Summarization Assessment Methodology for
Multiple Corpora Using Queries and
Classification for Functional Evaluation

Sam Wolyn® and Steven J. Simske®

2 Systems Engineering Department, 6209 Campus Delivery, Colorado State University, Fort Collins, CO, USA
80523

b Systems Engineering Department, 6209 Campus Delivery, Colorado State University, Fort Collins, CO, USA
80523

Abstract. Extractive summarization is an important natural language processing approach used for document compression,
improved reading comprehension, key phrase extraction, indexing, query set generation, and other analytics approaches. Ex-
tractive summarization has specific advantages over abstractive summarization in that it preserves style, specific text elements,
and compound phrases that might be more directly associated with the text. In this article, the relative effectiveness of extrac-
tive summarization is considered on two widely different corpora: (1) a set of works of fiction (100 total, mainly novels) avail-
able from Project Gutenberg, and (2) a large set of news articles (3000) for which a ground truthed summarization (gold stand-
ard) is provided by the authors of the news articles. Both sets were evaluated using 5 different Python Sumy algorithms and
compared to randomly-generated summarizations quantitatively. Two functional approaches to assessing the efficacy of sum-
marization using a query set on both the original documents and their summaries, and using document classification on a 12-
class set to compare among different summarization approaches, are introduced. The results, unsurprisingly, show considerable
differences consistent with the different nature of these two data sets. The LSA and Luhn summarization approaches were most
effective on the database of fiction, while all five summarization approaches were similarly effective on the database of arti-
cles. Overall, the Luhn approach was deemed the most generally relevant among those tested.

Keywords: Abstractive summarization, analytics, compression, extractive summarization, machine learning, phrases, repurpos-
ing, saliency, sentence, statistical learning, style

1. Introduction

Summarization is an important element in many
computer-aided text analytics tasks, including index-
ing, key word generation, translation, clustering,
classification, and curriculum generation (document
sequencing, or reading order). Summarization ap-
proaches, at the broadest level, can be described as
either extractive or abstractive. Extractive summari-
zation consists of selecting a subset of the text
phrases in the original document. This partial selec-
tion is thus a lossless compression of the content, in
the sense that the text selected is unaltered from its
original form. Abstractive summarization, in contrast,
is a form of lossy compression since the text is al-
tered semantically from the original, usually incorpo-

rating novel words, word order, and/or phrases in
order to provide a plainspoken summary [1]. This
may be in a different voice altogether, for example in
a neutral conversational style. An abstractive sum-
mary has the advantage of being semantically edited
so that the selected phrases may flow together better
than an extractive summary. However, an abstractive
summary may not represent well, if at all, the style,
tone, or voice of the original author. The summary
may, additionally, introduce a different vocabulary
than the author themselves used, with potentially
deleterious effects on subsequent text analytics in-
cluding indexing, clustering, and categorization.

In 1958, Luhn noted that machine learning meth-
ods could be used to automatically create abstracts
for technical literature that were not highly influ-

enced by the unintentional attitudes, backgrounds,
biases, and opinions of the human ground truthing
normally employed for cataloguing purposes [2].
Many automatic summarization techniques continue
to be based on Luhn’s approach of using word-
frequency and contextual cues. The idea of assigning
measure (or weights) of significance to each of the
sentences is still employed today. Other early works
include those by Edmundson and Wyllys [3,4], Rush
et al. [5], Sparck-Jones [6], and Kupiec [7].

The first reported extractive approach [2] defined a
word frequency-based measure using the idea that the
more often an important word appears in a phrase,
sentence, or other unit of text, the more significant
the sentence. This increases its likelihood of being in
the summary. Word frequency, however, was shown
to require normalization by the document length,
creating a more broadly applicable weighting factor
for significance.[8] TF*IDF, or Term Frequency
times Inverse Document Frequency, is a related ap-
proach of importance to extractive summarization. In
addition to frequency-based approaches, there are
several feature-based approaches that assume that
certain characteristics of text identify significant sen-
tences or phrases. For example, titles, abstracts, sen-
tence position, proper nouns, and the like are indica-
tors of relative importance [8]. Such approaches may
require additional methods such as document seg-
mentation in order to identify these features.

Other extractive techniques have been historically
based on a wide variety of now-familiar machine
learning approaches. Naive Bayes classifiers [8],
support vector machines (SVM) [9], and artificial
neural networks (ANN) [10] have been employed.
Bayes classifiers are employed to assign the probabil-
ity of a sentence being included in the summary
based on a set of sentence features, wherein the high-
est ranked sentences are chosen [8]. SVM approaches
are used for a series of binary classifications; for ex-
ample, associated with a decision tree. In one ANN
approach, summary sentences were themselves data
mined for features that best characterize them [10]. In
another, a set consisting of Cable Network News
(CNN) articles was used to train an ANN to rank
sentences, with the summaries consisting of the high-
est ranked sentences [11]. A larger set of CNN arti-
cles was used, together with the author-provided
summaries, to provide a useful large training set for
extraction summarization [12]. Recurrent neural net-
works have also been recently deployed for extrac-
tive summaries [13]. These are other recent advances
in extractive summarization are overviewed in a re-
cent survey [14]. Some of the limitations on summa-

rization, particularly from the lens of compressibility,
has also been recently provided [15].

In generalized extractive summarization, text ele-
ments (phrases, sentences, etc.) are selected based on
P different characteristics, among which are sentence
scoring, cue phrases, sentence inclusion of numerical
data, sentence length, sentence position, sentence
centrality, sentence resemblance to the title, and
graph scoring. The total sentence score, or TSS (Eq.
1), is the sum for all N terms of the product of the
weighting factors (WF) of each of the P characteris-
tics (these default to 1.0 and vary from 1.0 based on
the relevance of each word in the overall document.

N P
TSS = z l_[WFi)

The problem with the approach of Eq. 1 is that
similar sentences that represent the most relevant
terms may all be highly scored, leading to an initial
summary (either extractive or the source for abstrac-
tion) that does not represent the range of content in
the document. In order to prevent such replication,
one approach is selectively down-weight terms once
they have been selected, as noted in Eq. 2. [16]

N P N
RSS = Z l_[WF, (k) — 4 ;Wﬂ(k) num;(S)

=1 k=1 2)
In Eq. 2, the Regularized Sentence Score, or RSS,
adjusts the TSS by multiplying a regularization factor,
A, with the sum of occurrences of each of the terms in
any sentences that have already been assigned to the
summary. This is termed num;i(S) for each of the N
terms in the sentence being regularized, as they occur
in the set of sentences already part of the summary.
In this way, each sentence score is updated after the
summary is appended. The regularization sum (right
side of Eq. 2) penalizes selecting more sentences
highly similar to the ones already part of the sum-
mary.

