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Abstract

Mean-based reconstruction is a fundamental, natural approach to worst-case trace recon-
struction over channels with synchronization errors. It is known that exp(6(n'/?)) traces are
necessary and sufficient for mean-based worst-case trace reconstruction over the deletion chan-
nel, and this result was also extended to certain channels combining deletions and geometric
insertions of uniformly random bits. In this work, we use a simple extension of the original
complex-analytic approach to show that these results are examples of a much more general
phenomenon. We introduce oblivious synchronization channels, which map each input bit to
an arbitrarily distributed sequence of replications and insertions of random bits. This general
class captures all previously considered synchronization channels. We show that for any obliv-
ious synchronization channel whose output length follows a sub-exponential distribution either
mean-based trace reconstruction is impossible or exp(O(n'/3)) traces suffice for this task.

1 Introduction

When any length-n message z € {—1,1}" is sent through a noisy channel Ch, the channel
modifies the input z in some way to produce a distorted copy of x, which we call a trace. The goal
of worst-case trace reconstruction over Ch is to design an algorithm which recovers any input string
x € {—1,1}" with high probability from as few independent and identically distributed (i.i.d.)
traces as possible. This problem was first introduced by Levenshtein [2, 3], who studied it over
combinatorial channels causing synchronization errors, such as worst-case deletions and insertions of
symbols and certain discrete memoryless channels. Trace reconstruction over the deletion channel,
which independently deletes each input symbol with some probability, was first considered by
Batu, Kannan, Khanna, and McGregor [4]. Some of their results were quickly generalized to what
we call the geometric insertion-deletion channel [5, 6], which prepends a geometric number of
independent, uniformly random symbols to each input symbol and then deletes it with a given
probability. Both the deletion and geometric insertion-deletion channels are examples of discrete
memoryless synchronization channels [7, 8], which generalize the concept of discrete memoryless
channels introduced by Shannon [9] to handle memoryless synchronization errors such as deletions
and replications.

*University of Michigan — Ann Arbor. Email: mahdich@umich.edu

TUniversity of Michigan — Ann Arbor. Email: josdowns@umich.edu

tCarnegie Mellon University. Part of the work was done while at Imperial College London. Email:
jlourenc@andrew.cmu.edu

§University of Michigan — Ann Arbor. Email: aveliche@umich.edu

YThis material is based upon work supported by the National Science Foundation under Grant No. CCF-2006455.
A preliminary version of this work was presented at the 2021 IEEE International Symposium on Information The-
ory [1].



Holenstein, Mitzenmacher, Panigrahy, and Wieder [10] were the first to obtain non-trivial worst-
case trace reconstruction algorithms for the deletion channel with constant deletion probability.
They showed that exp(O(y/n)) traces suffice for mean-based reconstruction of any input string
with high probability, where 5() hides polylogarithmic factors. By mean-based reconstruction, we
mean that the reconstruction algorithm only requires knowledge of the expected value of each trace
coordinate. In general, this procedure works as follows: Let Y, = (Y3 1,Y;2,...) denote the trace
distribution on input € {—1,1}" and Y, denote the infinite string obtained by padding Y, with

zeros on the right. The mean trace u, is given by

pa = (BIY, 1] B[V, o], ..

As the first step, the algorithm estimates i, from t traces T, 7@ . T® sampled i.i.d. according
to Y, via the empirical means

1 j )
m:¥ZTi(j), i=1,2,.... (1)
j=1

Subsequently, it outputs the string z € {—1,1}" that minimizes ||uz — pl|1. If t = t(n) is large
enough, we have ¥ = x with high probability over the randomness of the traces. Because of
their structure, pinpointing the number of traces required for mean-based reconstruction over any
channel reduces to bounding ||z — pier||1 for any pair of distinct strings z, 2’ € {—1,1}". Overall,
mean-based reconstruction is a natural paradigm, and it is not only useful over channels with
synchronization errors. For example, O(logn) traces suffice for mean-based reconstruction over the
binary symmetric channel, which is optimal.

