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Abstract
Sex differences in personality traits, such as boldness, are often driven by differences in life history strategies. Specifically, in a
polygynous mating systemwhere males defend territories to acquire mates, it may be beneficial for males to exhibit higher levels
of boldness compared to females. However, males may also suffer a higher cost due to their bold behavior. Yet, few studies have
documented evidence of the differential costs of boldness between the sexes. We examined these relationships in water anoles
(Anolis aquaticus), using tail autotomy as a proxy for predation risk and/or injury from intraspecific competition. We measured
boldness as latency to emerge from a refuge into a novel environment.We predicted that (1) males would exhibit bolder behavior
than females, (2) boldness would be positively associated with tail autotomy (i.e., lizards with evidence of autotomized tails
would be bolder than lizards without evidence of tail autotomy), and (3) a higher proportion of males would exhibit evidence of
tail autotomy than females. We found that in our behavioral test, (1) boldness did not differ between the sexes, but that (2) there
were sex differences in the costs of boldness, such that boldness was positively associated with tail autotomy in males but not in
females, and (3) males tended to be more likely to exhibit evidence of tail autotomy. Together, these results suggest that males
may suffer a higher cost of boldness due to sex differences in reproductive strategies.

Significance statement
The sexes often differ in behavior because males and females use different tactics to fulfill reproductive success. Boldness is a
personality trait that benefits both sexes in terms of acquiring resources. However, boldness should benefit males more when they
defend territories and compete for mates. Though what is the cost of bold behavior and does this differ between the sexes? Here,
we found that boldness is associated with risk-induced injuries (tail loss) in male water anoles, but not in females. The loss of the
tail has been shown to have serious fitness consequences in lizards. Thus, male water anoles suffer a higher cost of bold behavior
than females. Our results provide insight on the ecological relevance of boldness, and how selection may have led to differences
in personality between the sexes.
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Introduction

Personality (including boldness, exploration, activity, socia-
bility, and aggressiveness) is the consistent among-individual
differences in behavior across time and/or contexts (Réale
et al. 2007; Stamps and Groothuis 2010). Personality is
shaped via social environments and ecological factors (Dall
et al. 2004; Smith and Blumstein 2008; Wolf and Weissing
2012) and is linked to inherent trade-offs that could affect an
individual’s growth, reproductive success, and mortality
(Carere and Eens 2005; Bergmüller and Taborsky 2010).
For example, in juvenile cichlids (Amatitlania nigrofasciata),
individuals that are fast to explore novel environments are
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slower to respond to predators (Jones and Godin 2010), and in
great tits (Parus major), individuals that were more willing to
explore a novel environment were more likely to return to
forage quicker after being startled, thus allowing them to ac-
quire more resources (van Oers et al. 2004).

Sex differences in personality are common and can arise
and be maintained via sexual selection (Schuett and Dall
2009; Munson et al. 2020) due to differences in male and
female life history strategies, such as investment in gamete
production, parental care, or intrasexual competition (Trivers
1972). Certain behavioral types could be associated with sex-
specific reproductive behaviors (Biro and Stamps 2008;
Swierk et al. 2014). Dingemanse and de Goede (2004) found
that great tit (Parus major) males that explore more are better
at outcompeting other males to find mates, but females do not
experience the same fitness benefit of exploration. Sex differ-
ences in the costs and benefits of exhibiting certain behavioral
types may largely depend on the type of mating system and
the operational sex ratio of the population as these are associ-
ated with the intensity at which individuals compete for mates
(Mitani et al. 1996; Smith and Sandell 1998). Particularly in
polygynous systems, males increase their reproductive suc-
cess by investing in aggression to defend resources, females,
and/or establishing a dominance rank (Emlen and Oring
1977). In the white-bellied ant bird (Myrmeciza longipes),
males are more aggressive than females, as aggressive males
control and protect territories and mates, which overall can
increase their fitness (Fedy and Stutchbury 2005).

