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ABSTRACT

Accurate models of the star formation histories (SFHs) of recently-quenched galaxies can provide

constraints on when and how galaxies shut down their star formation. The recent development of “non-

parametric” SFHmodels promises the flexibility required to make these measurements. However, model

and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs) which

have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector
SED fitting software to test how well four different SFH models recover key properties. We find that a

two-component parametric model performs well for our simple mock galaxies, but is sensitive to model

mismatches. The fixed- and flexible-bin non-parametric models included in Prospector are able to

rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by

up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH.

Our flexible non-parametric model is able to constrain post-burst ages with no significant offset and
just ∼ 90 Myr of scatter. Our results suggest that while standard non-parametric models are able to

recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order

quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These

mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public

SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies
and is suitable for broader use in the SED fitting community. §

Keywords: galaxy evolution — galaxy formation — galaxy ages — post-starburst galaxies — galaxy

quenching

1. INTRODUCTION

One of the largest unsolved problems in galaxy evolu-

tion is understanding the buildup of quiescent galaxies

suess@ucsc.edu

over cosmic time: when and why do galaxies “quench”

and cease forming stars? Understanding the star forma-
tion histories (SFHs) of quiescent galaxies is a critical
piece of this puzzle. Robust SFHs constrain two proper-

ties: how long a galaxy has been quenched, and how long
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it took for the galaxy to transition from star-forming to
quiescent.

Different proposed quenching mechanisms operate

on different timescales— for example, major mergers
and black hole feedback could quench galaxies on rel-
atively short timescales, whereas mechanisms that rely

on reducing halo accretion rates operate over longer
timescales (e.g., Kereš et al. 2005; Feldmann & Mayer

2015; Wright et al. 2019; Rodŕıguez Montero et al. 2019).

Measuring how rapidly star formation ceased can thus

help constrain what mechanisms were responsible for

the shutdown. Quantifying how long galaxies have been

quenched allows us to construct a timeline of how var-

ious galaxy properties evolve after star formation shuts

down. Because it is impossible to watch a single galaxy

evolve through the quenching process, cross-sectional

studies using accurate post-quenching ages are the only

way to gain an understanding of how galaxy structure,

AGN activity, molecular gas contents, and other key

properties change throughout the quenching process
(e.g., French et al. 2018; Bezanson et al. 2022).

Major classes of recently-quenched galaxies include

“green valley” galaxies, which appear to quench grad-

ually (e.g., Martin et al. 2007; Mendez et al. 2011;

Schawinski et al. 2014; Wu et al. 2018), and “post-
starburst” galaxies (PSBs), which are thought to quench

rapidly after a major burst of star formation (for a re-
cent review, see French 2021). In this work, we concen-

trate on accurately measuring the SFHs of PSBs. The

unique B5V/A-star dominated spectra of these galaxies

make them relatively easy to identify in both photomet-

ric and spectroscopic surveys. While they are present

across redshift, PSBs represent the dominant forma-

tion pathway for quiescent galaxies above z ∼ 1 − 2
(e.g., Whitaker et al. 2012; Wild et al. 2016; Rowlands

et al. 2018; Belli et al. 2019). Because these galaxies are

thought to quench after a major burst of star formation,

SFH models for PSBs must be able to (a) capture early

star formation before the recent burst, (b) produce a

large recent burst of star formation with variable dura-

tion and burst mass fraction, and (c) rapidly shut down
the burst while constraining the time since quenching.
This rapid evolution and large SFR dynamic range mean

that, in many ways, PSBs represent one of the most dif-

ficult test cases for SFH models. Models that are able to

describe the extreme SFHs of PSBs are likely to have suf-

ficient flexibility to describe the vast majority of galaxy
SFHs across redshift.

Accurately measuring the SFHs of PSBs from multi-

wavelength data is challenging. Historically, most spec-

tral energy distribution (SED) fitting codes have as-

sumed a relatively simple parametric form for the SFH

that depends on a small handful of parameters (for a

review, see Walcher et al. 2011; Conroy 2013). These

parametric forms impose strong priors on specific star

formation rates (sSFRs) and mass-weighted ages, and

therefore results from parametric SFH fits may not accu-

rately reflect the true mass assembly histories of galaxies

(e.g., Carnall et al. 2019; Lower et al. 2020). The most

widely-used parametric model is the delayed-τ model,

where SFR ∝ te−t/τ and the timescale τ is a free pa-

rameter. This type of SFH model inextricably links the

ongoing SFR, the recent SFR, and the SFR at very early

times. This means that these parametric models have

particular difficulties with the extreme SFHs of PSBs:

they cannot easily reproduce both a strong recent star-
burst and low ongoing SFRs. Furthermore, standard
parametric SFHs do not allow for both an old compo-
nent and a recent burst in these galaxies: all of the mass

is forced into the recent burst, likely an unphysical so-

lution.
Several recent works have mitigated these difficulties

by describing PSB SFHs as the sum of multiple para-

metric components. Kaviraj et al. (2007) allowed for

both an old and young component by modeling PSB

SFHs as the sum of an instantaneous burst at high red-

shift and an exponential recent burst. Similarly, French

et al. (2018) modeled PSB SFHs as an old linear expo-
nential component in addition to either one or two re-

cent exponential bursts and Wild et al. (2020) assumed
that PSB SFHs can be described as the sum of an old

exponentially-declining component and a recent double-

powerlaw burst. All three of these approaches allow for a

varying fraction of the mass to be formed in the recent

burst versus the underlying older component, solving

one of the main issues with using delayed-τ models for

PSBs. However, these approaches still explicitly assume

a parametric form for both the older component and the

burst.

Additional flexibility in the shapes of galaxy SFHs

has recently been made possible through advances in in-

ference techniques allowing higher dimensional models:

these “non-parametric” SFHs do not assume a specific
analytic form for the SFH but instead allow for arbi-
trary SFRs in adjacent timebins (e.g., Conroy 2013; Iyer

& Gawiser 2017; Iyer et al. 2019; Leja et al. 2019a,b;

see also Alarcon et al. 2022 for a flexible physically-

motivated parametric model). Non-parametric models
introduce a larger number of free parameters into the

fit in exchange for more freedom and flexibility in the
derived SFHs. This additional freedom allows for non-
parametric SFHs to more accurately reproduce the SFHs
of simulated galaxies, leading to more accurate recovery

of quantities such as stellar mass (Lower et al. 2020).
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Stellar mass functions derived from non-parametric SFH
fitting are also more consistent with the observed star

formation rate density of the universe (Leja et al. 2020).

In theory, these non-parametric models provide great

promise for accurately reproducing PSB SFHs.
However, even with non-parametric SFHs there are

many possible ways to mathematically describe the SFH

model and place priors on the fit variables. Just like

parametric SFHs, these non-parametric model choices

can have impacts on derived quantities such as stellar

mass and SFR (e.g., Iyer & Gawiser 2017; Lower et al.