Abstractive approaches, on the other hand, do
not necessarily use the source text unaltered, but in-
stead usually paraphrase the text or transform the text
to build a summary. The abstractive approach gener-
ally incorporates a larger initial subset of the docu-
ment than the extractive summary, though it may
directly transform the extractive summary. Abstrac-
tive approaches can result in the production of inac-

curate details and the repetition of information. Both
of these issues are addressed by a “Pointer-Generator
Network™ [17], which is built on top of a “sequence-
to-sequence” model. This is a now common abstrac-
tive summarization approach employing recurrent
neural networks (RNNs). The Pointer-Generator
Network copies words from the source text (to ad-
dress the inaccurate details) by pointing and continui-
ty-providing words are produced using the generator.
They also track the summarization as it is being pro-
duced in order to avoid repetition. Another abstrac-
tive summarization approach is the use of an Atten-
tional Encoder-Decoder Recurrent Neural Network
[18]. Using the decoder to “point” (copy) a word or
the encoder to “generate” (produce) a word addresses
the inaccurate detail concerns. The summary outputs
from the Encoder-Decoder system tended to contain
repetitive phrases, prompting the researchers to add a
Temporal Attention Model that essentially keeps
track of which parts of the document it has already
processed and discourages it from looking at those
pieces again. A more comprehensive method of pre-
venting the summary from being overwhelmed with
repetitive content is described elsewhere [16].

Another approach to abstractive summarization
uses a different approach, called Attention-Based
Summarization, which joins an ANN model with an
attention-based encoder. The language model con-
sists of a feed-forward neural network language
model (NNLM) used for estimating the contextual
probability of the next word, while the encoder acts
as a conditional summarization model [19]. In gen-
eral, each word of a summary is generated based on
the input sentence. The goal of the experiments is to
use the summarization model for generating head-
lines. Training occurs by pairing a headline with the
first sentence of an article (rather than the entire arti-
cle) to create an input-summary pair. The extractive
tuning addresses the issue of inaccurate details (simi-
lar to decoding or pointing) by tuning with a small
number of parameters after the model is trained.

The summarization approaches in the articles re-
viewed here, together with the summarization exper-
iments covered in the survey articles, focus on indi-
vidual corpora for summarization analysis. This pa-
per applies multiple summarization approaches to
two fundamentally different corpora. In so doing, the
differences in summarization approaches that are
germane to providing downstream utility (including
indexing, clustering, classification, and reading or-
der) of the summarized texts are compared. The pri-
mary motivation of the research in this article is to
provide two distinct mechanisms for grading the

summaries provided by multiple summarization algo-
rithms. The first is performed using a query set, in
which the functionally optimum summarization algo-
rithm is determined to be the one in which query be-
havior is most similar in comparing the original doc-
uments to the summarized documents. This is partic-
ularly suitable to longer documents, and is illustrated
herein using longer literary works. The second mech-
anism for grading summaries is performed using
document classification. Here, the functionally opti-
mum summarization approach is determined to be the
one resulting in the best classification accuracy for
the documents. This is particularly suited to articles,
and is applied to a well-established set of CNN arti-
cles available to researchers.

In Section 2, the methods and experimental de-
signs are described. Specifically, the query-based and
classification-based methodologies for evaluating
summarization output are introduced. In Section 3, an
overview of the primary results is given. In Section 4,
the results are evaluated more thoroughly in a discus-
sion, and concluded with potential follow-on work.

2. Methods and Experimental Designs

2.1. Document Corpora, the Use of Query to Rank
Summarizers, and Query Sets

In order to begin exploring the differences in summa-
rization for different types of document corpora, two
widely different, publicly available large corpora of
documents, were selected. The first set of documents
consisted of 100 works of fiction (novels) with
lengths ranging from 17,074 to 562,199 words with a
mean of 125,565 words selected from Project Guten-
berg [20, 21]. All of the works selected were in Eng-
lish, and all metadata was removed from the docu-
ment, except for chapter and part labels. Introduc-
tions were also removed, even if they were written by
the original author. Footnotes were also removed.
The texts were also reformatted, removing any new-
lines or indents used for formatting.

The second set of documents consisted of the
CNN Corpus [12]. The corpus consists of 3000 news
articles covering 12 different subjects, including
business, health, and politics. The corpus was chosen
because it contains a human-selected gold standard
for summarization. For most articles, the gold stand-
ard is three sentences, provided as a leader for the
article on the cnn.com website. All of the articles
were also in English.

Summaries of the documents (novels and articles)
were generated by Sumy, a Python library that per-
forms various summarization algorithms on texts of
different languages. It has a built-in parser and to-
kenizer, so that minimal preprocessing had to be
done on the documents. Five different algorithms
within Sumy were used to summarize the datasets:
LexRank, LSA, Luhn, Reduction, and Sum Basic.
There were three other summarization algorithms in
Sumy: Edmundson, KL, and TextRank. Edmundson
was not used as it required the definition of “bonus
words” (more appropriate for search query investiga-
tions), while KL and TextRank suffered poor pro-
cessing times for summarizing the longer documents.
As a baseline, the documents were also summarized
several times using Sumy’s Random summarizer,
which as the name implies selected sentences ran-
domly from the documents. The novels had summar-
ies generated comprising 20, 50, and 100 sentences,
while the much shorter articles summaries generated
comprising 3, 5, and 10 sentences.

The Sumy summarizers are described briefly here.
The Random summarizer just selects sentences at
random from the documents, and is a point of com-
parison, with only poor summarizers approaching the
performance of the Random one. The Luhn summa-
rizer uses a simple “significant word” algorithm to
select sentences for the summaries. The significant
words occur with high frequency in the text, but are
not stop words. It can be thought of as a TF (term
frequency) approach. The Latent Semantic Analysis,
or LSA, method identifies synonyms in the text and
topics that are not explicitly stated in the text. The
LexRank summarizer is another unsupervised ap-
proach that discovers connections between the sen-
tences and selects for the summaries those that are
connected with the most significant words/topics.
The SumBasic is a sentence score summing approach,
which is generally considered a baseline “reasona-
ble” summarizer, which any advanced summarization
approach should surpass. Finally, the Reduction algo-
rithm is a graph-based summarization, where sen-
tences are weighted by the sum of the weights of its
edges to other sentences, with weight computed in a
manner similar to LexRank.

After performing each summarization, a functional
approach (that is, quantitative but not requiring hu-
man ground truthing) to assess the efficacy of sum-
marization was devised. In order to provide this, the
generation of a query set to use for searching both the
original documents and their summaries was required.
For each query, a search process is performed where
an ordered (ranked) list of documents is returned,

with the best match having the highest rank in the
search. In theory, a perfect summarizer will result in
the same query behavior on the summarized set as
occurred for the original document set. One goal of
this paper will be to explore whether the query
matching does in fact correlate with summarization
accuracy.

The query set for the documents was generated af-
ter first noting the themes provided by Sparknotes for
the novels. The themes provided words relevant to
the texts while also not being pulled directly from the
text (i.e. abstractive rather than extractive). 303
words were taken from the themes and used as an
initial query set. These were considered both relevant
and likely to be broadly applicable (that is, applicable
to the article set as well as the document set). The
query set was then expanded by adding common
words, common animals, common colors, and com-
mon countries to generate a new set of 403 query
words. The common words were taken from a list of
100 common words, and duplicates with words gen-
erated from the themes were removed. 10 common
animals, such as “cat” and “dog” were used, as well
as 10 colors, which consisted of primary and second-
ary colors, as well as black, white, gray, and brown.
The countries were chosen by selecting the 30 most
populous countries in the world in the 1800s, as most
books were written before 1900 in order to be in pub-
lic domain when the experiments were performed in
2021. The same query set was used throughout, and
every document returned a query score for each que-
ry as described in the next section.