Boldness (i.e., risk-taking) is one such personality trait that
is likely to differ between the sexes (Clark 1994; Piyapong
et al. 2010; Niemelä et al. 2012; King et al. 2013). Particularly
in a polygynous mating system, the benefits and costs of bold-
ness may differ between the sexes. Bolder individuals tend to
have greater access to resources (including mates) in species
as diverse as rodents (Fuxjager et al. 2010), fishes (Ward et al.
2004), and lizards (Short and Petren 2008). Yet, boldness is
assumed to incur higher predation rates. In the common roach
(Rutilus rutilus), bolder individuals have a greater susceptibil-
ity to cormorant (Phalacrocorax carbo) predation compared
to less bold individuals (Hulthén et al. 2017). In systems
where males defend territories to acquire mates, it may be
beneficial for males to exhibit high levels of boldness. In fe-
males, boldness may be relatively less important to their re-
productive success, other than for access to food resources
(e.g., Ariyomo andWatt 2012; Videlier et al. 2015). The costs
of bold behavior are likely to differ between the sexes as well.
However, most studies typically only show direct evidence of
the benefits of boldness (e.g., resource and mate acquisition),
but evidence for relevant ecological costs (e.g., predation risk)
is rarely reported (but see Biro and Post 2008; Hulthén et al.
2017; Moiron et al. 2020).

The costs of boldness include a higher likelihood of preda-
tion, but this is hard to quantify in animals without observing

natural predator-prey interactions or monitoring survival of
individuals in a population over time. Breakage of the tail,
also known as tail autonomy, is consistently used as a measure
of predation risk in lizards (Turner et al. 1982; Gifford et al.
2008), snakes (Pleguezuelos et al. 2010), and salamanders
(Shaffer 1978; Labanick 1984). Tail autotomy has significant
fitness consequences to the individual and therefore is a useful
indicator of the cost of boldness (Fox and Rostker 1982;
Martin and Salvador 1993; Althoff and Thompson 1994;
Niewiarowski et al. 1997; Wilson and Booth 1998; Fox and
McCoy 2000; Maginnis 2006; Bateman and Fleming 2009).
Many lizards exhibit tail autotomy to increase their chances of
survival during a predator encounter (Arnold 1988). In most
lizards, tail autotomy is the controlled voluntary shedding of
the tail that occurs along a breakage plane within vertebrae
(Clause and Capaldi 2006). Following autotomy, many spe-
cies of lizards exhibit tail regrowth; however, tail autotomy
“scars” remain for the lifetime of the lizard, and regrown tail
portions lack new vertebrae and are visually distinct from the
original tail. As such, an individual’s history of tail autotomy
can be determined by simple visual inspection. Tail autotomy
is very costly because it includes the loss of caudal fat re-
serves, impaired locomotory function, and decreased repro-
ductive capacity (Brown et al. 1995; Ritzman et al. 2012).
Though most studies show that predation is most commonly
related to tail autotomy (e.g., Turner et al. 1982; Medel et al.
1988; Fox et al. 1994), intraspecific interactions (e.g., male
competition) can likewise induce autotomy (Bateman and
Fleming 2009). Because of the strong links among tail autot-
omy, risk (either through predators or competitors), and indi-
vidual fitness, evidence of tail autotomy can be used to quan-
tify a cost of boldness. Alternatively, tail autotomy may alter
personality/boldness, as demonstrated by Michelangeli
(2020), in which individuals that recently suffered tail loss
became less bold, and by Wise et al. (2004) wherein tailless
individuals were more aggressive as intruders compared to
tailed individuals. Regardless, sex differences would likely
still be apparent, especially if males are more likely to suffer
tail autotomy than females.

