj −Ujφjj2φj: ð1Þ

Here ℏ is the reduced Planck’s constant, φj is the wave
function at site j in a lattice of size L with

P
j jφjj2 ¼ 1,

and J is the nearest-neighbor coupling. The quasiperiodic
lattice potential with β ¼ ð ffiffiffi

5
p

− 1Þ=2 has a modulation
strength Δ and phase ϕ. The nonlinear term characterized
by U in our subsequent discussion arises from the atomic
interaction. When U ¼ 0, Eq. (1) reduces to the AA model,
with all eigenstates being extended for Δ=J < 2 and
localized for Δ=J > 2.
We are interested in the weak interaction regime

jU=Jj≲ 1 where the self-trapping [52,53] does not occur,
and every eigenstate has a correspondence in the non-
interacting counterpart [54]. Insights can be obtained by
noting that the combination of the nonlinear term and the
incommensurate modulation results in a density-dependent
potential Vext

j ¼ Δ cosð2πβjþ ϕÞ − Unj, with the density
nj ¼ jφjj2. As the density distribution is shaped by the

incommensurate modulation, Vext
j contains multiple har-

monics of the quasiperiodicity (i.e., 2πβ), which breaks the
self-duality and leads to a ME. For jU=Δj ≪ 1, perturbative
analysis suggests Vext

j is effectively a GAA lattice potential.
For instance, when ϕ ¼ 0, by Fourier expanding the
density up to the second harmonics of the quasiperiodicity,
we have Vext

j ≈ ðΔ − Uc1Þ cosð2πβjÞ −Uc2 cosð4πβjÞ
(apart from some constant), with the expansion coefficients
c1 and c2. It approximates the GAA lattice potential [26]

Vj
GAA ¼ Δ

cosð2πβjÞ
1 − α�ðUÞ cosð2πβjÞ ; ð2Þ

with α� ≪ 1 and α� ∝ −U, up to the second harmonics.
Thus, the physics of Eq. (1) may be understood via an
“effective noninteracting GAA model”: iℏ _φj ¼ Jðφjþ1þ
φj−1Þ þ Vj

GAAφj. As the GAA model hosts an exact ME
[26], the location Ec of ME in a weakly nonlinear AA
model is expected to be

Ec ¼
sgnðΔÞð2jJj − jΔjÞ

α�ðUÞ ; ð3Þ

where sgn denotes the sign function. Because α� ∝ −U, we
expect the location of ME in the low- or high-energy region
is swapped when U → −U.

The above analysis is supported by numerical calcula-
tions. We focus on the ground state (GS) and the highest
excited state (ES) of the nonlinear AA model [55] and
characterize their degree of localization via the participation
ratio

r ¼ 1

L
1

P
L
j¼1 n

2
j
: ð4Þ

For a localized state, r ≈ 0; for an extended state, the
maximum possible r is 1. Figures 2(a) and 2(b) show
the participation ratio r as a function of Δ=J and U=J for
the GS and ES, respectively. To identify the transition from
the extended to the localized, we use the critical value of r
at Δ=J ¼ 2 in the noninteracting limit (see white curves)
[56]; for L ¼ 21 sites, the critical value is r ¼ 0.103. We
see that, whereas the transition points of the GS and ES
coincide without interaction, they differ in the presence of
interaction, suggesting the transition is energy dependent.
Moreover, adding U > 0 enhances localization of the GS
but delocalizes the ES, whereas the opposite occurs
for U < 0. This can be intuitively understood, because
for U > 0 (U < 0), a more localized (extended) GS is
favored to minimize the interaction energy −Unj; whereas
the opposite is expected for the ES, which may be viewed
as the GS of the negative Hamiltonian.