2.2. Scoring Approach

For each query word and document, a score was
generated. For each word in the document, if the
word exactly matched the query word, it was given a
score of 1. If it shared a lemma with the query word,
it was given a score of 0.95. If the words were syno-
nyms according to Wordnet, the word would be giv-
en a score of 0.75. The results were not particularly
dependent on these scoring methods; for example, if
lemmas were given scores of 1.0 and synonyms were
given scores of 0.6-0.9, the outcomes were relatively
similar. If the word did not match any of the 403 que-
ry terms, it was given a score of 0.0. The scores for
each word were added together, and this sum was
divided by N, the number of words in the document
(Eq. 3), to yield the overall score of the document for
each query term.

il
Score = e Score of word

Word in document (3)

Once all the scores were generated, the documents
were sorted for each query word based on the calcu-
lated score. Eq. 4 is used to derive the Total Query
Error (TQE), which is entirely based on the similarity
in ranks returned from the query. For example, if
Document A was the top scored document for Query
1 for the original texts and was the third best docu-
ment for Query 1 in the set of summaries in Sum-
mary 1, then the error score for one relevant rank
would be [3 — 1] = 2. For the result comparing the
original documents to a summary, the query error for
each query was averaged, producing a single score
for the entire comparison. Each error score was cal-
culated using 1, 2, 3, 4, and 5 relevant ranks (rr); that
is, by comparing the top 1, 2, 3, 4, and 5 ranked doc-
uments from the original document queries. The error
score was calculated for both the novels and the arti-
cles. In Eq. 4, Ny = the number of relevant ranks,
rank[Q(S)]of rankr] term in oD 18 the rank of the query for
the summarized version of the document, and r is the
rank of the original document (OD) for the query.

QE

NT'T'
= Z (Nrr =

r=1
Noueri
n=1

+1) (|rank[Q(5)]of rank[r] termin OD — r)

“

An example employing Eq. 4 will be illustrative.
Suppose that a specific query term (Q) is run against
the original documents (OD), and then separately run
against the summaries (S) of these same documents.
When Q_on is used on the Original Documents, this
is Q(OD), and Documents {A,B,C,D,E,...} are re-
turned in order. Next, the same specific query term Q
is run against the summaries, called Q(S). Instead of
the order for Q(OD), suppose summaries
{C,B,D,H,A,...} are received in this order. The dif-
ference in ranked order for the most relevant—that is,
ranked first in response to Q(OD)—document, which
is A, is rank [1] in Q(OD) and rank [5] in Q(S). The
error is therefore |[1]-[S]] = 4. In Eq. 4, then,
rank[Q(S)]of rank[t] term in oD 1S 5, and r, the rank in
Q(OD), is 1.

The left-hand side of Eq. 4 accounts for the num-
ber of relevant ranks. For rank r=1, Niy—r + 1 is Ny,
or 5 in the case of rr=5. For the rank=2 document B,

the multiple on the left of Eq. 4 is 5-2+1 = 4, while
the right side is 0 since Q(S)=Q(OD) for B. For the
rank=3 document C, the multiple on the left of Eq. 4
is 5-3+1 = 3, while the right side is |[[3]-[1]| = 2. The
TQE for just these three documents, with rr=5, is 5*4
+ 4*0 + 3*2 = 26. Note that if only one rank is rele-
vant (that is, rr=1), the TQE = 4. If rr=2, the TQE =
2*%4 + 1*0 = 8. If rr=3, the TQE = 3*4 + 2*0 + 1*2 =
14. It should be noted that these TQE values are for
only one query term. The sum of the differences for
all query terms (right side of Eq. 4), multiplied by the
relative value of each rank (left side of Eq. 4) is re-
ported as the Error Score. This Error Score will be
the primary set of results in the Results section to
follow.

The algorithm for ranking the summaries by their
Total Query Error (TQE) in comparing the original
documents to their associated summaries is given in
Figure 1.

Create Query Set

I
I
I
I
E I
I
I
I
Sumy :
+ I
— I
o I
o I
I
Novels Sumimaries :
I
: :
Perform Perform 1
o g
Query Query

Compare Using Eq. 4

Rank summarization
algorithm by TQE

Fig. 1. Query matching functional approach.

The summaries were also used to classify the nov-
els and, separately, the articles. The smallest class
size in the articles consisted of 98 articles, so the
training and testing sets were set at a size of 49 arti-
cles each in order to achieve a balanced 12-class set
(that is, training was performed on 50% of the CNN
articles in each class, and testing on the remaining
50%). The 50% training was used to balance between
under-training and overfitting. The document classi-
fication was performed three times, each with a dif-
ferent set of training and testing documents. The test
set assignments were randomly generated by sam-
pling each class of article. Each document was classi-
fied by taking the frequency of each word in the doc-
ument and calculating the cosine (Eq. 5) of the doc-

ument word frequency (the ¥ vector in Eq. 5) with
the mean word frequencies from training documents

from each class (the E vector in Eq. 5). The docu-
ment was assigned to the class it had the largest co-
sine with.

S ayb,
|q||f’| Jz 15 [T

The classifier used an initial TF*IDF (Term Fre-
quency times Inverse Document Frequency) filtering
of words for each training set. A wide number (at
least 112) variations of TF*IDF exist [22]. The
TF*IDF definition employed for a word was calcu-
lated by taking the mean number of occurrences of a
word in a document in the class, divided by the mean
number of occurrences of a word in the documents
for all of the classes (Eq. 6). This is the “document
frequency”, the inverse of which creates the IDF term
in TF*IDF. In Eq. 6, “Docs” = the total number of
documents in all classes. Because the training set was
balanced between classes, this was equivalent to the
number of occurrences in a class multiplied by the
number of classes, divided by the total number of
occurrences. A TF*IDF score of 1 indicated that the
word occurred in the class as many times as its mean
occurrence in the other classes, and a score of 12
indicated that the word only occurred in that class.
The classifier was run on each of the different sets of
summarized documents, as well as 10 sets of random
summaries at 3, 5, and 10 sentences.

The algorithm for classifying the original CNN ar-
ticles and the various summaries of the articles is
given in Figure 2.

cos(a,b) =

Create Training and Test Sets of 49
Documents for 12 Classes of the |-
CNN Corpus and Perform Training

Sumy

CNN Articles Summaries

Perform TFIDF Perform TFIDF o

Classification Classification
v v
Report Rank Summarization
Baseline Algorithm by
Accuracy Classification Accuracy

Fig. 2. Classification-based functional approach.