Here, we tested the relationships among sex, boldness, and
tail autotomy to determine whether the costs of boldness differ
between male and female water anoles (Anolis aquaticus).
The literature is divided regarding whether there are
(Vinegar 1975; Brown and Ruby 1977; Vitt 1981; Smith
1996) or are not (Van Sluys et al. 2002; Chapple and Swain
2002, 2004; Lin et al. 2006; Brock et al. 2015) sex differences
in tail autotomy rates. Importantly, one piece of information
lacking from the literature is the relationship of tail autotomy
and sex differences in boldness, as boldness and predation
studies in squamate reptiles typically only focus on males
(Carter et al. 2010; Kuo et al. 2015). Males and females have
different life histories, which affect behavior and rates of in-
jury from competition and/or predation (Jennions and Telford
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2002). The water anole is a species amenable to explore these
questions because, like many lizards, they exhibit a polygy-
nous mating system wherein males engage in male-male com-
petition to defend territories and resources required by females
for mating (Meyers et al. 2006; Márquez and Márquez 2019;
Keogh et al. 2012). Furthermore, because populations are
densely distributed in Neotropical streams (Savage 2005) with
a variety of predator species, water anoles are exposed daily to
high levels of competition and predation risk. Anoles are
squamate reptiles that use tail autotomy as a morphological
defense mechanism to avoid predation (Etheridge 1967;
Russell and Bauer 1992). Therefore, frequency of tail loss is
a reliable measure of competition and/or predation (Arnold
1988; Bateman and Fleming 2011; Higham et al. 2013).
Importantly, water anoles also exhibit sexual dimorphism in
morphology and behavior. Males are larger than females and
have a conspicuous reddish-orange dewlap (colorful flap of
skin on the throat) (Savage 2005) that is used as sexual signal
to defend territories and attract mates (Jenssen 1977; Williams
and Rand 1977). Females lack dewlaps and are generally less
conspicuous than males. The size of the dewlap in this species
is positively correlated with boldness (Putman et al. 2018),
suggesting that bolder males may benefit from enhanced ter-
ritories and/or reproductive success. However, a cost of bold-
ness may be a higher probability of tail autotomy due to being
more exposed to predators and/or being involved in more
territorial interactions.

To test the relationships among boldness, tail autotomy,
and sex, we conducted a survey of water anoles in Costa
Rica over two summers, in which we quantified the
presence/absence of tail autotomy scars. For a subset of adults,
we conducted behavioral assays for boldness in a testing are-
na: Individuals that had shorter latencies to emerge from a
refuge were considered bolder (Putman et al. 2018; Réale
et al. 2007). We predicted that (1) males would exhibit bolder
behavior than females, (2) boldness would be positively asso-
ciated with tail autotomy (i.e., lizards with autotomized tails
would be bolder than lizards without tail autotomy), and (3) a
higher proportion of males would exhibit evidence of tail au-
totomy than females.

Methods

Study site and species

We conducted our study at Las Cruces Biological Station,
near San Vito, Costa Rica, over two summer field seasons
(June and July) in 2018 and 2019. Las Cruces Biological
Station is comprised of premontane tropical forest, ranging
from 1100 to 1500 m in elevation (Santos Barrera et al.
2014). Water anoles are found in streamside habitats, and

adults are 52–77-mm snout-vent length (SVL) (Márquez and
Márquez 2019).

Quantifying tail autotomy

As part of a larger mark and recapture study, each day from
9:00 to 14:00, we would slowly walk within the study area to
search for anoles. We looked inside of crevices and under
rocks to ensure that we were spotting all lizards, and not just
those out in the open. If an unmarked anole was sighted, we
captured it and took morphological measurements.
Morphological data included snout-vent length (SVL), tail
length, evidence of tail autotomy (yes or no), and the length
of the original tail remaining if autotomywas present (we refer
to this as the break distance). We considered evidence of tail
autotomy if an individual had the distal part of its tail missing
or if its tail has been regrown, thus exhibiting a visible tail scar
(Jacyniak et al. 2017). We determined anole sex by the pres-
ence (male) or absence (female) of a dewlap. Prior to being
released at their place of capture, each anole was marked with
a specific color code using non-toxic nail polish and/or unique
bead tags for individual identification from a distance
(Galdino et al. 2014).

