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Abstract. Extractive summarization is an important natural language processing approach used for document compression, 

improved reading comprehension, key phrase extraction, indexing, query set generation, and other analytics approaches. Ex-

tractive summarization has specific advantages over abstractive summarization in that it preserves style, specific text elements, 

and compound phrases that might be more directly associated with the text. In this article, the relative effectiveness of extrac-

tive summarization is considered on two widely different corpora: (1) a set of works of fiction (100 total, mainly novels) avail-

able from Project Gutenberg, and (2) a large set of news articles (3000) for which a ground truthed summarization (gold stand-

ard) is provided by the authors of the news articles. Both sets were evaluated using 5 different Python Sumy algorithms and 

compared to randomly-generated summarizations quantitatively. Two functional approaches to assessing the efficacy of sum-

marization using a query set on both the original documents and their summaries, and using document classification on a 12-

class set to compare among different summarization approaches, are introduced. The results, unsurprisingly, show considerable 

differences consistent with the different nature of these two data sets. The LSA and Luhn summarization approaches were most 

effective on the database of fiction, while all five summarization approaches were similarly effective on the database of arti-

cles. Overall, the Luhn approach was deemed the most generally relevant among those tested. 

Keywords: Abstractive summarization, analytics, compression, extractive summarization, machine learning, phrases, repurpos-

ing, saliency, sentence, statistical learning, style 

1.  Introduction 

Summarization is an important element in many 

computer-aided text analytics tasks, including index-

ing, key word generation, translation, clustering, 

classification, and curriculum generation (document 

sequencing, or reading order). Summarization ap-

proaches, at the broadest level, can be described as 

either extractive or abstractive. Extractive summari-

zation consists of selecting a subset of the text 

phrases in the original document. This partial selec-

tion is thus a lossless compression of the content, in 

the sense that the text selected is unaltered from its 

original form. Abstractive summarization, in contrast, 

is a form of lossy compression since the text is al-

tered semantically from the original, usually incorpo-

rating novel words, word order, and/or phrases in 

order to provide a plainspoken summary [1]. This 

may be in a different voice altogether, for example in 

a neutral conversational style. An abstractive sum-

mary has the advantage of being semantically edited 

so that the selected phrases may flow together better 

than an extractive summary. However, an abstractive 

summary may not represent well, if at all, the style, 

tone, or voice of the original author. The summary 

may, additionally, introduce a different vocabulary 

than the author themselves used, with potentially 

deleterious effects on subsequent text analytics in-

cluding indexing, clustering, and categorization. 

In 1958, Luhn noted that machine learning meth-

ods could be used to automatically create abstracts 

for technical literature that were not highly influ-



enced by the unintentional attitudes, backgrounds, 

biases, and opinions of the human ground truthing 

normally employed for cataloguing purposes [2]. 

Many automatic summarization techniques continue 

to be based on Luhn’s approach of using word-

frequency and contextual cues. The idea of assigning 

measure (or weights) of significance to each of the 

sentences is still employed today. Other early works 

include those by Edmundson and Wyllys [3,4], Rush 

et al. [5], Sparck-Jones [6], and Kupiec [7]. 

The first reported extractive approach [2] defined a 

word frequency-based measure using the idea that the 

more often an important word appears in a phrase, 

sentence, or other unit of text, the more significant 

the sentence. This increases its likelihood of being in 

the summary. Word frequency, however, was shown 

to require normalization by the document length, 

creating a more broadly applicable weighting factor 

for significance.[8] TF*IDF, or Term Frequency 

times Inverse Document Frequency, is a related ap-

proach of importance to extractive summarization. In 

addition to frequency-based approaches, there are 

several feature-based approaches that assume that 

certain characteristics of text identify significant sen-

tences or phrases. For example, titles, abstracts, sen-

tence position, proper nouns, and the like are indica-

tors of relative importance [8]. Such approaches may 

require additional methods such as document seg-

mentation in order to identify these features. 

Other extractive techniques have been historically 

based on a wide variety of now-familiar machine 

learning approaches. Naïve Bayes classifiers [8], 

support vector machines (SVM) [9], and artificial 

neural networks (ANN) [10] have been employed. 

Bayes classifiers are employed to assign the probabil-

ity of a sentence being included in the summary 

based on a set of sentence features, wherein the high-

est ranked sentences are chosen [8]. SVM approaches 

are used for a series of binary classifications; for ex-

ample, associated with a decision tree. In one ANN 

approach, summary sentences were themselves data 

mined for features that best characterize them [10]. In 

another, a set consisting of Cable Network News 

(CNN) articles was used to train an ANN to rank 

sentences, with the summaries consisting of the high-

est ranked sentences [11]. A larger set of CNN arti-

cles was used, together with the author-provided 

summaries, to provide a useful large training set for 

extraction summarization [12]. Recurrent neural net-

works have also been recently deployed for extrac-

tive summaries [13]. These are other recent advances 

in extractive summarization are overviewed in a re-

cent survey [14]. Some of the limitations on summa-

rization, particularly from the lens of compressibility, 

has also been recently provided [15]. 

In generalized extractive summarization, text ele-

ments (phrases, sentences, etc.) are selected based on 

P different characteristics, among which are sentence 

scoring, cue phrases, sentence inclusion of numerical 

data, sentence length, sentence position, sentence 

centrality, sentence resemblance to the title, and 

graph scoring. The total sentence score, or TSS (Eq. 

1), is the sum for all N terms of the product of the 

weighting factors (WF) of each of the P characteris-

tics (these default to 1.0 and vary from 1.0 based on 

the relevance of each word in the overall document. 
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The problem with the approach of Eq. 1 is that 

similar sentences that represent the most relevant 

terms may all be highly scored, leading to an initial 

summary (either extractive or the source for abstrac-

tion) that does not represent the range of content in 

the document. In order to prevent such replication, 

one approach is selectively down-weight terms once 

they have been selected, as noted in Eq. 2. [16] 
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In Eq. 2, the Regularized Sentence Score, or RSS, 

adjusts the TSS by multiplying a regularization factor, 

λ, with the sum of occurrences of each of the terms in 

any sentences that have already been assigned to the 

summary. This is termed numi(S) for each of the N 

terms in the sentence being regularized, as they occur 

in the set of sentences already part of the summary. 

In this way, each sentence score is updated after the 

summary is appended. The regularization sum (right 

side of Eq. 2) penalizes selecting more sentences 

highly similar to the ones already part of the sum-

mary. 

