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ABSTRACT

Accurate models of the star formation histories (SFHs) of recently-quenched galaxies can provide
constraints on when and how galaxies shut down their star formation. The recent development of “non-
parametric” SFH models promises the flexibility required to make these measurements. However, model
and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs) which
have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector
SED fitting software to test how well four different SFH models recover key properties. We find that a
two-component parametric model performs well for our simple mock galaxies, but is sensitive to model
mismatches. The fixed- and flexible-bin non-parametric models included in Prospector are able to
rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by
up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH.
Our flexible non-parametric model is able to constrain post-burst ages with no significant offset and
just ~ 90 Myr of scatter. Our results suggest that while standard non-parametric models are able to
recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order
quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These
mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public
SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies
and is suitable for broader use in the SED fitting community.

Keywords: galaxy evolution — galaxy formation — galaxy ages — post-starburst galaxies — galaxy
quenching

1. INTRODUCTION over cosmic time: when and why do galaxies “quench”
and cease forming stars? Understanding the star forma-
tion histories (SFHs) of quiescent galaxies is a critical
piece of this puzzle. Robust SFHs constrain two proper-
ties: how long a galaxy has been quenched, and how long

One of the largest unsolved problems in galaxy evolu-
tion is understanding the buildup of quiescent galaxies
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it took for the galaxy to transition from star-forming to
quiescent.

Different proposed quenching mechanisms operate
on different timescales— for example, major mergers
and black hole feedback could quench galaxies on rel-
atively short timescales, whereas mechanisms that rely
on reducing halo accretion rates operate over longer
timescales (e.g., Keres et al. 2005; Feldmann & Mayer
2015; Wright et al. 2019; Rodriguez Montero et al. 2019).
Measuring how rapidly star formation ceased can thus
help constrain what mechanisms were responsible for
the shutdown. Quantifying how long galaxies have been
quenched allows us to construct a timeline of how var-
ious galaxy properties evolve after star formation shuts
down. Because it is impossible to watch a single galaxy
evolve through the quenching process, cross-sectional
studies using accurate post-quenching ages are the only
way to gain an understanding of how galaxy structure,
AGN activity, molecular gas contents, and other key
properties change throughout the quenching process
(e.g., French et al. 2018; Bezanson et al. 2022).

Major classes of recently-quenched galaxies include
“green valley” galaxies, which appear to quench grad-
ually (e.g., Martin et al. 2007; Mendez et al. 2011;
Schawinski et al. 2014; Wu et al. 2018), and “post-
starburst” galaxies (PSBs), which are thought to quench
rapidly after a major burst of star formation (for a re-
cent review, see French 2021). In this work, we concen-
trate on accurately measuring the SFHs of PSBs. The
unique B5V /A-star dominated spectra of these galaxies
make them relatively easy to identify in both photomet-
ric and spectroscopic surveys. While they are present
across redshift, PSBs represent the dominant forma-
tion pathway for quiescent galaxies above z ~ 1 — 2
(e.g., Whitaker et al. 2012; Wild et al. 2016; Rowlands
et al. 2018; Belli et al. 2019). Because these galaxies are
thought to quench after a major burst of star formation,
SFH models for PSBs must be able to (a) capture early
star formation before the recent burst, (b) produce a
large recent burst of star formation with variable dura-
tion and burst mass fraction, and (c) rapidly shut down
the burst while constraining the time since quenching.
This rapid evolution and large SFR dynamic range mean
that, in many ways, PSBs represent one of the most dif-
ficult test cases for SFH models. Models that are able to
describe the extreme SFHs of PSBs are likely to have suf-
ficient flexibility to describe the vast majority of galaxy
SFHs across redshift.

Accurately measuring the SFHs of PSBs from multi-
wavelength data is challenging. Historically, most spec-
tral energy distribution (SED) fitting codes have as-
sumed a relatively simple parametric form for the SFH

that depends on a small handful of parameters (for a
review, see Walcher et al. 2011; Conroy 2013). These
parametric forms impose strong priors on specific star
formation rates (sSFRs) and mass-weighted ages, and
therefore results from parametric SFH fits may not accu-
rately reflect the true mass assembly histories of galaxies
(e.g., Carnall et al. 2019; Lower et al. 2020). The most
widely-used parametric model is the delayed-r model,
where SFR o te~*/7 and the timescale 7 is a free pa-
rameter. This type of SFH model inextricably links the
ongoing SFR, the recent SFR, and the SFR at very early
times. This means that these parametric models have
particular difficulties with the extreme SFHs of PSBs:
they cannot easily reproduce both a strong recent star-
burst and low ongoing SFRs. Furthermore, standard
parametric SFHs do not allow for both an old compo-
nent and a recent burst in these galaxies: all of the mass
is forced into the recent burst, likely an unphysical so-
lution.

Several recent works have mitigated these difficulties
by describing PSB SFHs as the sum of multiple para-
metric components. Kaviraj et al. (2007) allowed for
both an old and young component by modeling PSB
SFHs as the sum of an instantaneous burst at high red-
shift and an exponential recent burst. Similarly, French
et al. (2018) modeled PSB SFHs as an old linear expo-
nential component in addition to either one or two re-
cent exponential bursts and Wild et al. (2020) assumed
that PSB SFHs can be described as the sum of an old
exponentially-declining component and a recent double-
powerlaw burst. All three of these approaches allow for a
varying fraction of the mass to be formed in the recent
burst versus the underlying older component, solving
one of the main issues with using delayed-7 models for
PSBs. However, these approaches still explicitly assume
a parametric form for both the older component and the
burst.

Additional flexibility in the shapes of galaxy SFHs
has recently been made possible through advances in in-
ference techniques allowing higher dimensional models:
these “non-parametric” SFHs do not assume a specific
analytic form for the SFH but instead allow for arbi-
trary SFRs in adjacent timebins (e.g., Conroy 2013; Iyer
& Gawiser 2017; Iyer et al. 2019; Leja et al. 2019a,b;
see also Alarcon et al. 2022 for a flexible physically-
motivated parametric model). Non-parametric models
introduce a larger number of free parameters into the
fit in exchange for more freedom and flexibility in the
derived SFHs. This additional freedom allows for non-
parametric SFHs to more accurately reproduce the SFHs
of simulated galaxies, leading to more accurate recovery
of quantities such as stellar mass (Lower et al. 2020).
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Stellar mass functions derived from non-parametric SFH
fitting are also more consistent with the observed star
formation rate density of the universe (Leja et al. 2020).
In theory, these non-parametric models provide great
promise for accurately reproducing PSB SFHs.

However, even with non-parametric SFHs there are
many possible ways to mathematically describe the SFH
model and place priors on the fit variables. Just like
parametric SFHs, these non-parametric model choices
can have impacts on derived quantities such as stellar
mass and SFR (e.g., Iyer & Gawiser 2017; Lower et al.
2020). Leja et al. (2019a) tests how well different non-
parametric priors are able to recover the properties of
mock galaxies using the Prospector SED fitting code
(Johnson et al. 2020). Notably, they find that the choice
of prior is the primary determinant of the shape of the
SFH posterior, more impactful than even the photomet-
ric noise (Leja et al. 2019a). Furthermore, the total
number of additional free parameters that can be added
to these fits is still limited: as the dimensionality of the
fit increases, so does the computational time. As more
studies begin to use these new non-parametric SFH fit-
ting tools to constrain the quenching times of galax-
ies (e.g., Estrada-Carpenter et al. 2020; Tacchella et al.
2021; Belli et al. 2021; Akhshik et al. 2021; Werle et al.
2022), the need for a detailed study of the effects of
non-parametric priors on the SFHs of recently-quenched
galaxies is clear.

In this paper, we test how well different SFH models
are able to recover the properties of mock PSBs. Our
mock PSBs are created with an SFH consisting of an
older delayed-7 component plus a recent tophat burst.
These relatively simple inputs allow us to understand
the impact of different SFH model and prior choices on
output quantities of interest, including stellar mass, on-
going star formation rate (SFR), burst mass fraction,
and quenching time. Our goal is to understand biases in
these recovered quantities and identify the best model
for recovering the SFHs of recently-quenched galaxies.
We test three different non-parametric SFH models:
two “out-of-the box” non-parametric models included
in the public Prospector distribution, and one non-
parametric SFH specifically designed for PSBs (now part
of the public Prospector distribution ). We also test
a pararametric SFH model consisting of two delayed-
T components, similar to the models used in previous
PSB SFH studies. This double delayed-7 model is nearly
identical to the SFH used to create our mock PSBs, and
allows us to investigate how well parametric SFH models
fare in a “best-case” scenario where the model assump-
tions match the true SFHs.

Section 2.1 describes our mock PSB data; while here
we focus on SDSS-quality spectra and photometry such
as those available for the SQuIGGEE PSB survey (Suess
et al. 2020), these mocks are similar to the data that
can be expected from upcoming spectroscopic surveys
such as DESI, PFS, and MOONRISE. In Section 3, we
describe our SED fitting setup and our four SFH models
in detail. Section 4 determines the best SFH model to
use for PSBs, and Section 5 shows that this model is
also able to accurately reproduce the SFHs of quiescent
and star-forming galaxies.

Throughout this paper we assume a flat ACDM cos-
mology with Q,, = 0.3, Qy = 0.7, and h = 0.7. Stellar
masses are quoted assuming a Chabrier (2003) initial
mass function. For consistency with other SED fitting
works, stellar masses log(M./Mg) are quoted in units
of the surviving stellar mass— e.g., accounting for mass
loss; all moments of the SFH including the ongoing SFR
and the burst mass fraction are quoted in units of total
mass formed.

2. GENERATING MOCK SPECTRA

We generate two sets of mock data for this paper. In
Section 2.1, we describe the generation of mock PSB
spectra. These are used in Section 4 to identify the best
model to recover PSB SFHs. Section 2.2 describes the
generation of mock quiescent and star-forming spectra;
these are used in Section 5 to verify that the PSB SFH
model is suitable for broader use.