Boldness trials

We performed boldness trials for all captured adult anoles.We
quantified boldness as the latency to emerge from a refuge into
a novel environment (Seda et al. 2012; Putman et al. 2018).
We used a white foldable plastic storage enclosure (33.0 cm in
length × 25.4 cm in width × 48.3 in height) to serve as the
novel environment.We cut the removable top of the enclosure
so that the outer frame was left and replaced the inner portion
with a mesh see-through material for clear visibility into the
enclosure. We lined the enclosure walls with white paper (in
2018) replaced after each trial, or lined the outside of the
enclosure with an opaque plastic sheet (in 2019) to prevent
the anole from being distracted by the outside environment.
Anoles were placed headfirst into a refuge which was then
placed at one end of the enclosure. The refuge consisted of a
dark green, circular, plastic container (10.9 cm diameter × 6.1
cm, with a 6.25-cm2 opening). Once the refuge (which
contained the anole) was placed into the enclosure, we
allowed the trial to run undisturbed for 20 min. We recorded
trials using action cameras attached to a tripod overlooking the
enclosure (Akaso EK7000 or GoPro Hero 3). After the trial,
we took the temperature of the anole using a non-contact
infrared temperature gun (Etekcity Lasergrip 774). To prevent
an individual’s scent from influencing another anole’s behav-
ior, we cleaned the enclosure and refuge thoroughly between
trials with antibacterial wipes or dishwashing soap. Although
we did not provide anoles with ample time to acclimate to the
novel enclosure prior to the start of behavioral trials, our
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methods are in line with similar studies that have conducted
trials shortly after capture (e.g., Carter et al. 2012; Hedrick and
Kortet 2012; Carazo et al. 2014; Kuo et al. 2015; Horváth
et al. 2020).

We conducted two trials on every individual on separate
days in random order. We conducted trials in the laboratory in
2018 and in the field in 2019, but all other trial parameters
remained the same between years. In 2018, anoles were
housed in individual plastic enclosures (12 × 19 × 13.5 cm)
in a temperature-controlled room (20–23 °C) with a 12:12
light:dark photoperiod, which approximated anole habitat
conditions in nature. Boldness trials were randomized and
occurred on the day of capture in the afternoon (in the same
temperature-controlled room) and the following morning in
2018, and anoles were released to their place of capture no
more than 48 h later. In 2019, we tested anoles once at the start
of the field season and once at the end (average of 12 days
apart), for a total of two trials per individual. Trials were ran-
domized and took place in the morning until the afternoon
(9:00 to 14:00). Temperature of the testing enclosure ranged
from 17.8 to 24.2 °Cwith mean ± SD = 21.7 ± 1.4 °C. None of
the lizards tested had broken their tail between trials. If un-
marked, we marked anoles for individual identification as
above to prevent retesting individuals.

We coded behaviors from the video recordings of the trials
using JWatcher (v 1.0). It was not possible to record data blind
because our only treatment was tail autotomy, and that was
clearly visible on the lizards in the video recordings.We quan-
tified boldness as time to head, the latency of the anole to
expose its head out of the refuge and into the novel arena.
Because most anoles did not fully emerge from refuge during
the 20-min trial, time to head was used as our measure of
boldness instead of full body emergence. Time to head is a
behavior that is widely used as a proxy of boldness (e.g.,
Herczeg et al. 2009; Scharnweber et al. 2011; Edelaar et al.
2012; Niemelä et al. 2012; Herde and Eccard 2013; Clary
et al. 2014; Mayer et al. 2016; Stanley et al. 2017; Petróczki
et al. 2019). We also verified that the latencies to head and to
full body emergence were highly positively correlated (using
data from trials in which anoles fully emerged: N = 40,
Pearson’s r = 0.755, p < 0.001).

Statistical analyses

All analyses were conducted in R (v. 3.6.1) (R Development
Core Team 2019), with alpha set to 0.05.

Analysis on tail autotomy

Across two field seasons, we caught 135 adult water anoles
(95 in 2018 and 40 in 2019): 57 females and 78 males. We
used a Pearson’s Chi-square test to assess population-level

differences in tail autotomy (yes/no) among adult females
and adult males.

Analyses on boldness

In all, we performed two boldness trials on 48 individuals
(2018, 18 females and 20 males; 2019, 5 females and 5
males). Because time to head contained right censored time-
to-event data (i.e., time to expose head from the refuge, right
censored at 20 min), we used a Cox proportional hazard re-
gression (survival package in R; Therneau 2015) with paired
data (i.e., individuals were tested twice) to determine whether
boldness differs between the sexes and associates with tail
autotomy in anoles. We included SVL as a factor because
previous studies have shown important effects of body size
on boldness (Harris et al. 2010; Hedrick and Kortet 2012;
Carazo and Noble 2014). We included year to account for
the different testing conditions used between 2018 and 2019.
Finally, we included temperature to account for temperature
effects on behavior (which preliminary analyses revealed as
important). Even though we tested 48 individuals, our sample
size for this final survival model was reduced to 80 observa-
tions on 40 individuals (2018, 15 females and 15 males; 2019,
5 females and 5males) as we did not have temperature data for
every trial. We looked for interactions between each of the
model factors and only found a significant sex*tail break in-
teraction (see “Results” section and Table 1). Because of this,
we also performed two additional Cox proportional hazard
regression analyses on males and females separately. We in-
cluded the same factors as above in these models (except for
sex).