FIG. 1. Illustration of interaction-induced mobility edge and
experimental scheme. (a) Top: without interaction, all eigenstates
in the energy spectrum are either localized (blue) or extended
(red). Bottom: weak interaction can suppress or enhance locali-
zation depending on the energy, thus a mobility edge emerges in
the spectrum. (b) Top: a quasi-1D 133Cs BEC with tunable atomic
interaction is illuminated by a pair of counterpropagating laser
beams, one with a frequency ω and the other with multifrequency
components ωj (j ¼ −10;…; 9). Bottom: the lasers, far detuned
from the atomic transition, drive a series of engineered two-
photon Bragg transitions that couple 21 momentum states with
the increment of 2ℏk (with k ¼ 2π=λ). This synthesizes a
nonlinear AA model with L ¼ 21 sites in the momentum space.
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The critical points of the GS and ES divide the parameter
space ðΔ; UÞ into four regimes [Fig. 2(c)]. In phase II (IV),
all states are localized (extended). However, in both phases
I and III, extended and localized states coexist, signaling
the existence of ME. When increasing the incommensurate
modulation strength Δ, the ME emerges from the high-
energy regime in I (U < 0), while it emerges from the low-
energy regime in III (U > 0).
We validate the effective GAA model through numerical

simulations. We calculate the effective parameter α� ¼
ðΔg

c − Δe
cÞ=ðEc

e − Ec
gÞ based on Eq. (3), where Ec

g (Ec
e)

denotes the energy of the GS (ES) at the critical point Δg
c

(Δe
c), representing where the ME coincides with the lowest

(highest) energy. Figure 2(d) shows α� as a function ofU=J
(blue curve). It is linear for small interactions, confirming
the previous conjecture. In the linear regime, we expect the
location of the ME to be given by Eq. (3). When the
linearity breaks down, the effective model is no longer
suitable.
Experimental realization of the model.—We experimen-

tally realize the nonlinear AA model using the momentum-
state lattice of 133Cs BEC that contains 4 × 104 atoms in the
hyperfine state jF ¼ 3; mF ¼ 3i [Fig. 1(b)] [57]. We start

with a BEC confined in a quasi-1D optical trap (see
Supplemental Material [58]). Two counterpropagating laser
beams with the wavelength λ ¼ 1064 nm are applied, one
with a frequency ω, while the other contains multifre-
quency components ωj ¼ ω − Δωj, j ¼ −10;…; 9. They
drive a series of two-photon Bragg transitions to couple 21
discrete momentum states with the momentum increment
of 2ℏk (with k ¼ 2π=λ), which simulates the AA model of
L ¼ 21 sites with the nearest-neighbor coupling J [59]. The
incommensurate modulation is realized by engineering
Δωj to yield an on-site energy Δ cosð2βπjþ ϕÞ [58] with
both Δ and ϕ controllable via Bragg lasers. We employ
a broad Feshbach resonance centered at magnetic field
B ¼ −11.7 G to tune the atomic s-wave scattering length
[40–44]. According to the mean-field theory of the
momentum lattice system [38,60–62], the atomic inter-
action leads to the nonlinear term in Eq. (1), with
U ¼ ð4πℏ2a=mÞρ̄, where m is the atomic mass and ρ̄ is
an effective atomic density [58]. We note that a quasi-1D
BEC can be stable for a < 0 [63]; experimentally, we do
not observe the collapse of BEC for a < 0 on the timescale
of 2 ms relevant for our measurements. To avoid significant
three-body loss [64], we restrict ourselves to a > −100a0
(a0 is the Bohr radius).
To confirm the realization of the nonlinear AAmodel, we

first tune a ≈ 0 and observe the transport of the noninteract-
ing BEC by controlling the incommensurate modulation
strength Δ. Initially, the BEC with zero momentum is
prepared at momentum-state lattice site j ¼ 0, before the
Bragg lasers are switched on. After an evolution time t, the
momentum distribution is measured through the time-of-
flight (TOF) technique [58]. TOF images for t ¼ 4ℏ=J ¼
1.28 ms under different Δ=J are illustrated in Fig. 3(a). As
expected from the AA model, atoms spread over several
lattice sites forΔ=J < 2, but localize sharply near the initial
position forΔ=J > 2. Figure 3(b) shows the time-dependent
momentum width hdðtÞi ¼ P

j jjjnjðtÞ, where njðtÞ is the
measured fraction of atomic population at the momentum
state j2jℏki at time t.Weobserve the familiar crossover from
the ballistic transport to localization with increasingΔ=J, in
agreementwith the numerical simulations (solid lines) based
on the Gross-Pitaevskii (GP) equation (see Supplemental
Material [58]).
Next, we tune the scattering length from a < 0 to a > 0

