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Abstract—Today’s tasks require a plethora of analytics tasks
to be conducted to tackle state-of-the-art computational chal-
lenges posed in society impacting many areas including health
care, automotive, banking, natural language processing, image
detection, and many more data analytics related tasks. Sharing
existing analytics functions allows reuse and reduces overall
effort. However, integrating deployment frameworks in the age
of cloud computing is often out of reach for domain experts.
Simple frameworks are needed that allow even non-experts to
deploy and host services in the cloud. To avoid vendor lock-in,
we require a generalized composable analytics service framework
that allows users to integrate their services and those offered in
clouds, not only by one, but by many cloud compute and service
providers.

We report on work that we conducted to provide a service in-
tegration framework for composing generalized analytics frame-
works on multi-cloud providers that we call our Generalized
AI Service (GAS) Generator. We demonstrate the framework’s
usability by showcasing useful analytics workflows on various
cloud providers, including AWS, Azure, and Google and edge
computing IoT devices. The examples are based on Scikit learn
to use them also in educational settings that can easily be
replicated and expanded upon. Benchmarks are used to compare
the different services and showcase general replicability.

Index Terms—Software/Software Engineering, Tools, Program-
ming Environments/Construction Tools, Code generation, Dis-
tributed systems, Artificial Intelligence

Keywords— code generation, AI services, multi-cloud,
hybrid cloud, OpenAPI, REST

I. INTRODUCTION

In today’s application, scientists want to share their services
with many colleagues while not only offering the services
as bare metal programs but exposing the functionality as a
Software as a Service (SaaS). This has the advantage that the
services can be readily reused by other applications and hosted
in the cloud, allowing access to state-of-the-art services or
volumes of resources that otherwise would not be accessible to
individual domain experts. Through the increased availability,
resource constraints can be reduced, and scientists can offer
their analytics workflows as services to the community. This
may include long-lasting services envisioned by cloud com-
puting as part of its Software as a Service (SaaS) paradigm or
for smaller analytics functions as microservices. Furthermore,
a subset of analytics functions can be offered as part of a
serverless computing model, elevating the penetration from

a pure bare metal solution to a multi-pronged cloud-based
service offering.

While working with many professionals, researchers, and
students, we found that the barriers to entry to accomplish this
goal remain very high, and would elude many domain experts
as they have neither the expertise nor the time to learn the
expertise necessary to conduct the infrastructure-related tasks
integrating DevOps and analytics tasks. Although recent de-
velopments, especially on the serverless computing side, have
made progress, we ought to leverage the existing expertise of
the domain scientists while automating the creation of various
services from SaaS, microservices, and serverless computing.

Having worked with this community, we found that the
educational steps involved for a beginner take about two to
three months to get up to a level where the development of
cloud-based services is possible. We set the goal to explore if
it is possible to drastically reduce the time needed to create
such services.

For this reason, we developed a sophisticated but easy to use
framework that takes a regular python function and converts
it automatically into a secure REST service and OpenAPI
specifications [1] that can be reused in the ecosystem of cloud
services. We used this framework to create many AI-based
REST services to showcase the approach’s validity. We used
examples from SciKit-learn [2] and benchmark the execution
of the resulting REST services on various clouds and an IoT
device.

The paper is structured as follows. In Sec. II we will
start with a very brief background section to allow domain
experts to catch up with the terminology and concepts used
in our architecture. The background analysis leads us to our
requirements presented in Sec. III and our architectural design
shown in Sec. IV. Our benchmarks are collected in Sec. VI.
We present our conclusion in Sec. VIII.

In the appendix, a small number of useful notes are provided
to ease replication of what we have achieved by others. In the
final publication, the appendix can be removed with a link
to our manual for the pilot framework presented here [3], [4]
where we will include the content of the appendix.



II. BACKGROUND

In this background section, we provide a small summary
of activities related to this research so that domain experts
can get a small introduction to concepts that we use to
implement our architecture. It is beyond the scope of this
paper to give more detailed introductions in topics such as
IaaS, SaaS, microservices, serverless computing, OpenAPI,
and REST services. The sections will, however, be useful as
a starting point for further research to the reader.

A. The Big Data Reference Architecture
NIST has developed a Big Data Reference Architecture

as part of the NIST Big Data Interoperability Framework
(NBDIF) [5] and identified several use cases that motivate
it [6]. The reference architecture is depicted in Fig. 1. It
includes the following components: Data Provider, Big Data
Application Provider, Big Data Framework Provider, Data
Consumer and System Orchestrator as well as two overarching
fabrics: security and privacy and system management. There
are three types of linkages, namely Big Data Information flow,
Service Use and Software Tools, and algorithms transfer. The
architecture presents a level of abstraction to define Big Data
applications. Components that implement sophisticated func-
tionality work in concert to address the challenging creation
of instantiating architectures beyond the conceptual stage.
As such, the components interact with each other that are
expressed through the linkages within the NBDIF. The next
logical step is to explore how it can benefit and be used for
analytics services.
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Fig. 1. NIST Big Data Reference Architecture [7]

NIST has developed through open working group participa-
tion the following documents related to the NBDIF [5]–[13].
Within these activities, Volume 8 is of especial importance
as it allows a set of Big Data Architectural needs [4] [14].
This effort builds the basis of our activities reported here
while expanding it to cloud providers and services focusing
on Analytics Services, which are not covered by the current
volumes.

In a previous effort, we have developed a reference im-
plementation that follows the architecture laid out in NBDIF
and is easy to use by scientists. However, it focused mostly on
multi-cloud provider access via REST services and command-
line tools. The reference implementation is done as part of the
cloudmesh project, which was one of the first hybrid multi-
cloud provider interfaces, even including cloud technologies
that are no longer active such as Eucalyptus [15], Open-
Cirrus [16], FutureGrid [17], and Comet Cloud [18]. Today,
it supports clouds such as AWS [19], Azure [20], Google
Cloud Platform [21], Oracle [22], and OpenStack [23]. It
will offer further value as it also explores the integration of
MapReduce frameworks such as Hadoop [24] and Spark [25],
as well as container-based frameworks such as Docker [26],
and Kubernetes [27].