To evaluate whether the extent or severity of tail autotomy
influences behavior, we performed a second Cox proportional
hazard regressionmodel on time to headwith data restricted to
anoles that had experienced a tail break. In this model, we
included the same factors as above, except tail break (yes/
no) that was replaced with the break ratio, which is the length
of the original tail remaining divided by SVL. The break ratio

Table 1 Results of the Cox proportional hazard regression model for
time to head

HR 95% CI Z p

Tail break 1.25 0.589–2.67 0.586 0.558

Sex 1.13 0.519–2.46 0.308 0.758

SVL 0.980 0.928–1.04 -0.723 0.470

Temperature 1.05 0.879–1.25 0.505 0.613

Year 1.74 1.00–3.02 1.96 0.050*

Tail break*sex 2.90 1.06–7.906 2.08 0.038*

HR hazard ratio, CI confidence intervals, Z Z-score, SVL snout-vent
length. Asterisks indicate statistical significance at 0.05
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is indicative of the number of tail autotomy events experi-
enced in a lizard’s lifetime because subsequent tail breaks
must occur anterior to the current break site. Lower break
ratios indicate that more of the original tail had been lost
through autotomy compared to higher break ratios. In this
model, we had 24 observations on 12 individuals (2018, 4
females and 5 males; 2019, 2 females and 1 male).

Cox proportional hazard regression models are not able to
determinewhether anoles exhibit consistent among-individual
variability in behavior. We previously demonstrated that wa-
ter anoles exhibit significant repeatability in refuge emergence
(Putman et al. 2018). Here, we report the intraclass correlation
coefficient (ICC) from a linear mixed model using the same
fixed effects as above (in the full model) and anole identity as
a random factor. The ICC estimates how strongly responses of
the same group (i.e., within individual anole) are correlated.
We used a likelihood ratio test to determine whether inclusion
of anole identity is significant in the mixed model. We report
the full results of this model in Online Resource as further
support for our findings. However, we primarily focus on
the results from the Cox proportional hazard regression below
because it is the most appropriate model for censored data.

Results

Rates of tail autotomy

We caught 135 adult water anoles (95 in 2018 and 40 in
2019)—57 females and 78 males. We found that 42 anoles
had experienced tail autotomy (~ 31% of all anoles cap-
tured)—24.6% of females and 35.9% of males. These differ-
ences between the sexes were marginally non-significant (X2

= 3.267, df = 1, p = 0.071).

Boldness, sex, and tail autotomy

For our analyses, we included two trials for each of 20 males
and 20 females across two field seasons. We found that al-
though the sexes did not differ in time to head (p = 0.758;
Table 1), there was a significant sex*tail break interaction (p =
0.038; Table 1) on time to head in the Cox proportional hazard
regression model, and the rate of head emergence was 1.74
times higher in our second field season compared to the first
(effect of year: p = 0.050, Table 1). The global (overall) sig-
nificance of this model was p = 0.005 (Wald test = 18.65, df =
6). Separate Cox proportional hazard regression models
showed having an autotomized tail significantly related to
time to head in male anoles (p = 0.025; Figs. 1b and 2a),
whereas there was no such relationship in females (p =
0.394; Figs. 1a and 2b). The rate of head emergence was
3.13 times higher for males with tail autotomy compared to
males without tail autotomy (Fig. 2a).

For anoles that had experienced a tail break, we found no
effect of break ratio (the amount of the original tail remaining)
on time to head (p = 0.147, Online Resource 1). In this model,
we found that males with tail autotomy were more bold (more
likely to emerge sooner) than females with tail autotomy (p =
0.008), and we retain the significant effect of year (p < 0.001),
but caution that only three individuals in this dataset came
from year two. The full results of this model can be found in
Online Resource.