TFIDF

Ybocs in class Occurrences of word in doc/
Docs in class
Occurences of word in doc/

Docs (6)

ZDacs in all classes

TF*IDF thresholds from 1.0 to 12.0 were used in
order to determine the effect of TF*IDF filtering on
the classification results for the different types of
summaries. For each original text, the TF*IDF of
each word was found. The Term Frequency for each
word in a summarized text was also found, and the
cosine distance was calculated between the original
texts and the summarized texts. The summarized
document was assigned to the class for which it had
the highest cosine similarity. The document frequen-
cies used to calculate the TF*IDF values were nor-
malized, so that the different lengths of the docu-
ments did not affect the TF*IDFs. For example, if a
word occurred only in a short document, it would
have a much higher TF*IDF than a word that only

occurs in a longer document. This normalization is
simply representing the percentage of words occur-
ring in the document for each query term, as shown
in Eq. 7.

TFIDF
Y bocs in class Occurrences as pct words in doc/

Docs in class
Occurences as pct words in dnc/

Docs (7)

z:Docs inall classes

3. Results
3.1. Summarizing the Novels

For summarizing the novels, only the LSA and
Luhn methods outperformed random summarization
(Table 1, which provides the Error Score, or mean
TQE). Randomly summarized texts were created by
randomly selecting sentences from the target text.
Because the quality of a randomly generated sum-
mary can vary, the documents were randomly sam-
pled 10 times for each summary length. For the 20-
sentence summaries, the random summaries’ error
scores had a mean of 37.90 and a standard deviation
of 0.91. For 50-sentence random summaries, the er-
ror scores had a mean of 30.55 and a standard devia-
tion of 1.15. Finally, 100-sentence random summar-
ies had error scores with a mean of 23.66 and a
standard deviation of 1.77.

For the 20-sentence summaries in Table 1, LSA
had an error score 8.8 standard deviations less than
the mean for random summaries, and Luhn had an
error score 11.5 standard deviations less than the
mean for random summaries. For the 50-sentence
summaries, LSA error scores were 9.0 standard devi-
ations below those of random summaries, while Luhn
error scores were 10.3 standard deviations less. For
100-sentence summaries, LSA and Luhn were 5.7
and 5.3 standard deviations below the scores for ran-
dom summaries. For 1 relevant rank, a score of 0
denotes that for every query term, the same document
has the highest score for the term for both the origi-
nal and summarized texts. The worst score possible
for a single query is the number of documents minus
1, in this case 99, where the top scoring document
when looking at the original documents is the lowest
scoring when looking at the summarized texts. If the
ordering of documents for queries is random, then the

mean score is the value of the worst score divided by
2, in this case 49.5.

As the length of the summary increases, the error
score for the query words decreases, as the summa-
rized texts have a larger portion of the text from the
original texts and are thus more similar to the original
documents. This is readily evidenced in Table 1,
where for the 20-Sentence Summaries of all 15 ap-
proaches the mean Error Score is 37.0; for the 50-
Sentence Summaries the mean Error Score is 29.4;
and for the 100-Sentence Summaries the mean Error
Score is 22.9. However, these Error Scores, even for
the Luhn and LSA summarizers, are more than 25%
as high as the Error Score for random guessing (49.5)
in Table 1, and more than 50% as high as for Ran-
dom Summarization.

As the number of ranks of relevance (rr) are in-
creased, per Equation 4, the Error Score is a compo-
site of several comparisons. More interesting for the
comparisons where rr>1 is the distance of the mean
Error Score for the Sumy summarizers in terms of
standard deviations from the Random Summariza-
tions. These are provided for the Novels document
set in Table 2.

Several trends are consistently observed across
Table 2. The first is that LexRank, Reduction, and
Sum Basic summarizations do not provide better
matching between OD and S document sets than do
the Random Summarizations. In fact, for LexRank
with 20 Sentences; for Reduction with 50 and 100
Sentences; and for Sum Basic across the range of
Sentences, these summarization approaches under-
perform random summarization. The second trend of
note is that LSA and Luhn consistently outperform
all other summarizations in terms of matching the
query responses of the S and OD sets. For all three
sets of sentences, and for all five relevant rank values
(incorporating the results of Table 1 here), their Error
Scores are always more than 7.4 standard deviations
less than those of the Random Summarization. The
third trend (data shown only for Table 1) is for the
Error Score to consistently decrease as the number of
sentences. When the six summarizers (including the
Random Summarizer as one of the six) are combined
in a normalized regression curve, the coefficient of
determination (R?) value for the linear regression of
sentences versus Error Score is 0.824, and for a sec-
ond-order polynomial regression (with some asymp-
tote behavior illustrated), the coefficient of determi-
nation was 0.871. This is for rr=1 in Table 1.

Table 1

Error Score (mean of TQE for all queries) for the Novels, 1 Relevant Rank

Approach 20-Sentence Summary 50-Sentence Summary 100-Sentence Summary

LexRank 39.95 30.58 24.60

LSA 29.88 20.26 13.56

Luhn 27.45 18.63 14.29

Reduction 38.51 33.07 27.29

Sum Basic 40.62 33.08 27.02

Random (1) 37.49 31.17 24.86

Random (2) 37.09 32.35 20.50

Random (3) 38.79 3143 22.11

Random (4) 36.97 30.04 26.59

Random (5) 39.16 30.66 24.64

Random (6) 38.14 29.60 24.49

Random (7) 38.09 30.05 22.59

Random (8) 36.50 30.54 23.29

Random (9) 37.77 28.24 22.60

Random (10) 39.02 31.39 24.94

Table 2
Error Score (mean of TQE for all queries) difference from random, as (mean / standard deviation), Novels, 2-5 Relevant Ranks (1r)

Summary Type N Sentences rr=2 rr=3 rr=4 rr=5

LexRank 20 -2.806 -3.192 -3.255 -3.352
50 -0.513 -1.362 -2.609 -3.636
100 -0.493 -0.791 -1.297 -1.820

LSA 20 11.963 12.463 12.110 11.877
50 12.651 15.131 19.225 21.357
100 8.024 9.839 12.791 14.299

Luhn 20 14.185 14.082 13.481 13.176
50 14.512 16.786 21.453 23.670
100 7473 9.392 12.660 14.454

Reduction 20 -0.374 0.138 0.511 0.704
50 2.024 -2.231 -2.233 2.254
100 -2.087 -2.601 -2.843 -2.891

Sum Basic 20 -3.626 -3.498 -3.034 -2.757
50 -2.892 -4.000 -5.250 -5.846
100 -2.430 -2.943 -3.798 -4.152

Table 3
Error Score (mean of TQE for all queries) for the CNN articles, 1 Relevant Rank

Approach 3-Sentence Summary 5-Sentence Summary 10-Sentence Summary

LexRank 396.2655 245.2419 118.9715

LSA 469.9479 332.4280 134.0261

Luhn 400.0074 243.8759 117.3449

Reduction 403.5670 299.5620 129.5968

Sum Basic 430.3176 261.2581 141.5062

Random (1) 560.5645 394.9615 152.4057

Random (2) 638.7506 403.9032 206.4206

Random (3) 628.1725 373.0943 177.6774

Random (4) 626.1787 414.8548 188.3573

Random (5) 603.0597 400.3561 188.7543

Random (6) 612.2432 366.2506 200.2047

Random (7) 588.7419 361.2767 160.6241

Random (8) 594.4392 367.0682 168.2382

Random (9) 634.6700 355.3387 180.7320

Random (10) 665.4566 410.1427 159.0484

3.2. Summarizing the Articles

All of the Sumy summarizers provided lower Error
Scores for comparing the S and OD sets of articles
than the Random Summarizer. The results for Equa-
tion 4, using one relevant rank, are presented in Table
3. There, for the 3-sentence random summaries, the
average error score was 615.2, with a standard devia-
tion of 29.9. The 5-sentence random summaries had a
mean error score of 384.7 and standard deviation
22.3. For the 10-sentence random summaries, the
mean error score was 178.2 with a standard deviation
of 18.1. For the 3-sentence summaries, all five sum-
marization methods were at least 8 standard devia-
tions away from the random average. For 5-sentence
summaries, they were at least 2 standard deviations
away, with Luhn being over 6 standard deviations
away. For 10-sentence summaries, the summaries
were in the range of 2 to 3.5 standard deviations
away from the mean of the random summaries.