2.1. Mock PSB spectra

We create a large grid of mock SDSS-like optical spec-
troscopy and photometry using FSPS (Conroy et al.
2009; Conroy & Gunn 2010). All mock galaxies assume
a Chabrier (2003) IMF, the Calzetti et al. (2000) dust
law, a total formed stellar mass of 101*?°My, and a
velocity dispersion of 200 km/s. After taking mass loss
into account, this total mass formed equates to a surviv-
ing stellar mass of 10119°=11-10 depending on metallicity
and SFH. We include nebular emission in all mock spec-
tra using the default FSPS parameters.

We vary the dust attenuation values, stellar metal-
licites, star formation histories, and spectral S/N of the
mocks. Dust extinction varies between zero and 1.5
magnitudes. Following, e.g., Wild et al. (2020), we dou-
ble the dust attenuation around young stars. Metal-
licity varies between solar and 0.5 dex above solar (as
expected for massive galaxies, e.g. Gallazzi et al. 2005).
We model the SFHs of the mock galaxies with two com-
ponents: an older delayed-7 model plus a recent tophat
burst. We vary the mass fraction in the recent burst
(fourst), the duration of the recent burst (tpurst), the
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Table 1. Values used to generate the grid of mock PSB spec-
tra. Values are chosen to roughly span the range probed by
the SQuIGGEE sample of intermediate-redshift PSBs (Suess
et al. 2021).

’ parameter ‘ values ‘
Sourst 0.1, 0.2, 0.5, 0.7, 0.9, 0.99
tg 0.05, 0.1, 0.2 0.3, 0.4, 0.5, 0.6,
0.8, 1.0 Gyr
metallicity log Z/Zs = 0.0, 0.2, 0.5
dust A, 0.0, 0.5, 1.0, 1.5 mag

SFR, le-5, le-3, le-2, le-1, 2, 4, 6,
8, 10, 20, 30 Moyr "

burst duration | 100, 200, 400, 600 Myr
spectral S/N 6.2, 7.0, 7.8, 9.7

time since quenching (t,), and the star formation rate
after quenching (e.g., the amount of “frosting”, SFRy).

We choose the 10th, 33rd, 66th, and 90th percentile
noisiest galaxies in the SQuIGGEE sample (Suess et al.
2021) to use as noise templates. We will use the er-
ror spectrum, redshift, and wavelength coverage of these
noise templates as guides to ensure that the properties
of our mock spectra are a good match to observed data
quality.

Table 1 shows the values of each parameter that we
vary to create our grid of mock SDSS-quality spectra.
Generating a mock spectrum for every grid location
would be immensely time-consuming— this would pro-
duce ~60,000 mock spectra. We therefore randomly se-
lect 5,000 points on the grid to generate mock spectra.

We redshift each mock spectrum to the same redshift
as its noise template, broaden the spectral resolution to
match the wavelength-dependent instrumental disper-
sion of the template SDSS spectrum, then interpolate
the mock FSPS spectra onto the same wavelength grid
as the template. Next, we add random Gaussian noise
to the mock spectrum following the per-pixel S/N of the
template SDSS spectrum. We also generate mock pho-
tometry for each galaxy in the SDSS and WISE bands.
We perturb the mock photometry, again with a random
Gaussian scaled by the true S/N of the SDSS and WISE
observations of the template spectrum.

After this process, we have a total of 5,000 mock
galaxies with SDSS-quality data. We then run the
SQuIGGEE color-based PSB selection method on these
mock spectra. 1,821/5,000 of these mock galaxies meet
the SQuIGGEE PSB selection criteria. Suess et al.
(2021) explores in more detail the types of mock galax-
ies that satisfy the SQuIGGEE sample criteria; these
PSB-like mock galaxies tend to have low ongoing SFRs,

relatively little dust obscuration, and a range of burst
fractions and quenching timescales.

2.2. Mock star-forming and quiescent spectra

In Section 5, we will use mock star-forming and quies-
cent spectra to ensure that the SFH model we develop
and test for PSBs is suitable for broader use. Our main
goal is to verify that the PSB SFH model is able to re-
produce a broad range of ongoing SFRs and does not ar-
tificially create recent starbursts in galaxies that did not
experience them. Therefore, we create relatively simple
mock star-forming and quiescent galaxies based off of the
best-fit FAST (Kriek et al. 2009) SED fitting parameters
of observed galaxies from the 3D-HST survey (Skelton
et al. 2014; Momcheva et al. 2016). This allows us to
select stellar masses, ongoing SFRs, and dust attenua-
tion values that are realistic for a population of massive
intermediate-redshift galaxies. More detailed testing of
a wide range of SFHs would likely require mock obser-
vations of simulated galaxies (e.g., Lower et al. 2020),
which is beyond the scope of this paper.

We select all galaxies in the 3D-HST master cata-
log (Skelton et al. 2014; Momcheva et al. 2016) with
a best-fit redshift 0.5 < zpest < 1.0, a best-fit stellar
mass log M, /Mg > 10.75, and a ‘use_phot’ flag equal
to one. These mass and redshift limits are similar to
those of the SQuIGGEE survey that we base our mock
PSB galaxies on (Section 2.1). From these 487 galax-
ies, we randomly select 100 to serve as templates for
our mock star-forming and quiescent galaxies. Roughly
half of these 100 galaxies are identified as quiescent from
their UV J colors, while the other half are actively star-
forming. We again use FSPS to create mock spectra
using the best-fit redshift, 4,, and log M, /Mg, of each
galaxy. The star formation history is modeled using
a delayed-7 function using the best-fit 7 and age from
the 3D-HST FAST fit. We assume solar metallicity and
a fixed Calzetti et al. (2000) attenuation curve (corre-
sponding to a Kriek & Conroy 2013 dust index of zero)
for all the mocks, as these were the parameters assumed
in the 3D-HST FAST fits. We assume a velocity dis-
persion of 200 km/s and broaden the spectra accord-
ing to the SDSS instrumental dispersion. After creating
the mock spectrum, we add realistic noise following the
same procedure used for the PSB galaxies. We pick the
SQuIGGEE spectrum at the closest redshift to the 3D-
HST mock, then perturb the spectrum and photometry
within the observed error bars of the SQuIGGEE spec-
trum.

3. SED FITTING MODEL AND PRIORS

We use the Prospector stellar population synthesis
code (Johnson & Leja 2017; Leja et al. 2017; Johnson
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Table 2. Description of parameters and priors used common to all Prospector fits.

’ ‘ Parameter | Description Prior
log M(’; total stellar mass formed uniform: min = 9.5, max = 12.5
log ZZS stellar metallicity clipped normal: min = -0.5, max = 1.0,
mean and o following Leja+19b mass-metallicity prior
o stellar velocity dispersion uniform: min = 100, max = 300 km/s
z redshift fixed to SDSS spectroscopic redshift
T2 diffuse dust optical depth uniform: min 0.0 mag, max 2.5 mag
a1 birth-cloud dust optical depth fixed to 7x2
(e.g., young stars are attenuated twice as much as old stars)
dust n slope of Kriek & Conroy dust law uniform: min -1.0, max 0.4
Ye warm dust fraction fixed to 0.01
Umin minimum radiation field to which dust | fixed to 1.0
is exposed
qPAH PAH mass fraction fixed to 2.0%
Jspec spectroscopic jitter term uniform: min = 1.0, max = 1.5
noise | fo. fraction of pixels in spectrum consid- | uniform: min = 0, max = 0.5
ered to be outliers
Sout increased noise for spectral outliers fixed to 5.0

et al. 2020) to simultaneously fit the SDSS spectra and
the SDSS and WISE photometry of all galaxies in our
mock samples. Our general setup is the same as in Suess
et al. (2021). Table 2 lists the free parameters and priors
that are used for all SFH models tested; Section 3.1 and
Table 3 describe the free parameters and priors used for
each of the four SFH models we test.

We use the Flexible Stellar Population Synthesis
(FSPS; Conroy et al. 2009; Conroy & Gunn 2010) li-
brary to generate stellar populations, and the dynesty
dynamic nested sampling package (Speagle 2020) to
sample posteriors. We adopt the MILES spectral library
(Falcén-Barroso et al. 2011) and the MIST isochrones
(Dotter 2016; Choi et al. 2016); the MIST isochrones are
generated with MESA (Paxton et al. 2011, 2013, 2015,
2018). We assume the Chabrier (2003) initial mass
function, fix the model redshift to the spectroscopic
redshift of the mock galaxy, and add nebular emission
to the spectra using the default fixed parameters in
Prospector.

Total stellar mass formed, metallicity, and velocity
dispersion are free in our fits. We allow log M., /Mg
to vary between 9.5 and 12.5. We adopt the mass-
metalliticy prior described in Leja et al. (2019b), where
the log Z/Z, prior is a clipped normal distribution with
a minimum of —0.5 and a maximum of 1.0. The mean
and o of the prior is set based on the total stellar mass,
following a modified version of the Gallazzi et al. (2005)

local mass-metallicity relation. We fit for the velocity
dispersion using a flat prior between 100 — 300 km/s.

Additionally, we fit for several parameters designed
to prevent inaccurate calibration or bad pixels from
skewing the output. As described in Johnson et al.
(2020), we include a free spectroscopic jitter term with
a uniform prior between 1.0 and 1.5; this multiplica-
tive term increases the noise in the spectrum. We also
use Prospector’s pixel outlier model, which allows for a
fraction foutlier Of pixels to have their uncertainties un-
derestimated by a factor of Soutlier- foutlier 1S free, with
a uniform prior between 107° and 0.5; Soutiier is fixed
to 5.0. Finally, we use the polynomial SED model in
Prospector, which optimizes out a low-order polyno-
mial with every likelihood call; this is intended to ac-
count for any calibration issues with the spectra, and
effectively upweights the lines as compared to the shape
of the spectral continuum.

We mask all spectral pixels within 504 of the 3727A
[O11] line or within 1004 of the 5007A [O 1] line. In
real post-starburst galaxies, these lines are often con-
taminated by LINER or AGN emission (e.g., Lemaux
et al. 2010; Yan et al. 2006; Greene et al. 2020). While
our mock galaxies do not include this non-stellar emis-
sion, we want the tests in this paper to be as relevant
as possible for fitting observed post-starburst galaxies
such as those in Suess et al. (2021). Therefore, we ex-



6 SUESS ET AL.

actly replicate the emission line masking performed in
that work.