2020). Leja et al. (2019a) tests how well different non-
parametric priors are able to recover the properties of

mock galaxies using the Prospector SED fitting code

(Johnson et al. 2020). Notably, they find that the choice

of prior is the primary determinant of the shape of the

SFH posterior, more impactful than even the photomet-

ric noise (Leja et al. 2019a). Furthermore, the total
number of additional free parameters that can be added

to these fits is still limited: as the dimensionality of the
fit increases, so does the computational time. As more
studies begin to use these new non-parametric SFH fit-
ting tools to constrain the quenching times of galax-

ies (e.g., Estrada-Carpenter et al. 2020; Tacchella et al.

2021; Belli et al. 2021; Akhshik et al. 2021; Werle et al.
2022), the need for a detailed study of the effects of

non-parametric priors on the SFHs of recently-quenched
galaxies is clear.

In this paper, we test how well different SFH models

are able to recover the properties of mock PSBs. Our
mock PSBs are created with an SFH consisting of an
older delayed-τ component plus a recent tophat burst.
These relatively simple inputs allow us to understand

the impact of different SFH model and prior choices on
output quantities of interest, including stellar mass, on-
going star formation rate (SFR), burst mass fraction,

and quenching time. Our goal is to understand biases in

these recovered quantities and identify the best model

for recovering the SFHs of recently-quenched galaxies.

We test three different non-parametric SFH models:

two “out-of-the box” non-parametric models included
in the public Prospector distribution, and one non-

parametric SFH specifically designed for PSBs (now part

of the public Prospector distribution §). We also test

a pararametric SFH model consisting of two delayed-

τ components, similar to the models used in previous

PSB SFH studies. This double delayed-τ model is nearly
identical to the SFH used to create our mock PSBs, and

allows us to investigate how well parametric SFH models

fare in a “best-case” scenario where the model assump-

tions match the true SFHs.

Section 2.1 describes our mock PSB data; while here
we focus on SDSS-quality spectra and photometry such

as those available for the SQuIGG~LE PSB survey (Suess

et al. 2020), these mocks are similar to the data that

can be expected from upcoming spectroscopic surveys

such as DESI, PFS, and MOONRISE. In Section 3, we
describe our SED fitting setup and our four SFH models

in detail. Section 4 determines the best SFH model to

use for PSBs, and Section 5 shows that this model is

also able to accurately reproduce the SFHs of quiescent

and star-forming galaxies.

Throughout this paper we assume a flat ΛCDM cos-
mology with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7. Stellar

masses are quoted assuming a Chabrier (2003) initial
mass function. For consistency with other SED fitting

works, stellar masses log(M∗/M⊙) are quoted in units

of the surviving stellar mass– e.g., accounting for mass

loss; all moments of the SFH including the ongoing SFR

and the burst mass fraction are quoted in units of total

mass formed.

2. GENERATING MOCK SPECTRA

We generate two sets of mock data for this paper. In
Section 2.1, we describe the generation of mock PSB

spectra. These are used in Section 4 to identify the best
model to recover PSB SFHs. Section 2.2 describes the

generation of mock quiescent and star-forming spectra;

these are used in Section 5 to verify that the PSB SFH

model is suitable for broader use.

2.1. Mock PSB spectra

We create a large grid of mock SDSS-like optical spec-

troscopy and photometry using FSPS (Conroy et al.

2009; Conroy & Gunn 2010). All mock galaxies assume
a Chabrier (2003) IMF, the Calzetti et al. (2000) dust

law, a total formed stellar mass of 1011.25M⊙, and a
velocity dispersion of 200 km/s. After taking mass loss

into account, this total mass formed equates to a surviv-

ing stellar mass of 1011.05−11.10 depending on metallicity

and SFH. We include nebular emission in all mock spec-

tra using the default FSPS parameters.
We vary the dust attenuation values, stellar metal-

licites, star formation histories, and spectral S/N of the

mocks. Dust extinction varies between zero and 1.5

magnitudes. Following, e.g., Wild et al. (2020), we dou-

ble the dust attenuation around young stars. Metal-

licity varies between solar and 0.5 dex above solar (as

expected for massive galaxies, e.g. Gallazzi et al. 2005).

We model the SFHs of the mock galaxies with two com-

ponents: an older delayed-τ model plus a recent tophat

burst. We vary the mass fraction in the recent burst

(fburst), the duration of the recent burst (tburst), the
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Table 1. Values used to generate the grid of mock PSB spec-
tra. Values are chosen to roughly span the range probed by
the SQuIGG~LE sample of intermediate-redshift PSBs (Suess
et al. 2021).

parameter values

fburst 0.1, 0.2, 0.5, 0.7, 0.9, 0.99

tq 0.05, 0.1, 0.2 0.3, 0.4, 0.5, 0.6,
0.8, 1.0 Gyr

metallicity logZ/Z⊙ = 0.0, 0.2, 0.5

dust Av 0.0, 0.5, 1.0, 1.5 mag

SFRq 1e-5, 1e-3, 1e-2, 1e-1, 2, 4, 6,
8, 10, 20, 30 M⊙yr

−1

burst duration 100, 200, 400, 600 Myr

spectral S/N 6.2, 7.0, 7.8, 9.7

time since quenching (tq), and the star formation rate

after quenching (e.g., the amount of “frosting”, SFRq).

We choose the 10th, 33rd, 66th, and 90th percentile

noisiest galaxies in the SQuIGG~LE sample (Suess et al.
2021) to use as noise templates. We will use the er-

ror spectrum, redshift, and wavelength coverage of these
noise templates as guides to ensure that the properties
of our mock spectra are a good match to observed data

quality.

Table 1 shows the values of each parameter that we

vary to create our grid of mock SDSS-quality spectra.
Generating a mock spectrum for every grid location

would be immensely time-consuming— this would pro-
duce ∼60,000 mock spectra. We therefore randomly se-

lect 5,000 points on the grid to generate mock spectra.

We redshift each mock spectrum to the same redshift

as its noise template, broaden the spectral resolution to
match the wavelength-dependent instrumental disper-
sion of the template SDSS spectrum, then interpolate

the mock FSPS spectra onto the same wavelength grid
as the template. Next, we add random Gaussian noise
to the mock spectrum following the per-pixel S/N of the

template SDSS spectrum. We also generate mock pho-

tometry for each galaxy in the SDSS and WISE bands.

We perturb the mock photometry, again with a random

Gaussian scaled by the true S/N of the SDSS and WISE

observations of the template spectrum.
After this process, we have a total of 5,000 mock

galaxies with SDSS-quality data. We then run the

SQuIGG~LE color-based PSB selection method on these

mock spectra. 1,821/5,000 of these mock galaxies meet

the SQuIGG~LE PSB selection criteria. Suess et al.

(2021) explores in more detail the types of mock galax-

ies that satisfy the SQuIGG~LE sample criteria; these
PSB-like mock galaxies tend to have low ongoing SFRs,

relatively little dust obscuration, and a range of burst

fractions and quenching timescales.