However, the work presented here focuses on creating
analytics services that can be automatically created and hosted
on any of the clouds supported by cloudmesh. This is a non-
trivial effort due to the large number of technologies involved
and is outside of the expertise of domain scientists. However,
the use of cloudmesh makes it possible for the domain scientist
to easily access these services and leverage our more than ten
years of experience in this field.

The previous work provides us with a blueprint on how to
proceed. We list the following main findings of our earlier
work that we leverage as part of this work.
Software Defined Analytics Services and Applications.

Just as in the NBDIF, the utilization of DevOps to
deliver Software-Defined (SD) Big Data applications is
of utmost importance for the design of reusable services
and components [3], [28], [29].

Multi-cloud Provider Interfaces. Volume 8 was through
community input shaped in such a form that it allows
multi-cloud interfaces. Such interfaces have been in prac-
tical use in our software and showcase the validity of
the NIST-BDRA approach. It is clear that we need to
introduce such multi-cloud and multi-service interfaces
for analytics-related tasks whenever possible as motivated
in our introduction.

Use Case Collection. NIST has provided as part of the NIST
BDRA document Vol. 6 [5] several use cases that can be
analyzed and from which common big data services can
be detected. These use cases were sufficient to drive the
NIST BDRA document [5] and allowed the community to
investigate initial implementations. These use cases also
motivate the work conducted in this effort.

Independent API Specification Leveraging OpenAPI.
Although the use of OpenAPI [1], [30] is not required as
part of the NIST specification, it can be used to formulate
services in a language-independent fashion. Hence it
allows creating, evolving and promoting a vendor-neutral
description format. This is important to provide for our
analytics services approach to promote a vendor-neutral
and independent effort.

API’s and Tools Targeting A Multi-Layered Architecture.
In our previous effort, we learned that we need to provide



support for tools, services, and APIs on multiple levels
in a multi-layered architecture. While some users expect
a generalized specification other users may require
access on the command line, deployed services, or even
a Jupyter notebook. We observe that in many cases, the
entry-level to define API specification is too high for
many. This is the case for domain experts in the analytics
community that often lack the necessary expertise for
general service integration and deployment.

Hence, previous work provides us with a blueprint on how
to proceed, which we summarize as follows:

Develop an easy to use framework that allows the scientists
(a) to develop shareable analytics components (b) allow for
the deployment of them, and (c) allow for the easy reuse of the
services by community members leveraging the deployments.

B. REST

One of the most common architectural styles for cloud-
related services is based on ReprEsentational State Transfer
(REST). REST often uses the HTTP protocol for the CRUD
functions, which create, read, update, and delete resources.
It is important to note that REST is not a standard, but it
is a software architectural style for building network services.
When referred to as a part of the HTTP protocol, REST has the
methods of GET, PUT, POST, and DELETE. These methods
are used to implement the CRUD functions on collections and
items for which REST introduces abstractions for managing
these collections and single resources [31] as explained in
Fig. 2.

Collection of resources. Assume the URI,
http://.../resources/, identifies a collection
of resources. The following CRUD functions would be
implemented:
GET: List the URIs and details about the collection’s items.
PUT: Replace the collection with a different collection.
POST: Make a new entry in the collection. The operation

returns new entry’s URI and assigns it automatically.
DELETE: Delete the collection.

Single Resource. Assume the URI,
http://.../resources/item1, identifies a single
resource in a collection. The following CRUD functions would
be implemented:
GET: Fetch a representation of the item in the collection,

extracted in the appropriate media type.
PUT: Replace the item in the collection. If the item does not

exist, then create the item.
POST: Typically, not used. Treat the item as a collection and

make a new entry in it.
DELETE: Delete the item in the collection.

Fig. 2. REST definitions for a collection and single resources.

Because REST has a defined structure, there are tools
that manage programming to REST style architectures. They
include, for example, different categories [31]:

• REST Specification Frameworks which define REST
service specifications for generating REST services in
a language and framework independent manner such as
Swagger 2.0 [32], OpenAPI 3.0 [33] and RAML [34].

• REST programming language support which include
tools and services for targeting specific programming
languages such as Flask Restful [35], and Django Rest
[36] for Python.

• REST documentation-based tools which are tools to
document REST specifications. One such tool is Swagger
[37].

• REST design support tools which support the design
process in developing REST services while defining
reusable client and server that can be integrated and
enhanced such as Swagger [37] and other tools available
at OpenAPI Tools [38] to generate code from OpenAPI
specifications [39]

Within our work reported here, we will heavily base our
architecture on REST. From this small discussion, it is evident
that although the concept of REST is easy to understand, a
significant amount of expertise is needed to apply it, which
domain scientists may not be interested in to know but keen
on reusing without needing to know the details.

C. OpenAPI

One of the important aspects of generating REST services is
a language-independent formulation of REST services. For this
reason, the “OpenAPI Specification (OAS) defines a standard,
language-agnostic interface to RESTful APIs which allows
both humans and computers to discover and understand the
capabilities of the service without access to source code,
documentation, or through network traffic inspection. When
properly defined, a consumer can understand and interact with
the remote service with minimal implementation logic [1].”

Hence the specification allows us to not only display the
documentation but also allows us to use it to generate the
clients and server stubs from it automatically. OpenAPI can
be formulated as a YAML Ain’t Markup Language (YAML)
[40] file.

An OpenAPI definition can then be used by documentation
generation tools to display the API, code generation tools
to generate servers and clients in various programming lan-
guages, testing tools, and many other use cases. One of the
issues with using the OpenAPI during the design of a project is
that it takes considerable effort to understand the specification.
Based on our experience of integrating it into university
courses, it is a formidable effort to learn and use it. The
lessons from this educational effort that includes researchers,
professionals, graduate, and undergraduate students motivated
this work.