We use the Kriek et al. (2009) dust law with a free
slope and optical depth. We place a uniform prior on
the dust law slope between -1 and 0.4, and a uniform
prior on the diffuse dust optical depth between 0.0 and
2.5 magnitudes. Following Wild et al. (2020), we fix
the birth-cloud optical depth to the same value as the
diffuse optical depth. This implies that young stars are
attenuated twice as much as old stars. Following Leja
et al. (2019a), we also set the dust emission parameters
such that the warm dust fraction is fixed to 0.01, the
minimum radiation field is fixed to 1.0, and the PAH
mass fraction is fixed to 2%.

3.1. SFH model

In this work, we test four different SFH models. The
first is a parametric model: the entire SFH is specified by
a small handful of physical parameters. This model as-
sumes that the galaxy SFH follows a specific functional
form. The remaining three models are non-parametric
models. These models typically assume that the SFR
is a piecewise function and fit for the SFR in each ad-
jacent timebin. While these models have significantly
more flexibility (and more free parameters) than tradi-
tional parametric models, they do still require choices
about priors; as for parametric models, these choices af-
fect the output SFHs (e.g., Leja et al. 2019a; Lower et al.
2020). All four models are illustrated graphically in Fig-
ure 1, and a table of the parameters and priors used in
each of the four models is shown in Table 3. Throughout
the rest of this paper, we will explore the impact that
these SFH model choices have on the output parameters
of the fit.

3.1.1. Parametric model: double delayed-T

The first SFH that we test is a parametric model.
Parametric models— typically, single-component delayed-
7 models— are one of the most commonly-used SFHs
when creating catalogs of stellar population proper-
ties for large samples of galaxies. However, a single-
component parametric model is clearly unsuitable for
recovering the SFHs of our mock PSBs: with only a
single parametric component, all of the mass is forced
into the recent burst and the model is unable to pro-
duce a range of burst mass fractions. Instead, similar
to previous PSB SFH studies (e.g., Kaviraj et al. 2007;
French et al. 2018; Wild et al. 2020) we use an SFH
model that consists of the sum of two delayed-7 models.
This SFH includes both an old and a young component,
which allows for a variable fraction of the galaxy’s total
stellar mass to have been formed in the recent starburst.

The old component is described by:
SFRoa(t) o te /o, (1)

and the young component is described by:

t—1t urs _(t_tburst)/Tyoung
SFRy (1) (F = tourst) €

0 t < thurst-

The total SFH is the sum of these two components,
weighted by the burst mass fraction:

SFR(t) o (1 — fourst) X SFRow + fourst X SFRy.  (2)

We place uniform priors on both Tyoung and 714 be-
tween 0.01 and 30 Gyr~!, and allow tpust to vary be-
tween 0 Gyr and the age of the universe. We place
a uniform prior on the burst mass fraction between 0
and 1. We note that this SFH model is very similar to
the model we use to generate our mock galaxies in Sec-
tion 2.1; we therefore expect this model to recover the
properties of the mock galaxies nearly perfectly.

3.1.2. Non-parametric model: fized time bins

The first of the three non-parametric models we test
is the fixed-bin model preferred by Leja et al. (2019a).
In this model, the SFH is described by a piecewise func-
tion where the SFR is a constant in each of N time-
bins. The edges of each timebin are fixed. The SFR
in each fixed timebin is determined using the “conti-
nuity” prior, which places a Student-t prior on the log
of the ratio of the SFR in adjacent bins (“log SFR,atio
”). This prior encourages smooth SFHs, where the SFR
does not jump significantly between each timebin. How-
ever, sharp burst or quenching events are still allowed:
the Student-t distribution has significantly more weight
in the wings than a gaussian prior, meaning that sharp
SFR transitions are not fully excluded from considera-
tion.

Leja et al. (2019a) use a Student-t prior on log SFR,4ti0
centered at zero (e.g., the maximum prior probability
occurs when the galaxy has a constant SFR across
all cosmic time). In this work, we place a physically-
motivated prior on the SFH by using UniverseMa-
chine. UniverseMachine is a Bayesian code that uses
an abundance-matching approach to relate galaxy and
halo assembly; it predicts a host of galaxy physical prop-
erties, including the SFH and stellar mass of galaxies
across cosmic time (Behroozi et al. 2019). The Uni-
verseMachine public data release includes the predicted
SFHs for quiescent galaxies as a function of stellar mass
and redshift. Depending on the spectroscopic redshift
of the galaxy to be fit, we load in the UniverseMachine

t> tburst
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Figure 1. Illustrations of the four different star formation histories explored in this paper. The top left shows a parametric
star formation history consisting of the sum of two delayed-7 models with different star formation timescales and a variable
burst fraction. This double parametric model is similar to those used by French et al. (2018) and Wild et al. (2020) to model
PSB SFHs, though the exact parameterization differs. Because this model is very similar to the SFH used to generate our
mock spectra, it is expected to perform well by construction; this benchmark allows us to understand the relative effects of
mock data quality and SFH parameterization. The upper right and lower left panels show two of the “standard” Prospector
non-parametric star formation histories included as template libraries in the code (see Leja et al. 2019a). The upper right shows
the fixed-bin model, where the bin edges are fixed and the SFRs are allowed to vary; the lower left shows the flexible-bin model,
where the bin edges are allowed to vary such that each bin forms equal stellar mass. In the flexible-bin model, the first and
last bins remained fixed in order to allow for low instantaneous sSFRs (see Leja et al. 2019a). The lower right panel shows the
model that we specifically design for PSBs: it consists of three fixed-edge bins, five flexible bins, and one final bin with variable
length and SFR that is intended to capture post-quenching star formation.

predicted SFH for M, = 10*! M, galaxies that are qui-
escent at that redshift. We calculate the log SFR;atio
required for each non-parametric SFH model to re-
produce that SFH. We then set a Student-t prior for
log SFR;atio at these UniverseMachine values, with a
width of 0.3 dex and a degree-of-freedom equal to one.

The general shape of these UniverseMachine predic-
tions is similar to the delayed-7 model shown in Fig-
ure 1: they are relatively smooth, with a bulk of star-
formation at early times trending towards lower SFRs at
the time of observation. As a result, this UniverseMa-
chine prior is more conservative than a flat prior would
be at intermediate redshifts: it effectively upweights the
amount of mass that galaxies can form at early times.
This early-formed mass will be largely invisible at the
time of observation due to the well-known “outshining”
effect, where young stars are more luminous than older,
redder stellar populations (e.g., Papovich et al. 2001).

This results in relatively high estimates of the stellar
mass, and conservatively low estimates on the fraction
of the total stellar mass formed in the recent burst.

We choose to use N = 9 timebins in our non-
parametric SFH. This number is a balance between
computational complexity— adding more free parame-
ters makes fitting more time-intensive— and accurately
constraining when each galaxy quenched. Because in
this model the SFR can only change at the edge of each
bin, we want to have a relatively large number of bins
during the ~ 500 Myr before observation; this allows
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Table 3. Description of the parameters and priors used in each of the four SFH models tested in this paper. All Student ¢
priors are centered at the UniverseMachine expectations for a quiescent galaxy of similar mass and redshift, as described in the
text. All SFH models are normalized using the total stellar mass, which is also a free parameter in our Prospector fits.

Parameter Name

SFH model ‘ Nparams

[Pron |

thurst: time when young component begins [Gyr]

uniform [0, tuniv]

double parametric | 4

Tola: old component SF timescale [Gyr™!]

log-uniform [0.01, 30]

Tyoung: young component SF timescale [Gyr™]

log-uniform [0.01, 30]

fourst: fraction of mass formed in young component

uniform [0, 1]

standard fixed-bin | 8 log(SFRyratio): 8-vector; ratio of SFR in adjacent bins Student ¢
log(SFR:atio,young ): ratio of SFR in youngest bin to last flex bin Student ¢
standard flex-bin | 8 log(SFRyratioold): ratio of SFR in old bin to first flex bin Student ¢
log(SFRyratio): 6-vector; ratio of SFR in flex bins Student ¢t
log(SFRratio,young ): Tatio of SFR in youngest bin to last flex bin Student ¢
PSB 9 log(SFRyratio,old): 3-vector; ratio of SFR in old bins to first flex bin | Student ¢
log(SFRyratio): 4-vector; ratio of SFR in flex bins Student ¢

tiast: width of last timebin [Gyr]

uniform [0.01, 1.0]

for different galaxies to quench at different times. We
use the following recent bins:

0 Myr < tiookback < 20 Myt

20 Myr < tiookback < 950 Myr
50 Myr < tiookback < 100 Myr
100 Myr < tiookback < 200 Myr
200 Myr < tiookback < 500 Myr

Ocvirk et al. (2006) suggests that logarithmic time
separations are appropriate for separating different stel-
lar populations; therefore, we distribute the remaining
four timebins log-normally between 500 Myr and the age
of the universe at each galaxy’s redshift.

3.1.3. Non-parametric model: flexible time bins

The second non-parametric model we test is the
flexible-bin model from Leja et al. (2019a). Again,
this model is described by a piecewise function where
the SFR is constant in each of N = 9 timebins. The
edges of the first and last timebin are fixed; however,
the edges of the other 7 timebins are allowed to vary
such that each bin forms an equal stellar mass. Thus,
as shown in Figure 1, periods of high SFR are captured
by short timebins and periods of low SFR are captured
by longer time bins. This model potentially allows for
more flexibility in the duration, start time, and end time
of the recent burst: the SFR can change at an arbitrary
time, as opposed to only changing at the edges of fixed
timebins.

Again, we use the continuity prior, where we place a
Student-t prior on the log SFR;ti0 in adjacent bins. We

choose the most recent fixed bin to be 100 Myr long
to allow for a low instantaneous SFR. Because we are
primarily interested in the recent SFH, we set the first
timebin to cover the first 1.5 Gyr of the galaxy’s history.
The remaining 7 flexible bins have variable widths that
are adjusted with each likelihood call.

3.1.4. PSB model

The final non-parametric model we test is optimized
for PSBs, and was used in Suess et al. (2021) to fit the
SQuIGGEE PSB sample. Our goals are for this SFH
model to be able to produce a recent burst of star forma-
tion with variable start time, duration, and peak SFR;
rapidly quench this recent burst; provide a robust es-
timate of how long the galaxy has been quenched; and
allow for a variable fraction of the galaxy’s stellar mass
to be formed prior to the recent burst. We achieve these
goals using a combination of the fixed and flexible time
bin approaches described above.