2.2. Mock star-forming and quiescent spectra

In Section 5, we will use mock star-forming and quies-
cent spectra to ensure that the SFH model we develop

and test for PSBs is suitable for broader use. Our main
goal is to verify that the PSB SFH model is able to re-
produce a broad range of ongoing SFRs and does not ar-

tificially create recent starbursts in galaxies that did not

experience them. Therefore, we create relatively simple

mock star-forming and quiescent galaxies based off of the

best-fit FAST (Kriek et al. 2009) SED fitting parameters

of observed galaxies from the 3D-HST survey (Skelton

et al. 2014; Momcheva et al. 2016). This allows us to

select stellar masses, ongoing SFRs, and dust attenua-

tion values that are realistic for a population of massive

intermediate-redshift galaxies. More detailed testing of

a wide range of SFHs would likely require mock obser-

vations of simulated galaxies (e.g., Lower et al. 2020),
which is beyond the scope of this paper.

We select all galaxies in the 3D-HST master cata-

log (Skelton et al. 2014; Momcheva et al. 2016) with

a best-fit redshift 0.5 ≤ zbest ≤ 1.0, a best-fit stellar

mass logM∗/M⊙ ≥ 10.75, and a ‘use phot’ flag equal

to one. These mass and redshift limits are similar to
those of the SQuIGG~LE survey that we base our mock

PSB galaxies on (Section 2.1). From these 487 galax-

ies, we randomly select 100 to serve as templates for

our mock star-forming and quiescent galaxies. Roughly

half of these 100 galaxies are identified as quiescent from

their UV J colors, while the other half are actively star-

forming. We again use FSPS to create mock spectra

using the best-fit redshift, Av, and logM∗/M⊙ of each

galaxy. The star formation history is modeled using

a delayed-τ function using the best-fit τ and age from

the 3D-HST FAST fit. We assume solar metallicity and

a fixed Calzetti et al. (2000) attenuation curve (corre-
sponding to a Kriek & Conroy 2013 dust index of zero)

for all the mocks, as these were the parameters assumed
in the 3D-HST FAST fits. We assume a velocity dis-
persion of 200 km/s and broaden the spectra accord-

ing to the SDSS instrumental dispersion. After creating

the mock spectrum, we add realistic noise following the

same procedure used for the PSB galaxies. We pick the

SQuIGG~LE spectrum at the closest redshift to the 3D-

HST mock, then perturb the spectrum and photometry

within the observed error bars of the SQuIGG~LE spec-

trum.

3. SED FITTING MODEL AND PRIORS

We use the Prospector stellar population synthesis

code (Johnson & Leja 2017; Leja et al. 2017; Johnson
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Table 2. Description of parameters and priors used common to all Prospector fits.

Parameter Description Prior

log M∗

M⊙
total stellar mass formed uniform: min = 9.5, max = 12.5

log Z∗

Z⊙
stellar metallicity clipped normal: min = -0.5, max = 1.0,

mean and σ following Leja+19b mass-metallicity prior

σ stellar velocity dispersion uniform: min = 100, max = 300 km/s

z redshift fixed to SDSS spectroscopic redshift

dust

τ̂λ,2 diffuse dust optical depth uniform: min 0.0 mag, max 2.5 mag

τ̂λ,1 birth-cloud dust optical depth fixed to τ̂λ,2
(e.g., young stars are attenuated twice as much as old stars)

n slope of Kriek & Conroy dust law uniform: min -1.0, max 0.4

γe warm dust fraction fixed to 0.01

Umin minimum radiation field to which dust
is exposed

fixed to 1.0

qPAH PAH mass fraction fixed to 2.0%

noise

jspec spectroscopic jitter term uniform: min = 1.0, max = 1.5

fout fraction of pixels in spectrum consid-
ered to be outliers

uniform: min = 0, max = 0.5

sout increased noise for spectral outliers fixed to 5.0

et al. 2020) to simultaneously fit the SDSS spectra and

the SDSS and WISE photometry of all galaxies in our

mock samples. Our general setup is the same as in Suess

et al. (2021). Table 2 lists the free parameters and priors
that are used for all SFH models tested; Section 3.1 and

Table 3 describe the free parameters and priors used for
each of the four SFH models we test.

We use the Flexible Stellar Population Synthesis

(FSPS; Conroy et al. 2009; Conroy & Gunn 2010) li-

brary to generate stellar populations, and the dynesty

dynamic nested sampling package (Speagle 2020) to

sample posteriors. We adopt the MILES spectral library

(Falcón-Barroso et al. 2011) and the MIST isochrones
(Dotter 2016; Choi et al. 2016); the MIST isochrones are

generated with MESA (Paxton et al. 2011, 2013, 2015,

2018). We assume the Chabrier (2003) initial mass

function, fix the model redshift to the spectroscopic

redshift of the mock galaxy, and add nebular emission

to the spectra using the default fixed parameters in

Prospector.
Total stellar mass formed, metallicity, and velocity

dispersion are free in our fits. We allow logM∗/M⊙

to vary between 9.5 and 12.5. We adopt the mass-

metalliticy prior described in Leja et al. (2019b), where

the logZ/Z⊙ prior is a clipped normal distribution with

a minimum of −0.5 and a maximum of 1.0. The mean

and σ of the prior is set based on the total stellar mass,
following a modified version of the Gallazzi et al. (2005)

local mass-metallicity relation. We fit for the velocity

dispersion using a flat prior between 100− 300 km/s.

Additionally, we fit for several parameters designed

to prevent inaccurate calibration or bad pixels from

skewing the output. As described in Johnson et al.

(2020), we include a free spectroscopic jitter term with

a uniform prior between 1.0 and 1.5; this multiplica-
tive term increases the noise in the spectrum. We also

use Prospector’s pixel outlier model, which allows for a
fraction foutlier of pixels to have their uncertainties un-

derestimated by a factor of soutlier. foutlier is free, with

a uniform prior between 10−5 and 0.5; soutlier is fixed

to 5.0. Finally, we use the polynomial SED model in

Prospector, which optimizes out a low-order polyno-
mial with every likelihood call; this is intended to ac-

count for any calibration issues with the spectra, and

effectively upweights the lines as compared to the shape

of the spectral continuum.

We mask all spectral pixels within 50Å of the 3727Å

[O ii] line or within 100Å of the 5007Å [O iii] line. In
real post-starburst galaxies, these lines are often con-

taminated by LINER or AGN emission (e.g., Lemaux

et al. 2010; Yan et al. 2006; Greene et al. 2020). While

our mock galaxies do not include this non-stellar emis-

sion, we want the tests in this paper to be as relevant

as possible for fitting observed post-starburst galaxies

such as those in Suess et al. (2021). Therefore, we ex-
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actly replicate the emission line masking performed in
that work.

We use the Kriek et al. (2009) dust law with a free

slope and optical depth. We place a uniform prior on

the dust law slope between -1 and 0.4, and a uniform

prior on the diffuse dust optical depth between 0.0 and

2.5 magnitudes. Following Wild et al. (2020), we fix
the birth-cloud optical depth to the same value as the

diffuse optical depth. This implies that young stars are

attenuated twice as much as old stars. Following Leja

et al. (2019a), we also set the dust emission parameters

such that the warm dust fraction is fixed to 0.01, the
minimum radiation field is fixed to 1.0, and the PAH

mass fraction is fixed to 2%.