using the broad Feshbach resonance and fix the incom-
mensurate modulation strength at Δ=J ¼ 1. Figure 3(c)
shows the measured momentum width hdi at t ¼ 2ℏ=J ¼
0.64 ms under various interactions. We observe hdi
decreases with the interaction strength, regardless of its
sign, suggesting an increased degree of localization. The
experiment agrees qualitatively with the GP calculations
[58] (red curve). Note that, for a < 0, the discrepancy
between the experiment and theory is likely caused by the
nonadiabatic effects in the Feshbach tuning, which generate
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FIG. 2. Theoretical prediction. (a), (b) Participation ratio r of the
(a) GS and (b) ES for various quasiperiodic modulation strengths
Δ=J and interactionsU=J. The state is localized (extended) in the
blue (red) region. The transition (white curve) is identified as
where r ¼ 0.103, the critical value in the noninteracting case [56].
(c) Regimes in the parameter spaces ðΔ=J; U=JÞwhere aMEmay
exist. In phases I and III, extended and localized eigenstates
coexist, signaling a ME; in phase I (III), low-energy states are
extended (localized). The boundaries are denoted by the green and
blue curves. (d) Verification of the effective GAA model. The α�
defined in Eq. (3) is calculated as a function ofU=J (solid curve).
For small U=J, it exhibits a linear relation α� ¼ −0.81U=J
(dashed curve). In all panels, the lattice size is L ¼ 21.
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thermal atoms reducing the coupling efficiency in the
Bragg transitions.
Construction of ME phase diagram.—Important for our

Letter is the preparation of the GS and ES under various
incommensurate modulation strengths and interactions. We
prepare the GS following the adiabatic protocol in
Ref. [38]. It consists of switching off the laser coupling
between lattice sites and initializing atoms in the ground
state at zero-momentum site j ¼ 0. Then, by linearly
ramping the coupling from J ¼ 0 to J=ℏ ¼ 2π × 275 Hz
in 1 ms and holding there for 1 ms, the initial state is
transferred to the GS of the lattice system.
A reliable preparation of the ES, however, was nontrivial

due to nonadiabatic effects [38]. Here we adopt a strategy
that is motivated by the fact that the ES of a HamiltonianH
can beviewed as theGSof−H. Experimentally, in preparing
the ES of a system with desired J, Δ, and a, we instead
realize an associated “negative Hamiltonian” (i.e.,−H) with
−J,−Δ, and−a. To realize−J, we introduce a relative phase
π in the two-photon Bragg transition coupling neighboring
momentum states [cf. Fig. 1(b)]. The −Δ is achieved by
tuning ϕ. Crucially, the conversion from a to−a is uniquely
enabled by Feshbach tuning of the interaction of Cs atoms.
Thenwe adiabatically prepare the GS of the negative system
similar to before: after switching off the laser coupling and
initializing atoms at a sitewith the lowest energy, we linearly
ramp up J, thus achieving the ES of the original system.
After the state preparation, we measure the population in

each momentum mode to obtain the participation ratio r

according to Eq. (4). We identify the potential extended-to-
localized transition by numerically fitting the experimental
data of r as a function of Δ=J [58], as shown in Figs. 4(a)
and 4(b). For U ≈ 0, the transition is at Δ=J ¼ 2 for
both the GS and ES, as expected. Comparing Figs. 4(a)
and 4(b) shows that the localization of the GS is enhanced
(suppressed) under U > 0 (U < 0), whereas the opposite
occurs for the ES, in agreement with the predictions. Owing
to the nonadiabatic effect in the experimental ramp, the
participation ratio r is generically smaller than the idealized
value expected from Eq. (1) [58]. Moreover, the exper-
imental r deep in the localized phase is slightly higher than
r ¼ 1=21 [58] due to the residual population. Nevertheless,
these imperfections and finite-size effect do not qualita-
tively change the transitions.
Finally, to construct the phase diagram, we collect the