We divide the SFH into three parts, as shown in Fig-
ure 1. The oldest portion of the SFH, from the beginning
of the universe to 2 Gyr before observation, is divided
into three bins with fixed edges and variable SFR. The
second portion of the SFH is divided into five flexible
bins: the edges of the bins can vary, and each bin forms
an equal amount of stellar mass. Finally, the most re-
cent portion of the SFH is modeled by a single bin with
variable SFR and a variable length. The inclusion of
the fixed early-time bins allows for a significant fraction
of the galaxy’s mass to be formed at early times. As
discussed in Leja et al. (2019a), these fixed-edge bins
also allow for lower sSFRs in the following flexible bins.
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The flexible period covers the ‘burst’ portion of the post-
starburst SFH. The variable bin widths in this section
allow the burst start time and width to be determined
by the data. The final bin is intended to capture any low
levels of star formation taking place after the burst ends.
The variable width of this final bin allows for quenching
to occur at an arbitrary time instead of a fixed set of
bin edges.

As with the two other non-parametric SFH mod-
els tested in this paper, we set a continuity prior on
log SFRati0- We center the Student-t prior around the
UniverseMachine estimates for a quiescent galaxy of
similar mass and redshift, and use a width of 0.3 dex
and a degree of freedom equal to one.

We note that this SFH model is now included in the
public Prospector distribution as “continuity_psb_sfh”
in the template library.

4. IDENTIFYING THE BEST SFH MODEL FOR
POST-STARBURST GALAXIES

Here, we use the mock PSB spectra described in Sec-
tion 2.1 to test how well each SFH model described in
Section 3.1 is able to recover various properties of in-
terest, including stellar mass, dust attenuation, ongoing
SFR, and time since quenching. We note that, criti-
cally, we generated mock spectra using the same dust
law used in our Prospector fitting. This means that
these mock recovery tests are not sensitive to any possi-
ble differences between our assumed dust model and the
true dust law in observed PSBs. If true PSBs do not
follow the Kriek & Conroy (2013) dust law that we as-
sume here, then the systematic uncertainty in recovered
properties could be larger than we find in these mock
recovery tests. Testing which dust law best describes
PSBs requires using real, not mock, observations, and is
beyond the scope of this paper.

We randomly choose 300 mock PSB spectra and fit
each of them with all four SFH models described in Sec-
tion 3.1. Figure 2 shows an example of the fitting results
for one mock PSB. The left panel shows the input spec-
trum and median posterior spectrum using each of four
SFHs. For clarity of presentation, we add an offset to
each spectrum so they do not overlap. All four models
provide generally good agreement with the data. The
center panel of Figure 2 shows the input SFH (grey)
and the recovered SFH (blue/green lines) for each SFH
model. The shaded regions show the 16-84% confidence
interval around each SFH. The right panel of Figure 2
shows the cumulative mass formation history for each
model; this is simply an alternative view of the SFHs
shown in the central panel. The center and right pan-
els show that all three non-parametric models are able

to capture some amount of early-time star formation as
well as the steep recent burst. One of the major differ-
ences in the non-parametric models, explored further in
Section 4.4, is when they quench after the recent burst.

In the rest of this section, we explore quantitatively
how well each SFH model recovers the properties of all
300 mock PSBs that we fit. We report all quantities as
the median of the posterior distribution; 1o error bars
are the 16th and 84th percentiles. For derived quan-
tities such as time since quenching and mass-weighted
age, we calculate the derived quantity for each posterior
draw, then calculate the median and 1o error bar using
the weights returned by the dynesty sampler. Median
spectra and Miormed /Msurviving are calculated using the
1,000 highest-weight posterior draws to save computa-
tional time; these draws contain the vast majority of the
total posterior mass.

We note that the output SFHs for both the flexible-
bin model and the PSB model have different bin edges
for each likelihood draw. For this reason, we interpolate
each SFH draw onto a uniform 100 Myr spacing time
grid before taking the weighted median and 16-84th per-
centile range. This interpolation causes the flexible-bin
and PSB models to appear to have much higher time
resolution than the fixed-bin model in Figure 2.

4.1. Basic properties

In Figure 3, we show how well each SFH model is able
to recover the basic characteristics of the galaxies: stel-
lar mass, metallicity, dust attenuation, velocity disper-
sion, dust attenuation, and dust index. All three non-
parametric models accurately capture the stellar mass
of the galaxy, with offsets of < 0.02 dex and scatter of
< 0.1 dex. The double delayed-T model slightly over-
estimates the stellar mass, with a systematic offset of
0.05 dex. The metallicities of the galaxies are recov-
ered fairly well by all four models; the scatter is slightly
larger than that in the stellar masses at ~ 0.17 dex, but
the median offset is only 0.02 dex for all three models.
All four SFH models recover the velocity dispersion of
the galaxy both precisely and accurately, with offsets
< 0.02 dex and scatter < 0.05 dex.

The dust attenuation values A, are recovered with me-
dian offsets < 0.03 dex, and scatter of 0.1—0.15 dex. The
least well-recovered property is the dust index, which
has a bias of 0.05 — 0.21 and a scatter of ~ 0.25; all
SFH models have a long tail towards underestimated
dust indices. This bias is not unexpected: our data
are mostly in the rest-frame optical, and do not have
much constraining power on the dust index. All mock
spectra are generated with a dust index of zero, while
our prior range is from -1 to 0.4; therefore, on average
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Figure 2. Example Prospector fits to one mock galaxy using each of the four SFH models we test; the input values are shown
in grey, the median posterior values of the three non-parametric models are shown in shades of blue, and the median posterior
values of the two parametric models are shown in shades of green. All values are shown with an arbitrary additive offset to
improve visibility. The left panel shows the median posterior SDSS spectrum and the flux residuals. The shaded grey bars show
the regions around the [O11] and [O111] lines that are masked in the fits; the two parametric models show excess [O 111] emission
indicating overestimated ongoing SFRs. The middle panel shows the recovered SFH for each model. The two parametric models
fail to capture either the shape of the early-time star formation or the rapid recent burst. The three non-parametric models
recover early-time star formation well, but differ in how accurately they recover the shape and quenching time of the recent
burst. The right panel shows the cumulative mass formation history for each SFH model (shown on a logarithmic lookback time
scale to highlight the recent SFH). Both the input and recovered cumulative mass formed curves are normalized to form 100%

of the total stellar mass at the the time of observation.

our prior pushes us towards lower recovered dust indices
than our assumption when generating the mock spectra.
Additional data beyond the SQuIGGEE—like spectra and
photometry studied here may be required to accurately
constrain the dust index.

4.2. SFRs

Next, we test how well our fits are able to recover
the ongoing SFR of mock galaxies. Figure 4 shows the
recovered and input log(SFR) for all 300 mock galaxy
fits; each panel shows a different SFH model. Because
mock galaxies were created on a discrete grid of SFR
values (Section 2.1), for each input SFR we show a box-
and-whiskers plot of the median posterior SFRs of all
galaxies with that input SFR.

For all SFH models, the behavior of recovered SFRs
differs substantially above and below ~ 1My /yr. Above
1Mg/yr, SFRs are recovered fairly well, with 0.1 —
0.2 dex of scatter. All four SFH have recovered SFRs
that are biased slightly low, by 0.05 dex for the dou-
ble delayed-7 model, 0.19 dex for the fixed bin model,
and 0.13 dex for the PSB model. The flexible bin
model shows the most bias, systematically underesti-

mating SFRs by 0.34 dex. As explored further in Sec-
tion 4.4, the relatively large bias in ongoing SFRs for
the flexible bin model is likely due to the fact that this
SFH parameterization results in all galaxies quenching
exactly 100 Myr before observation: the only way the
model can produce realistic spectra for galaxies which
quenched > 100 Myr before observation is to underesti-
mate the ongoing SFR.

There is a dramatic shift in how well all SFH mod-
els are able to recover low ongoing SFRs. Below ~
1Mgyr~?, the recovered SFR values saturate and the
distribution of recovered SFR is flat for all input SFRs.
The individual error bars on these overestimated SFRs
are relatively large for all models, ranging from ~0.4 dex
for the flexible model to ~ 2.4 dex for the double
delayed-7 model.

Next, we explore why these SFR floors exist for both
the parametric and non-parametric models. To disen-
tangle the effects of the model and prior choices from
the effects of the mock data quality, we investigate the
sSFR distribution that results from random draws from
the priors alone, before the model sees any data. None
of the four SFH models directly set a prior on sSFR:
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Figure 3. Histograms of the offset between median poste-
rior recovered properties and input properties for 300 mock
spectra fit with our four SFH models. In general, these basic
properties are recovered with minimal bias and reasonable
scatter. Of these quantities, the velocity dispersion is recov-
ered most accurately and the dust index is recovered least
accurately. The double-7 model has the largest stellar mass
bias, systematically overestimating log M. /Mg by 0.05 dex.

however, the priors on the timescale 7 and log SFR,ati0
imply priors on sSFR. We report the sSFR prior dis-
tribution instead of the SFR prior distribution because
sSFR is influenced only by the SFH model and priors
as listed in Table 3; SFR is also affected by the broad,

flat prior on total stellar mass. For each model, we take
500,000 calls from each SFH prior assuming a redshift
of z = 0.7. We then calculate the sSFR (in units of
SFR/Mjsormed, which allows us to avoid a time-intensive
FSPS call) for each prior draw.