3.1. SFH model

In this work, we test four different SFH models. The

first is a parametric model: the entire SFH is specified by
a small handful of physical parameters. This model as-

sumes that the galaxy SFH follows a specific functional
form. The remaining three models are non-parametric
models. These models typically assume that the SFR

is a piecewise function and fit for the SFR in each ad-

jacent timebin. While these models have significantly

more flexibility (and more free parameters) than tradi-

tional parametric models, they do still require choices

about priors; as for parametric models, these choices af-
fect the output SFHs (e.g., Leja et al. 2019a; Lower et al.

2020). All four models are illustrated graphically in Fig-

ure 1, and a table of the parameters and priors used in

each of the four models is shown in Table 3. Throughout

the rest of this paper, we will explore the impact that

these SFH model choices have on the output parameters

of the fit.

3.1.1. Parametric model: double delayed-τ

The first SFH that we test is a parametric model.

Parametric models— typically, single-component delayed-

τ models— are one of the most commonly-used SFHs

when creating catalogs of stellar population proper-

ties for large samples of galaxies. However, a single-

component parametric model is clearly unsuitable for

recovering the SFHs of our mock PSBs: with only a

single parametric component, all of the mass is forced

into the recent burst and the model is unable to pro-

duce a range of burst mass fractions. Instead, similar

to previous PSB SFH studies (e.g., Kaviraj et al. 2007;

French et al. 2018; Wild et al. 2020) we use an SFH

model that consists of the sum of two delayed-τ models.
This SFH includes both an old and a young component,

which allows for a variable fraction of the galaxy’s total

stellar mass to have been formed in the recent starburst.

The old component is described by:

SFRold(t) ∝ te−t/τold , (1)

and the young component is described by:

SFRy(t) ∝







(t− tburst) e
−(t−tburst)/τyoung t > tburst

0 t < tburst.

The total SFH is the sum of these two components,

weighted by the burst mass fraction:

SFR(t) ∝ (1− fburst)× SFRold + fburst × SFRy. (2)

We place uniform priors on both τyoung and τold be-

tween 0.01 and 30 Gyr−1, and allow tburst to vary be-
tween 0 Gyr and the age of the universe. We place

a uniform prior on the burst mass fraction between 0
and 1. We note that this SFH model is very similar to
the model we use to generate our mock galaxies in Sec-
tion 2.1; we therefore expect this model to recover the

properties of the mock galaxies nearly perfectly.

3.1.2. Non-parametric model: fixed time bins

The first of the three non-parametric models we test
is the fixed-bin model preferred by Leja et al. (2019a).

In this model, the SFH is described by a piecewise func-
tion where the SFR is a constant in each of N time-

bins. The edges of each timebin are fixed. The SFR

in each fixed timebin is determined using the “conti-

nuity” prior, which places a Student-t prior on the log

of the ratio of the SFR in adjacent bins (“log SFRratio

”). This prior encourages smooth SFHs, where the SFR

does not jump significantly between each timebin. How-

ever, sharp burst or quenching events are still allowed:

the Student-t distribution has significantly more weight

in the wings than a gaussian prior, meaning that sharp

SFR transitions are not fully excluded from considera-

tion.

Leja et al. (2019a) use a Student-t prior on log SFRratio

centered at zero (e.g., the maximum prior probability

occurs when the galaxy has a constant SFR across

all cosmic time). In this work, we place a physically-

motivated prior on the SFH by using UniverseMa-

chine. UniverseMachine is a Bayesian code that uses

an abundance-matching approach to relate galaxy and

halo assembly; it predicts a host of galaxy physical prop-
erties, including the SFH and stellar mass of galaxies
across cosmic time (Behroozi et al. 2019). The Uni-

verseMachine public data release includes the predicted

SFHs for quiescent galaxies as a function of stellar mass

and redshift. Depending on the spectroscopic redshift

of the galaxy to be fit, we load in the UniverseMachine
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Table 3. Description of the parameters and priors used in each of the four SFH models tested in this paper. All Student t
priors are centered at the UniverseMachine expectations for a quiescent galaxy of similar mass and redshift, as described in the
text. All SFH models are normalized using the total stellar mass, which is also a free parameter in our Prospector fits.

SFH model Nparams Parameter Name Prior

double parametric 4

tburst: time when young component begins [Gyr] uniform [0, tuniv]

τold: old component SF timescale [Gyr−1] log-uniform [0.01, 30]

τyoung: young component SF timescale [Gyr−1] log-uniform [0.01, 30]

fburst: fraction of mass formed in young component uniform [0, 1]

standard fixed-bin 8 log(SFRratio): 8-vector; ratio of SFR in adjacent bins Student t

standard flex-bin 8

log(SFRratio,young): ratio of SFR in youngest bin to last flex bin Student t

log(SFRratio,old): ratio of SFR in old bin to first flex bin Student t

log(SFRratio): 6-vector; ratio of SFR in flex bins Student t

PSB 9

log(SFRratio,young): ratio of SFR in youngest bin to last flex bin Student t

log(SFRratio,old): 3-vector; ratio of SFR in old bins to first flex bin Student t

log(SFRratio): 4-vector; ratio of SFR in flex bins Student t

tlast: width of last timebin [Gyr] uniform [0.01, 1.0]

for different galaxies to quench at different times. We

use the following recent bins:

0 Myr < tlookback < 20 Myr

20 Myr < tlookback < 50 Myr

50 Myr < tlookback < 100 Myr

100 Myr < tlookback < 200 Myr

200 Myr < tlookback < 500 Myr

(3)

Ocvirk et al. (2006) suggests that logarithmic time
separations are appropriate for separating different stel-

lar populations; therefore, we distribute the remaining

four timebins log-normally between 500 Myr and the age

of the universe at each galaxy’s redshift.

3.1.3. Non-parametric model: flexible time bins

The second non-parametric model we test is the

flexible-bin model from Leja et al. (2019a). Again,

this model is described by a piecewise function where

the SFR is constant in each of N = 9 timebins. The

edges of the first and last timebin are fixed; however,

the edges of the other 7 timebins are allowed to vary

such that each bin forms an equal stellar mass. Thus,

as shown in Figure 1, periods of high SFR are captured

by short timebins and periods of low SFR are captured

by longer time bins. This model potentially allows for

more flexibility in the duration, start time, and end time

of the recent burst: the SFR can change at an arbitrary
time, as opposed to only changing at the edges of fixed
timebins.

Again, we use the continuity prior, where we place a

Student-t prior on the log SFRratio in adjacent bins. We

choose the most recent fixed bin to be 100 Myr long
to allow for a low instantaneous SFR. Because we are
primarily interested in the recent SFH, we set the first

timebin to cover the first 1.5 Gyr of the galaxy’s history.
The remaining 7 flexible bins have variable widths that
are adjusted with each likelihood call.