For the CNN articles, the best possible score re-
mains at 0, but the worst possible score increases to
2999, and the mean score increases to 1499.5, as
there are 3000 articles. As with the Novels, the Ran-
dom Summaries have Error Scores well below simple
guessing because they represent a greater percentage
of the actual article as the number of sentences in-
crease. For Table 3, it is worth noting that the prod-
uct TQE * (number of sentences) is relatively con-
stant for all of the summarizers (coefficient of vari-
ance for this product has a mean of 0.063). This is
decided different behavior than that of the same
product for the Novels (Table 1). This more predicta-
ble behavior affects the regressions mentioned above.
When the six summarizers (including the Random
Summarizer as one of the six) are combined in a
normalized regression curve, the coefficient of de-
termination (R?) value for the linear regression of
sentences versus Error Score is now a much higher
0.931, and for a second-order polynomial regression
(with some asymptote behavior illustrated), the coef-
ficient of determination was 0.988.

As for the Novels, as the number of sentences in-
cluded in the summary of the CNN articles increases,
the error score for the query words decreases. In Ta-
ble 3, the mean Error Score is 550.2 for 3-Sentence
Summaries; 348.6 for the 5-Sentence Summaries;

and 161.6 for the 10-Sentence Summaries. Error
Scores for all five Sumy summarizers are less than
10% as high as the Error Score for random guessing
(1499.5) in Table 3, significantly less than observed
for the Novels. However, each of these is more than
50% as high as for Random Summarization, in
agreement with the findings for the Novels (Table 1).

As the number of ranks of relevance (1r) are in-
creased, per Equation 4, the Error Score is again a
composite of several comparisons. As with Novels,
for the CNN articles the mean Error Score across
query terms is given in terms of standard deviations
from simple, randomized summarizations (Table 4).

In Table 4, each of the Sumy summarizers resulted
in Error Score differences from Random Summariza-
tion similar to that of the CNN article gold standard
set (“Gold Standard” in Table 4). Additionally, all
five of the Sumy summarizers significantly outper-
form the Random Summarizer in terms of matching
the query behavior of the summarized (S) and origi-
nal documents (OD). This is decidedly different be-
havior than for the Novels, where only two of the
Sumy summarizers (LSA and Luhn) outperformed
the Random Summarizer by this measurement. Over-
all, the peak Error Scores are obtained when using
“relevant ranks”=4 and three sentences. Here, the
peak values are (13.4, 10.0, 14.2, 14.7, and 10.2) for
(LexRank, LSA, Luhn, Reduction, and Sum Basic).
These compare well with that of the Gold Standard,
10.5.

3.3. Classifying the Articles

Classification of the summarized versions of the arti-
cles was next performed. Classification was intended
to provide a functional means of assessing the rela-
tive value of each summarization approach. The clas-
sification approach was based on cosine similarity
with TF*IDF thresholded terms, as described above
and in previous work [22].

The TF*IDF classifier used achieved as much as
60% accuracy on the testing set, as illustrated in Ta-
ble 5. Three different trials of training and testing
sets were employed, with the mean accuracy being
57% for TF*IDF thresholds from 3.5 to 7.0. The
CNN corpus has 12 classes of documents; therefore,
8.3% accuracy is achieved by random guessing.

Error Score difference from random, as (mean / standard dev.), Articles, 2-5 Relevant Ranks (rr).

Table 4

Summary Type N Sentences rr=2 rr=3 rr=4 rr=5
LexRank 3 10.618 13.156 13.390 12.276
5 8.518 9.453 10.955 10.958
10 3.768 4.297 5.264 6.113
LSA 3 8.232 10.230 10.020 8.948
5 5451 6.771 7.941 8.256
10 3.248 3.819 4.545 5.628
Luhn 3 12.020 14.441 14.190 12.862
5 8.578 9.586 10.765 10.864
10 3.156 3.675 4.379 5.086
Reduction 3 11.465 14.133 14.673 13.629
5 7.006 8.173 9.901 10.271
10 2.762 3.162 3.648 4.178
Sum Basic 3 9.198 10.555 10.154 8.991
5 7.288 7.610 8.295 8.075
10 2213 2.689 3.242 3.756
Gold Standard 3 8.325 10.198 10.472 9.965
Table 5

Accuracy of the TF*IDF classifier on the original CNN articles. The TF*IDF threshold is varied from 1.0 to 12.0. Peak accuracies are indicat-

ed in bold text. The peak range is for thresholds between 3.5 and 6.0.

Trial TF*IDF Threshold Used in the Trial Classification

1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.37 0.42 0.46 0.57 0.56 0.56 0.56 0.55 0.55 0.56 0.53 0.50
2 0.40 041 0.44 0.57 0.56 0.55 0.57 0.57 0.59 0.58 0.58 0.48
3 0.45 0.45 0.58 0.59 0.59 0.60 0.60 0.60 0.59 0.57 0.58 0.48

Table 6

Accuracy of the classifier on the 3-sentence summaries, CNN articles. LexR=LexRank, Red=Reduction, SumB=Sum Basic, Gold=Gold
Standard, and Rand= Random (Mean of 10 samples). Peak accuracies obtained are indicated by bold text.