More recently, an elegant complex-analytic approach was employed concurrently by De, O’Donnell,
and Servedio [11] and by Nazarov and Peres [12] to show that exp(O(n'/?)) traces suffice for mean-
based worst-case trace reconstruction not only over the deletion channel with constant deletion
probability, but also over the more general geometric insertion-deletion channel we described pre-
viously.! Remarkably, exp(€(n'/3)) traces were shown to also be necessary for mean-based recon-
struction over the deletion channel.

Given the fundamental nature of mean-based reconstruction and this state of affairs, the fol-
lowing question arises naturally: Are these results examples of a much more general phenomenon?
In particular, is it true that exp(O(n'/3)) traces suffice for mean-based trace reconstruction over
a much more general class of synchronization channels? In this work, we introduce and study the
general class of oblivious synchronization channels. We use the term oblivious to describe channels
that behave in an i.i.d. manner for each input bit and use randomness that is independent of the
input. This class is a significant generalization of all synchronization channels previously studied
in the context of trace reconstruction. We make progress in this direction by showing that a sim-
ple extension of the analysis from [11, 12] yields the same result for all oblivious synchronization
channels satisfying a mild assumption already present in [11, 12].

Research in this direction has other practical and theoretical implications. First, studying trace
reconstruction over channels introducing more complex synchronization errors than simple i.i.d.
deletions is fundamental for the design of reliable DN A-based data storage systems with nanopore-
based sequencing [13, 14, 15]. Second, understanding the structure of the mean trace of a string is
a natural information-theoretic problem which may lead to improved capacity bounds and coding

!Nazarov and Peres [12] consider a slightly modified geometric insertion-deletion channel: First, a geometric
number of independent, uniformly random symbols is added independently before each input symbol. Then, the
resulting string is sent through a deletion channel. The analysis is similar to that of the geometric-insertion channel.



techniques for channels with synchronization errors, both notoriously difficult problems (see the
extensive surveys [16, 17, 8, 18]).

1.1 Related Work

Besides the works mentioned above, there has been significant recent interest in various notions
of trace reconstruction. The mean-based approach of [11, 12] has proven useful to some problems
incomparable to our general setting: the deletion channel with position- and symbol-dependent
deletion probabilities satisfying strong monotonicity and periodicity assumptions [19]; a combi-
nation of the geometric insertion-deletion channel and random shifts of the output string as an
intermediate step in the design of average-case trace reconstruction algorithms (which are only
required to succeed with high probability when the input is uniformly random) [20, 21]; trace re-
construction of trees with i.i.d. deletions of vertices [22]; trace reconstruction of matrices with i.i.d.
deletions of rows and columns [23]; trace reconstruction of circular strings over the deletion chan-
nel [24]. In another direction, Grigorescu, Sudan, and Zhu [25] and Sima and Bruck [26] studied
the performance of mean-based reconstruction for distinguishing between strings at low Hamming
or edit distance from each other over the deletion channel.

Different complex-analytic methods have been used to obtain the current best upper bound of
exp(O(n'/®)) traces on the trace complexity of the deletion channel [27], as well as upper bounds
for trace reconstruction of “smoothed” worst-case strings over the deletion channel [28]. How-
ever, mean-based reconstruction remains the state-of-the-art approach for the geometric insertion-
deletion channel.

Other related problems considered include the already-mentioned average-case trace reconstruc-
tion problem over the deletion and geometric insertion-deletion channels [4, 10, 29, 20, 21], trace
reconstruction over the deletion and geometric insertion-deletion channels with vanishing deletion
probabilities [4, 5, 6, 30|, trace complexity lower bounds for the deletion channel [4, 29, 31, 32],
trace reconstruction of coded strings over the deletion channel [33, 34|, approximate trace recon-
struction [35, 36, 37, 7], alternative trace reconstruction models motivated by immunology [38],
and population recovery over the deletion and geometric insertion-deletion channels [39, 40, 41].