Abstractive approaches, on the other hand, do 

not necessarily use the source text unaltered, but in-

stead usually paraphrase the text or transform the text 

to build a summary. The abstractive approach gener-

ally incorporates a larger initial subset of the docu-

ment than the extractive summary, though it may 

directly transform the extractive summary. Abstrac-

tive approaches can result in the production of inac-



curate details and the repetition of information. Both 

of these issues are addressed by a “Pointer-Generator 

Network” [17], which is built on top of a “sequence-

to-sequence” model. This is a now common abstrac-

tive summarization approach employing recurrent 

neural networks (RNNs). The Pointer-Generator 

Network copies words from the source text (to ad-

dress the inaccurate details) by pointing and continui-

ty-providing words are produced using the generator. 

They also track the summarization as it is being pro-

duced in order to avoid repetition. Another abstrac-

tive summarization approach is the use of an Atten-

tional Encoder-Decoder Recurrent Neural Network 

[18]. Using the decoder to “point” (copy) a word or 

the encoder to “generate” (produce) a word addresses 

the inaccurate detail concerns. The summary outputs 

from the Encoder-Decoder system tended to contain 

repetitive phrases, prompting the researchers to add a 

Temporal Attention Model that essentially keeps 

track of which parts of the document it has already 

processed and discourages it from looking at those 

pieces again. A more comprehensive method of pre-

venting the summary from being overwhelmed with 

repetitive content is described elsewhere [16]. 

Another approach to abstractive summarization 

uses a different approach, called Attention-Based 

Summarization, which joins an ANN model with an 

attention-based encoder. The language model con-

sists of a feed-forward neural network language 

model (NNLM) used for estimating the contextual 

probability of the next word, while the encoder acts 

as a conditional summarization model [19]. In gen-

eral, each word of a summary is generated based on 

the input sentence. The goal of the experiments is to 

use the summarization model for generating head-

lines. Training occurs by pairing a headline with the 

first sentence of an article (rather than the entire arti-

cle) to create an input-summary pair. The extractive 

tuning addresses the issue of inaccurate details (simi-

lar to decoding or pointing) by tuning with a small 

number of parameters after the model is trained. 

The summarization approaches in the articles re-

viewed here, together with the summarization exper-

iments covered in the survey articles, focus on indi-

vidual corpora for summarization analysis. This pa-

per applies multiple summarization approaches to 

two fundamentally different corpora. In so doing, the 

differences in summarization approaches that are 

germane to providing downstream utility (including 

indexing, clustering, classification, and reading or-

der) of the summarized texts are compared. The pri-

mary motivation of the research in this article is to 

provide two distinct mechanisms for grading the 

summaries provided by multiple summarization algo-

rithms. The first is performed using a query set, in 

which the functionally optimum summarization algo-

rithm is determined to be the one in which query be-

havior is most similar in comparing the original doc-

uments to the summarized documents. This is partic-

ularly suitable to longer documents, and is illustrated 

herein using longer literary works. The second mech-

anism for grading summaries is performed using 

document classification. Here, the functionally opti-

mum summarization approach is determined to be the 

one resulting in the best classification accuracy for 

the documents. This is particularly suited to articles, 

and is applied to a well-established set of CNN arti-

cles available to researchers. 

In Section 2, the methods and experimental de-

signs are described. Specifically, the query-based and 

classification-based methodologies for evaluating 

summarization output are introduced. In Section 3, an 

overview of the primary results is given. In Section 4, 

the results are evaluated more thoroughly in a discus-

sion, and concluded with potential follow-on work. 

2. Methods and Experimental Designs 

2.1. Document Corpora, the Use of Query to Rank 

Summarizers, and Query Sets 

In order to begin exploring the differences in summa-

rization for different types of document corpora, two 

widely different, publicly available large corpora of 

documents, were selected. The first set of documents 

consisted of 100 works of fiction (novels) with 

lengths ranging from 17,074 to 562,199 words with a 

mean of 125,565 words selected from Project Guten-

berg [20, 21]. All of the works selected were in Eng-

lish, and all metadata was removed from the docu-

ment, except for chapter and part labels. Introduc-

tions were also removed, even if they were written by 

the original author. Footnotes were also removed. 

The texts were also reformatted, removing any new-

lines or indents used for formatting. 

The second set of documents consisted of the 

CNN Corpus [12]. The corpus consists of 3000 news 

articles covering 12 different subjects, including 

business, health, and politics. The corpus was chosen 

because it contains a human-selected gold standard 

for summarization. For most articles, the gold stand-

ard is three sentences, provided as a leader for the 

article on the cnn.com website. All of the articles 

were also in English. 



Summaries of the documents (novels and articles) 

were generated by Sumy, a Python library that per-

forms various summarization algorithms on texts of 

different languages. It has a built-in parser and to-

kenizer, so that minimal preprocessing had to be 

done on the documents. Five different algorithms 

within Sumy were used to summarize the datasets: 

LexRank, LSA, Luhn, Reduction, and Sum Basic. 

There were three other summarization algorithms in 

Sumy: Edmundson, KL, and TextRank. Edmundson 

was not used as it required the definition of “bonus 

words” (more appropriate for search query investiga-

tions), while KL and TextRank suffered poor pro-

cessing times for summarizing the longer documents. 

As a baseline, the documents were also summarized 

several times using Sumy’s Random summarizer, 

which as the name implies selected sentences ran-

domly from the documents. The novels had summar-

ies generated comprising 20, 50, and 100 sentences, 

while the much shorter articles summaries generated 

comprising 3, 5, and 10 sentences. 

The Sumy summarizers are described briefly here. 

The Random summarizer just selects sentences at 

random from the documents, and is a point of com-

parison, with only poor summarizers approaching the 

performance of the Random one. The Luhn summa-

rizer uses a simple “significant word” algorithm to 

select sentences for the summaries. The significant 

words occur with high frequency in the text, but are 

not stop words. It can be thought of as a TF (term 

frequency) approach. The Latent Semantic Analysis, 

or LSA, method identifies synonyms in the text and 

topics that are not explicitly stated in the text. The 

LexRank summarizer is another unsupervised ap-

proach that discovers connections between the sen-

tences and selects for the summaries those that are 

connected with the most significant words/topics. 