D. Hybrid Multi-Cloud Computing with Cloudmesh

Cloud computing providers offer their customers on-demand
self-service computing resources that are rapidly elastic and
accessible via broad network access [41]. They accomplish
this through the economies of scale achieved by resource
pooling (serving multiple customers on the same hardware)
and using measured services for fine-grained customer billing
[41]. Cloud providers offer these resources in multiple service



models including infrastructure as a service, platform as a ser-
vice, software as a service, and, recently, function as a service
[41]. These providers are rapidly offering new platforms and
services ranging from bare-metal machines to AI development
platforms like Google’s TensorFlow Enterprise platform [42],
and AI services such as Amazon’s text-to-speech service [43].

Customers can take advantage of cloud computing to reduce
overhead expenses, increase their speed and scale of service
deployment, and reduce development requirements by using
cloud providers’ platforms or services. For example, cus-
tomers’ developing AI systems can utilize clouds to handle big
data inputs for which private infrastructure would be too costly
or slow to implement. However, having multiple competing
cloud providers leads to situations where service availability,
performance, and cost may vary. Customers must navigate
these heterogeneous solutions to meet their business needs
while avoiding vendor lock-in and managing organizational
risk. This may require comparing or using multiple cloud
providers to meet various objectives.

Today’s infrastructure deployments can benefit from a hy-
brid multi-cloud strategy in which a mix of cloud-enabled
services such as computing, storage, and other services are
integrated from on-premises infrastructure, private cloud ser-
vices, and a public cloud.

As pointed out earlier, Cloudmesh [3] is a framework and
toolkit that enables users to easily access hybrid multi-cloud
environments. Cloudmesh is an evolution of previous tools that
have been used by many users. Cloudmesh makes interacting
with clouds easy by creating a service mashup to access
common cloud services across numerous cloud platforms.
Cloudmesh contains a sophisticated command shell, a database
to store JSON objects representing virtual machines, storage,
and a registry of REST services [4]. Cloudmesh has a sophisti-
cated plugin concept that is easy to use and leverages python
namespaces while integrating plugins from different source
code directories [44]. Installation of Cloudmesh is available
for macOS, Linux, Windows, and Rasbian [3].

Cloudmesh works with a variety of cloud providers, includ-
ing Amazon Web Services, Microsoft Azure, Google Cloud
Platform, and Oracle’s OpenStack based providers such as the
academic research serving Chameleon Cloud [45].

Recently we have also explored containers and microser-
vices. The work presented here summarizes some of this effort.
With the help of a plugin cloudmesh-openapi We can generate
REST services, including microservices and containers, to
organize its functions and code. In addition, cloudmesh can
be distributed as a container and used in a containerized en-
vironment. Through this ability, cloudmesh services generated
with cloudmesh-openapi can also be deployed on Kubernetes.

III. REQUIREMENTS

Next, we present the most critical requirements that moti-
vated our architecture and design. We start with a set of general
requirements.
Leveraging new Python features. Python is a very popular

choice with many data scientists. Our framework will

leverage the newest Python 3 features such as Typing
Interface [46] in order to increase robustness and future-
proofing of our code base.

Ability to be used within Jupyter Notebooks.
The framework must be able to integrate with Jupyter
notebooks as they are very popular with today’s data
scientists. The functionality must be easily accessible not
only as part of python programs but also within Jupyter
notebooks. This is of special importance also for cloud
services such as Google Colab [47] which for example,
offers cloud-based Notebooks.

Easy of use is a critical aspect of the framework that is
to be addressed from the start by allowing for ease
of creation, ease of deployment, and easy use of the
generated services. This is accompanied by easy to use
command-line tools.

Next, we list some more specific requirements that motivate
our architectural design.

Multi-Cloud Service Integration. The framework must al-
low us to integrate multiple cloud services, including
IaaS, PaaS, and SaaS. This also includes the ability to
access AI-based services offered by the various cloud
providers.

Hybrid-Cloud Service Integration. The framework must al-
low integrating on-premise, private, and public clouds.

Generalized Analytics Service Generator. We need a gen-
eralized analytics service generator. The first step in the
activity to generate an analytics service is to provide
an OpenAPI Service generator. Our generator will allow
us to define essential analytics functions such as (a)
uploading and downloading files to an analytics service;
(b) specifying the functionality through typing enhanced
python functions; and (c) generating the code for the
service.

Generalized Analytics Service Deployment. After the ser-
vice is generated, it needs to be deployed. For this step we
will be reusing the Cloudmesh deployment mechanism
to instantiate services on-demand on specified cloud
providers such as AWS, Azure, and Google.

Generalized Analytics Service Invocation. The next step
includes the invocation of the deployed services. While
analyzing some use cases, we identified that users often
need to invoke the same service many times to tune
service parameters in a quasi-realtime fashion while using
parameters that can not be included in the URL. Hence
we will need to upload input parameters through files if
the simple typing data types provided by our proposed
framework is not sufficient.

REST Services Architecture. As REST has become the
most prominent architectural design principle, our Gen-
eralized service architecture needs to be able to produce
REST services.

Automated REST Service Generation for other Languages.
Our framework must have provisions included that allow
the integration into other programming languages and,



on the other hand, allows the integration of services and
functions developed in other languages.

Generalized Analytics Service Registry. As users and com-
munities may develop many different services, we must
provide the ability to (a) find specifications of general-
ized analytics services (b) find use-cases of generalized
analytics services (c) find infrastructure on which such
services can be deployed, and (d) find deployed analytics
services. For this, we need a registry that can be queried
by the community.

Generalized Composable Analytics Services. Services
must be allowed to reuse other services to allow for
easy integration. Thus we need to make our services
composable. This also includes the choreography of the
execution of such composable services.

IV. ARCHITECTURE

To satisfy our requirements, we have designed a multilay-
ered architecture delivering a framework and toolkit to allow
the easy generation and deployment of generalized AI-based
REST services.