We plot a normalized histogram of the sSFR, from all
500,000 prior calls in Figure 5. We see that, in the ab-
sence of data, all three non-parametric models are able
to produce a wide range of sSFRs, including very low
sSFRs. The fixed-bin model has the narrowest prior
probability distribution, with 16th-84th percentiles from
107135yr=1 to 10710%yr=t. The PSB model has the
broadest prior probability distribution, with 16th-84th
percentiles from 107 128yr=1 to 107 2yr~!. This indi-
cates that, of the three non-parametric models we test
in this paper, the PSB model priors are the least in-
formative of the output sSFR. The fact that all three
non-parametric models have significant fractions of their
prior probability distribution below ~ 10~ !lyr=! sug-
gests that the decrease in accuracy for our SFR mock
recovery tests below ~ 1Mg /yr is not due to the non-
parametric model and prior choices. Instead, the de-
creased accuracy at low ongoing SFRs is likely a re-
sult of the relatively low S/N of our mock spectra. At
such low ongoing SFRs, the differences that slightly dif-
ferent SFRs produce in the spectrum are not visible
over the noise. With uninformative data, the prior—
which peaks at sSFR ~ 107'2yr=! for all three non-
parametric models— will dominate the posterior. This
also explains the large individual error bars that all three
non-parametric models return at low SFRs: the non-
parametric models are capable of producing low ongo-
ing SFRs, but the data are simply not constraining for
SFRS 1Mg/yr. For this reason, Suess et al. (2021)
refers to 1Mg/yr as the reliability limit of the SFRs
recovered using the PSB SFH model for SDSS-quality
spectra: SFRs values below this value should be treated
as upper limits at 1Mg /yr.

Reaching lower SFR limits with this modeling would
require higher S/N spectroscopy or additional wave-
length coverage. Spectra covering the Ha line in partic-
ular would have constraining power on the ongoing SFR:
reaching a 50 limit of 0.5 Mg yr—! at z=0.6 would re-
quire reaching depths of ~ 57! erg /s /cm? across the Ho
line (Kennicutt 1998, assuming negligible dust attenua-
tion). This SFR floor of 1 Mg yr~! is already sufficient
to place galaxies an order of magnitude below the star-
forming main sequence, which predicts ~ 20 Mg yr—! of
star formation at these masses and redshifts. However,
understanding any variations in residual star formation
among the PSB sample would benefit from a lower SFR
floor: Fumagalli et al. (2014) finds a typical upper limit
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Figure 4. Input and recovered SFRs for 300 mock PSB spectra fit with all four SFH models. Because input SFRs are created
on a discrete grid (Section 2.1), we show a single box-and-whiskers plot for each input SFR value. Each box-and-whiskers
represents the median and spread in the recovered SFR values for that input SFR. Text in the upper left and lower right of each
panel lists the median offset and scatter between recovered and input SFRs for both low and high input SFRs. While ongoing
SFRs are generally recovered well at SFR > 1Mg /yr, for all four models SFRs below 1Mg /yr are recovered with large error
bars and a significant offset towards larger SFR values. For the SDSS-quality data used in this study we recommend treating
all SFRs recovered with non-parametric models to be < 1Mg /yr as upper limits at 1Mg /yr.

for sSFRs in quiescent galaxies of 10~ yr=!, our cur-

rent limiting SFR. For the purposes of our current work,
achieving an SFR floor of 1 My yr—! is sufficient; how-
ever, we recommend that future studies carefully con-
sider the effect of model and prior choices on derived
SFRs and determine whether their modeling methodol-
ogy and data quality are sufficient to achieve the desired
science goals.

The double delayed-7 sSFR, prior probability distri-
bution has a median value of 107!%!yr=! two orders
of magnitude higher than the medians of the non-
parametric sSFR prior distributions. The distribution is
also much narrower, imposing a much stronger prior on
the sSFR. The double delayed-7 model also has an long

low-probability tail that reaches all the way to sSFRs
of 1073%yr=! (compared to minimums of ~ 10~3%yr—!
for the non-parametric models). The SFR “floor” of
~ 10°Mgyr~? for our mock recovery tests in Figure 4 is
definitively below the median value of the prior proba-
bility distribution shown in Figure 5. This suggests that
our SDSS-quality mock data is sufficiently high quality
for the model to determine the best-fit model lies in the
tail of the log(sSFR) prior distribution— just not exactly
where in the tail, given the extremely large error bars in
the recovered SFRs and the wide range of prior sSFR
probabilities.

In Figure 6, we demonstrate the large impact the 7
prior can have on the SFRs returned by the double
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Figure 5. Histograms of the sSFR (SFR/Mjormed) result-
ing from 500,000 draws of the prior distribution for all four
SFH models. The three non-parametric models have broad
log(sSFR) prior probability distributions centered roughly
between 10~ *¥yr~! and 107 '%yr~!. The prior probability
distribution for the double delayed-7 model is much more
strongly peaked at ~ 107 %yr=! but has a long tail towards
unphysically low sSFRs of 1073%yr~1.

delayed-7 model given that the true sSFRs of our mock
galaxies lie in the tail of the prior probability distribu-
tion. The left panel shows the sSFR prior probability
distribution both for the priors on Tyoung and 7o1q used
in this paper, which range from 0.01 < 7 < 30 (green)
and a smaller prior ranging from 0.1 < 7 < 30 (grey).
Using a minimum value of 7 > 0.1 is the default in
Prospector, and commonly used even in other SED-
fitting codes (e.g., Carnall et al. 2019). The medians of
the two prior distributions differ by only 0.2 dex and are
similarly peaked. However, the 16th percentiles of the
two prior probability distributions differ by more than
four orders of magnitude: 107108yr=! for the 0.1 < 7 <
30 prior, versus 10715-2yr~! for the 0.01 < 7 < 30 prior.
This difference is primarily caused by how much weight
the two distributions place very far out in the wings:
the minimum sSFR produced by our 500,000 draws of
the the 0.1 < 7 < 30 prior is 1073° yr—!, while the
0.01 < 7 < 30 prior produces sSFRs of 1073% yr=1. It
should be noted that both of these minimum sSFRs are
unphysically low. These slight differences in the wings
of the sSFR prior probability distribution result mean
that a double parametric model using a 0.01 < 7 < 30
prior is twice as likely to return sSFR < 10~!'yr~! than
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Figure 6. sSFR prior probability distributions (left) and
SFR recovery (right) for two different 7 prior ranges for the
double delayed-T model. Shrinking the prior on 7 by an or-
der of magnitude causes only a small difference in the shape
of the prior probability distribution, but changes the inferred
SFR for galaxies with SFR < 1Mg /yr by two orders of mag-
nitude.

the 0.1 < 7 < 30 prior, and three times more likely to
return sSFR < 10~ 12yr—1,

The right panel of Figure 6 shows how well each dou-
ble delayed-7 model is able to recover the SFRs of our
mock PSBs. Despite a relatively subtle change in the
prior probability distributions that occurs mostly in the
deeply-unphysical realm of sSFR < 10~ °%yr—!, the re-
covered SFR values differ wildly. Both models saturate
at SFRS 1M /yr, but the 0.1 < 7 < 30 prior produces
typical SFRs more than two orders of magnitude larger
than the 0.01 < 7 < 30 prior. Carnall et al. (2019)
shows that changing the shape of the prior distribution
on 7 can have similarly large effects on the fits. Figure 6
emphasizes that using a model where the correct solu-
tion is in the wings of the prior distribution is not ideal:
seemingly small changes in the prior can have very large
impacts on the recovered galaxy properties.

4.3. Mass- and light-weighted ages

Next, we explore the mass- and light-weighted ages
recovered by all four SFH models. We calculate
mass-weighted ages directly from the output SFHs.
We use Prospector to calculate light-weighted ages
for each likelihood draw by setting the FSPS ‘com-
pute_light_ages’ flag to True and re-calculating the
spectrum without the polynomial calibration factor.
We report light-weighted ages averaged between 5580
and 68204 (e.g., r-band).

Figure 7 shows how well the mass-weighted (left col-
umn) and light-weighted (right column) ages are recov-
ered by each SFH model. Each row shows a differ-
ent SFH model, as indicated by the text in the top
left corner of each panel. Data points are shaded by
the burst mass fraction of the mock galaxy; galaxies
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Figure 7. Recovered mass-weighted ages (left) and r-band
light-weighted ages (right) for each of four SFH parameter-
izations. Points are colored by the burst mass fraction of
the mock galaxy, and a characteristic errorbar is shown in
the lower right of each panel. Light-weighted ages are re-
covered with higher accuracy than mass-weighted ages for
all four models. The A and o values reported in each panel
show the median offset and scatter (in Gyr) between the in-
put and recovered values. The four models perform similarly
well, with the PSB model showing slightly lower scatter in
the recovered ages and the double delayed-T model showing
the highest bias in mass-weighted ages.

with lower burst fractions have older mass- and light-
weighted ages. Light-weighted ages are recovered better
than mass-weighted ages by all SFH models.

The double delayed-t model recovers light-weighted
ages relatively accurately, with scatter of 300 Myr and
a median offset of 100 Myr which is primarily due to
overestimates of the light-weighted ages of the youngest
galaxies. Mass-weighted ages of the youngest galaxies
tend to be very overestimated by this model.

The three non-parametric models have sufficient flex-
ibility to produce a range of mass- and light-weighted
ages. The PSB model has slightly less scatter in the

recovered light-weighted ages, but only slightly— the
three models perform nearly equally well for recovering
mass- and light-weighted ages. All three models recover
the light-weighted ages of the youngest galaxies with
relatively little bias. However, the mass-weighted ages
of young galaxies tend to be overestimated. This indi-
cates that the non-parametric models are forming too
much stellar mass at early times. This mass would not
contribute significantly to the spectra of these galax-
ies due to the outshining effect. Therefore, this off-
set in the mass-weighted ages is likely driven by our
prior, which assumes that massive galaxies form rel-
atively large amounts of mass at early times. Both
mass- and light-weighted ages of older galaxies tend to
be slightly underestimated.

4.4. Burst and quenching properties

Finally— and for our purposes, most importantly—
we test how well our fitting is able to recover the prop-
erties of the recent burst: when the burst started and
ended, and what fraction of the total mass it formed. We
note that because these PSBs just quenched by shutting
down a burst of star formation, we refer to the end of
the burst and the quenching time interchangeably.

The first challenge in recovering the burst properties
is robustly defining “the burst” in a given output SFH.
Previous studies have taken several approaches to defin-
ing these quantities. Because French et al. (2018) used
a double parametric SFH model for their PSB sample,
they simply defined the burst as the younger paramet-
ric component. Wild et al. (2020) reported the burst
mass fraction as the mass fraction formed in the last
1.0 Gyr, and the quenching time as the time when the
galaxy reached 95% of its total stellar mass. Neither of
these two burst mass definitions is ideal for our scenario:
we would like to define a burst start and end time for
both parametric and non-parametric SFHs, ruling out
the method used by French et al. (2018). Defining the
quenching time as when the galaxy has formed 95% of
its total stellar mass assumes a fixed 5% of the mass
is formed after quenching; because we would like to di-
rectly investigate the amount of “frosting” in observed
PSBs, we want our burst definition to be independent
of the burst and frosting mass fraction.