3.1.4. PSB model

The final non-parametric model we test is optimized
for PSBs, and was used in Suess et al. (2021) to fit the

SQuIGG~LE PSB sample. Our goals are for this SFH

model to be able to produce a recent burst of star forma-

tion with variable start time, duration, and peak SFR;

rapidly quench this recent burst; provide a robust es-

timate of how long the galaxy has been quenched; and

allow for a variable fraction of the galaxy’s stellar mass

to be formed prior to the recent burst. We achieve these

goals using a combination of the fixed and flexible time

bin approaches described above.

We divide the SFH into three parts, as shown in Fig-

ure 1. The oldest portion of the SFH, from the beginning

of the universe to 2 Gyr before observation, is divided
into three bins with fixed edges and variable SFR. The
second portion of the SFH is divided into five flexible

bins: the edges of the bins can vary, and each bin forms

an equal amount of stellar mass. Finally, the most re-

cent portion of the SFH is modeled by a single bin with

variable SFR and a variable length. The inclusion of

the fixed early-time bins allows for a significant fraction

of the galaxy’s mass to be formed at early times. As

discussed in Leja et al. (2019a), these fixed-edge bins

also allow for lower sSFRs in the following flexible bins.
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The flexible period covers the ‘burst’ portion of the post-
starburst SFH. The variable bin widths in this section

allow the burst start time and width to be determined

by the data. The final bin is intended to capture any low

levels of star formation taking place after the burst ends.

The variable width of this final bin allows for quenching

to occur at an arbitrary time instead of a fixed set of
bin edges.

As with the two other non-parametric SFH mod-

els tested in this paper, we set a continuity prior on
log SFRratio. We center the Student-t prior around the

UniverseMachine estimates for a quiescent galaxy of
similar mass and redshift, and use a width of 0.3 dex

and a degree of freedom equal to one.

We note that this SFH model is now included in the

public Prospector distribution as “continuity psb sfh”

in the template library.

4. IDENTIFYING THE BEST SFH MODEL FOR

POST-STARBURST GALAXIES

Here, we use the mock PSB spectra described in Sec-

tion 2.1 to test how well each SFH model described in
Section 3.1 is able to recover various properties of in-

terest, including stellar mass, dust attenuation, ongoing

SFR, and time since quenching. We note that, criti-

cally, we generated mock spectra using the same dust

law used in our Prospector fitting. This means that

these mock recovery tests are not sensitive to any possi-

ble differences between our assumed dust model and the

true dust law in observed PSBs. If true PSBs do not

follow the Kriek & Conroy (2013) dust law that we as-

sume here, then the systematic uncertainty in recovered

properties could be larger than we find in these mock

recovery tests. Testing which dust law best describes

PSBs requires using real, not mock, observations, and is

beyond the scope of this paper.
We randomly choose 300 mock PSB spectra and fit

each of them with all four SFH models described in Sec-

tion 3.1. Figure 2 shows an example of the fitting results

for one mock PSB. The left panel shows the input spec-

trum and median posterior spectrum using each of four

SFHs. For clarity of presentation, we add an offset to

each spectrum so they do not overlap. All four models

provide generally good agreement with the data. The

center panel of Figure 2 shows the input SFH (grey)

and the recovered SFH (blue/green lines) for each SFH

model. The shaded regions show the 16-84% confidence

interval around each SFH. The right panel of Figure 2

shows the cumulative mass formation history for each
model; this is simply an alternative view of the SFHs
shown in the central panel. The center and right pan-

els show that all three non-parametric models are able

to capture some amount of early-time star formation as

well as the steep recent burst. One of the major differ-

ences in the non-parametric models, explored further in

Section 4.4, is when they quench after the recent burst.

In the rest of this section, we explore quantitatively

how well each SFH model recovers the properties of all

300 mock PSBs that we fit. We report all quantities as

the median of the posterior distribution; 1σ error bars
are the 16th and 84th percentiles. For derived quan-

tities such as time since quenching and mass-weighted

age, we calculate the derived quantity for each posterior

draw, then calculate the median and 1σ error bar using

the weights returned by the dynesty sampler. Median

spectra and Mformed/Msurviving are calculated using the
1,000 highest-weight posterior draws to save computa-

tional time; these draws contain the vast majority of the

total posterior mass.

We note that the output SFHs for both the flexible-

bin model and the PSB model have different bin edges
for each likelihood draw. For this reason, we interpolate

each SFH draw onto a uniform 100 Myr spacing time
grid before taking the weighted median and 16-84th per-
centile range. This interpolation causes the flexible-bin

and PSB models to appear to have much higher time

resolution than the fixed-bin model in Figure 2.

4.1. Basic properties

In Figure 3, we show how well each SFH model is able

to recover the basic characteristics of the galaxies: stel-

lar mass, metallicity, dust attenuation, velocity disper-

sion, dust attenuation, and dust index. All three non-

parametric models accurately capture the stellar mass

of the galaxy, with offsets of < 0.02 dex and scatter of

. 0.1 dex. The double delayed-τ model slightly over-

estimates the stellar mass, with a systematic offset of

0.05 dex. The metallicities of the galaxies are recov-

ered fairly well by all four models; the scatter is slightly

larger than that in the stellar masses at ∼ 0.17 dex, but

the median offset is only 0.02 dex for all three models.

All four SFH models recover the velocity dispersion of

the galaxy both precisely and accurately, with offsets

≤ 0.02 dex and scatter . 0.05 dex.

The dust attenuation values Av are recovered with me-
dian offsets. 0.03 dex, and scatter of 0.1−0.15 dex. The

least well-recovered property is the dust index, which

has a bias of 0.05 − 0.21 and a scatter of ∼ 0.25; all

SFH models have a long tail towards underestimated

dust indices. This bias is not unexpected: our data

are mostly in the rest-frame optical, and do not have

much constraining power on the dust index. All mock

spectra are generated with a dust index of zero, while

our prior range is from -1 to 0.4; therefore, on average
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the burst end when the derivative dips below a threshold
value of −100M⊙yr

−2; this value is tuned by eye using

several example fits for all three non-parametric SFHs.
The double delayed-τ model only reaches these thresh-

olds for the very shortest values of τyoung, resulting in
< 5% of the fits “quenching” using this definition. For

the double-parametric fits, we thus use a much lower
threshold of ±10M⊙yr

−2 to define the start and end of

the burst.

Now that we have defined the start and end of the

burst, we can investigate how well each SFH model
is able to recover the quenching time, burst duration,
and burst mass fraction of our mock PSB sample. Fig-

ure 8 shows the recovery of the time since quenching

(upper left), burst mass fraction (upper right), total

mass formed in the burst (lower left), and burst duration

(lower right) for each of our four SFH models. Because

our mock galaxies were created on a grid of discrete val-

ues for these quantities (Section 2.1), we show one point

for each input value, with the value representing the me-
dian of all galaxies and the error bar representing the 1σ

scatter in the recovered quantities.