The SumBasic is a sentence score summing approach, 

which is generally considered a baseline “reasona-

ble” summarizer, which any advanced summarization 

approach should surpass. Finally, the Reduction algo-

rithm is a graph-based summarization, where sen-

tences are weighted by the sum of the weights of its 

edges to other sentences, with weight computed in a 

manner similar to LexRank. 

After performing each summarization, a functional 

approach (that is, quantitative but not requiring hu-

man ground truthing) to assess the efficacy of sum-

marization was devised. In order to provide this, the 

generation of a query set to use for searching both the 

original documents and their summaries was required. 

For each query, a search process is performed where 

an ordered (ranked) list of documents is returned, 

with the best match having the highest rank in the 

search. In theory, a perfect summarizer will result in 

the same query behavior on the summarized set as 

occurred for the original document set. One goal of 

this paper will be to explore whether the query 

matching does in fact correlate with summarization 

accuracy. 

The query set for the documents was generated af-

ter first noting the themes provided by Sparknotes for 

the novels. The themes provided words relevant to 

the texts while also not being pulled directly from the 

text (i.e. abstractive rather than extractive). 303 

words were taken from the themes and used as an 

initial query set. These were considered both relevant 

and likely to be broadly applicable (that is, applicable 

to the article set as well as the document set). The 

query set was then expanded by adding common 

words, common animals, common colors, and com-

mon countries to generate a new set of 403 query 

words. The common words were taken from a list of 

100 common words, and duplicates with words gen-

erated from the themes were removed. 10 common 

animals, such as “cat” and “dog” were used, as well 

as 10 colors, which consisted of primary and second-

ary colors, as well as black, white, gray, and brown. 

The countries were chosen by selecting the 30 most 

populous countries in the world in the 1800s, as most 

books were written before 1900 in order to be in pub-

lic domain when the experiments were performed in 

2021. The same query set was used throughout, and 

every document returned a query score for each que-

ry as described in the next section. 

2.2. Scoring Approach 

For each query word and document, a score was 

generated. For each word in the document, if the 

word exactly matched the query word, it was given a 

score of 1. If it shared a lemma with the query word, 

it was given a score of 0.95. If the words were syno-

nyms according to Wordnet, the word would be giv-

en a score of 0.75. The results were not particularly 

dependent on these scoring methods; for example, if 

lemmas were given scores of 1.0 and synonyms were 

given scores of 0.6-0.9, the outcomes were relatively 

similar. If the word did not match any of the 403 que-

ry terms, it was given a score of 0.0. The scores for 

each word were added together, and this sum was 

divided by N, the number of words in the document 

(Eq. 3), to yield the overall score of the document for 

each query term. 
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Once all the scores were generated, the documents 

were sorted for each query word based on the calcu-

lated score. Eq. 4 is used to derive the Total Query 

Error (TQE), which is entirely based on the similarity 

in ranks returned from the query. For example, if 

Document A was the top scored document for Query 

1 for the original texts and was the third best docu-

ment for Query 1 in the set of summaries in Sum-

mary 1, then the error score for one relevant rank 

would be |3 – 1| = 2. For the result comparing the 

original documents to a summary, the query error for 

each query was averaged, producing a single score 

for the entire comparison. Each error score was cal-

culated using 1, 2, 3, 4, and 5 relevant ranks (rr); that 

is, by comparing the top 1, 2, 3, 4, and 5 ranked doc-

uments from the original document queries. The error 

score was calculated for both the novels and the arti-

cles. In Eq. 4, Nrr = the number of relevant ranks, 

rank[Q(S)]of rank[r] term in OD is the rank of the query for 

the summarized version of the document, and r is the 

rank of the original document (OD) for the query. 
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An example employing Eq. 4 will be illustrative. 

Suppose that a specific query term (Q) is run against 

the original documents (OD), and then separately run 

against the summaries (S) of these same documents. 

When Q on is used on the Original Documents, this 

is Q(OD), and Documents {A,B,C,D,E,…} are re-

turned in order. Next, the same specific query term Q 

is run against the summaries, called Q(S). Instead of 

the order for Q(OD), suppose summaries 

{C,B,D,H,A,…} are received in this order. The dif-

ference in ranked order for the most relevant—that is, 

ranked first in response to Q(OD)—document, which 

is A, is rank [1] in Q(OD) and rank [5] in Q(S). The 

error is therefore |[1]-[5]| = 4. In Eq. 4, then, 

rank[Q(S)]of rank[r] term in OD is 5, and r, the rank in 

Q(OD), is 1. 

The left-hand side of Eq. 4 accounts for the num-

ber of relevant ranks. For rank r=1, Nrr – r + 1 is Nrr, 

or 5 in the case of rr=5. For the rank=2 document B, 

the multiple on the left of Eq. 4 is 5-2+1 = 4, while 

the right side is 0 since Q(S)=Q(OD) for B. For the 

rank=3 document C, the multiple on the left of Eq. 4 

is 5-3+1 = 3, while the right side is |[3]-[1]| = 2. The 

TQE for just these three documents, with rr=5, is 5*4 

+ 4*0 + 3*2 = 26. Note that if only one rank is rele-

vant (that is, rr=1), the TQE = 4. If rr=2, the TQE = 

2*4 + 1*0 = 8. If rr=3, the TQE = 3*4 + 2*0 + 1*2 = 

14. It should be noted that these TQE values are for 

only one query term. The sum of the differences for 

all query terms (right side of Eq. 4), multiplied by the 

relative value of each rank (left side of Eq. 4) is re-

ported as the Error Score. This Error Score will be 

the primary set of results in the Results section to 

follow. 

The algorithm for ranking the summaries by their 

Total Query Error (TQE) in comparing the original 

documents to their associated summaries is given in 

Figure 1. 

 

 

Fig. 1. Query matching functional approach. 