1.2 Notation

For convenience, we denote discrete random variables and their corresponding distributions by
uppercase letters, such as X, Y, and Z. The indicator random variable of an event F is denoted
by 1¢gy. The expected value of X is denoted by E[X]. Sets are denoted by calligraphic uppercase
letters such as & and T, and we write [n] := {1,2,...,n}. The open disk of radius r centered
at z € Cis Dy(z) := {#/ € C:|z—2/| <r}. The l-norm of vector z is denoted by ||z[|;. The
concatenation of strings x and y is denoted by z||y. For any random variable X supported on the
set of non-negative integers, we denote its probability generating function by gx(-), which is given
by

9x(z) = ZPr[X =] 2
=0

for z € C. For two functions f and g, we use f(x) ~ g(x) to mean that lim, % =1.

In this work we will make use of basic concepts from complex analysis, such as the notion of
an analytic function and the disk of convergence of a complex power series. We refer the reader
to [42] for a comprehensive treatment of basic complex analysis.



1.3 Channel Model

We introduce and study a general class of discrete memoryless synchronization channels that,
in particular, captures the models studied in [5, 6, 11, 12, 1]. An oblivious synchronization channel
Chjy is characterized by a random variable M and a corresponding collection of randomized func-
tions Fy : {—1,1} — {—1,1}™. To avoid trivial settings where trace reconstruction is impossible,
we require that Pr[M > 0] > 0. On each input z; € {—1,1}, the channel samples m from M
and decides which positions of the output are x; replicated, flipped, have a value of -1, or have
a value of 1. The sets corresponding to these positions are denoted by Rep, Flip, C;, and C_,
respectively. These sets are so named because Rep replicates the input bit, Flip flips it, C} is
constantly +1, and C_ is constantly —1. Note that these sets partition the output length [m]
according to an arbitrary distribution independent of the input z. This sampling determines a
function f: {—1,1} — {—1,1}". In other words,

Rep:={j € [m]: f(-1); = —1 and f(1); = 1},
Flip:={j € [m]: f(-=1); =1 and f(1); = -1},
Cy={je[m]: f(=1); =1= f(1);},
C_={je[m]: f(-1); =—-1= f(1);},

where f(y); denotes the & coordinate of f(y). The channel evaluates this function at x; to obtain
f(x;). From here onward, we use Rep and Flip to denote the sets as well as their corresponding
distributions.

As an example, we now show how the replication-insertion channel from [1] is an instance of the
oblivious synchronization channel. Note that the deletion and geometric insertion-deletion chan-
nels are particular examples of the replication-insertion channel. A replication-insertion channel
Ch(ar.R py,) 18 determined by three parameters a flip probability paip € [0, %), a sub-exponential
output length distribution M over the non-negative integers, and a replication distribution R over
subsets of [M]. For any given bit z € {—1,1}, the channel samples (M;, R;) according to the
joint distribution (M, R). It then produces the output string Y, € {—1,1}™ bit-wise by defining
Y, ; = —x with probability pgj, and Y, ; = x with probability 1 — pgi, if j € R; and sample Y ;
uniformly from {—1, 1} otherwise. Let m = M; and F,,, be the collection of randomized functions,
where the randomness comes from sampling pgip < [0, %) and R; + 2", We sample the sets
Rep, Flip, Cy, and C_ in the following way: For each position j € [m], if j € R; we put j in Rep
with probability 1 — pgip, and in Flip with probability pgi,. Otherwise, we choose a bit uniformly at
random. If the random bit is 1, we put j in Cy, and if it is —1, we put j in C_.

As hinted above, oblivious synchronization channels are a sub-class of discrete memoryless
synchronization channels, which were first defined by Dobrushin [7]. The difference between the
oblivious synchronization channels and discrete memoryless synchronization channels in the binary
setting is that, while in the latter scenario we sample M and the sets Rep, Flip, C, C_ without
knowledge of the value of the input bit z;, the notion of a discrete memoryless synchronization
channel allows for these random variables to depend on the value of z;. This explains the adjective
“oblivious” we use to refer to our class of channels. As a concrete example, while the binary
deletion channel with fixed deletion probability is both an oblivious synchronization channel and
a discrete memoryless synchronization channel, the binary deletion channel with symbol-dependent
deletion probabilities is a discrete memoryless synchronization channel but is not an oblivious
synchronization channel. We leave it as an interesting open problem to study mean-based trace
reconstruction for non-oblivious synchronization channels.