It contains two main layers. The first layer is concerned
with generating the REST services, while the second focuses
on easy deployment in a multi-cloud environment. However,
as we also deal with hybrid infrastructure, we allow in the
second layer access to HPC and local on premise resources. In
addition, our architecture addresses the creation of containers
and their deployment in docker and Kubernetes. This way our
framework is not only capable of delopying into cloud virtual
machines, but also into other infrastructure services, either
offered locally or in the cloud. Both layers can be accessed
and control via a convenient Command shell and client. As
they are REST services, the deployed services can easily be
accessed from other resources via the REST API. Next, we
describe some of the important features within each of the
layers while starting with the infrastructure deployment.

A. IaaS Access Layer

This layer allows us to deploy different infrastructure ser-
vices on demand while introducing an abstraction layer for
compute resources that allow IaaS access across the different
platform offerings. Here, we can leverage from the cloudmesh
toolkit that provides us with the basic interfaces to virtual
machines to conveniently access in homogeneous fashion
AWS, Azure, Google, Oracle, and OpenStack. Access to HPC
and Bare metal can be integrated and has been showcased in
the past in cloudmesh. We also have prototyped in cloudmesh
interfaces for accessing compute resources via docker and
Kubernetes.

All of the deployment can easily be managed through a
simple client shell that can also be used as a command
line executor. This system is one of the key components of
cloudmesh and allows easy integration of new commands and
modules. This makes cloudmesh extensible, while others can
provide new functionality that can be accessed in the command
shell and command line interpreter. We use the cloudmesh

command shell to integrate the functionality of the Generalized
AI Service (GAS) Generator and describe its functionality in
more detail next.

B. GAS Generator

The Generalized AI Service (GAS)1 Generator creates the
REST service from a simple function or class definition while
utilizing the newest python language features such as docu-
mented typing information integrated in the program specifi-
cation. The GAS Generator provides us with the fuel that is
needed as part of the service deployment. This is manifested
in a number of artifacts for the deployment. The artifacts
include a specification derived from the python program in
OpenAPI format, the server code that is derived from the
OpenAPI format, and an optional container specification file
(e.g., Dockerfile). In addition, as we expect that the service is
going to be reused, we use a GAS Service registry in which
we record the specification description of the service as well
as deployment information on which the service ought to be
deployed. This deployment specification can be derived from
other prototype cloudmesh components such as cloudmesh-
frugal, which can obtain resources based on minimal cost. We
have not explicitly included this component in our architecture
picture as we have not used it as part of our benchmarks that
we describe later.
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Fig. 3. Layered architecture of the cloudmesh OpenAPI framework.

C. GAS Workflow

To showcase why the framework is so useful for data
scientists, we are contrasting the definition workflow that a
scientist undergoes while using OpenAPI without and with
GAS Generator in Fig. 4 and Fig. 5.

The workflow in Fig. 4 showcases a typical workflow as
promoted by the developers of Swagger codegen [39]. The user
identifies from his use case an OpenAPI schema that is used to
generate the code. However, this is an unnecessary high entry
barrier as the creation of these schemas is complex. While

1GAS the name GAS is derived from two different common usages. First,
it refers to gasoline, referring to fuel that we need to generate the services;
the second is an expandable material that fills the whole of a container. If
you have better ideas or analogies for naming our framework, please get in
contact with us. We love to hear from you!



using the swagger code generator, a variety of code stubs in
many different languages can be created. The code generated
requires an unnecessary high entry barrier as we next need
to identify how and where we include an implementation of
a function that we want to expose as a REST service. Once
complete, the rest of the activity requires the remaining steps
to be executed by hand, but scripts could be developed to
automatize it.

Next, we like to contrast this with our much-simplified
approach. As we know, the data scientists have the knowledge
to write python function (or class); we simply leverage this
expertise and take the function (or class) and provide it as
input (fuel) to the GAS generator. This is done with a simple
one-line command invocation that just includes the name of
the python program in which the function (or class) is defined.
The scientist does not have to learn REST, the scientist does
not have to look into a code stub that is generated for him,
the scientist doe not even have to know how to instantiate
or run the service. Furthermore, the scientist does not have
to know about any security as we have added features to the
code to leverage the existing security mechanism as a simple
flag to the GAS Generator command line instantiation. This
simplification allows the scientist to develop REST services
in minutes rather than a month as the entry barrier is very
low. Additionally, as we are integrated with cloudmesh infras-
tructure deployments, the instantiation of the services can also
be done with a one line command under the assumption the
scientist has accounts registered with cloudmesh allowing him
to authenticate and authorize the deployment of the services
in the cloud.

D. Scripting as Fuel for the GAS Generator

Next, we demonstrate through two examples of how simple
it is to obtain Services from python specifications. In our ex-
ample, we define one that uses a function definition returning
a result. We chose a simple add function and list the code
related to it in Fig. 6. We also expand upon the example and
use a class definition to showcase how to derive services using
multiple paths instead of being deployed in different services
as showcased in Fig. 8. As we see from the example, other than
using the new typing feature provided in Python, the example
is just a regular Python program. It can be tested locally on
the system to check its functionality before we generate the
service.

Fig. 7 shows how to generate and deploy the service. As
this process is the same for the class-based definition and only
differs in the filename, we omitted it to include an explicit
listing of the access method for it.

Once the service is deployed the curl calls in Fig. 7 and
Fig. 9 showcase how to interact with the service from the
command line. Naturally, one can use any programming lan-
guage that has built-in libraries for HTTP requests to interface
with the service (such as requests in Python [48]). Once we
execute the following lines in a terminal, the result of the
the addition will be calculated in the REST service, and it is
returned.
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Fig. 4. Schema-based component
flow to specify an analytics service.
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Fig. 5. Function-based component
flow to specify an analytics service.

E. GAS Security

As we leverage OpenAPI and automatically generated Ope-
nAPI services, it is possible to leverage security mechanisms
from the underlying service implementation. To showcase this
ability, we added basic authentication into our framework as
an example configuration. However, it is certainly possible
to extend this as the services we use also support OAuth,
ApiKey Authentication, Bearer Authentication (JWT), and
HTTPS support [49] [4].

To demonstrate basic authentication, a cloudmesh user can
create an OpenAPI server whose endpoints are only accessible
as an authorized user. Currently, when basic auth is used, all
endpoints are secured with this method. In future versions, we
intend to allow securing selected methods. An example of the
usage of basic auth is provided on our Web page at [50].