The top left panel of Figure 8 shows that the double

delayed-τ model recovers quenching time well, with just

90 Myr of scatter. However, there are dramatic differ-
ences in how well each of the three non-parametric SFH

models are able to recover tq, our primary burst quan-
tity of interest. The first “out-of-the-box” model, the

fixed bin model, is only able to return specific values for

tq: because the SFR can only change at the pre-specified

bin edges, the model must quench at one of these bin

edges. Given our choice of bin edges, this means the

SFH can quench at 20, 50, 100, 200, or 500 Myr before

observation. We clearly see this discretization in the re-
covered tq values: the youngest galaxies are recovered

with 20 Myr tq values, then 50 Myr tq values, and on

up. However, the jumps in the recovered tq values do not

translate perfectly to the input tq values: for longer in-

put tq, the fixed bin model significantly underestimates
the time since quenching. This results in the fixed-bin

model underestimating tq by ∼ 100 Myr on average,
with a scatter of 120Myr. Additionally, the error bars

on recovered tq values for the fixed-bin model are quite

large because they are proportional to the bin spacing.

We expect that the bias and scatter in the recovered tq
values would decrease if the number of timebins were

significantly increased, because there would be a larger
set of allowed tq values. However, increasing the num-

ber of bins beyond the current value of 9 significantly
increases the required computational time for the fit: in

our testing, single-core fits with > 9 bins hit the maxi-

mum cluster wall clock time (72hr) before converging.

The second “out-of-the-box” model, the flexible-bin
model, returns a tq value of exactly 100 Myr no mater

the input tq value. This value is both precise (the 1σ

error bars are equal to zero) and completely uncorre-

lated with the actual quenching timescale of the mock

galaxy. This occurs because each flexible bin forms an

equal stellar mass. As discussed in detail in Leja et al.

(2019a), this imposes a minimum floor on the allowed

sSFR in the flexible bins that is too high to be considered

“quenched” by our definition. Therefore the flexible-

bin model quenches at exactly the transition between

the flexible bins and the final fixed-edge bin, no matter

what length we choose for the final bin. Because this

SFH model cannot constrain the quenching time, it is
unsuitable for use with PSBs.

The third non-parametric model, the PSB model, is

able to recover the tq values of the input galaxies with

much higher accuracy than either the fixed or flexible-
bin models. tq is slightly underestimated for galaxies
which quenched > 400 Myr before observation, but over-

all the tq values are recovered with an average offset of
just 10 Myr and a scatter of 90 Myr. This increased ac-
curacy is because the length of the final fixed-edge bin is
a free parameter in the fit. This means that, unlike ei-

ther of the two “out-of-the-box” models, the PSB model

can produce arbitrary tq values that are informed by the
data, not the way we choose to model the SFH.

Figure 8 shows that the absolute amount of mass
formed in the burst is relatively well-recovered by the

PSB and double delayed-τ SFH models. There is a

small offset between the recovered and input burst mass

values, ∼ 0.06 dex, driven primarily by underestimated

burst masses at the high-mass end. However, the frac-

tion of mass formed in the recent burst has nearly dou-

ble the scatter and offset as the absolute burst mass.

In particular, there is an obvious offset between the

recovered and input burst mass fractions at the high

fburst end. These high burst fractions represent very ex-

treme SFHs, where 90-99% of the galaxy’s total mass

was formed in the recent burst. Even with these high

input burst fractions, the recovered SFHs appear to sat-
urate at ∼ 80% of the mass formed in the recent burst.

This is likely due to our continuity SFH prior, which is
centered around the average SFH of a UniverseMachine

quiescent galaxy (Section 3.1): forming just 1-10% of

the total mass of the galaxy before the last ∼ 500Myr is
unlikely given this prior. Because the total burst mass

is recovered with higher accuracy than the burst mass
fraction, this is likely an outshining problem: for high
burst masses, our SFH prior allows the fits to “hide”
a relatively large number of old stars under the large

recent burst. Whether such extreme SFHs actually ex-
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ist in practice for massive galaxies at these intermediate
redshift ranges is unclear. The fixed- and flexible-bin

models tend to overestimate both fburst and mburst for

low burst fractions; like the PSB model, they underpre-

dict fburst for the most bursty mock galaxies. This is
likely correlated with the underestimated tq values for

the fixed- and flexible-bin models: because these models

tend to quench later, they form more stars at late times

and have higher recovered burst masses and fractions.

None of the four SFH models is able to accurately con-

strain the duration of the burst. The double delayed-

τ model can only produce rapid quenching events if

the timescale of the recent burst is extremely short,

τyoung . 100Myr. For longer bursts, the model must

either match the longer star formation timescale or the

rapid SFR dropoff at quenching. As a result, all of the

double delayed-τ fits that are identified in Figure 8 as

quenching do so very rapidly, and the recovered burst
duration is flat at ∼ 100Myr no matter the input value.

Figure 8 shows that the scatter between recovered and
input burst duration for the three non-parametric mod-

els is 250 Myr; the error bars on individual recovered

measurements are similarly high. There is little corre-

lation between the input and recovered burst duration.

This may indicate that our data quality and modeling

is insufficient to distinguish between a short burst with

high peak SFR and a longer burst with lower peak SFR.

4.5. Bayesian model selection

One of the advantages of sampling with dynamic

nested sampling codes such as dynesty is that they di-

rectly compute the Bayesian evidence Z. This allows

us to compute the Bayes factor evidence and quantify

whether our mock data is better fit by the PSB SFH

model or one of the other four SFH models. Kass &

Raftery (1995) suggest computing the Bayes factor as
B ≡ 2 ln (Z1/Z2): B > 10 indicates that the data has

a very strong preference for model 1, 6 < B < 10 indi-

cates a strong preference for model 1, 2 < B < 6 indi-

cates a preference for model 1, and 0 < B < 2 indicates
a weak preference for model 1 that is “not worth more

than a bare mention.” In this formulation, negative val-
ues of B indicate a preference for model 2 over model

1. Lawler & Acquaviva (2021) suggest that this method

of Bayesian model selection is able to successfully deter-

mine the “more correct” SFH model given sufficiently

high S/N.
We compute the Bayes factor evidence for each SFH

model compared to our PSB SFH model. In all cases,

at least 99% of the mock spectra very strongly prefer

the PSB SFH model. We find that 297 mock spec-

tra very strongly prefer the PSB SFH model over the

double delayed-τ model; the remaining three prefer or
strongly prefer the double delayed-τ model. 297 mock

spectra very strongly prefer the PSB SFHmodel over the

fixed-bin SFH model; the remaining three spectra have

a strong or moderate preference for the PSB SFH model.

298 spectra have a strong preference for the PSB SFH

model over the flexible-bin model; one has a weak pref-
erence for the flexible-bin model, and one has a strong
preference for the flexible-bin model. These results bol-
ster our findings in Section 4.4: increased flexibility in

the recent SFH shape means that the PSB SFH model

almost always provides better fits to the mock spectra

than any of the other three SFH models we test in this

paper.

4.6. Summary: common failure modes for SFH models

Figure 9 shows a cartoon visualization of the most

common pitfalls of the four SFH models we test in this

paper.