1.4 Owur Contributions

Our main theorem shows that previous results on mean-based trace reconstruction over the dele-
tion and geometric insertion-deletion channels are examples of a much more general phenomenon.

Theorem 1. Let Chy; be an oblivious synchronization channel where M is a sub-exponential ran-
dom variable.? Define the random variables Wg and Wr with probability mass functions

Pr[j + 1 € Rep]
[E[[Repl]

Pr[j + 1  Flip|

Wnla) = E[[Fi]

and Wr(j) =

, where j =0,1,2, ...,

and let gwy,, gw, be their respective probability generating functions. The random variables Rep
and Flip are defined in Section 1.3. If Flip (or Rep) is always the empty set, then define gy, =0
(or gw, =0). If

E[|Rep|] - gwy(2) # E[|Flip[] - 9wy (2) (2)

for some z € C, then exp(O(n'/?)) traces are sufficient for mean-based trace reconstruction over
Chys with success probability 1 — e~ [f (2) is not satisfied, then mean-based trace reconstruction
s impossible.

To see that the mass functions Wgr(-) and Wg(-) define valid probability distributions, observe
that we may write

o
|Rep| = Z Lijt1eRep)-
=0

Therefore, linearity of expectation implies that

E[|Rep|] = ZE[R{jHeRep}} = ZPYU +1 € Rep).
=0 =0

This ensures that Z?io Wr(7) = 1. An analogous argument goes through for Flip and Wpg.

We remark that many common distributions are sub-exponential, including geometric, Poisson,
and all finitely-supported distributions. In general, E[|Rep|] or E[|Flip|] could be infinite, so these
distributions are not always well defined. However, this is not a problem because our theorem only
applies to channels where M is a sub-exponential random variable. Because M is sub-exponential,
it has finite expectation. Here |Rep| and |Flip| are both upper bounded by M, so they also have
finite expectation and Wg, W are valid distributions.

2 Proof of Theorem 1

Fix an oblivious synchronization channel Chy;, where M is a sub-exponential random variable
and E[|Rep|] - gw,(2) # E[|Flip|] - gw(2) for some z € C. To every string € {—1,1}", we can
associate a polynomial P, over C defined as

n
Py(z) := Z z;2 7t
i=1

2A random variable M is sub-ezponential if there exists a constant a > 0 such that Pr[|M| > 7] < 2e7°7 for all
T > 0.



Then, using the definition of mean trace above, we define the mean trace power series P, as
o
P$<z) = Zﬂx,izlia
i=1

where 11, ; denotes the ith coordinate of the mean trace. Let N > 0 and denote the mean trace
truncated at the N** coordinate by

:u':]cV = (/'1’%17 R MI,N)

To prove Theorem 1, we will show that there exists a constant C' > 0 such that for a large
enough n, appropriate N, and any distinct input strings x,2’ € {—1,1}", their truncated mean
traces satisfy

This implies that exp(O(n'/3)) traces suffice for mean-based worst-case trace reconstruction as
follows: Let z be the true input and suppose that we have access to t := n/d(n)? = exp(O(n'/?))
traces. Then a direct application of the Chernoff bound and a union bound over all coordinates

N N
Ky — Mg

N 1/3
= D b = pari| = 6(n) = e (3)
=1

i=1,...,N shows that the empirical mean trace i = (fiy, ..., ix) defined in (1) satisfies
d(n)
N — N < 4
| —ud|| <= (4)

with probability at least 1 — e~*(™) over the randomness of the traces. On the other hand, if (4)
holds, we can combine it with (3) and the triangle inequality to get
3d(n)

4

xT

~N N
T =

for all ' # . This allows us to recover x naively from g by computing ,u,év for every 7 € {—1,1}"

and outputting the T that minimizes HﬁN — ug .

We prove (3) by relating HﬁN — | to |P.(2) — Py (z)| for an appropriate choice of z € C.