V. DEPLOYMENT SCENARIOS

Due to the versatility of REST and our ability to integrate
with a variety of infrastructure services, a rich set of deploy-
ment scenarios is possible. Two important scenarios related to
single and multiple service provider deployments are discussed
next.

A. Single Cloud Provider Hosted AI Service

In this scenario, a user deploys Cloudmesh OpenAPI on a
virtual machine from a cloud provider and uses it to host auto-
generated, RESTful, AI services. Next, the scientist constructs
an AI service as a set of Python functions that implement



1 def add(x: float, y: float) -> float:
2 """
3 adding x and y.
4 :param x: x value
5 :param y: y value
6 :return: result
7 """
8 result = x + y
9 return result

Fig. 6. Defining an analytics function that is used to generate a REST service.

10 $ cms openapi generate add --filename=./add.py
11 $ cms openapi server start ./add.yaml
12 $ curl \
13 -X GET "http://localhost:8080/cloudmesh/add?x=1&y=2" -H "accept: text/plain"
14 # This command returns
15 > 3.0

Fig. 7. Generating, deploying, and invoking the REST service. aaaaaaaa

1 class Calculator:
2
3 @classmethod
4 def multiply(cls, x: int, y: int) -> int:
5 """
6 Multiply int by int and return an int.
7
8 :param x: the value of input #1
9 :param y: the value of input #2

10 :return: result of multiplying x by y
11 """
12 return x * y
13
14 @classmethod
15 def divide(cls, x: int, y: float) -> float:
16 """
17 Divide int by float and return a float.
18
19 :param x: the value of input #1
20 :param y: the value of input #2
21 :return: result of dividing x by y
22 """
23 return x / y
24
25 if __name__ == ’__main__’:
26 calc = Calculator()
27 print("multiply 1 * 2: ", calc.multiply(1, 2))
28 print("divide 6 / 3.14: ", calc.divide(6, 2.3))

Fig. 8. Defining an analytics function with the help of class methods to
generate a REST service with multiple functions.

29 $ curl \
30 -X GET "http://localhost:8080/cloudmesh/multiply?x=1&y=2" \
31 -H "accept: text/plain"
32
33 $ curl \
34 -X GET "http://localhost:8080/cloudmesh/divide?x=6&y=3.14" \
35 -H "accept: text/plain"

Fig. 9. Defining an analytics function with the help of class methods to
generate a REST service with multiple functions.

a workflow, for example, downloading data from a remote
server, training an AI model, uploading a new sample for
prediction, and running a prediction on that sample. After the
deployment, the service is accessible using standard HTTP
request methods. In Fig. 10 we show a remote client that
accesses such a typical AI service workflow. Here the service
is just deployed on a virtual machine from a single cloud
provider. Cloudmesh provides the choice on which infras-
tructure provider to place the service. Through our security
mechanism, the service can either be exposed to the public or
to authenticated and authorized users.

B. Multi-Cloud Hosted AI Service

In our next scenario, we like to depict that it is possible
to deploy the same service on multiple clouds through the

Download Data

Train

Upload

Predict

Cloudmesh OpenAPI

Cloud Hosted Virtual Machine

1

2

3

4

Remote Client

request response

Fig. 10. Example AI Service Workflow to obtain data, train, upload data for
prediction, as well as the interaction with it.

use of our sophisticated but easy to use command clients.
Detailed information about the exact commands are provided
in our manual [3]. Through this we can, for example, evaluate
suitable providers for our deployment through benchmarking
the service execution on each provider. This is precisely
what we will be showcasing in our benchmark section and
demonstrate this approach’s feasibility. Thus the scientist not
only obtains the ability with GAS Generator to develop and
deploy services, but also to evaluate their performance on a
variety of infrastructures. An example is provided in Fig. 11
where a scientist deploys, for example, a service on AWS,
Azure, and Google. As they are asynchronous services, the
scientist can query the services simultaneously and gathers
responses and benchmarks. Obviously, this can be used in
a real scenario to integrate compute resources from multiple
providers that can be accessed via our GAS services. It also
allows specific adaptations such as the integration of cloud AI
services with one provider that are not accessible in another.
Hence the framework can also be utilized to benchmark
secondary services that are offered by a particular provider, or
if they are offered by more than one, they can be comparatively
evaluated.

VI. BENCHMARK

In this section we describe our benchmark results.

A. Infrastructure

For a comparison of our services, we want to compare
service deployments on virtual machines that are hosted on
various cloud providers. We have chosen to select similar
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Fig. 11. Mult-Cloud AI Services: A client simultaneously accesses an AI
service hosted on three separate cloud providers, AWS, Azure, and Google,
to benchmark provider performance.

virtual machines for conducting the benchmark. This includes
AWS [19], Azure [20], and Google [21].

In addition, we are performing some bare metal experiments
on two Raspberry PI clusters, one with Raspberry PI4’s and
the other with Raspberry PI 3b+’s. The latter has a manage-
ment node, a PI 4, and worker nodes that are PI 3b+. The
inclusion of the Raspberry platform was important to us as
it demonstrates the capability of IoT and Edge computing
devices that may become more prevalent in the future for
delegating tasks to the edge. We further provide a docker
container for a comparison of containerized services.

B. Application

We developed benchmark tests that are pytest replications of
Scikit-learn artificial intelligent algorithms. These pytests are
then run on different cloud services to benchmark statistics on
how they perform.

The team obtained cloud service accounts from AWS,
Azure, Google, and OpenStack. To deploy the pytests, the
team used Cloudmesh and its OpenAPI based REST services
to benchmark the performance on different cloud services.

Benchmarks include components like data transfer time,
model train time, model prediction time, and more. Besides
this report, scripts and other code are provided for others to
replicate our tests.

We provide two example benchmarks for the Eigenfaces
SVM example. The first deploys and measures the AI service
on a single cloud provider at a time (see VI-E), and the second
deploys a multi-cloud (see VI-F) AI service measuring the
service across the clouds in parallel.