Trial TF*IDF Threshold Used in the Trial Classification

LexR | 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.39 0.44 0.49 0.50 0.49 0.49 0.47 0.48 0.47 0.43 0.39 0.36
2 0.39 0.36 0.46 0.46 0.46 0.48 0.47 0.47 0.48 0.46 0.44 0.36
3 0.38 0.42 0.43 0.44 0.46 047 0.46 0.46 047 0.43 0.45 0.39
LSA 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.41 0.46 0.50 0.52 0.52 0.52 0.50 0.49 0.49 0.48 0.48 0.35
2 0.40 0.46 0.48 0.49 0.49 0.51 0.48 0.47 0.46 0.47 0.48 0.37
3 0.38 0.38 0.47 0.50 0.50 0.49 0.50 0.49 0.51 0.49 0.48 0.38
Luhn | 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.43 0.44 0.50 0.50 0.50 0.48 0.46 0.45 0.45 0.46 0.43 0.38
2 041 0.46 0.49 0.48 0.49 0.49 0.46 0.47 0.46 047 0.46 0.37
3 0.40 0.47 0.47 0.50 0.48 0.51 0.48 0.50 0.49 0.46 0.47 0.39
Red 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.45 0.48 0.50 0.50 0.49 0.48 0.51 0.49 0.49 0.47 0.46 0.36
2 0.47 0.47 0.48 0.51 0.51 0.49 0.51 0.50 0.49 0.49 0.47 042
3 0.43 0.41 0.49 0.50 0.50 0.51 0.51 0.52 0.52 0.50 0.49 0.40
SumB | 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.30 0.35 0.42 0.41 0.42 0.40 0.40 0.44 0.44 0.42 0.39 0.31
2 0.30 0.37 0.38 0.42 0.42 0.43 0.44 0.43 0.43 041 0.41 0.35
3 0.28 0.35 0.40 0.37 0.38 0.38 0.38 0.39 0.38 0.38 0.39 0.31
Gold 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.37 0.46 0.47 0.49 0.49 0.49 0.49 0.47 0.45 0.45 0.43 0.34
2 041 0.38 0.46 0.46 047 0.46 0.45 0.46 0.48 0.45 0.46 0.35
3 0.38 0.44 0.48 0.48 0.49 0.49 0.46 0.47 0.47 0.46 0.45 0.37
Rand | 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
1 0.28 0.32 0.38 0.39 0.39 0.39 0.39 0.38 0.38 0.36 0.36 0.29
2 0.28 0.31 0.35 0.37 0.38 0.38 0.37 0.38 0.38 0.37 0.36 0.31
3 0.27 0.32 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.36 0.35 0.31

Table 7

Accuracy of the classifier on the 3-sentence summaries, CNN articles. LexR=LexRank, Red=Reduction, SumB=Sum Basic, Gold=Gold
Standard, and Rand= Random (Mean of 10 samples). Peak accuracies obtained are indicated by bold text.

TF*IDF Threshold Used in the Trial Classification
Type 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0
LexR | 0.39 041 0.46 0.47 0.48 0.48 047 0.47 0.48 0.44 0.43 0.37
LSA 0.40 0.44 0.48 0.50 0.50 0.50 0.49 0.48 0.49 0.48 0.48 0.37
Luhn | 041 0.46 0.49 0.49 0.49 0.49 047 0.47 0.46 0.46 0.45 0.38
Red 0.45 0.45 0.49 0.50 0.50 0.49 0.51 0.50 0.50 0.49 0.47 0.39
SumB | 0.30 0.36 0.40 0.40 041 0.40 041 0.42 0.42 0.40 0.40 0.32
Gold 0.39 0.43 0.47 0.48 0.48 0.48 047 0.47 0.48 0.45 0.45 0.35
Rand | 0.28 0.31 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.36 0.36 0.30

Most of the summaries were classified with higher
accuracy than their random counterparts of the same
size. Only Sum Basic summaries did not classify at a
significantly higher accuracy than the random sum-
maries (Table 6). The classifier, when applied to the
Sumy summarizations, seems to work best when us-
ing a TF*IDF threshold of between 4 and 5. When
the threshold is low, several terms that may not pro-
vide any classification power are included. If the
threshold is too high, many useful terms may be ex-
cluded, as they will not have a large enough TF*IDF.
When using a threshold of 12, only the terms that
occur in only one class will be used for classification.
For example, if a word occurs only in the “business”
class during training, then a document containing that
term during testing has a high chance of being classi-
fied as “business”. However, there is a chance that a
document in testing might not have any word that is

above the threshold, making it unable to be classified.

Table 7 provides the mean outcome of the three
trials in Table 6. The peak accuracies are (0.48, 0.50,
0.49, 0.51, and 0.42) for (LexRank, LSA, Luhn, Re-
duction, and Sum Basic) summarizations. All but the
Sum Basic summarizations provide classification
accuracy as good as the Gold Standard (0.48). The
Random Summarization sets do not provide compa-
rable accuracy (0.36).

The peak Error Scores from Table 4 (13.4, 10.0,
14.2, 14.7, 10.2, 10.5, and 0.0) for (LexRank, LSA,
Luhn, Reduction, Sum Basic, Gold Standard, and
Random) correlate highly with the corresponding
peak accuracies (0.48, 0.50, 0.49, 0.51, 0.42, 0.48,
and 0.36), with R?>=0.776.

4. Discussion and Conclusions
4.1. Functional Approaches

This paper introduced two novel research areas to the
field of natural language processing in general, and
extractive summarization in specific. The first is the
use of query behavior to grade the efficacy of the
summarization approach used. Similarity in the rank-
ing of documents in response to queries was used to
demonstrate the relative functional equivalence of the
summarized document sets (S) to the original docu-
ment sets (OD). The closer the behavior of the S and
OD sets in response to the query terms, the more sim-
ilarly the two corpora can be employed for relevant
linguistic purposes. In order to illustrate this ap-
proach in a non-superficial fashion, two greatly dif-

ferent corpora (one a set of novels from Project Gu-
tenberg, the other a set of gold standard-enriched
CNN articles) were evaluated. For the Novels, the
Luhn and LSA algorithms were quantitatively shown
to be the two (of the five Sumy summarization ap-
proaches employed) that best match S and OD query
behavior. For the CNN articles, the LexRank and
Luhn algorithms were quantitatively shown to be the
two (of the five Sumy summarization approaches
employed) that best match S and OD query behavior.
Based on this functional metric, the Luhn summariz-
er is generally employable for creating summaries
that respond similarly to a query set (and thus func-
tionally have similar search behavior).

The second functional approach to assessment of
summarization was the use of classification. Here,
the CNN article set was directly relevant, since the
documents are assigned to 12 classes of content. One
concern with summarization — and a potential ad-
vantage of extractive summarization in comparison
to abstractive summarization — is that the S set pro-
vides the same relevant content as the OD set. If a
summarized set is capable of being classified as well
as the original set, then this functional objective can
be, at least in some sense, considered met. The re-
sults show that several of the summarization ap-
proaches (LexRank, LSA, Luhn, and Reduction) re-
sulted in similar classification results as the CNN
Gold Standard sentences, with or without TF*IDF
term filtering (Table 7). These results match those of
the query similarity results, or Error Score, of Table 4.
The Sum Basic summarization approach provided
similar results for the query functionality analysis,
but not for the classification functionality analysis. It
is proposed that the combination of these two func-
tional tests is warranted for automated assessment of
extractive summarization efficacy.

4.2. Summarization of the Two Widely Different
Corpora

The overall summarization results for the Novels are
dependent on the number of sentences chosen for the
summary. This can be illustrated using comparisons
to random sentence-assignment summaries. For the
20-sentence summaries, the LSA approach had an
error score 8.8 standard deviations less than the mean
for random summaries, while the Luhn approach had
an error score 11.5 standard deviations less than the
mean for random summaries. For the 50-sentence
summaries, LSA error scores were 9.0 standard devi-
ations below those of random summaries, while Luhn

error scores were 10.3 standard deviations less. For
100-sentence summaries, LSA and Luhn were 5.7
and 5.3 standard deviations below the scores for ran-
dom summaries. Clearly, if the number of sentences
in the summary were further increased, the value of
the particular summarization approach in comparison
to simply a random collection of sentences would
continue to decrease. The linear regression equation
for Normalized Error Score (NSE) versus the number
of sentences (Nsentences) in the document summary for
the Novels is given by Eq. 8, for which the y-
intercept is Nsentences = 217.