The strict form of the double delayed-τ model causes

difficulties even in this ideal test case, where the shape

of the mock galaxy SFH is very similar to the para-
metric model. The ongoing SFR is tied to the burst
shape: this means that the output SFR is very sensitive
to the exact prior used on the star formation timescale

τ . As discussed in Section 4.2, allowing low τ values

of 0.01 Gyr−1 is necessary to achieve low ongoing SFRs.

However, these low τ values also place an uncomfortably

large amount of probability at unphysically low sSFRs of
< 10−50yr−1. Furthermore, this model can only quench

rapidly for extremely short values of τ . Longer bursts or

multiple bursts cannot accurately be modeled with this
parametric form.

In the non-parametric fixed-bin model, the SFR can
only change at the bin edges. As a result, the burst can

only begin and end at a bin edge. This means that re-
covered quenching times are always exactly equal to one
of the pre-chosen bin edges. Even in the best possible

case, this produces an expected error on tq of half the bin

spacing. As discussed in Section 4.4, this effect would

be minimized as the number of time bins is increased
and there are more discrete quenching times available

to the model. However, adding even more bins to the
SFH rapidly becomes computationally infeasible.

We find that the non-parametric flexible-bin model

always quenches at the last bin edge. This is due to

model construction: each flexible bin forms an equal
amount of stellar mass. To understand how this trans-

lates to SFRs, we turn to the SQuIGG~LE PSB sample

described in Suess et al. (2021). The SQuIGG~LE PSBs
have total masses of ∼ 1011.25M⊙, and the majority of

galaxies have burst mass fractions of at least 25%. With
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can provide estimates of their burst mass fractions, av-
erage ages, and time since quenching. These quantities

can be used to compare to theoretical quenching pro-

cesses and to help understand how these galaxies evolve

after shutting down their star formation. Insights from

these mock tests can relatively easily be applied for SED

modelers seeking to understand the SFHs of recently-
quenched galaxies. However, these tests are also more
broadly applicable: PSBs represent an extreme use case

to fully test the accuracy of SFH modeling. Their large

recent bursts, sharp quenching events, variable ongoing

SFRs, and possible multiple episodes of star formation

push SFH models to the limit. Here, we consider how

the lessons learned from fitting these extreme galaxies

with different SFH models can be applied more generally

for a wide range of SED fitting use cases.

6.1. Choosing a model to recover basic quantities

“Basic quantities” derived from SED modeling are rel-

evant for a wide variety of use cases, and include stel-

lar mass, metallicity, dust content, SFR and sSFR, and

average age. A key insight of the tests we perform in
Section 4 is that all three non-parametric SFH mod-

els have sufficient flexibility to accurately recover all

of these basic quantities. This suggests that any “out-

of-the-box” non-parametric model is sufficient for gen-

eral SED fitting. In Figure 3, we show that all three
non-parametric models perform equally well at recov-

ering the stellar mass, metallicity, velocity dispersion,
Av, and dust index of mock PSBs. The SFR recovery

shows slight differences between the models— e.g., in

Figure 4, we show that the standard flexible-bin model

has an additional 0.1 dex systematic offset in recovered

SFRs compared to the standard fixed-bin model and

the PSB model— but in broad strokes, all three mod-

els perform quite similarly. Figure 7 shows that the
three non-parametric models have slight differences in

the scatter between input and recovered mass- and light-

weighted ages, but again the models perform nearly in-

terchangeably. This finding indicates that, when seeking

to recover only these basic quantities, essentially any of

the non-parametric SFH models tested here is sufficient.

This does of course come with caveats: no SFH model

is able to uncover information that is beyond the limits

of the data, and when the data are uninformative the

prior distribution has a significant impact on the pos-

teriors. In these cases, caution should be used when

comparing the results of SED fitting performed using

different prior assumptions. These results also apply to
the distributions of recovered quantities for a sample of
several hundred galaxies: the SFRs and ages of a single

galaxy may differ when when a different SFH model is

used to perform the fitting. But overall, our results in-
dicate that for general SED fitting, any non-parametric
model has sufficient flexibility to accurately recover the

basic properties of a sample of galaxies.

We find that the double delayed-τ model is also able

to accurately reproduce the basic properties of our mock
PSBs. However, we stress that our mock PSBs are the

“best case” scenario for testing this model: the input

SFHs have a very similar functional form to the dou-

ble delayed-τ model, and parametric models can only

accurately reproduce results if the correct answer is

contained within the model space. In this paper, we

use relatively simple mock SFHs composed of an older

delayed-τ component as well as a recent tophat burst.
The double delayed-τ model is able to recover this func-

tional form only if the timescale τ is very short. Fig-

ure 6 demonstrates that changing the τ prior to exclude

timescales 0.01 ≤ τ ≤ 0.1 can bias the recovered SFRs

by two orders of magnitude. Lower et al. (2020) shows
that stellar masses can also be biased if the true SFH

does not perfectly align with the functional form of the
parametric model. These model mismatches can be dif-
ficult to identify: if a given model is unable to access the
“true” region of parameter space, incorrect values can be

returned with drastically underestimated error bars (as

seen in Figure 6). This highlights one of the dangerous
pitfalls of parametric SFH models: basic quantities can

be highly biased without the user being able to tell from

the estimated uncertainties. Due to this issue, caution

should be used when interpreting the results of SED fit-

ting using parametric models. When using parametric

models, scientific conclusions should always come with

a discussion of which parts of parameter space are ex-

cluded by the SFH functional form.

6.2. Choosing a model to recover higher-order

quantities

While all three non-parametric models are able to

recover basic SED fitting quantities, they show signif-

icant differences in performance when attempting to re-

cover higher-order SFH quantities such as tq and fburst.
As shown in Figure 8, neither “out-of-the-box” non-

parametric model is able to constrain tq. The flexible-
bin model always quenches at the final bin edge, and the

fixed-bin model systematically underestimates tq. Error

bars on tq for the fixed-bin model reflect the chosen bin

spacing, not the ability of the data to constrain tq; er-

ror bars on tq for the flexible-bin model are equal to
zero, because the model is unable to vary this quantity.

The three models also have differences in the recovered
fburst value, again driven by differences in model flexi-

bility as opposed to differences in the data. Accurately
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constraining tq and fburst required building a new SFH
model specifically designed and tested to recover these

higher-order SFH quantities.

These results indicate that, if the user is attempting

to recover specific higher-order SFH quantities— e.g., tq,
fburst, how long it took for a galaxy to quench, the length

of a recent starburst, the fraction of the total mass
formed within a specific time interval, the timescale on
which SFR variability occurs— it is essential to carefully

consider the priors and the SFH model flexibility. These
higher-order quantities can be significantly affected by
relatively small choices made during SFH model con-
struction. Mock recovery tests are critical to disentan-

gle the effects of the model and priors from the scientific

results.