C. Algorithms and Datasets

This project uses a simple example algorithm and dataset.
We have chosen to use an example included in Scikit-learn as
they are widely known and can be used by others to replicate
our benchmarks easily. Nevertheless, it will be possible to
easily integrate other data sources, as well as algorithms, due
to the generative nature of our code base for creating REST
services. Within Scikit-learn we have chosen the Eigenfaces
SVM Facial Recognition example as it represents a very
common data science usage pattern. This example conducts
a facial recognition that first utilizes principle component

analysis (PCA) to generate eigenfaces from the training image
data, and then trains and tests an SVM model [51]. This
example uses the real world Labeled Faces in the Wild dataset
consisting of labeled images of famous individuals gathered
from the internet [52].

D. VM Selection

When benchmarking cloud performance, it is important to
identify and control VM deployment parameters. This allows
one to analyze comparable service offerings, or identify oppor-
tunities for performance improvement by varying deployment
features such as machine size, location, network, or storage
hardware. These benchmark examples aimed to create similar
machines across all three clouds, and measure their service
performance. See Tab. I for a summary of the parameters
controlled in these benchmark examples.

One key component is the virtual machine size, which
determines the number of vCPUs, the amount of memory,
attached storage types, and resource sharing policies. Resource
sharing policies include shared core machine varieties—which
providers offer at less expensive rates—that allow the virtual
machines to burst over its base clock rate in exchange for
credits or the machine’s inherent bursting factor [53], [54]. For
this example, we chose three similar machine sizes that had
comparable: vCPUs, underlying processors, memory, price,
and were not a shared core variety. We installed the same
Ubuntu 20.04 operating system on all three clouds.

Another factor that can affect performance, particularly in
network latency, is the zone and region selected. We deploy all
benchmark machines to zones on the east coast of the United
States. This helps control variations caused by network routing
latency and provides more insight into the inherent network
performance of the individual cloud services.

Because cloud providers can observe varying loads during
the day, the benchmark execution time is another parameter
to control. In our single cloud provider benchmark for the
Eigenfaces SVM example, clouds were tested at least twice
and were run sequentially between the hours of approximately
19:45 EST and 03:30 EST starting with Google and ending
with Azure. In the Eigenfaces SVM example, only 60 runs
were conducted on Azure due to a failed VM deployment
caused by factors outside of the benchmark script’s control.
Compared to our single cloud provider benchmark, our multi-
cloud benchmark benefits from all clouds being tested at the
same time.

E. Single Cloud Provider AI Service Benchmark.

The benchmark script for the Eigenfaces SVM example uses
Cloudmesh to create virtual machines and set up a Cloudmesh
OpenAPI environment sequentially across the three measured
clouds, Amazon, Azure, and Google. After the script sets
up the environment, it runs a series of pytests that generate
and launch the Eigenfaces-SVM OpenAPI service, and then
conducts runtime measurements of various service functions.
Also, we run the same pytests on two Raspberry Pi models,
a MacBook Pro running a Docker container, and a bare



TABLE I
CONTROLLED VM PARAMETERS FOR CLOUD BENCHMARKS.

AWS Azure Google

Size (flavor) m4.large Standard D2s v3 n1-standard-2
vCPU 2 2 2
Memory (GB) 8 8 7.5
Image ami-0dba2cb6798deb6d8 Canonical:0001-com-ubuntu-

server-focal:20 04-
lts:20.04.202006100

ubuntu-2004-lts

OS Ubuntu 20.04 LTS Ubuntu 20.04 LTS Ubuntu 20.04 LTS
Region us-east-1 eastus us-east1
Zone N/A N/A us-east1-b
Price ($/hr) 0.1 0.096 0.0949995

TABLE II
RASPBERRY PI AND DOCKER SPECIFICATIONS

Docker MacBook
Pi 3B+ Pi 4 (On MBP) Pro i5 3.1GHz

Cores 4 4 2 2
Memory (GB) 1 8 2 8
OS Raspberry OS 10 Raspberry OS 10 Ubuntu 20.04 LTS macOS
Version Kernel 5.4.51 Kernel 5.4.51 NA Big Sur
Purchase Cost ($) 51.99 109.99 NA NA
Energy Cost ($/year) 5.36 6.73 NA NA
Price ($/hr) 0.0065 0.0133 NA NA

The Price is the purchase cost and 1yr energy cost, amortized over a year and
given for each hour of the year.

metal MacBook Pro to demonstrate Cloudmesh OpenAPI’s
flexibility for multi-platform use.

The benchmark runs the pytest in two configurations. After
the benchmark the script sets up a virtual machine environ-
ment, it runs the first pytest locally on the OpenAPI server
and measures five runtimes:

1. download data: Download and extraction of remote
image data from ndownloader.figshare.com/files/5976015

2. train: The model training time when run as an OpenAPI
service

3. scikitlearn train: The model training time when run as
the Scikit-learn example without OpenAPI involvement

4. upload local: The time to upload an image from the
server to itself

5. predict local: The time to predict and return the target
label of the uploaded image

The benchmark runs the second pytest iteration as a remote
client and interacts with the deployed OpenAPI service over
the internet. It tests two runtimes:

1. upload remote: The time to upload an image to the
remote OpenAPI server

2. predict remote: The time to run the predict function on
the remote OpenAPI server, and return the target label of
the uploaded image

In Fig. 12 we compare the download and extraction time of
the labeled faces in the wild data set. This data set is approx-
imately 233 MBs compressed, which allows us to measure a
non-trivial data transfer. Lower transfer times imply the cloud
has higher throughput from the data server, less latency to the
data server, or that the cloud has a better performing internal
network. The standard deviation is displayed to compare
the variation in the download times. Because the difference
between commercial and residential internet speeds dominates

the function runtime, we do not compare the clouds to the Pi
models, MacBook, or docker container.
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Fig. 12. Runtime for downloading the data used in the Eigenfaces SVM
benchmark.