 



The summaries were also used to classify the nov-

els and, separately, the articles. The smallest class 

size in the articles consisted of 98 articles, so the 

training and testing sets were set at a size of 49 arti-

cles each in order to achieve a balanced 12-class set 

(that is, training was performed on 50% of the CNN 

articles in each class, and testing on the remaining 

50%). The 50% training was used to balance between 

under-training and overfitting. The document classi-

fication was performed three times, each with a dif-

ferent set of training and testing documents. The test 

set assignments were randomly generated by sam-

pling each class of article. Each document was classi-

fied by taking the frequency of each word in the doc-

ument and calculating the cosine (Eq. 5) of the doc-

ument word frequency (the  vector in Eq. 5) with 

the mean word frequencies from training documents 

from each class (the  vector in Eq. 5). The docu-

ment was assigned to the class it had the largest co-

sine with. 
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The classifier used an initial TF*IDF (Term Fre-

quency times Inverse Document Frequency) filtering 

of words for each training set. A wide number (at 

least 112) variations of TF*IDF exist [22]. The 

TF*IDF definition employed for a word was calcu-

lated by taking the mean number of occurrences of a 

word in a document in the class, divided by the mean 

number of occurrences of a word in the documents 

for all of the classes (Eq. 6). This is the “document 

frequency”, the inverse of which creates the IDF term 

in TF*IDF. In Eq. 6, “Docs” = the total number of 

documents in all classes. Because the training set was 

balanced between classes, this was equivalent to the 

number of occurrences in a class multiplied by the 

number of classes, divided by the total number of 

occurrences. A TF*IDF score of 1 indicated that the 

word occurred in the class as many times as its mean 

occurrence in the other classes, and a score of 12 

indicated that the word only occurred in that class. 

The classifier was run on each of the different sets of 

summarized documents, as well as 10 sets of random 

summaries at 3, 5, and 10 sentences. 

The algorithm for classifying the original CNN ar-

ticles and the various summaries of the articles is 

given in Figure 2. 

 

 

Fig. 2. Classification-based functional approach. 
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TF*IDF thresholds from 1.0 to 12.0 were used in 

order to determine the effect of TF*IDF filtering on 

the classification results for the different types of 

summaries. For each original text, the TF*IDF of 

each word was found. The Term Frequency for each 

word in a summarized text was also found, and the 

cosine distance was calculated between the original 

texts and the summarized texts. The summarized 

document was assigned to the class for which it had 

the highest cosine similarity. The document frequen-

cies used to calculate the TF*IDF values were nor-

malized, so that the different lengths of the docu-

ments did not affect the TF*IDFs. For example, if a 

word occurred only in a short document, it would 

have a much higher TF*IDF than a word that only 



occurs in a longer document. This normalization is 

simply representing the percentage of words occur-

ring in the document for each query term, as shown 

in Eq. 7. 
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3. Results 

3.1.  Summarizing the Novels 

For summarizing the novels, only the LSA and 

Luhn methods outperformed random summarization 

(Table 1, which provides the Error Score, or mean 

TQE). Randomly summarized texts were created by 

randomly selecting sentences from the target text. 

Because the quality of a randomly generated sum-

mary can vary, the documents were randomly sam-

pled 10 times for each summary length. For the 20-

sentence summaries, the random summaries’ error 

scores had a mean of 37.90 and a standard deviation 

of 0.91. For 50-sentence random summaries, the er-

ror scores had a mean of 30.55 and a standard devia-

tion of 1.15. Finally, 100-sentence random summar-

ies had error scores with a mean of 23.66 and a 

standard deviation of 1.77. 

For the 20-sentence summaries in Table 1, LSA 

had an error score 8.8 standard deviations less than 

the mean for random summaries, and Luhn had an 

error score 11.5 standard deviations less than the 

mean for random summaries. For the 50-sentence 

summaries, LSA error scores were 9.0 standard devi-

ations below those of random summaries, while Luhn 

error scores were 10.3 standard deviations less. For 

100-sentence summaries, LSA and Luhn were 5.7 

and 5.3 standard deviations below the scores for ran-

dom summaries. For 1 relevant rank, a score of 0 

denotes that for every query term, the same document 

has the highest score for the term for both the origi-

nal and summarized texts. The worst score possible 

for a single query is the number of documents minus 

1, in this case 99, where the top scoring document 

when looking at the original documents is the lowest 

scoring when looking at the summarized texts. If the 

ordering of documents for queries is random, then the 

mean score is the value of the worst score divided by 

2, in this case 49.5. 

As the length of the summary increases, the error 

score for the query words decreases, as the summa-

rized texts have a larger portion of the text from the 

original texts and are thus more similar to the original 

documents. This is readily evidenced in Table 1, 

where for the 20-Sentence Summaries of all 15 ap-

proaches the mean Error Score is 37.0; for the 50-

Sentence Summaries the mean Error Score is 29.4; 

and for the 100-Sentence Summaries the mean Error 

Score is 22.9. However, these Error Scores, even for 

the Luhn and LSA summarizers, are more than 25% 

as high as the Error Score for random guessing (49.5) 

in Table 1, and more than 50% as high as for Ran-

dom Summarization. 

As the number of ranks of relevance (rr) are in-

creased, per Equation 4, the Error Score is a compo-

site of several comparisons. More interesting for the 

comparisons where rr>1 is the distance of the mean 

Error Score for the Sumy summarizers in terms of 

standard deviations from the Random Summariza-

tions. These are provided for the Novels document 

set in Table 2. 

Several trends are consistently observed across 

Table 2. The first is that LexRank, Reduction, and 

Sum Basic summarizations do not provide better 

matching between OD and S document sets than do 

the Random Summarizations. In fact, for LexRank 

with 20 Sentences; for Reduction with 50 and 100 

Sentences; and for Sum Basic across the range of 

Sentences, these summarization approaches under-

perform random summarization. The second trend of 

note is that LSA and Luhn consistently outperform 

all other summarizations in terms of matching the 

query responses of the S and OD sets. For all three 

sets of sentences, and for all five relevant rank values 

(incorporating the results of Table 1 here), their Error 

Scores are always more than 7.4 standard deviations 

less than those of the Random Summarization. The 

third trend (data shown only for Table 1) is for the 

Error Score to consistently decrease as the number of 

sentences. When the six summarizers (including the 

Random Summarizer as one of the six) are combined 

in a normalized regression curve, the coefficient of 

determination (R2) value for the linear regression of 

sentences versus Error Score is 0.824, and for a sec-

ond-order polynomial regression (with some asymp-

tote behavior illustrated), the coefficient of determi-

nation was 0.871. This is for rr=1 in Table 1. 