Assuming that |z| > 1, by the triangle inequality we have

(o0}
Po(2) = Pu(2)| £ 3 |t — v 1217
=1
N ' 0o '
= twi = sl 1217+ D7 | — ] |21
=1 1=N+1
w .
< |Z|N)M§*Mg D e el 2
i=N+1

py =l

for every z € C such that |z| > 1. Rearranging, it follows that ’ , is lower-bounded by

|2 ()

o0
Eld ‘Px(z) — Py (z)‘ — Z |/‘z,i — Lot i
i=N+1

for any such z. The lower bound in (3), and thus Theorem 1, follows by combining (5) with the
next two lemmas, each bounding a different term in the right-hand side of (5).



Lemma 2. There exist constants c1,ca > 0 such that for n large enough and any distinct strings
xz, ' € {—1,1}", it holds that ‘Px(z) — P (z)‘ > e=an'? for some 2 satisfying 1 < |z| < ecxn”?,

Lemma 3. If there exists a constant c3 > 0 such that 1 < |z| < 6037172/3, then there exist constants
c4,c5 > 0 such that N = cyn implies

o)
Z ’M:z:,i — Kz’

i=N+1

‘Z|z'—1 S 6—C5TL

for all distinct x,x’ € {—1,1}" when n is large enough.

Invoking Lemmas 2 and 3, we have that for n large enough and any distinct z,2’ € {—1,1}",
there exists an appropriate choice z* € C possibly depending on x and =’ which satisfies 1 < |2*| < ecan /3

and by setting z = z* and N = ¢4n in (5) yields

‘ > 6—04~czn1/3 (e—clnl/S _ 6—(:571)
=

> e—Cn1/3
for some constant C' > 0, implying (3).
We prove Lemmas 2 and 3 in Sections 3 and 4, respectively, which completes the argument.

N N
A

3 Proof of Lemma 2

Our proof of Lemma 2 follows the blueprint of [11, Sections 4 and 5] and [12, Sections 2 and
3]. The key differences lie in Lemmas 6 and 8 below. Lemma 6 requires analyzing the local
behavior of the inverse of an arbitrary probability generating function (PGF) in the complex plane
around z = 1. Remarkably, the desired behavior follows by combining the standard inverse function
theorem for analytic functions with basic properties of PGFs. In contrast, the PGFs associated
to the deletion and geometric insertion-deletion channels treated in [11, 12, 20, 21] are all Mdbius
transformations, meaning that their inverses have simple explicit expressions which were then easily
analyzed directly. Lemma 8 connects the mean trace and input polynomials and generalizes [11,
Section 4 and Appendix A.3] and [12, Lemmas 2.1 and 5.2] to arbitrary sub-exponential oblivious
synchronization channels well beyond the deletion and geometric insertion-deletion channels.

As a first step, we show that the mean trace power series P, is related to the input polynomial P,

in terms of | Py (w) — Py (w)

through a change of variable. This allows us to bound | P, (z) — P/(2)

for some w related to z. To do this, we first derive an expression for P,(z).

Lemma 4. Suppose E[M] > 0 is finite. Let Wgr,Wg be distributions corresponding to Rep and
Flip, respectively, with associated probability mass functions

_ Pr[j+1 € Rep]

o Pr[j + 1 € Flip]
Wrl) = = F{[Rep]

E[[Flip|]

;WF(]) = 7j:07172a"'a'
Also, let gwy, 9wy, and g be the probability generating functions corresponding to Wgr, Wg, and
M. If either E[|Rep|] = 0 or E[|Flip|] = 0, we set gw,, =0 or gw, =0, respectively.