In Fig. 13 we measure the training time of the Eigenfaces-
SVM model both as an OpenAPI service and as the basic
Scikit-learn example. This allows us to measure the runtime
overhead added by OpenAPI compared to the source example.
Here, the two functions are identical except that the OpenAPI
train function makes an additional function call to store the
model to disk. This is necessary to share the model across the
train and predict functions. In the figure there are two bars per
cloud provider. The blue bars are the training time of the model
when hosted as a Cloudmesh OpenAPI function. The orange
bars are the training time of the Scikit-learn example code
without Cloudmesh OpenAPI involvement. The bars plot the
mean runtimes and the error bar reflects the standard deviation
of the runtimes. In Fig. 14 we show the same plot without the
Pi models, MacBook, and docker results to allow a closer
comparison of the three comparable clouds.

In Fig. 15 we measure the time to upload an image to
the server both from itself and from a remote client. This
allows us to compare the function runtime as experienced
by the server, and as experienced by a remote client. The
difference helps determine the network latency between the
benchmark client and the cloud service. In the figure, there
are two bars per cloud provider. The blue bars are the runtime
of the upload function as experienced by the server, and the
orange as experienced by the remote client. The bars plot the
mean runtimes and the error bar reflects the standard deviation
of the runtimes. For the Pi models, MacBook, and docker
container, we only measure the local function runtime.

In Fig. 16 we measure the time to call the predict function
on the uploaded image. Again we run this once from the
local server itself, and a second time from a remote client to
determine client and server runtimes. In the figure, there are
two bars per cloud provider. The blue bars are the run time
of the predict function as experienced by the server, and the



aws azure google mac book docker pi 4 pi 3b+
Cloud

0

50

100

150

200

S
ec

on
ds

Model Training Time

train
scikitlearn train

Fig. 13. Runtime for training on the data used in the Eigenfaces SVM
benchmark.
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Fig. 14. Closeup of the Runtime for training on the data used in the Eigenfaces
SVM benchmark without the data for the Pi.

orange as experienced by the remote client. The bars plot mean
runtimes and the error bar reflects the standard deviation of the
runtimes. For the Pi models, MacBook, and docker container,
we only measured the local function runtime.

Tab. III presents a full listing of test results. For the upload
and predict tests, the ’type’ column denotes whether the test
was run locally (server runtime) or remote (client runtime).

In Tab. V we present a cost analysis of the service functions.
The analysis uses the price from Tab. I and Tab. II. The
price for the cloud virtual machines are based on provider
advertised costs, while the price for the Pi models are based
on the hardware cost and one year of energy cost amortized
for one year. This does not include other costs such as
cooling, networking, or real estate. For the Pi energy cost we
assume a full and constant load. We utilize power consumption
benchmarks from [55] and Indiana residential kWH cost from
[56] to calculate the expected Energy Cost per year. We
calculate the cost to run each function and compare the clouds
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Fig. 15. Runtime for uploading the data used in the Eigenfaces SVM
benchmark.
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Fig. 16. Runtime for the prediction used in the Eigenfaces SVM benchmark.

and Raspberry Pi 4 to the Raspberry Pi 3b+. We compare the
percent runtime decrease from the Pi 3b+ to the clouds and
Raspberry Pi4, and the percent cost increase from the Pi 3b+
to the clouds and Raspberry Pi 4.

F. Multi-Cloud AI Service Benchmark

In this benchmark, our script first acquires VMs, installs
Cloudmesh OpenAPI, and launches the Eigenfaces SVM AI
service on three separate cloud providers. Because Cloudmesh
has limited parallel computing support, the script deploys the
VMs in a serial manner. After the services are running, we then
run our tests in a parallel manner as depicted in Fig. 11. Testing
in parallel provides faster benchmark results and better equal-
izes benchmark testing conditions. The benchmark conducts
requests to each cloud in parallel, so they experience similar
network conditions. For example, in a serial testing model
when downloading data from a remote server, the remote



TABLE III
TEST RESULTS FOR THE EIGENFACES SVM SINGLE CLOUD PROVIDER

BENCHMARK.

test type cloud mean min max std

download data local aws 20.58 17.23 31.80 2.77
download data local azure 20.81 13.56 42.70 6.94
download data local docker 820.98 820.98 820.98 0.00
download data local google 18.00 17.06 19.38 0.48
download data local pi 3b+ 130.17 123.84 149.40 5.39
download data local pi 4 47.67 43.43 75.60 5.72

predict local aws 0.03 0.02 0.05 0.00
predict local azure 0.02 0.01 0.03 0.00
predict local docker 0.03 0.03 0.03 0.00
predict local google 0.03 0.01 0.06 0.00
predict local mac book 0.12 0.12 0.12 0.00
predict local pi 3b+ 0.12 0.10 0.14 0.01
predict local pi 4 0.08 0.08 0.08 0.00

predict remote aws 0.40 0.26 0.80 0.18
predict remote azure 0.36 0.24 0.60 0.13
predict remote google 0.36 0.27 0.82 0.16

scikitlearn train local aws 35.89 35.11 46.45 1.77
scikitlearn train local azure 40.13 34.95 43.96 3.29
scikitlearn train local docker 53.76 53.76 53.76 0.00
scikitlearn train local google 42.13 41.77 42.49 0.13
scikitlearn train local mac book 32.53 32.53 32.53 0.00
scikitlearn train local pi 3b+ 222.63 209.18 231.90 7.87
scikitlearn train local pi 4 88.32 87.78 89.14 0.33

train local aws 35.72 34.91 46.50 1.73
train local azure 40.28 35.30 47.50 3.32
train local docker 54.72 54.72 54.72 0.00
train local google 42.04 41.52 45.93 0.71
train local mac book 33.82 33.82 33.82 0.00
train local pi 3b+ 222.61 208.56 233.48 8.40
train local pi 4 88.59 87.83 89.35 0.32

upload local aws 0.01 0.01 0.01 0.00
upload local azure 0.01 0.00 0.01 0.00
upload local docker 0.02 0.02 0.02 0.00
upload local google 0.01 0.01 0.01 0.00
upload local mac book 0.02 0.02 0.02 0.00
upload local pi 3b+ 0.09 0.04 0.48 0.08
upload local pi 4 0.02 0.02 0.02 0.00

upload remote aws 0.43 0.16 1.13 0.21
upload remote azure 0.32 0.15 0.50 0.15
upload remote google 0.31 0.18 0.73 0.18