 



Table 1 

Error Score (mean of TQE for all queries) for the Novels, 1 Relevant Rank 

Approach 20-Sentence Summary 50-Sentence Summary 100-Sentence Summary 

LexRank 39.95 30.58 24.60 

LSA 29.88 20.26 13.56 

Luhn 27.45 18.63 14.29 

Reduction 38.51 33.07 27.29 

Sum Basic 40.62 33.08 27.02 

Random (1) 37.49 31.17 24.86 

Random (2) 37.09 32.35 20.50 

Random (3) 38.79 31.43 22.11 

Random (4) 36.97 30.04 26.59 

Random (5) 39.16 30.66 24.64 

Random (6) 38.14 29.60 24.49 

Random (7) 38.09 30.05 22.59 

Random (8) 36.50 30.54 23.29 

Random (9) 37.77 28.24 22.60 

Random (10) 39.02 31.39 24.94 

 

 
 

Table 2 

Error Score (mean of TQE for all queries) difference from random, as (mean / standard deviation), Novels, 2-5 Relevant Ranks (rr) 

Summary Type N Sentences rr=2 rr=3 rr=4 rr=5 

LexRank 20 -2.806 -3.192 -3.255 -3.352 

 50 -0.513 -1.362 -2.609 -3.636 

 100 -0.493 -0.791 -1.297 -1.820 

LSA 20 11.963 12.463 12.110 11.877 

 50 12.651 15.131 19.225 21.357 

 100 8.024 9.839 12.791 14.299 

Luhn 20 14.185 14.082 13.481 13.176 

 50 14.512 16.786 21.453 23.670 

 100 7.473 9.392 12.660 14.454 

Reduction 20 -0.374 0.138 0.511 0.704 

 50 -2.024 -2.231 -2.233 -2.254 

 100 -2.087 -2.601 -2.843 -2.891 

Sum Basic 20 -3.626 -3.498 -3.034 -2.757 

 50 -2.892 -4.000 -5.250 -5.846 

 100 -2.430 -2.943 -3.798 -4.152 

 

 

 
Table 3 

Error Score (mean of TQE for all queries) for the CNN articles, 1 Relevant Rank 

Approach 3-Sentence Summary 5-Sentence Summary 10-Sentence Summary 

LexRank 396.2655 245.2419 118.9715 

LSA 469.9479 332.4280 134.0261 

Luhn 400.0074 243.8759 117.3449 

Reduction 403.5670 299.5620 129.5968 

Sum Basic 430.3176 261.2581 141.5062 

Random (1) 560.5645 394.9615 152.4057 

Random (2) 638.7506 403.9032 206.4206 

Random (3) 628.1725 373.0943 177.6774 

Random (4) 626.1787 414.8548 188.3573 

Random (5) 603.0597 400.3561 188.7543 

Random (6) 612.2432 366.2506 200.2047 

Random (7) 588.7419 361.2767 160.6241 

Random (8) 594.4392 367.0682 168.2382 

Random (9) 634.6700 355.3387 180.7320 

Random (10) 665.4566 410.1427 159.0484 



 

3.2. Summarizing the Articles 

All of the Sumy summarizers provided lower Error 

Scores for comparing the S and OD sets of articles 

than the Random Summarizer. The results for Equa-

tion 4, using one relevant rank, are presented in Table 

3. There, for the 3-sentence random summaries, the 

average error score was 615.2, with a standard devia-

tion of 29.9. The 5-sentence random summaries had a 

mean error score of 384.7 and standard deviation 

22.3. For the 10-sentence random summaries, the 

mean error score was 178.2 with a standard deviation 

of 18.1. For the 3-sentence summaries, all five sum-

marization methods were at least 8 standard devia-

tions away from the random average. For 5-sentence 

summaries, they were at least 2 standard deviations 

away, with Luhn being over 6 standard deviations 

away. For 10-sentence summaries, the summaries 

were in the range of 2 to 3.5 standard deviations 

away from the mean of the random summaries. 

For the CNN articles, the best possible score re-

mains at 0, but the worst possible score increases to 

2999, and the mean score increases to 1499.5, as 

there are 3000 articles. As with the Novels, the Ran-

dom Summaries have Error Scores well below simple 

guessing because they represent a greater percentage 

of the actual article as the number of sentences in-

crease. For Table 3, it is worth noting that the prod-

uct TQE * (number of sentences) is relatively con-

stant for all of the summarizers (coefficient of vari-

ance for this product has a mean of 0.063). This is 

decided different behavior than that of the same 

product for the Novels (Table 1). This more predicta-

ble behavior affects the regressions mentioned above. 

When the six summarizers (including the Random 

Summarizer as one of the six) are combined in a 

normalized regression curve, the coefficient of de-

termination (R2) value for the linear regression of 

sentences versus Error Score is now a much higher 

0.931, and for a second-order polynomial regression 

(with some asymptote behavior illustrated), the coef-

ficient of determination was 0.988. 

As for the Novels, as the number of sentences in-

cluded in the summary of the CNN articles increases, 

the error score for the query words decreases. In Ta-

ble 3, the mean Error Score is 550.2 for 3-Sentence 

Summaries; 348.6 for the 5-Sentence Summaries; 

and 161.6 for the 10-Sentence Summaries. Error 

Scores for all five Sumy summarizers are less than 

10% as high as the Error Score for random guessing 

(1499.5) in Table 3, significantly less than observed 

for the Novels. However, each of these is more than 

50% as high as for Random Summarization, in 

agreement with the findings for the Novels (Table 1). 

As the number of ranks of relevance (rr) are in-

creased, per Equation 4, the Error Score is again a 

composite of several comparisons. As with Novels, 

for the CNN articles the mean Error Score across 

query terms is given in terms of standard deviations 

from simple, randomized summarizations (Table 4). 

In Table 4, each of the Sumy summarizers resulted 

in Error Score differences from Random Summariza-

tion similar to that of the CNN article gold standard 

set (“Gold Standard” in Table 4). Additionally, all 

five of the Sumy summarizers significantly outper-

form the Random Summarizer in terms of matching 

the query behavior of the summarized (S) and origi-

nal documents (OD). This is decidedly different be-

havior than for the Novels, where only two of the 

Sumy summarizers (LSA and Luhn) outperformed 

the Random Summarizer by this measurement. Over-

all, the peak Error Scores are obtained when using 

“relevant ranks”=4 and three sentences. Here, the 

peak values are (13.4, 10.0, 14.2, 14.7, and 10.2) for 

(LexRank, LSA, Luhn, Reduction, and Sum Basic). 

These compare well with that of the Gold Standard, 

10.5. 