For this work, we choose to define the burst based on
the time derivative of the output SFH: the burst be-
gins when the SFR increases sharply, and ends when
the SFR decreases sharply. We interpolate each output
SFH onto a 100 Myr timegrid, then take the time deriva-
tive of the SFR. For the three non-parametric models,
we define the burst start as the time when the deriva-
tive increases above a threshold value of 100Myr~?2 and
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Figure 8. Input and recovered burst properties from fitting 300 mock PSBs with the three non-parametric SFH models. Time
since quenching (t4) is shown in the upper left; burst mass fraction (fourst) is shown in the upper right; the total mass formed
in the burst (muurst) is shown in the lower left, and the burst duration (Afburst) is shown in the lower right. The PSB model
is the only of the three non-parametric models that is able to accurately recover the key parameter ¢,: the flexible-bin model
always returns a value of 100 Myr (the width of the final bin), and the median posterior t, values for the fixed-bin model are
both underestimated and show discretization effects related to the choice of bin edges. All three models tend to underestimate
high fourst and muurst values, likely due to our conservative choice of priors; the fixed and flexible-bin models also overestimate
low fourst and mpurst values. None of the three models is able to accurately recover the burst duration, likely because long
bursts with lower peak SFR and short bursts with higher peak SFR have the same mass-weighted ages and produce very similar
spectra.
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the burst end when the derivative dips below a threshold
value of —100Mgyr~2; this value is tuned by eye using
several example fits for all three non-parametric SFHs.
The double delayed-7 model only reaches these thresh-
olds for the very shortest values of Tyoung, resulting in
< 5% of the fits “quenching” using this definition. For
the double-parametric fits, we thus use a much lower
threshold of £10Myyr~2 to define the start and end of
the burst.

Now that we have defined the start and end of the
burst, we can investigate how well each SFH model
is able to recover the quenching time, burst duration,
and burst mass fraction of our mock PSB sample. Fig-
ure 8 shows the recovery of the time since quenching
(upper left), burst mass fraction (upper right), total
mass formed in the burst (lower left), and burst duration
(lower right) for each of our four SFH models. Because
our mock galaxies were created on a grid of discrete val-
ues for these quantities (Section 2.1), we show one point
for each input value, with the value representing the me-
dian of all galaxies and the error bar representing the 1o
scatter in the recovered quantities.

The top left panel of Figure 8 shows that the double
delayed-7 model recovers quenching time well, with just
90 Myr of scatter. However, there are dramatic differ-
ences in how well each of the three non-parametric SFH
models are able to recover 4, our primary burst quan-
tity of interest. The first “out-of-the-box” model, the
fixed bin model, is only able to return specific values for
tq,: because the SFR can only change at the pre-specified
bin edges, the model must quench at one of these bin
edges. Given our choice of bin edges, this means the
SFH can quench at 20, 50, 100, 200, or 500 Myr before
observation. We clearly see this discretization in the re-
covered t, values: the youngest galaxies are recovered
with 20 Myr t, values, then 50 Myr ¢, values, and on
up. However, the jumps in the recovered ¢, values do not
translate perfectly to the input ¢, values: for longer in-
put ¢4, the fixed bin model significantly underestimates
the time since quenching. This results in the fixed-bin
model underestimating t;, by ~ 100 Myr on average,
with a scatter of 120Myr. Additionally, the error bars
on recovered t, values for the fixed-bin model are quite
large because they are proportional to the bin spacing.
We expect that the bias and scatter in the recovered ¢,
values would decrease if the number of timebins were
significantly increased, because there would be a larger
set of allowed ¢, values. However, increasing the num-
ber of bins beyond the current value of 9 significantly
increases the required computational time for the fit: in
our testing, single-core fits with > 9 bins hit the maxi-
mum cluster wall clock time (72hr) before converging.

The second “out-of-the-box” model, the flexible-bin
model, returns a ¢, value of exactly 100 Myr no mater
the input t, value. This value is both precise (the lo
error bars are equal to zero) and completely uncorre-
lated with the actual quenching timescale of the mock
galaxy. This occurs because each flexible bin forms an
equal stellar mass. As discussed in detail in Leja et al.
(2019a), this imposes a minimum floor on the allowed
sSFR in the flexible bins that is too high to be considered
“quenched” by our definition. Therefore the flexible-
bin model quenches at exactly the transition between
the flexible bins and the final fixed-edge bin, no matter
what length we choose for the final bin. Because this
SFH model cannot constrain the quenching time, it is
unsuitable for use with PSBs.

The third non-parametric model, the PSB model, is
able to recover the ¢, values of the input galaxies with
much higher accuracy than either the fixed or flexible-
bin models. t, is slightly underestimated for galaxies
which quenched > 400 Myr before observation, but over-
all the ¢, values are recovered with an average offset of
just 10 Myr and a scatter of 90 Myr. This increased ac-
curacy is because the length of the final fixed-edge bin is
a free parameter in the fit. This means that, unlike ei-
ther of the two “out-of-the-box” models, the PSB model
can produce arbitrary ¢, values that are informed by the
data, not the way we choose to model the SFH.

Figure 8 shows that the absolute amount of mass
formed in the burst is relatively well-recovered by the
PSB and double delayed-7 SFH models. There is a
small offset between the recovered and input burst mass
values, ~ 0.06 dex, driven primarily by underestimated
burst masses at the high-mass end. However, the frac-
tion of mass formed in the recent burst has nearly dou-
ble the scatter and offset as the absolute burst mass.
In particular, there is an obvious offset between the
recovered and input burst mass fractions at the high
fourst end. These high burst fractions represent very ex-
treme SFHs, where 90-99% of the galaxy’s total mass
was formed in the recent burst. Even with these high
input burst fractions, the recovered SFHs appear to sat-
urate at ~ 80% of the mass formed in the recent burst.
This is likely due to our continuity SFH prior, which is
centered around the average SFH of a UniverseMachine
quiescent galaxy (Section 3.1): forming just 1-10% of
the total mass of the galaxy before the last ~ 500Myr is
unlikely given this prior. Because the total burst mass
is recovered with higher accuracy than the burst mass
fraction, this is likely an outshining problem: for high
burst masses, our SFH prior allows the fits to “hide”
a relatively large number of old stars under the large
recent burst. Whether such extreme SFHs actually ex-
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ist in practice for massive galaxies at these intermediate
redshift ranges is unclear. The fixed- and flexible-bin
models tend to overestimate both f s and mpyse for
low burst fractions; like the PSB model, they underpre-
dict fhurst for the most bursty mock galaxies. This is
likely correlated with the underestimated ¢, values for
the fixed- and flexible-bin models: because these models
tend to quench later, they form more stars at late times
and have higher recovered burst masses and fractions.
None of the four SFH models is able to accurately con-
strain the duration of the burst. The double delayed-
7 model can only produce rapid quenching events if
the timescale of the recent burst is extremely short,
Tyoung  100Myr. For longer bursts, the model must
either match the longer star formation timescale or the
rapid SFR dropoff at quenching. As a result, all of the
double delayed-7 fits that are identified in Figure 8 as
quenching do so very rapidly, and the recovered burst
duration is flat at ~ 100Myr no matter the input value.
Figure 8 shows that the scatter between recovered and
input burst duration for the three non-parametric mod-
els is 250 Myr; the error bars on individual recovered
measurements are similarly high. There is little corre-
lation between the input and recovered burst duration.
This may indicate that our data quality and modeling
is insufficient to distinguish between a short burst with
high peak SFR and a longer burst with lower peak SFR.

4.5. Bayesian model selection

One of the advantages of sampling with dynamic
nested sampling codes such as dynesty is that they di-
rectly compute the Bayesian evidence Z. This allows
us to compute the Bayes factor evidence and quantify
whether our mock data is better fit by the PSB SFH
model or one of the other four SFH models. Kass &
Raftery (1995) suggest computing the Bayes factor as
B =2In(Z1/Z5): B > 10 indicates that the data has
a very strong preference for model 1, 6 < B < 10 indi-
cates a strong preference for model 1, 2 < B < 6 indi-
cates a preference for model 1, and 0 < B < 2 indicates
a weak preference for model 1 that is “not worth more
than a bare mention.” In this formulation, negative val-
ues of B indicate a preference for model 2 over model
1. Lawler & Acquaviva (2021) suggest that this method
of Bayesian model selection is able to successfully deter-
mine the “more correct” SFH model given sufficiently
high S/N.

We compute the Bayes factor evidence for each SFH
model compared to our PSB SFH model. In all cases,
at least 99% of the mock spectra very strongly prefer
the PSB SFH model. We find that 297 mock spec-
tra very strongly prefer the PSB SFH model over the

double delayed-7 model; the remaining three prefer or
strongly prefer the double delayed-7 model. 297 mock
spectra very strongly prefer the PSB SFH model over the
fixed-bin SFH model; the remaining three spectra have
a strong or moderate preference for the PSB SFH model.
298 spectra have a strong preference for the PSB SFH
model over the flexible-bin model; one has a weak pref-
erence for the flexible-bin model, and one has a strong
preference for the flexible-bin model. These results bol-
ster our findings in Section 4.4: increased flexibility in
the recent SFH shape means that the PSB SFH model
almost always provides better fits to the mock spectra
than any of the other three SFH models we test in this

paper.

4.6. Summary: common failure modes for SFH models

Figure 9 shows a cartoon visualization of the most
common pitfalls of the four SFH models we test in this
paper.

The strict form of the double delayed-T model causes
difficulties even in this ideal test case, where the shape
of the mock galaxy SFH is very similar to the para-
metric model. The ongoing SFR is tied to the burst
shape: this means that the output SFR is very sensitive
to the exact prior used on the star formation timescale
7. As discussed in Section 4.2, allowing low 7 values
of 0.01 Gyr~! is necessary to achieve low ongoing SFRs.
However, these low 7 values also place an uncomfortably
large amount of probability at unphysically low sSFRs of
< 107%9yr~!, Furthermore, this model can only quench
rapidly for extremely short values of 7. Longer bursts or
multiple bursts cannot accurately be modeled with this
parametric form.