Then for every x,x’ € {—1,1}" and all z € C such that z is in the disks of convergence of all
the above g power series,

Pa(z) - E,(z)) =|Pu(g1(2)) = Por(ga1(2))| - [E[[Repl] - 9wy (2) — E[[Flip]] - gw.(2)| . (6)



Now we wish to lower bound the two terms being multiplied on the right. Analogously to [11, 12],
we use the lemma below, due to Borwein and Erdélyi [43], to lower bound

| Pa(gar(2)) = Por(gm(2))] -

Lemma 5 ([43]). There is a universal constant ¢ > 0 for which the following holds: Let
a= (ag,...,ar_1) € {—1,0,1}* be non-zero and define A(w) := Eﬁ;é ajwl. Let v, denote any arc

of the form {ei“’ tp€Eelf,0+ %]} for arbitrary 6 € R. Then, we have maxye, |A(w)| > e~ for
every L > 0.

This lemma implies that there is a constant ¢; > 0 such that for every L > 0 there exists
wy, = e with [pr| < T satisfying

‘Px(wa) — Px/(wL)‘ > el (7)

We can use (7) to lower bound (6), provided there exists zz, such that gp(zz) = wr with good
properties. The following lemma ensures this.

Lemma 6. For L large enough there are constants ¢, > 0 such that for any ¢ € [—%, %] there
exists z, satisfying gn(z,) = €%, 1 < ‘z¥,| <1+cp?, and |1 — 24| > .

We prove Lemmas 4 and 6 in Section 3.1.

We bound the absolute value of the mean trace power series difference. To ensure mean-based
trace reconstruction is actually possible, we assume E[|Rep|] - gw,(2) # E[|Flip|] - gw,(2). So, we
split our proof into two cases: (i) IE[|Rep|] = E[|Flip|] and (ii) E[|Rep|] # E[|Flip|].

(i) Assume that E[|Rep|] = E||Flip|]. This implies E[|Rep|] > 0, because if both were zero then
we would have E[|Rep|] - gw, (2) = E[|Flip|] - gw, (2) = 0 by our convention. Then

[Po(2) = Pur(2)| = |Palgai(2)) = Po(gar(2))| - BIRepl] - gwie(2) — gwin(2)] . (8)

Here, E[|Rep|] is a non-zero constant. We will lower bound the other components by

|Pa(gr(2)) — Por(gar(2))] > e and |gwi(2) — gwi ()] > —

~ poly(L) ©)

for an appropriate z = z;, and constant c¢. The polynomial §|P,(gar(2)) — Pu(9a(2))] is a
Littlewood polynomial, so by Lemma 5 and Lemma 6 we can choose a zy, such that 1 < |zz| <
e2/1* and !Px(gM(z)) — Py (gM(z))‘ > e~ L for some constants ca, c3 > 0.

Now we show that [gw, (21) — 9wy (21)| > m. By definition, the probability generating

functions gy, and gy, can be written as power series:

[e.e]

gwe(2) = _ai(z — 1)’

1=0

gwe(z) = S biz — 1),
1=0



for some coefficients a;,b; € R. Let d be the smallest index i such that a; # b;. Then we can
rewrite the power series difference as

o0

gwr(2) = gwe(2) = Y (ai —bi)(z — 1)!

i=0
o0

(# -1 dz (@ = bjra)(z = 1)
=0

e 1Y)

where q(2) := 372 o (aj+d—bj+a) (2 — 1)¢. By definition, ¢(z) approaches the non-zero constant
aq — bg when z — 1. Hence, gw,(2) — gw.(2) ~ (2 — 1)%(aq — bg) when z — 1. Therefore, for
all z sufficiently close to 1 we have

lag — b4l

5 |1 — 2|* = poly(|1 — 2|). (10)

‘QWR(Z) — 9Wg (Z)‘ >

By Lemma 5, there exists a constant ¢ > 0 such that for any L > 0 we have

©El5r 1

max ]{’f(ew)‘} > el (11)

Let ¢ denote the angle that achieves this maximum. Then by Lemma 6, there exists a zj,
such that gu(z) = €L and 1 < |z| < e2/L* | and moreover |1 — 21| > c301.

Combining this with (10), we obtain

\gwi (21) — 9w (21)| = poly (|1 — zL|)

> poly<2L>

1
~ poly(L)’

Therefore, (8) becomes

for an appropriate constant cs.

Assume that E[|Rep|] # E[|Flip|]]. We can lower bound the mean trace polynomial obtained
in Lemma 1 as follows.