TABLE IV
TEST RESULTS FOR THE EIGENFACES SVM BENCHMARK DEPLOYED AS A

MULTI-CLOUD SERVICE.

test type cloud mean min max std

download data remote aws 20.51 17.57 34.42 3.82
download data remote azure 18.60 13.49 32.65 4.53
download data remote google 17.90 17.13 21.86 0.85

predict remote aws 4.15 3.59 5.42 0.57
predict remote azure 3.93 3.40 6.65 0.74
predict remote google 4.13 3.74 6.37 0.60

train remote aws 35.61 35.24 39.53 0.73
train remote azure 35.89 35.08 40.00 0.95
train remote google 41.98 41.58 45.71 0.71

upload remote aws 10.08 4.89 16.52 4.38
upload remote azure 8.46 4.72 13.92 4.05
upload remote google 8.87 5.39 15.44 4.52

server may experience varying loads which will ultimately
result in different throughputs for the various tests. Our parallel
tests better equalize these conditions by having each cloud
download the data under the same network conditions.

In the benchmark, we compute the means from 30 runs of a
workflow that includes one download data invocation, one train
invocation, 30 upload invocations, and 30 predict invocations.

TABLE V
COST ANALYSIS OF FUNCTION RUNTIMES WITH % COST INCREASE AND

% RUNTIME DECREASE RELATIVE TO THE RASPBERRY PI 3B+.

test type cloud mean cost % runtime decrease % cost increase

download data local aws 20.58 5.72e-04 NA NA
download data local azure 20.81 5.55e-04 NA NA
download data local google 18.00 4.75e-04 NA NA

predict local aws 0.03 8.33e-07 75.00 281.87
predict local azure 0.02 5.33e-07 83.33 144.39
predict local google 0.03 7.92e-07 75.00 262.77
predict local mac book 0.12 NA 0.00 NA
predict local docker 0.03 NA 75.00 NA
predict local pi 4 0.08 2.96e-07 33.33 35.68
predict local pi 3b+ 0.12 2.18e-07 0.00 0.00

predict remote aws 0.40 1.11e-05 NA NA
predict remote azure 0.36 9.60e-06 NA NA
predict remote google 0.36 9.50e-06 NA NA

scikitlearn train local aws 35.89 9.97e-04 83.88 146.24
scikitlearn train local azure 40.13 1.07e-03 81.97 164.32
scikitlearn train local google 42.13 1.11e-03 81.08 174.60
scikitlearn train local mac book 32.53 NA 85.39 NA
scikitlearn train local docker 53.76 NA 75.85 NA
scikitlearn train local pi 4 88.32 3.27e-04 60.33 -19.26
scikitlearn train local pi 3b+ 222.63 4.05e-04 0.00 0.00

train local aws 35.72 9.92e-04 83.95 145.10
train local azure 40.28 1.07e-03 81.91 165.33
train local google 42.04 1.11e-03 81.11 174.04
train local mac book 33.82 NA 84.81 NA
train local docker 54.72 NA 75.42 NA
train local pi 4 88.59 3.28e-04 60.20 -19.01
train local pi 3b+ 222.61 4.05e-04 0.00 0.00

upload local aws 0.01 2.78e-07 88.89 69.72
upload local azure 0.01 2.67e-07 88.89 62.93
upload local google 0.01 2.64e-07 88.89 61.23
upload local mac book 0.02 NA 77.78 NA
upload local docker 0.02 NA 77.78 NA
upload local pi 4 0.02 7.40e-08 77.78 -54.77
upload local pi 3b+ 0.09 1.64e-07 0.00 0.00

upload remote aws 0.43 1.19e-05 NA NA
upload remote azure 0.32 8.53e-06 NA NA
upload remote google 0.31 8.18e-06 NA NA

We run the workflows in parallel on the separate clouds using
multiprocessing on an eight-core machine.

In Fig. 17 we depict the combined runtime of our bench-
mark tests. This allows us to compare the complete execution
time of an AI service workflow.

Fig. 17. Mean runtime of the Eigenfaces SVM workflow deployed as a multi-
cloud service.

In Tab. IV we provide complete test results for the multi-
cloud benchmark.



VII. LIMITATIONS

Azure has updated their libraries and discontinued the
version 4.0 Azure libraries. We updated Cloudmesh to use
the new library, but not all features, such as virtual machine
delete, are implemented or verified.

VIII. CONCLUSION

This paper has introduced a framework and tool called
GAS Generator that allows data scientists not experienced
enough with REST and/or OpenAPI to generate REST services
from python functions quickly. The overall time for deploying
the resulting service was reduced from several months by
inexperienced data scientists to under a week. The service
can be provisioned on public clouds and shared with other
users. Authentication is built into our framework while lever-
aging common REST service practices. In a small benchmark
executed on the various cloud providers as well as local
hardware, including Raspberry PIs, we have seen that the
cloud providers, when using similar resources and images,
perform similarly. To compare the services with IoT devices
such as Raspberry PI 3b+ and 4 we have chosen a small
enough example that can be conducted on them and can be
used as a reference to other IoT devices in the future. We
found especially that in the case of the PI 4, the performance
was quite good for our example. We also provided a cost-
performance analysis to compare the IoT devices with the cost
used on the cloud to conduct the task over a year’s worth of
activities. We find that the PI is surprisingly cost-effective.

However, our most significant gain from this project is the
reduction in manpower and entry barrier it takes to create
and deploy our AI services. Due to the generalized approach
while using python function developers and data scientists can
naturally integrate more complex tasks as well as tasks that
leverage cloud-specific AI services that are uniquely offered by
particular providers. GAS Generator is an open-source project,
and we appreciate contributions to the project. Please contact
the first author at laszewskigmail.com.
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