In the non-parametric fixed-bin model, the SFR can
only change at the bin edges. As a result, the burst can
only begin and end at a bin edge. This means that re-
covered quenching times are always exactly equal to one
of the pre-chosen bin edges. Even in the best possible
case, this produces an expected error on ¢, of half the bin
spacing. As discussed in Section 4.4, this effect would
be minimized as the number of time bins is increased
and there are more discrete quenching times available
to the model. However, adding even more bins to the
SFH rapidly becomes computationally infeasible.

We find that the non-parametric flexible-bin model
always quenches at the last bin edge. This is due to
model construction: each flexible bin forms an equal
amount of stellar mass. To understand how this trans-
lates to SFRs, we turn to the SQuIGGEE PSB sample
described in Suess et al. (2021). The SQuIGGLE PSBs
have total masses of ~ 10112° M, and the majority of
galaxies have burst mass fractions of at least 25%. With
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Figure 9. Common failure modes for the four SFH models tested in this paper. The prescribed shape of the double delayed-
7 model ties the burst shape to the ongoing SFR, and only allows for rapid quenching to take place for very short bursts.
The standard fixed-bin non-parametric model can only change SFR at the pre-chosen bin edges; this introduces error into the
recovered burst start time, burst shape, and quenching time. The standard flexible-bin non-parametric model always quenches
at the last bin edge; the flexible bins form too much stellar mass to ever be considered quenched. Only the PSB model allows

for variable burst shape, duration, and quenching time.

five flexible-edge bins, each bin thus forms > 10°M.
Reaching an SFR of ~ 10Mg /yr would require that the
last flexible bin be a full gigayear long— far less than the
t, values expected for post-starburst galaxies. The ex-
act value of the minimum SFR floor in the flexible bins
depends on the specific galaxy, but the general picture
holds: numerically, the standard flexible-bin model can-
not quench before the last bin, no matter what value is
chosen for the final bin edge. Out of the box, the flexible-
bin model is thus unsuited for recovering the properties
of PSBs.

Our PSB SFH model was designed to avoid these com-
mon failure modes. By including the length of the last
bin as a free parameter in the fit, we avoid the issues
that both the fixed and flexible bin models have recov-
ering t4: t4 is not forced to be equal to some pre-chosen
value or set of values, but can be directly informed by
the data. Parameterizing the pre-quenching SFH using
flexible bins also allows for the burst shape to be free.
This model has been added to the public distribution of
Prospector as the “continuity_psb_sfh” template; the
number of fixed bins as well as the number of flexible
bins can be modified by the user.

5. TESTING THE PSB SFH MODEL ON
QUIESCENT AND STAR-FORMING GALAXIES

In Section 4, we identified the best non-parametric
model for describing the SFHs of PSBs. Here, we vali-
date that our PSB SFH model has sufficient flexibility
to also describe the SFHs of both star-forming and qui-
escent galaxies. Our goal is to show that the PSB SFH
model is suitable for general use where the galaxy type
is not necessarily known in advance of fitting.

Figure 10 shows how well the properties of the mock
star-forming and quiescent galaxies described in Sec-
tion 2.2 are recovered by Prospector using the PSB
SFH model. Stellar mass is recovered well, with 0.25 dex
of scatter. The ongoing SFR is also recovered well, with
no significant offset and a scatter of ~ 0.4 dex. The
scatter in the recovered SFRs increases significantly be-
low ~ 0.1Mg/yr. This limit is a factor of ~ 10 lower
than the SFR reliability limit for the mock PSBs (Fig-
ure 4), likely because the SFHs of the mock quiescent
galaxies are changing less rapidly and are easier for the
model to reproduce. Like for the mock PSBs, the ex-
istence of an SFR reliability limit for these recovery
tests is likely because very low ongoing SFRs do not
appreciably change the SDSS-quality spectrum. Re-
turned SFRs are strongly influenced by the prior, which



RECOVERING THE STAR FORMATION HISTORIES OF RECENTLY-QUENCHED GALAXIES 19

@ 12
© 121 5
S 4 e 2| . 4.
— [TH 10 ) {"o+
o t * _AD
TR e B
5 X &
>
s L 't ¢ 81072t || -
3 10F FEiste p-oo2 | @ 2 u=-0.00
S . 0=026 4l . 0=042
= 105  11.0 10,07 107 10
input stellar mass input SFR
5 10Fo=024 1 )z I 7
= u=-0.03 Y 0ok '
§ , s -Ig 7
£ AR - .
5 0.5F ) 5 )
5 I 3 ’
e | LAt g
3 ‘% ¢ = f ©=0.03
® 0.0k . , 0 . 0=025
0.0 0.5 1.0 0 1 2
input fmass, 1Gyr input tgs

3: 1.5F l,'
8 1 0 /Il **f
& O o
3 L;}i b
8 0.5F #l*
= l Y u=-017
0.0 i
0 1 2
input Av
6 4
ﬁ + ,/' = 4_* ,/,
£ t 2 +
i 4 %l L= ,}T
3 i o d
o , o2 t i i
22 3 s i
§ ) u=093 o .‘, h B o4
OEVH . 0=094 OE/; 3,1 o=12
0. 2.5 5.0 0 2 4
input tmass input tjignt

Figure 10. Recovered parameters as a function of input parameters for the PSB SFH model tested on mock star-forming and
quiescent galaxies. Panels show the stellar mass, the ongoing SFR, the dust attenuation A,, fraction of the total mass formed in
the last 1.0 Gyr (fmass,1Gyr ), how long ago the galaxy formed 95% of its current stellar mass (t95), the mass-weighted age (tmass),
and the light-weighted age (tiight). Stellar masses, ongoing SFRs, and tgs are recovered accurately. The scatter in recovered
SFRs increases below ~ 1M /yr; as for PSBs (Figure 4), this is likely because very low ongoing SFRs are not distinguishable
from noise in these SDSS-quality mock spectra. tmass tends to be overestimated and fuass,1igyr tends to be underestimated,
indicating that the SFH fits form more mass at early times than these mock galaxies. This is expected, as the mocks are created
with a simple delayed-7 SFH that does not include star formation at early times, while the PSB SFH model prior does assume

early star formation.

peaks at sSSFR~ 10~ 12yr—!. Critically, we note that the
PSB SFH model is able to accurately reproduce a wide
range of ongoing SFRs: while the model was developed
to accurately reproduce recently-quenched galaxies, the
model is able to return both star-forming and quiescent
solutions. We see that A, values tend to be underesti-
mated by ~ 0.2 mag, especially for high input A, values.
This may partially be due to the fact that our fitting in-
cludes a free dust index which is not well-constrained,
but the mock spectra are all generated with a Calzetti
et al. (2000) dust law. We note again that the tests per-
formed in this paper are not designed to investigate the
most appropriate dust law to use in SED fitting; fitting
with a variety of different dust laws may increase the
scatter in recovered SFRs and A, values, especially for
dusty star-forming galaxies. Use of a non-uniform dust
screen model may also improve how well SED fitting is
able to recover the dust attenuation law and SFR (Lower
et al. 2022).

The bottom row of Figure 10 shows three different
probes of the SFH. Because these star-forming and qui-
escent galaxies did not necessarily experience recent
starbursts, we do not show ¢, and fyurst as in Section 4.

Instead, tg95 shows the lookback time when the galaxy
formed 95% of its stellar mass, t59 shows the lookback
time when the galaxy formed 50% of its stellar mass, and
fmass,1gyr shows the fraction of the total mass formed
in the last 1.0 Gyr. tg5 is recovered accurately, with
0.25 dex of scatter. This indicates that the recent star
formation activity in these galaxies is recovered well.
However, we see that t5g tends to be overestimated and
fmass,1Gyr tends to be underestimated; this indicates
that the recovered SFHs form more mass at early times
than the mock galaxies. This is not surprising: the mock
galaxies were created using delayed-7 SFHs, which have
no star formation before the current episode. The SFH
prior, in contrast, forms a significant amount of mass
at early times. Because of the outshining problem, this
prior is the primary determinant of the early-time SFH.

6. DISCUSSION: HOW TO CHOOSE THE RIGHT
SFH MODEL

The majority of this paper focused on mock recov-
ery tests specifically designed to test how well different
SFH models are able to recover the properties of mock
PSBs. PSBs are interesting in their own right: under-
standing the SFHs of these recently-quenched galaxies
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can provide estimates of their burst mass fractions, av-
erage ages, and time since quenching. These quantities
can be used to compare to theoretical quenching pro-
cesses and to help understand how these galaxies evolve
after shutting down their star formation. Insights from
these mock tests can relatively easily be applied for SED
modelers seeking to understand the SFHs of recently-
quenched galaxies. However, these tests are also more
broadly applicable: PSBs represent an extreme use case
to fully test the accuracy of SFH modeling. Their large
recent bursts, sharp quenching events, variable ongoing
SFRs, and possible multiple episodes of star formation
push SFH models to the limit. Here, we consider how
the lessons learned from fitting these extreme galaxies
with different SFH models can be applied more generally
for a wide range of SED fitting use cases.

6.1. Choosing a model to recover basic quantities

“Basic quantities” derived from SED modeling are rel-
evant for a wide variety of use cases, and include stel-
lar mass, metallicity, dust content, SFR and sSFR, and
average age. A key insight of the tests we perform in
Section 4 is that all three non-parametric SFH mod-
els have sufficient flexibility to accurately recover all
of these basic quantities. This suggests that any “out-
of-the-box” non-parametric model is sufficient for gen-
eral SED fitting. In Figure 3, we show that all three
non-parametric models perform equally well at recov-
ering the stellar mass, metallicity, velocity dispersion,
A,, and dust index of mock PSBs. The SFR recovery
shows slight differences between the models— e.g., in
Figure 4, we show that the standard flexible-bin model
has an additional 0.1 dex systematic offset in recovered
SFRs compared to the standard fixed-bin model and
the PSB model— but in broad strokes, all three mod-
els perform quite similarly. Figure 7 shows that the
three non-parametric models have slight differences in
the scatter between input and recovered mass- and light-
weighted ages, but again the models perform nearly in-
terchangeably. This finding indicates that, when seeking
to recover only these basic quantities, essentially any of
the non-parametric SFH models tested here is sufficient.
This does of course come with caveats: no SFH model
is able to uncover information that is beyond the limits
of the data, and when the data are uninformative the
prior distribution has a significant impact on the pos-
teriors. In these cases, caution should be used when
comparing the results of SED fitting performed using
different prior assumptions. These results also apply to
the distributions of recovered quantities for a sample of
several hundred galaxies: the SFRs and ages of a single
galaxy may differ when when a different SFH model is

used to perform the fitting. But overall, our results in-
dicate that for general SED fitting, any non-parametric
model has sufficient flexibility to accurately recover the
basic properties of a sample of galaxies.