3.3. Classifying the Articles 

Classification of the summarized versions of the arti-

cles was next performed. Classification was intended 

to provide a functional means of assessing the rela-

tive value of each summarization approach. The clas-

sification approach was based on cosine similarity 

with TF*IDF thresholded terms, as described above 

and in previous work [22]. 

The TF*IDF classifier used achieved as much as 

60% accuracy on the testing set, as illustrated in Ta-

ble 5. Three different trials of training and testing 

sets were employed, with the mean accuracy being 

57% for TF*IDF thresholds from 3.5 to 7.0. The 

CNN corpus has 12 classes of documents; therefore, 

8.3% accuracy is achieved by random guessing. 

 



Table 4 

Error Score difference from random, as (mean / standard dev.), Articles, 2-5 Relevant Ranks (rr). 

Summary Type N Sentences rr=2 rr=3 rr=4 rr=5 

LexRank 3 10.618 13.156 13.390 12.276 

 5 8.518 9.453 10.955 10.958 

 10 3.768 4.297 5.264 6.113 

LSA 3 8.232 10.230 10.020 8.948 

 5 5.451 6.771 7.941 8.256 

 10 3.248 3.819 4.545 5.628 

Luhn 3 12.020 14.441 14.190 12.862 

 5 8.578 9.586 10.765 10.864 

 10 3.156 3.675 4.379 5.086 

Reduction 3 11.465 14.133 14.673 13.629 

 5 7.006 8.173 9.901 10.271 

 10 2.762 3.162 3.648 4.178 

Sum Basic 3 9.198 10.555 10.154 8.991 

 5 7.288 7.610 8.295 8.075 

 10 2.213 2.689 3.242 3.756 

Gold Standard 3 8.325 10.198 10.472 9.965 

 

 
 

Table 5 

Accuracy of the TF*IDF classifier on the original CNN articles. The TF*IDF threshold is varied from 1.0 to 12.0. Peak accuracies are indicat-
ed in bold text. The peak range is for thresholds between 3.5 and 6.0. 

Trial TF*IDF Threshold Used in the Trial Classification 

 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.37 0.42 0.46 0.57 0.56 0.56 0.56 0.55 0.55 0.56 0.53 0.50 

2 0.40 0.41 0.44 0.57 0.56 0.55 0.57 0.57 0.59 0.58 0.58 0.48 

3 0.45 0.45 0.58 0.59 0.59 0.60 0.60 0.60 0.59 0.57 0.58 0.48 

 



 
Table 6 

Accuracy of the classifier on the 3-sentence summaries, CNN articles. LexR=LexRank, Red=Reduction, SumB=Sum Basic, Gold=Gold 
Standard, and Rand= Random (Mean of 10 samples). Peak accuracies obtained are indicated by bold text. 

Trial TF*IDF Threshold Used in the Trial Classification 

LexR 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.39 0.44 0.49 0.50 0.49 0.49 0.47 0.48 0.47 0.43 0.39 0.36 

2 0.39 0.36 0.46 0.46 0.46 0.48 0.47 0.47 0.48 0.46 0.44 0.36 

3 0.38 0.42 0.43 0.44 0.46 0.47 0.46 0.46 0.47 0.43 0.45 0.39 

LSA 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.41 0.46 0.50 0.52 0.52 0.52 0.50 0.49 0.49 0.48 0.48 0.35 

2 0.40 0.46 0.48 0.49 0.49 0.51 0.48 0.47 0.46 0.47 0.48 0.37 

3 0.38 0.38 0.47 0.50 0.50 0.49 0.50 0.49 0.51 0.49 0.48 0.38 

Luhn 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.43 0.44 0.50 0.50 0.50 0.48 0.46 0.45 0.45 0.46 0.43 0.38 

2 0.41 0.46 0.49 0.48 0.49 0.49 0.46 0.47 0.46 0.47 0.46 0.37 

3 0.40 0.47 0.47 0.50 0.48 0.51 0.48 0.50 0.49 0.46 0.47 0.39 

Red 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.45 0.48 0.50 0.50 0.49 0.48 0.51 0.49 0.49 0.47 0.46 0.36 

2 0.47 0.47 0.48 0.51 0.51 0.49 0.51 0.50 0.49 0.49 0.47 0.42 

3 0.43 0.41 0.49 0.50 0.50 0.51 0.51 0.52 0.52 0.50 0.49 0.40 

SumB 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.30 0.35 0.42 0.41 0.42 0.40 0.40 0.44 0.44 0.42 0.39 0.31 

2 0.30 0.37 0.38 0.42 0.42 0.43 0.44 0.43 0.43 0.41 0.41 0.35 

3 0.28 0.35 0.40 0.37 0.38 0.38 0.38 0.39 0.38 0.38 0.39 0.31 

Gold 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.37 0.46 0.47 0.49 0.49 0.49 0.49 0.47 0.45 0.45 0.43 0.34 

2 0.41 0.38 0.46 0.46 0.47 0.46 0.45 0.46 0.48 0.45 0.46 0.35 

3 0.38 0.44 0.48 0.48 0.49 0.49 0.46 0.47 0.47 0.46 0.45 0.37 

Rand 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

1 0.28 0.32 0.38 0.39 0.39 0.39 0.39 0.38 0.38 0.36 0.36 0.29 

2 0.28 0.31 0.35 0.37 0.38 0.38 0.37 0.38 0.38 0.37 0.36 0.31 

3 0.27 0.32 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.36 0.35 0.31 

 

 
 

Table 7 

Accuracy of the classifier on the 3-sentence summaries, CNN articles. LexR=LexRank, Red=Reduction, SumB=Sum Basic, Gold=Gold 
Standard, and Rand= Random (Mean of 10 samples). Peak accuracies obtained are indicated by bold text. 