By the properties of probability generating functions, as z approaches 1, the values gy, (2)
and gy, (z) both approach 1. Then by assumption,

Pt (2)] = | P92 (2))| - [EIIRel] - gz () — E[IFlipl] - g (2)
’Pxfa:’ gM( ))| " C6, (12)

for some constant cg > 0 as z — 1.



Using Lemma 6, we showed in (i) that for large enough L we can choose zy, such that 1 <
21| < e/ and |Py_y (gas(21))| > e=7L for some constant c;. This implies that for z = 27,
and large enough L,

— _ C
Posr(e)| 2 et 2, (13)

/0n1/3

Taking L = n'/3 for both cases (i) and (ii), we obtain the lower bound | P, (z) — Py (z)| > e~

as claimed, for an appropriate constant ¢ > 0.

3.1 Proofs of Lemmmas 4 and 6

In this section, we prove the remaining lemmas. For the sake of convenience, we restate them
here.

Lemma 7 (Lemma 4, restated). Suppose E[M]| > 0 is finite. Let Wr, Wr be distributions corre-
sponding to Rep and Flip, respectively, with associated probability mass functions

_ Pr[j+1 € Rep]

o Pr[j + 1 € Flip]
W) = R

E[|Flip|]

WF(J) = 7j:O7172"""
Also, let gwy, 9wy, and gar be the probability generating functions corresponding to Wgr, Wr, and
M. If either E[|Rep|] = 0 or E[|Flip|] = 0, we set gw,, =0 or gw, = 0, respectively.

Then for every x,x’ € {—1,1}" and all z € C such that z is in the disks of convergence of all
the above g power series,

Pa(2) - Pxf(Z)( =|Puo(g1(2)) = Por(ga1(2))| - [E[[Repl] - gwy (2) — E[[Flip|] - gw,.(2)] .

Proof. Lemma 4 is a corollary of Lemma 8 below. The expression for the mean trace power series
in Lemma 8 immediately gives us the expression for the difference of two such power series in
Lemma 4. ]

Lemma 8. Suppose E[M] > 0 is finite. Let Wr, Wp, W, W_ be distributions corresponding to
Rep, Flip, C+, and C_ respectively, given by

Pr[j + 1 € Flip]
IE[|Flip]]

. Pr[j+1€Rep|
Wrl9) =~ F[[Rep]

’ WF(]) =

7j = 07 1727“'7

and analogously for C,C_. Also let gwy, 9wy, 9w, ,gw_, and gy be the probability generating
functions corresponding to Wr, W, Cy,C_, and, M. If any of Rep, Flip, C+, C_ have expected size
zero then this is not well defined, so set the corresponding g to be the constantly zero function.

Let 1 be the length-n string of all 1s. Then for every z € {=1,1}" and z € C such that z is in
the disks of convergence of all the above g power series.

Pa(2) = Palgn(2)) (EIIRepl] - guop(2) — El[Flpl] - gue ()
+ Pr(2) (9w, (2) - BIC4] = gw-(2) - E[C-]]).

Proof of Lemma 8. The channel acts on each input bit independently. For each input bit, the
channel samples sets Rep, Flip, C;., and C_ and produces an output string that depends on z; and
those sets. Let Rep, denote the set (and corresponding distribution) of coordinates j that are the
result of replicating z;. Similarly, Flip, is the set of trace coordinates that result from the channel
outputting —z; when acting on x;. We also define C_ ; and C ; in this way.