NSEnovets = -0.0049(Nsentences)+1.0635 ®)

Based on this finding, a summary of the novels
comprising more than 200 documents would not pro-
vide an advantage over simple collecting random
sentences from the novels. Therefore, the length of
summarizations selected (20, 50, and 100 sentences)
are suitable for comparative and functional analysis
of the Summarization algorithms.

Similarly, for the CNN Articles, the mean Error
Score varies with the length of the summarization.
The mean Error Score is 550.2 for three sentences;
348.6 for five sentences; and 161.6 for ten sentences.
The linear regression equation for Normalized Error
Score (NSE) versus the number of sentences (Nsentenc-
es) In the document summary for the CNN Articles is
given by Eq. 9, for which the y-intercept is Nsentences
=13.

NSEartictes = -0.0938(Nsentences)+1.2146)

Clearly, evaluation of 3, 5, and 10 sentence summar-
ies for the CNN Articles was justified (particularly
since the author-provided gold standard is three sen-
tences).

The summarizers evaluated perform differently
based on the severity of the TF*IDF filtering, typical-
ly performing optimally with TF*IDF in the range of
3.0-6.0. Of all of the summarization approaches teste,
Luhn is the one recommended overall, for at least
four reasons: (1) it performs as well as the LSA and
better than the other approaches for query behavior
of the Novels; (2) it performs as well as any other
algorithm for query behavior of the CNN Articles;
(3) it provides classification accuracy as high as the
other algorithms, including the Gold Standard; and
(4) it provides consistent classification accuracy over
a very wide range of TF*IDF values (Table 7), indi-
cating it is a resilient approach.

One factor that likely contributed to the relatively
higher Error Scores for the summarizers on the nov-
els is that the parser in Sumy can get confused by
certain phrases. For example, some sentences that
end with the name of a person with a title are parsed
incorrectly. For example, the phrase “The sun shone
on Mr. Smith.” Could be incorrectly parsed as two
sentences: “The sun shone on Mr.” and “Smith.”. In
novels such as Pride and Prejudice, where major
characters have names in this format, such as Mr.
Darcy, the invalid sentence ‘“Darcy.” could end up
being chosen as an important sentence, as the word
“Darcy” is a very frequent word in the novel and
would have a large term frequency. The Reduction
algorithm in Sumy often chose these single word
non-sentences as part of the summary, resulting in its
relatively poor performance. The summarizers Luhn
and LSA avoid shorter sentences, and thus almost
never chose these fragment sentences as part of the
summary. This finding supports the fact that the Er-
ror Score in Tables 1-4 is correlated with better
summarization behavior.

One large difference between fiction (Novels) and
non-fiction (ANN Articles) documents is the pres-
ence of dialogue. This can cause issues parsing and
can also result in non-traditional sentences. In dia-
logue, it is not uncommon to have a sentence consist-
ing of only a name, either as an exclamation or used
in an introduction. This can lead to similar fragment
sentences as mentioned in the previous paragraph.
Dialogue can also cause parsing problems, such as
when a character asks a question. A parser may have
trouble deciding where to split the phrase “"How is
the weather?’ asked Smith.” The parser in Sumy of-
ten split phrases like these into two sentences, result-
ing in sentence fragments such as “asked Smith.”
These fragments were also commonly selected by the
Reduction summarizer.

4.3. Interpretations and Future Work

It is worth noting that the methodologies for query-
based and classification-based evaluation of summa-
rization described herein is readily applied to both
extractive summarization, as shown, but also abstrac-
tive summarization if desired. The -classification
technique, relying on a form of TF*IDF or even sen-
tence weighting, is directly applicable to abstractive
methods. With some modifications accounting for
sentence similarities, the query approach would also
be applicable to abstractive summarization. Thus,
this paper provides a general-purpose methodology

for the evaluation of the relative accuracy of summa-
rization for any existing summarization approaches
along with those to come. The application of the
methodology to two widely different data sets show
that it is a general-purpose approach; for example, it
could be used effectively on content related to the
social sciences or physical sciences, as well.

The results, unsurprisingly, show considerable dif-
ferences consistent with the different nature of these
two data sets. The LSA and Luhn summarization
approaches were most effective on the database of
fiction (Novels), while the LexRank and Luhn sum-
marization approaches were, arguably, most effective
on the database of articles. Overall, the Luhn ap-
proach was deemed the most generally relevant.
Based on the findings for the two functional metrics
— query behavior and classification accuracy — it is
clear that these two metrics can be used together to
perform a “preflight” analysis of which summariza-
tion algorithm to employ on a task. As demonstrated
here, comparing the results to those of a random-
generate summary is also recommended. In addition,
selecting a corpus to perform this preflight testing on
is also important. For example, the Error Scores for
all five Sumy summarizers are much less as a per-
centage of the maximum Error Score for the CNN
Articles than for the Novels. This may be due to
greater repetition in the articles, with random sen-
tences more likely to hit on the article-differentiating
themes. That is, randomly selecting from a short arti-
cle is more likely to get gist of it than randomly
jumping around in a novel.

Follow-up work in the intersection of multi-
corpora and functional metrics is likely to focus on
simultaneous optimization of multiple assessment
metrics [23, 24]. In this way, the relative impact of
different sentence attributes (word scoring, word fre-
quency, upper case, proper nouns, word co-
occurrences, lexical similarity, etc.) on the utility of
the summarization can be addressed. Elements of this
were addressed by the use of TF*IDF and synonymy
in this paper. A future area for research on functional
summarization is the use of regularization during
summarization, as outlined in Equations 1-2. This
was not an option for the Sumy summarizers. Addi-
tional insight into the saliency of assessing summari-
zation via classification behavior may be gained
through the incorporation of additional classification
approaches [25, 26, 27]. The intent of this paper was
to provide a methodology for incorporating existing
summarization frameworks into analysis, so the eval-
uation of additional summarization frameworks is
potentially valuable future work. For example, newer

and more powerful and sophisticated supervised ma-
chine learning/classification algorithms could readily
be incorporated into future extensions of this research,
including enhanced probabilistic neural networks,
neural dynamic classification, dynamic ensemble
learning, and finite element machines [28, 29, 30, 31].
The methodology described herein will allow com-
parative evaluation among these and other approach-
es. The fact that the known “poorest” summarizers,
Random and SumBasic, performed the poorest on
both functional metrics, is evidence that the function-
al approaches introduced herein work.

This paper makes the argument that the main pur-
pose of the summarization is to be used properly.
Two functional approaches to assessing the suitabil-
ity of summarization were addressed: (1) using
matching of query behavior to provide summariza-
tions suitable for search; and (2) using classification
of summarized documents to provide summarizations
with content relevantly distinguishable with the de-
sired partitioning of content (classes). These metrics
showed that several summarization approaches re-
sulted in functional summaries comparable to the
Gold Standard summaries for the CNN articles.