 TF*IDF Threshold Used in the Trial Classification 

Type 1.0 2.0 3.0 3.5 4.0 4.5 5 5.5 6.0 7.0 8.0 12.0 

LexR 0.39 0.41 0.46 0.47 0.48 0.48 0.47 0.47 0.48 0.44 0.43 0.37 

LSA 0.40 0.44 0.48 0.50 0.50 0.50 0.49 0.48 0.49 0.48 0.48 0.37 

Luhn 0.41 0.46 0.49 0.49 0.49 0.49 0.47 0.47 0.46 0.46 0.45 0.38 

Red 0.45 0.45 0.49 0.50 0.50 0.49 0.51 0.50 0.50 0.49 0.47 0.39 

SumB 0.30 0.36 0.40 0.40 0.41 0.40 0.41 0.42 0.42 0.40 0.40 0.32 

Gold 0.39 0.43 0.47 0.48 0.48 0.48 0.47 0.47 0.48 0.45 0.45 0.35 

Rand 0.28 0.31 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.36 0.36 0.30 

 

 



 

Most of the summaries were classified with higher 

accuracy than their random counterparts of the same 

size. Only Sum Basic summaries did not classify at a 

significantly higher accuracy than the random sum-

maries (Table 6). The classifier, when applied to the 

Sumy summarizations, seems to work best when us-

ing a TF*IDF threshold of between 4 and 5. When 

the threshold is low, several terms that may not pro-

vide any classification power are included. If the 

threshold is too high, many useful terms may be ex-

cluded, as they will not have a large enough TF*IDF. 

When using a threshold of 12, only the terms that 

occur in only one class will be used for classification. 

For example, if a word occurs only in the “business” 

class during training, then a document containing that 

term during testing has a high chance of being classi-

fied as “business”. However, there is a chance that a 

document in testing might not have any word that is 

above the threshold, making it unable to be classified. 

Table 7 provides the mean outcome of the three 

trials in Table 6. The peak accuracies are (0.48, 0.50, 

0.49, 0.51, and 0.42) for (LexRank, LSA, Luhn, Re-

duction, and Sum Basic) summarizations. All but the 

Sum Basic summarizations provide classification 

accuracy as good as the Gold Standard (0.48). The 

Random Summarization sets do not provide compa-

rable accuracy (0.36). 

The peak Error Scores from Table 4 (13.4, 10.0, 

14.2, 14.7, 10.2, 10.5, and 0.0) for (LexRank, LSA, 

Luhn, Reduction, Sum Basic, Gold Standard, and 

Random) correlate highly with the corresponding 

peak accuracies (0.48, 0.50, 0.49, 0.51, 0.42, 0.48, 

and 0.36), with R2=0.776. 

4. Discussion and Conclusions 

4.1. Functional Approaches 

This paper introduced two novel research areas to the 

field of natural language processing in general, and 

extractive summarization in specific. The first is the 

use of query behavior to grade the efficacy of the 

summarization approach used. Similarity in the rank-

ing of documents in response to queries was used to 

demonstrate the relative functional equivalence of the 

summarized document sets (S) to the original docu-

ment sets (OD). The closer the behavior of the S and 

OD sets in response to the query terms, the more sim-

ilarly the two corpora can be employed for relevant 

linguistic purposes. In order to illustrate this ap-

proach in a non-superficial fashion, two greatly dif-

ferent corpora (one a set of novels from Project Gu-

tenberg, the other a set of gold standard-enriched 

CNN articles) were evaluated. For the Novels, the 

Luhn and LSA algorithms were quantitatively shown 

to be the two (of the five Sumy summarization ap-

proaches employed) that best match S and OD query 

behavior. For the CNN articles, the LexRank and 

Luhn algorithms were quantitatively shown to be the 

two (of the five Sumy summarization approaches 

employed) that best match S and OD query behavior. 

Based on this functional metric, the Luhn summariz-

er is generally employable for creating summaries 

that respond similarly to a query set (and thus func-

tionally have similar search behavior). 

The second functional approach to assessment of 

summarization was the use of classification. Here, 

the CNN article set was directly relevant, since the 

documents are assigned to 12 classes of content. One 

concern with summarization – and a potential ad-

vantage of extractive summarization in comparison 

to abstractive summarization – is that the S set pro-

vides the same relevant content as the OD set. If a 

summarized set is capable of being classified as well 

as the original set, then this functional objective can 

be, at least in some sense, considered met. The re-

sults show that several of the summarization ap-

proaches (LexRank, LSA, Luhn, and Reduction) re-

sulted in similar classification results as the CNN 

Gold Standard sentences, with or without TF*IDF 

term filtering (Table 7). These results match those of 

the query similarity results, or Error Score, of Table 4. 

The Sum Basic summarization approach provided 

similar results for the query functionality analysis, 

but not for the classification functionality analysis. It 

is proposed that the combination of these two func-

tional tests is warranted for automated assessment of 

extractive summarization efficacy. 

4.2. Summarization of the Two Widely Different 

Corpora 

The overall summarization results for the Novels are 

dependent on the number of sentences chosen for the 

summary. This can be illustrated using comparisons 

to random sentence-assignment summaries. For the 

20-sentence summaries, the LSA approach had an 

error score 8.8 standard deviations less than the mean 

for random summaries, while the Luhn approach had 

an error score 11.5 standard deviations less than the 

mean for random summaries. For the 50-sentence 

summaries, LSA error scores were 9.0 standard devi-

ations below those of random summaries, while Luhn 



error scores were 10.3 standard deviations less. For 

100-sentence summaries, LSA and Luhn were 5.7 

and 5.3 standard deviations below the scores for ran-

dom summaries. Clearly, if the number of sentences 

in the summary were further increased, the value of 

the particular summarization approach in comparison 

to simply a random collection of sentences would 

continue to decrease. The linear regression equation 

for Normalized Error Score (NSE) versus the number 

of sentences (NSentences) in the document summary for 

the Novels is given by Eq. 8, for which the y-

intercept is NSentences = 217. 

 

NSENovels = -0.0049(NSentences)+1.0635 (8) 

 

Based on this finding, a summary of the novels 

comprising more than 200 documents would not pro-

vide an advantage over simple collecting random 

sentences from the novels. Therefore, the length of 

summarizations selected (20, 50, and 100 sentences) 

are suitable for comparative and functional analysis 

of the Summarization algorithms. 

Similarly, for the CNN Articles, the mean Error 

Score varies with the length of the summarization. 

The mean Error Score is 550.2 for three sentences; 

348.6 for five sentences; and 161.6 for ten sentences. 

The linear regression equation for Normalized Error 

Score (NSE) versus the number of sentences (NSentenc-

es) in the document summary for the CNN Articles is 

given by Eq. 9, for which the y-intercept is NSentences 

= 13. 

 

NSEArticles = -0.0938(NSentences)+1.2146 (9) 

 

Clearly, evaluation of 3, 5, and 10 sentence summar-

ies for the CNN Articles was justified (particularly 

since the author-provided gold standard is three sen-

tences). 