The ICC for anole identity was 0.243, and inclusion of this
random factor into a mixed model was significant (X2 = 17.14,
p < 0.001). The linear mixed model qualitatively supports the
survival analysis results above with a significant sex*tail
break interaction (N = 40 anoles, p = 0.021; full results in
Online Resource 1 and Online Resource 2).

Discussion

In our study, water anoles did not exhibit sex differences in
levels of boldness, but rather in the costs of boldness. We
foundmarginally significant results for our first prediction that
males are more likely to exhibit evidence of tail autotomy than
females. Though our results show weak support, it still shows
that males may experience higher predation risk and/or more
attacks from competitors than females. We did not find sup-
port for our second prediction that males would be bolder than
females. However, boldness was associatedwith tail autotomy
in males and not in females: Males that had experienced tail
autotomy were bolder than males that had not, and males with
evidence of tail autotomy were bolder than females with evi-
dence of tail autotomy. This suggests that males may suffer a
higher cost of bold behavior, likely due to differences in their
reproductive behaviors associated with territory defense.
Overall, our study suggests that boldness differentially affects
tail autotomy patterns across the sexes and that these differ-
ences may arise and be maintained via sexual differences in
life history strategies.

Tail autotomy and boldness

Overall, male and female water anoles did not differ in levels
of boldness, but rather in the relationship between boldness
and tail autotomy. Males that had experienced tail autotomy
were bolder (shorter time to head) compared to males without
tail autotomy, a relationship that was not apparent in females.
In brown anoles (A. sagrei), bolder males are also more likely
to have autotomized tails (Kuo et al. 2015), and in Namibian
rock agamas (Agama planiceps), bolder males have greater
access to resources but suffer higher tail loss (Carter et al.
2010). Both these studies support our results in which bold-
ness associates with tail autotomy; however, these studies on-
ly tested males and not females.We also looked at whether the
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extent of tail loss influenced behavior by examining the rela-
tionship between the break ratio (amount of original tail re-
maining) and time to head. We did not find a significant rela-
tionship between these two traits. If bolder individuals, and
especially males, are more likely to experience tail autotomy,
we should expect that these individuals would have lower
break ratios as they suffer multiple tail loss events throughout
their life. However, our sample size for this analysis was low;
therefore, more studies would be needed to fully evaluate this
relationship. Finally, we found a significant effect of year,
wherein lizards from 2019 had a quicker time to head
(bolder) than lizards from 2018. This could be due to the fact

that these lizards were tested in their natural conditions (i.e., in
the field) and they could have been less stressed than lizards
brought back to the lab.

Our study is the first, to our knowledge, to find such sex
differences in the costs of boldness. Male-biased tail autotomy
in relation to boldness may be due to sex differences in repro-
ductive behaviors (e.g., territorial defense, male-male compe-
tition, and mate acquisition). An individual’s dominance rank
can influence reproductive success, and boldness is often pos-
itively correlated with dominance (Dahlbom et al. 2011). In
water anoles, dewlap size is positively correlated with male
boldness (Putman et al. 2018), and dewlap size has been

Fig. 1 Adjusted survival curves
showing how tail break (yes or
no) affected time to head
estimated from the Cox
proportional hazard model in a
female and b male water anoles.
Survival rate is the proportion of
individuals still in the refuge

Fig. 2 Results of the Cox
proportional hazards model on
time to head (TTH) in a male and
b female water anoles. Forest plot
shows the hazard ratios along
with their 95% confidence inter-
vals, which are also displayed
numerically to the right. A hazard
ratio of 1 means no risk, a hazard
ratio greater than 1 suggests an
increased risk (more likely to stick
head out), and a hazard ratio be-
low 1 suggests a smaller risk (less
likely to stick head out). SVL =
snout-vent length
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shown to correlate with male dominance in anoles
(A. carolinensis) (Bush et al. 2016). Therefore, anoles with
larger dewlaps would be expected to have a larger fitness
benefit (e.g., success in attaining mates, resources, and in
competition) as they are bolder and have a higher dominance
rank compared to individuals with smaller dewlaps. Male
anoles not only use their dewlaps for mating displays but also
for territorial displays during male-male interactions (Cooper
1977; Steffen and Guyer 2014), and bolder males are more
likely to be involved in competitive interactions. Therefore,
tail autotomy in bolder male anoles may also be due, in part, to
intraspecific competition. For example, in Kotschy’s gecko
(Cyrtopodion kotschyi) and the Mediterranean house gecko
(Hemidactylus turcicus) intraspecific competition led to tail
autotomy in lizards more than predation did (Itescu et al.
2017). Though this study focused on aggression and not bold-
ness, it does highlight how sex differences in behavior could
drive male-biased injuries.