With this point in mind, we note that the PSB

SFH model designed in this paper is simply a slightly

more flexible version of existing “out-of-the-box” non-

parametric models. We added a single additional free

parameter, the width of the final timebin, and allow for
the user to set the total number of fixed and flexible bins.
This means that the PSB SFH model has increased flex-
ibility in the most recent part of the SFH, exactly the

portion of the SFH which is most constrained by the

data. This additional flexibility is broadly applicable

to a large variety of use cases where the recent SFH

varies on rapid time scales. Beyond modeling quench-
ing events, Chaves-Montero & Hearin (2020) suggest

that the effect of SFH on galaxy color is almost entirely

driven by the fraction of the mass formed in the past

1 Gyr: accurately recovering this recent SFH is criti-

cal to accurately recover the colors and physical proper-

ties of all galaxies. While additional tests of the model

should be performed when using it to recover higher-
order quantities that are not detailed in this paper, for
most use cases we suggest that there are few downsides

to using this SFH model over a different non-parametric

SFH model— and even a potential upside, of obtain-

ing more information about the most recent SFH. Our

PSB SFH model is available in Prospector as “conti-

nuity psb sfh” in the template library.

6.3. Caveats & future work

While this work represents a first step towards under-

standing how to best use non-parametric SFH models to

understand the quenching process, many open questions

remain. Our mock observations for this work consist

of SDSS-quality spectra intended to be directly analo-

gous to the SQuIGG~LE survey of intermediate-redshift
PSBs. While these mock data are similar in quality

to what may be expected from the upcoming spectro-

scopic surveys such as DESI, PFS and MOONRISE, the

details of how well burst and quenching properties can
be recovered may differ for purely photometric data,

such as that expected from the upcoming James Webb

Space Telescope. Furthermore, the mock observations

we use are geared specifically towards understanding

the properties of PSBs, and our mock SFHs are a rela-

tively simple model of a tophat burst on top of an older
delayed-τ component. Future mock recovery tests using

the SFHs of simulated galaxies (e.g., Smith & Hayward

2015; Guidi et al. 2016; Iyer et al. 2020) may provide

additional insights into the best SFH models to recover

galaxy properties.
We also note that both the mock galaxies and our SED

fitting models were generated with FSPS, and use the

same underlying stellar isochrones and spectral libraries.

These tests are thus insensitive to any possible differ-

ences between these models and true galaxies caused by

binary stars (e.g. Eldridge et al. 2017) or TP-AGB stars

(which may be especially important in PSBs, e.g., Kriek

et al. 2010).

7. CONCLUSIONS

In this paper, we explore how well different SFH pa-

rameterizations are able to recover the properties of

mock PSBs. We test one parametric SFH model as well

as three “non-parametric” SFH models. We create mock

PSBs with known stellar populations and SFHs based on

the properties of observed intermediate-redshift PSBs

from the SQuIGG~LE survey (Suess et al. 2021). We
then fit these mock observations with the Prospector

SED fitting code (Johnson et al. 2020) to test how well

each SFH model is able to recover the known properties

of each mock galaxy.

We find that the double delayed-τ model is able to ac-

curately reproduce the stellar masses and SFRs of our

mock PSBs as long as very short τ values are allowed
by the model. This model is also able to accurately re-

produce quenching times. However, galaxies are only

identified as “rapidly quenched” if the timescale τ is

. 100 Myr. Because of this degeneracy between the

burst duration and the speed at which star formation

shuts off, this parametric model is unable to recover the

duration of the recent burst. The prior extending to

low τ values required to accurately reproduce SFRs and

quenching events also places a large amount of proba-

bility at unphysically low ongoing sSFRs of 10−300 to

10−50yr−1. This tension does not exist for more flexi-

ble non-parametric models. The recovery tests in this

paper represent a nearly-ideal case where the true SFH
and the parametric model have very similar forms. The
double delayed-τ model may not have sufficient flexibil-

ity to recover more complex input SFHs.
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All three of the non-parametric SFH models we test
describe the SFH as a piecewise function where the

SFR varies between different time bins. In the fixed-

bin model, the edges of the bins are set by the user and

do not change. In the flexible-bin model, the edge of

the first and last bin remain fixed, but the length of

the other timebins is allowed to vary such that each bin
forms an equal stellar mass. In the PSB model, the first
three bins are fixed, the following five bins are flexible,

and the most recent bin has both a variable width and

variable SFR. All three models are able to accurately re-

cover the stellar masses, metallicities, dust attenuation

values, SFRs, and light-weighted ages of the mock PSBs.

All three models underestimate the mass-weighted age

by ∼ 0.25 dex, likely as a result of the “outshining”

problem.

However, we see dramatic differences in how well the

three models are able to recover the properties of the

recent burst, particularly the quenching time. The

flexible-bin model always quenches at the final bin edge,
no matter what value is input by the user. In the fixed-

bin model, the SFR can only change at one of the pre-

chosen bin edges. Even in the most ideal case, this re-

sults in rounding errors when the quenching time falls

between bins. Figure 8 shows that tq is often underesti-
mated by up to ∼ 200 Myr even when a longer tq value

is available given bin edge choices. To solve these issues,
the PSB SFH model includes a final bin with variable

length. This allows for the quenching timescale to be be

directly informed by the data, minimizing errors due to

model selection. We find that tq values are accurately

recovered by the PSB SFH model, with just ∼ 90 Myr of
scatter. We confirm that the PSB SFH model provides

the best fit to the data by computing the Bayes factor
evidence: 99-100% of our mock spectra show very strong
preference for the PSB SFH model over any of the other

three SFH models tested in this paper.

We then test the PSB SFH model on quiescent and

star-forming mock galaxies generated using the best-fit
SED fitting parameters of true galaxies from the 3D-

HST survey. We find that the PSB SFH model is able
to recover a wide variety of ongoing SFRs. The model
is also able to accurately recover the recent SFH of the

galaxies, though it does overestimate the formation time

(likely due to differences between our simple mock SFHs

and the assumptions made by our prior). These tests

indicate that the PSB SFH model is suitable for general
use: it does not artificially force a large burst and a
sharp quenching event.

The tests performed in this paper show that stan-

dard non-parametric models are similarly accurate at
recovering basic properties of galaxies such as stellar

mass, SFR and sSFR, and average age. This result
suggests that standard “out-of-the-box” non-parametric
SFH models are suitable for general use, and with some

caveats can be used interchangeably. However, the dra-

matic differences in how well the three non-parametric

SFH models are able to recover tq values indicates that
small differences between these models can be critical

when attempting to recover higher-order SFH quanti-

ties. Mock recovery tests such as those performed in

this paper are essential to ensure that these higher-order

SFH properties can be recovered accurately by a given

non-parametric SFH model. We publicly provide the

PSB SFH model developed in this paper as a part of

Prospector, so that is available for the community to
accurately recover the SFHs of recently-quenched galax-

ies.
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MNRAS, 363, 2, doi: 10.1111/j.1365-2966.2005.09451.x

Kriek, M., & Conroy, C. 2013, ApJL, 775, L16,

doi: 10.1088/2041-8205/775/1/L16

Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ,
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