The summarizers evaluated perform differently 

based on the severity of the TF*IDF filtering, typical-

ly performing optimally with TF*IDF in the range of 

3.0-6.0. Of all of the summarization approaches teste, 

Luhn is the one recommended overall, for at least 

four reasons: (1) it performs as well as the LSA and 

better than the other approaches for query behavior 

of the Novels; (2) it performs as well as any other 

algorithm for query behavior of the CNN Articles; 

(3) it provides classification accuracy as high as the 

other algorithms, including the Gold Standard; and 

(4) it provides consistent classification accuracy over 

a very wide range of TF*IDF values (Table 7), indi-

cating it is a resilient approach. 

One factor that likely contributed to the relatively 

higher Error Scores for the summarizers on the nov-

els is that the parser in Sumy can get confused by 

certain phrases. For example, some sentences that 

end with the name of a person with a title are parsed 

incorrectly. For example, the phrase “The sun shone 

on Mr. Smith.” Could be incorrectly parsed as two 

sentences: “The sun shone on Mr.” and “Smith.”. In 

novels such as Pride and Prejudice, where major 

characters have names in this format, such as Mr. 

Darcy, the invalid sentence “Darcy.” could end up 

being chosen as an important sentence, as the word 

“Darcy” is a very frequent word in the novel and 

would have a large term frequency. The Reduction 

algorithm in Sumy often chose these single word 

non-sentences as part of the summary, resulting in its 

relatively poor performance. The summarizers Luhn 

and LSA avoid shorter sentences, and thus almost 

never chose these fragment sentences as part of the 

summary. This finding supports the fact that the Er-

ror Score in Tables 1-4 is correlated with better 

summarization behavior. 

One large difference between fiction (Novels) and 

non-fiction (ANN Articles) documents is the pres-

ence of dialogue. This can cause issues parsing and 

can also result in non-traditional sentences. In dia-

logue, it is not uncommon to have a sentence consist-

ing of only a name, either as an exclamation or used 

in an introduction. This can lead to similar fragment 

sentences as mentioned in the previous paragraph. 

Dialogue can also cause parsing problems, such as 

when a character asks a question. A parser may have 

trouble deciding where to split the phrase “’How is 

the weather?’ asked Smith.” The parser in Sumy of-

ten split phrases like these into two sentences, result-

ing in sentence fragments such as “asked Smith.” 

These fragments were also commonly selected by the 

Reduction summarizer. 

4.3. Interpretations and Future Work 

It is worth noting that the methodologies for query-

based and classification-based evaluation of summa-

rization described herein is readily applied to both 

extractive summarization, as shown, but also abstrac-

tive summarization if desired. The classification 

technique, relying on a form of TF*IDF or even sen-

tence weighting, is directly applicable to abstractive 

methods. With some modifications accounting for 

sentence similarities, the query approach would also 

be applicable to abstractive summarization. Thus, 

this paper provides a general-purpose methodology 



for the evaluation of the relative accuracy of summa-

rization for any existing summarization approaches 

along with those to come. The application of the 

methodology to two widely different data sets show 

that it is a general-purpose approach; for example, it 

could be used effectively on content related to the 

social sciences or physical sciences, as well. 

The results, unsurprisingly, show considerable dif-

ferences consistent with the different nature of these 

two data sets. The LSA and Luhn summarization 

approaches were most effective on the database of 

fiction (Novels), while the LexRank and Luhn sum-

marization approaches were, arguably, most effective 

on the database of articles. Overall, the Luhn ap-

proach was deemed the most generally relevant. 

Based on the findings for the two functional metrics 

– query behavior and classification accuracy – it is 

clear that these two metrics can be used together to 

perform a “preflight” analysis of which summariza-

tion algorithm to employ on a task. As demonstrated 

here, comparing the results to those of a random-

generate summary is also recommended. In addition, 

selecting a corpus to perform this preflight testing on 

is also important. For example, the Error Scores for 

all five Sumy summarizers are much less as a per-

centage of the maximum Error Score for the CNN 

Articles than for the Novels. This may be due to 

greater repetition in the articles, with random sen-

tences more likely to hit on the article-differentiating 

themes. That is, randomly selecting from a short arti-

cle is more likely to get gist of it than randomly 

jumping around in a novel. 

Follow-up work in the intersection of multi-

corpora and functional metrics is likely to focus on 

simultaneous optimization of multiple assessment 

metrics [23, 24]. In this way, the relative impact of 

different sentence attributes (word scoring, word fre-

quency, upper case, proper nouns, word co-

occurrences, lexical similarity, etc.) on the utility of 

the summarization can be addressed. Elements of this 

were addressed by the use of TF*IDF and synonymy 

in this paper. A future area for research on functional 

summarization is the use of regularization during 

summarization, as outlined in Equations 1-2. This 

was not an option for the Sumy summarizers. Addi-

tional insight into the saliency of assessing summari-

zation via classification behavior may be gained 

through the incorporation of additional classification 

approaches [25, 26, 27]. The intent of this paper was 

to provide a methodology for incorporating existing 

summarization frameworks into analysis, so the eval-

uation of additional summarization frameworks is 

potentially valuable future work. For example, newer 

and more powerful and sophisticated supervised ma-

chine learning/classification algorithms could readily 

be incorporated into future extensions of this research, 

including enhanced probabilistic neural networks, 

neural dynamic classification, dynamic ensemble 

learning, and finite element machines [28, 29, 30, 31]. 

The methodology described herein will allow com-

parative evaluation among these and other approach-

es. The fact that the known “poorest” summarizers, 

Random and SumBasic, performed the poorest on 

both functional metrics, is evidence that the function-

al approaches introduced herein work. 

This paper makes the argument that the main pur-

pose of the summarization is to be used properly. 

Two functional approaches to assessing the suitabil-

ity of summarization were addressed: (1) using 

matching of query behavior to provide summariza-

tions suitable for search; and (2) using classification 

of summarized documents to provide summarizations 

with content relevantly distinguishable with the de-

sired partitioning of content (classes). These metrics 

showed that several summarization approaches re-

sulted in functional summaries comparable to the 

Gold Standard summaries for the CNN articles. 

However, a functional process such as those out-

lined here, may obscure some of the important details 

of how the process is actually working. Future work, 

therefore, may include focusing on understanding the 

nature of the correlation between query and classifi-

cation in the original and summarized document sets. 

It may well be that some form of more advanced par-

titioning of the input, consistent with sub-classes, 

may further improve the output. 
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