extracted transition points of the GS and ES under
various interactions into Fig. 4(c). The good agreement
between the experiment and theory provides strong
evidence of the existence of interaction-induced ME. It
also confirms that, depending on whether the atomic
interaction U is attractive or repulsive, the ME emerges
from the high- or low-energy region of the excitation
spectrum. In the inset of Fig. 4(c), we compare the
experimental data with the predictions from the effective
GAA model [cf. Fig. 2(d)]. As shown, the effective model
provides a good explanation of the data for jU=Jj ≲ 0.25,
suggesting the location of the ME in this regime is given
by Eq. (3).
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Conclusion.—In this Letter, we have provided exper-
imental evidence that a ME can be induced and controlled
by interactions in a 1D quasiperiodic momentum lattice.
Our observations may further understandings of the ME in
an interacting system and offer intriguing insights into the
interplay between disorder and interaction [65–67].
Moreover, the widely tunable atomic interaction featured
by the Cs atoms presents new opportunities for the quantum
transport and quantum phase transitions in disordered
systems.
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models, Phys. Rev. B 83, 075105 (2011).

[24] T. Xiao, D. Z. Xie, Z. L. Dong, T. Chen, W. Yi, and B. Yan,
Observation of topological phase with critical localization in
a quasi-periodic lattice, Sci. Bull. 66, 2175 (2021).

[25] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Anderson localization of a non-interacting Bose-Einstein
condensate, Nature (London) 453, 895 (2008).

[26] S. Ganeshan, J. H. Pixley, and S. D. Sarma, Nearest Neigh-
bor Tight Binding Models with an Exact Mobility Edge in
One Dimension, Phys. Rev. Lett. 114, 146601 (2015).

[27] S. D. Sarma, S. He, and X. C. Xie, Mobility Edge in a Model
One-Dimensional Potential, Phys. Rev. Lett. 61, 2144
(1988).

[28] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus,
Mobility edges in bichromatic optical lattices, Phys. Rev. A
75, 063404 (2007).

[29] J. Biddle and S. D. Sarma, Predicted Mobility Edges in One-
Dimensional Incommensurate Optical Lattices: An Exactly
Solvable Model of Anderson Localization, Phys. Rev. Lett.
104, 070601 (2010).

[30] X. Li, X. P. Li, and S. D. Sarma, Mobility edges in one-
dimensional bichromatic incommensurate potentials, Phys.
Rev. B 96, 085119 (2017).

[31] H. P. Yao, A. Khoudli, L. Bresque, and L. Sanchez-Palencia,
Critical Behavior and Fractality in Shallow One-
Dimensional Quasiperiodic Potentials, Phys. Rev. Lett.
123, 070405 (2019).

[32] X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L.
Santos, One-Dimensional Quasicrystals with Power-Law
Hopping, Phys. Rev. Lett. 123, 025301 (2019).

[33] X. Li and S. D. Sarma, Mobility edge and intermediate
phase in one-dimensional incommensurate lattice potentials,
Phys. Rev. B 101, 064203 (2020).

[34] Y. C. Wang, X. Xia, L. Zhang, H. P. Yao, S. Chen, J. G. You,
Q. Zhou, and X. J. Liu, One-Dimensional Quasiperiodic
Mosaic Lattice with Exact Mobility Edges, Phys. Rev. Lett.
125, 196604 (2020).

[35] S. Roy, T. Mishra, B. Tanatar, and S. Basu, Reentrant
Localization Transition in a Quasiperiodic Chain, Phys.
Rev. Lett. 126, 106803 (2021).

[36] H. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia,
X. Li, S. D. Sarma, and I. Bloch, Single-Particle Mobility
Edge in a One-Dimensional Quasiperiodic Optical Lattice,
Phys. Rev. Lett. 120, 160404 (2018).

[37] F. A. An, E. J. Meier, and B. Gadway, Engineering a Flux-
Dependent Mobility Edge in Disordered Zigzag Chains,
Phys. Rev. X 8, 031045 (2018).

[38] F. A. An, K. Padavić, E. J. Meier, S. Hegde, S. Ganeshan,
J. H. Pixley, S. Vishveshwara, and B. Gadway, Interactions
and Mobility Edges: Observing the Generalized Aubry-
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