We find that the double delayed-7 model is also able
to accurately reproduce the basic properties of our mock
PSBs. However, we stress that our mock PSBs are the
“best case” scenario for testing this model: the input
SEFHs have a very similar functional form to the dou-
ble delayed-7 model, and parametric models can only
accurately reproduce results if the correct answer is
contained within the model space. In this paper, we
use relatively simple mock SFHs composed of an older
delayed-7 component as well as a recent tophat burst.
The double delayed-T model is able to recover this func-
tional form only if the timescale 7 is very short. Fig-
ure 6 demonstrates that changing the 7 prior to exclude
timescales 0.01 < 7 < 0.1 can bias the recovered SFRs
by two orders of magnitude. Lower et al. (2020) shows
that stellar masses can also be biased if the true SFH
does not perfectly align with the functional form of the
parametric model. These model mismatches can be dif-
ficult to identify: if a given model is unable to access the
“true” region of parameter space, incorrect values can be
returned with drastically underestimated error bars (as
seen in Figure 6). This highlights one of the dangerous
pitfalls of parametric SFH models: basic quantities can
be highly biased without the user being able to tell from
the estimated uncertainties. Due to this issue, caution
should be used when interpreting the results of SED fit-
ting using parametric models. When using parametric
models, scientific conclusions should always come with
a discussion of which parts of parameter space are ex-
cluded by the SFH functional form.

6.2. Choosing a model to recover higher-order
quantities

While all three non-parametric models are able to
recover basic SED fitting quantities, they show signif-
icant differences in performance when attempting to re-
cover higher-order SFH quantities such as ¢, and fiurst-
As shown in Figure 8, neither “out-of-the-box” non-
parametric model is able to constrain ¢,. The flexible-
bin model always quenches at the final bin edge, and the
fixed-bin model systematically underestimates ¢,. Error
bars on t, for the fixed-bin model reflect the chosen bin
spacing, not the ability of the data to constrain t,; er-
ror bars on t, for the flexible-bin model are equal to
zero, because the model is unable to vary this quantity.
The three models also have differences in the recovered
Sfourst value, again driven by differences in model flexi-
bility as opposed to differences in the data. Accurately
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constraining ¢, and fhurst required building a new SFH
model specifically designed and tested to recover these
higher-order SFH quantities.

These results indicate that, if the user is attempting
to recover specific higher-order SFH quantities— e.g., t4,
Sourst, how long it took for a galaxy to quench, the length
of a recent starburst, the fraction of the total mass
formed within a specific time interval, the timescale on
which SFR variability occurs— it is essential to carefully
consider the priors and the SFH model flexibility. These
higher-order quantities can be significantly affected by
relatively small choices made during SFH model con-
struction. Mock recovery tests are critical to disentan-
gle the effects of the model and priors from the scientific
results.

With this point in mind, we note that the PSB
SFH model designed in this paper is simply a slightly
more flexible version of existing “out-of-the-box” non-
parametric models. We added a single additional free
parameter, the width of the final timebin, and allow for
the user to set the total number of fixed and flexible bins.
This means that the PSB SFH model has increased flex-
ibility in the most recent part of the SFH, exactly the
portion of the SFH which is most constrained by the
data. This additional flexibility is broadly applicable
to a large variety of use cases where the recent SFH
varies on rapid time scales. Beyond modeling quench-
ing events, Chaves-Montero & Hearin (2020) suggest
that the effect of SFH on galaxy color is almost entirely
driven by the fraction of the mass formed in the past
1 Gyr: accurately recovering this recent SFH is criti-
cal to accurately recover the colors and physical proper-
ties of all galaxies. While additional tests of the model
should be performed when using it to recover higher-
order quantities that are not detailed in this paper, for
most use cases we suggest that there are few downsides
to using this SFH model over a different non-parametric
SFH model— and even a potential upside, of obtain-
ing more information about the most recent SFH. Our
PSB SFH model is available in Prospector as “conti-
nuity_psb_sfth” in the template library.

6.3. Caveats & future work

While this work represents a first step towards under-
standing how to best use non-parametric SFH models to
understand the quenching process, many open questions
remain. Our mock observations for this work consist
of SDSS-quality spectra intended to be directly analo-
gous to the SQuIGGEE survey of intermediate-redshift
PSBs. While these mock data are similar in quality
to what may be expected from the upcoming spectro-
scopic surveys such as DESI, PFS and MOONRISE, the

details of how well burst and quenching properties can
be recovered may differ for purely photometric data,
such as that expected from the upcoming James Webb
Space Telescope. Furthermore, the mock observations
we use are geared specifically towards understanding
the properties of PSBs, and our mock SFHs are a rela-
tively simple model of a tophat burst on top of an older
delayed-7 component. Future mock recovery tests using
the SFHs of simulated galaxies (e.g., Smith & Hayward
2015; Guidi et al. 2016; Iyer et al. 2020) may provide
additional insights into the best SFH models to recover
galaxy properties.

We also note that both the mock galaxies and our SED
fitting models were generated with FSPS, and use the
same underlying stellar isochrones and spectral libraries.
These tests are thus insensitive to any possible differ-
ences between these models and true galaxies caused by
binary stars (e.g. Eldridge et al. 2017) or TP-AGB stars
(which may be especially important in PSBs, e.g., Kriek
et al. 2010).

7. CONCLUSIONS

In this paper, we explore how well different SFH pa-
rameterizations are able to recover the properties of
mock PSBs. We test one parametric SFH model as well
as three “non-parametric” SFH models. We create mock
PSBs with known stellar populations and SFHs based on
the properties of observed intermediate-redshift PSBs
from the SQUIGGLE survey (Suess et al. 2021). We
then fit these mock observations with the Prospector
SED fitting code (Johnson et al. 2020) to test how well
each SFH model is able to recover the known properties
of each mock galaxy.

We find that the double delayed-T model is able to ac-
curately reproduce the stellar masses and SFRs of our
mock PSBs as long as very short 7 values are allowed
by the model. This model is also able to accurately re-
produce quenching times. However, galaxies are only
identified as “rapidly quenched” if the timescale 7 is
< 100 Myr. Because of this degeneracy between the
burst duration and the speed at which star formation
shuts off, this parametric model is unable to recover the
duration of the recent burst. The prior extending to
low 7 values required to accurately reproduce SFRs and
quenching events also places a large amount of proba-
bility at unphysically low ongoing sSFRs of 1073% to
10~%%r~!. This tension does not exist for more flexi-
ble non-parametric models. The recovery tests in this
paper represent a nearly-ideal case where the true SFH
and the parametric model have very similar forms. The
double delayed-7 model may not have sufficient flexibil-
ity to recover more complex input SFHs.
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All three of the non-parametric SFH models we test
describe the SFH as a piecewise function where the
SFR varies between different time bins. In the fixed-
bin model, the edges of the bins are set by the user and
do not change. In the flexible-bin model, the edge of
the first and last bin remain fixed, but the length of
the other timebins is allowed to vary such that each bin
forms an equal stellar mass. In the PSB model, the first
three bins are fixed, the following five bins are flexible,
and the most recent bin has both a variable width and
variable SFR. All three models are able to accurately re-
cover the stellar masses, metallicities, dust attenuation
values, SFRs, and light-weighted ages of the mock PSBs.
All three models underestimate the mass-weighted age
by ~ 0.25 dex, likely as a result of the “outshining”
problem.

However, we see dramatic differences in how well the
three models are able to recover the properties of the
recent burst, particularly the quenching time. The
flexible-bin model always quenches at the final bin edge,
no matter what value is input by the user. In the fixed-
bin model, the SFR can only change at one of the pre-
chosen bin edges. Even in the most ideal case, this re-
sults in rounding errors when the quenching time falls
between bins. Figure 8 shows that ¢, is often underesti-
mated by up to ~ 200 Myr even when a longer ¢, value
is available given bin edge choices. To solve these issues,
the PSB SFH model includes a final bin with variable
length. This allows for the quenching timescale to be be
directly informed by the data, minimizing errors due to
model selection. We find that ¢, values are accurately
recovered by the PSB SFH model, with just ~ 90 Myr of
scatter. We confirm that the PSB SFH model provides
the best fit to the data by computing the Bayes factor
evidence: 99-100% of our mock spectra show very strong
preference for the PSB SFH model over any of the other
three SFH models tested in this paper.

We then test the PSB SFH model on quiescent and
star-forming mock galaxies generated using the best-fit
SED fitting parameters of true galaxies from the 3D-
HST survey. We find that the PSB SFH model is able
to recover a wide variety of ongoing SFRs. The model
is also able to accurately recover the recent SFH of the
galaxies, though it does overestimate the formation time
(likely due to differences between our simple mock SFHs
and the assumptions made by our prior). These tests
indicate that the PSB SFH model is suitable for general
use: it does not artificially force a large burst and a
sharp quenching event.

The tests performed in this paper show that stan-
dard non-parametric models are similarly accurate at
recovering basic properties of galaxies such as stellar

mass, SFR and sSFR, and average age. This result
suggests that standard “out-of-the-box” non-parametric
SFH models are suitable for general use, and with some
caveats can be used interchangeably. However, the dra-
matic differences in how well the three non-parametric
SFH models are able to recover t, values indicates that
small differences between these models can be critical
when attempting to recover higher-order SFH quanti-
ties. Mock recovery tests such as those performed in
this paper are essential to ensure that these higher-order
SFH properties can be recovered accurately by a given
non-parametric SFH model. We publicly provide the
PSB SFH model developed in this paper as a part of
Prospector, so that is available for the community to
accurately recover the SFHs of recently-quenched galax-
ies.
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