However, a functional process such as those out-
lined here, may obscure some of the important details
of how the process is actually working. Future work,
therefore, may include focusing on understanding the
nature of the correlation between query and classifi-
cation in the original and summarized document sets.
It may well be that some form of more advanced par-
titioning of the input, consistent with sub-classes,
may further improve the output.

5. Acknowledgements

The authors gratefully acknowledge the State of
Colorado (SB 18-086) and the National Science
Foundation (NSF Award #1842577) for funding parts
of this research. Further information on the Python
sumy summarization approaches can be obtained on
sumy 0.9.0, https://pypi.org/project/sumy/, accessed
12 March 2022.

References

[1] Gupta, S., and Gupta, S.K. (2019). Abstractive
summarization: An overview of the state of the
art. Expert Systems with Applications 121:49-65.

[2] Luhn, H.P. (1958). The automatic creation of
literature abstracts. IBM Journal of Research and
Development 2(2):159-165.

[3] Edmundson, H.P., and Wyllys, R.E. (1961).
Automatic abstracting and indexing—survey and
recommendations. Communications of the ACM
4(5):226-234.

[4] Edmundson, H.P. (1969). New methods in au-
tomatic extracting. Journal of the ACM (JACM)
16.2:264-285.

[5] Rush, J.E., Salvador, R., and Zamora, A.
(1971). Automatic abstracting and indexing. II.
Production of indicative abstracts by application
of contextual inference and syntactic coherence
criteria. Journal of the American Society for In-
formation Science 22(4):260-274.

[6] Jones, K.S. (1993) What might be in a sum-
mary? Information retrieval 93:9-26.

[7] Kupiec, J., Pedersen, J., and Chen, F. (1995)
A trainable document summarizer. In Proceedings
of the 18th Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, 68-73. ACM.

[8] Basiron, H., Jaya Kumar, Y., Ong, S.G., Ngo,
H.C., and Suppiah, P.C. (2016). A review on au-
tomatic text summarization approaches. Journal
of Computer Science 12:178-190.

[9] Wong K.F., Wu, M., and Li, W. (2008). Ex-
tractive summarization using supervised and
semi-supervised learning. In Proceedings of the
22nd international conference on computational
linguistics 22:985-992.

[10] Kaikhah, K. (2004). Automatic text summa-
rization with neural networks. In 2nd Internation-
al IEEE Conference on 'Intelligent Systems'. Pro-
ceedings 1:40-44.

[11] Svore, K., Vanderwende, L., and Burges, C.
(2007). Enhancing single-document summariza-
tion by combining RankNet and third-party
sources. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning 448-457.

[12] Lins, R.D., Oliveira, H., Cabral, L., Batista,
J., Tenorio, B., Ferreira, R., Lima, R., de Franca
Pereira e Silva, G., and Simske, S.J. (2019). The
cnn-corpus: A large textual corpus for single-
document extractive summarization. In Proceed-
ings of the ACM Symposium on Document Engi-
neering:1-10.

[13] Nallapati, R., Zhai, F. and Zhou, B. (2017).
Summarunner: A recurrent neural network based
sequence model for extractive summarization of

documents. In Thirty-First AAAI Conference on
Artificial Intelligence.

[14] M. F. Mridha, M.F., Lima, A.A., Nur, K.,
Das, S.C., Hasan, M., and Kabir, M.M. (2021). A
survey of automatic text summarization: Progress,
process and challenges. In IEEE Access
9:156043-156070.

[15] Verma, R., and Lee, D. (2017). Extractive
summarization: Limits, compression, generalized
model and heuristics. Computaciéon y Sistemas,
21(4), pp.787-798.

[16] Simske, S.J., and Vans, M. (2021). Function-
al Applications of Text Analytics Systems. River
Publishers.

[17] See, A., Liu, P.J., and Manning, C.D. (2017).
Get to the point: Summarization with pointer-
generator networks. arXiv preprint
arXiv:1704.04368.

[18] Nallapati, R., Zhou, B., Gulcehre, C., and
Xiang, B. (2016). Abstractive text summarization
using sequence-to-sequence rnns and beyond.
arXiv preprint arXiv:1602.06023.

[19] Rush, A.M., Chopra, S., and Weston, J.A.
(2015). Neural attention model for abstractive
sentence summarization. arXiv preprint
arXiv:1509.00685.

[20] Gerlach, M., and Font-Clos, F. (2020). A
standardized Project Gutenberg corpus for statis-
tical analysis of natural language and quantitative
linguistics. Entropy 22(1):126.

[21] Stroube, B. (2003). Literary freedom: Project
Gutenberg. XRDS: Crossroads, The ACM Maga-
zine for Students 10(1):3-3.

[22] Vans, A.M., and Simske, S.J. (2017). Identi-
fying top performing TF* IDF classifiers using
the CNN corpus. In Archiving Conference
2017(1):105-115.

[23] Ferreira, R., de Souza Cabral, L., Lins, R.D.,
de Franga Pereira E Silva, G., Freitas, F., Caval-
canti, G.D., Lima, R., Simske, S., and Favaro. L.
(2013). Assessing sentence scoring techniques for
extractive text summarization. Expert systems
with applications 40(14):5755-5764.

[24] Oliveira, H., Ferreira, R., Lima, R., Lins,
R.D., Freitas, F., Riss, M., and Simske, S.J.
(2016). Assessing shallow sentence scoring tech-
niques and combinations for single and multi-
document summarization. Expert Systems with
Applications 65:68-86.

[25] Khan, A., Baharudin, B., Lee, L.H. and Khan,
K., 2010. A review of machine learning algo-
rithms for text-documents classification. Journal

of advances in information technology, 1(1),
pp-4-20.

[26] Korde, V. and Mahender, C.N., 2012. Text
classification and classifiers: A survey. Interna-
tional Journal of Artificial Intelligence & Appli-
cations, 3(2), p.85.

[27] Kim, D., Seo, D., Cho, S. and Kang, P., 2019.

Multi-co-training for document classification us-
ing various document representations: TF—IDF,
LDA, and Doc2Vec. Information Sciences, 477,
pp-15-29.

[28] Ahmadlou, M. and Adeli, H., 2010. En-
hanced probabilistic neural network with local
decision circles: A robust classifier. Integrated
Computer-Aided Engineering, 17(3), pp.197-210.

[29] Rafiei, M.H. and Adeli, H., 2017. A new
neural dynamic classification algorithm. IEEE
transactions on neural networks and learning sys-
tems, 28(12), pp.3074-3083.

[30] Pereira, D.R., Piteri, M.A., Souza, A.N., Pa-
pa, J.P. and Adeli, H., 2020. FEMa: A finite ele-
ment machine for fast learning. Neural Compu-
ting and Applications, 32(10), pp.6393-6404.

[31] Alam, K.M., Siddique, N. and Adeli, H.,
2020. A dynamic ensemble learning algorithm for
neural networks. Neural Computing and Applica-
tions, 32(12), pp.8675-8690.