It is also important to recognize that tail autotomy may
influence boldness as opposed to it being a consequence of
bold behavior. Michelangeli et al. (2020) found that tail autot-
omy in delicate skinks (Lampropholis delicata) impacted per-
sonality as individuals minimized activity to reduce exposure
from potential predators. Similarly, in northern zigzag sala-
manders (Plethodon dorsalis), tail autotomy altered antipred-
ator behaviors as autotomized individuals fled further from a
touch stimulus and explored novel enclosures more (Bliss and
Cecala 2017). However, our results do not support this hy-
pothesis as we would expect anoles with autotomized tails to
exhibit longer latencies to emerge, which was not what we
found. It is possible that tail autotomymay temporarily reduce
activity and boldness in the short term (i.e., immediately after
experiencing a tail break), but bolder individuals could still be
more likely to have tail autotomy scars than less bold individ-
uals over the long term. A further study would need to test this
as we only had a single anole with a recent tail break based on
0% regenerated tissue at the break site.

It is likely that other personality traits such as aggressive-
ness, exploration, activity, or sociability may correlate with
boldness (forming a behavioral syndrome) and also affect tail
autotomy in water anoles. Behavioral syndromes have been
found in a diversity of organisms such as stickleback fish
(Gasterosteus aculeatus) (Bell and Stamps 2004), field
crickets (Gryllus integer) (Kortet and Hedrick 2007), and fish-
ing spiders (Dolomedes triton) (Johnson and Sih 2005). We
only focused on boldness, but future work could test how
other personality types and/or behavioral syndromes affect tail
autotomy in water anoles between both sexes.

Sex differences in tail autotomy

Though we found marginally significant results in sex differ-
ences in tail autotomy, our results are still indicative that males

tended to be more likely to exhibit evidence of tail autotomy
than females. Sex differences in tail autotomy could be due to
the fact that males are more susceptible to predation attacks
particularly during the reproductive season. Males could be
more susceptible to predation attacks because of their conspic-
uous morphology (i.e., body size, sexual ornaments) and/or
behavior resulting in males being more conspicuous and ex-
posed (Magnhangen 1991). Male Anolis lizards extend their
dewlap and head-bob to females in mating displays (Crews
1975; Tokarz 1995; Jenssen et al. 2000). Though these visual
signals are favored by sexual selection, they can also draw the
attention of predators (Endler 1992; Fleishman 1992). For
example, in brown anoles (A. sagrei), the rate of dewlap ex-
tensions decreased in the presence of a simulated predator
(Simon 2007).

Other studies conducted across a broad range of taxa have
also shown patterns of males being more susceptible to pred-
ator attacks. For example, in crickets (Gryllus integer and
G. lineaticeps), males produce a calling song in order to attract
females, but gravid female parasitoid flies (Ormia ochracea)
are also attracted to the calling song and use it to locate male
crickets as their victims to lay their eggs (Gray and Cade 1999;
Gray et al. 2007; Dobbs et al. 2020). This pattern is also seen
in mammals (Sommer 2000; Kraus et al. 2008), fish
(Magurran and Seghers 1994; Tobler et al. 2008), and frogs
(Lodé et al. 2004; Bernal et al. 2007). In all these studies,
males were more susceptible to predator attacks due to con-
spicuous male reproductive behaviors.

Conclusions

This study contributes to our understanding of sex differences
in behavior within an ecological context. We found that (1) a
higher proportion of males have evidence of tail autotomy,
though only marginally significant; (2) males are not bolder
than females; but (3) boldness associates with history of tail
autotomy in males but not in females. Future studies should
explore how other sexually distinct personality types and/or
behavioral syndromes affect tail autotomy between the sexes.
In all, our study suggests that the sexes may experience dif-
ferent selective pressures (e.g., trade-offs and costs of bold
behavior) on personality traits (Wolf et al. 2007; Schuett
et al. 2010).
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