10



If a trace coordinate j is in Rep;, then the value at that coordinate is z;. If a trace coordinate j
is in Flip;, then the value at that coordinate is —z;. If a trace coordinate j is in C'; ;, then the value
at that coordinate is +1. If a trace coordinate j is in C_;, then the value at that coordinate is —1.
Combining all these observations, we can express the expected value at the trace’s j*™ coordinate
as

n
pej = Y _Pr[j € Rep;] - ; — Pr[j € Flip;] - ; + Pr[j € Cy ;] — Pr[j € C_4]. (14)
=1

It follows immediately from the definition of the mean trace power series that

P.(z) = Z Prj € Rep,] - #; — Pr[j € Flip;] - z; + Pr[j € Cy ;] —Pr[j e C_;] |27 (15)
j=1|i=1

We show that

S°S Prfj € Repy] @i -2 = E[Rep]] - gun (=) - Polgns(2))
j=1 i=1

> Prlj eFlip]-a; - 27" = E[|Flip|] - guy (2) - Polgm(2))
j=11i=1

YN PrljeCii] - =E|Cy]] - gw, (2) Py(2)
j=11i=1
YD PrljeC] - =E[C_[] - gw (2)- Pr(2)

j=1i=1

where 1 € {—1,1}" is the length-n string of 1’s. Plugging these equalities into (15) yields Lemma 8.
Let M .= Zf;zl M, where the My, := |Y, | denote the lengths of the channel outputs asso-
ciated to each input bit x; and are i.i.d. according to M. For the first claim, we rewrite

(0.9] n ) n [e.e] )
Z Pr[j € Rep;] - z; - 2771 = sz ZPr[j € Rep,] - 2971 (16)
j=1i=1 =1 j=1

11



Then by the channel definition, we have
o0 . o0 . .
ZPr[j € Rep,]- 271 = ZPr[M(Z_l) < j,j €Rep;] 2!
j=1 j=1

=" Prfj € Rep M) < j] - Pr{M ) < j] 59
= Z Pr[M~Y = j'] . Pr[j € Rep,| M~V = j/]. 2771
=> > Pr[MO = 5] Prj — j' € Rep] - 27
j =0
o o ) .
=" > PelMOD = ] Prfj - j' € Rep| - 27! (1)

= PrM(Z 1)—3 ZPrgeRep] 21
3'=0 7j=1

= gm(2)" - gwr(2) - E[|Rep]]. (18)

We can interchange the sums in (17) above because z is in the disk of convergence of gys and gy,.
More precisely, this implies that

gur([21)' ™" - gw (I21) - E[|Rep]] < oo.

Invoking the equality between (17) and (18) for arbitrary z, it follows that
o) o )
Z Z §']-Prlj — j' € Rep] - |2/ ! < oo,
=0 j=j'+

and so the series in (17) is absolutely convergent and the summation can be rearranged arbitrarily.
The last step (18) follows from the definition of Wg. Hence,

Zl‘i - gwr(2) - E[|Rep|] = Po(9r(2)) - gwy(2) - E[|Rep]]. (19)

The remaining claims are proved in an identical way, by replacing Rep and gy, with the appropriate
distribution and power series. O

We prove Lemma 6 using the standard inverse function theorem stated below. Intuitively,
the inverse function theorem guarantees that every well-behaved function has a local well-behaved
inverse. This theorem will allow us to control the behavior of the arbitrary PGF g/, leading to
Lemma 6.

Lemma 9 ([42, Section VIIL.4], adapted). Let g : @ — C be a non-constant function analytic on
a connected open set Q2 C C such that g'(z) # 0 for a given z € Q. Then, there exist radii p,e > 0
such that for every w € De(g(2)) there exists a unique z, € D,(2) satisfying g(zw) = w. Moreover,
the inverse function f :Dc(g(z)) = Dy(z) defined as f(w) = zy is analytic on De(g(2)).
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We proceed to restate Lemma 6 and prove it.

Lemma 10 (Lemma 6, restated). For L large enough there are constants c,c’ > 0 such that for
any ¢ € [ T L] there exists z, satisfying g (zy) = €%, 1 < |z¢‘ <1+4cp?, and |1 — 2,| > .

Proof. Because M is sub-exponential and not always zero, gps is a non-constant analytic function
on some open ball D,(0) of radius r > 1 that satisfies ¢},(1) = E[M] # 0. Hence, Lemma 9
applies with g = gar, so there exist p,e > 0 and an analytic function f : Dc(1) — D,(1) such that
gm(f(w)) = w. In particular, there exists v € (0, €) such that for every w € D, (1) we can write

f

flw)y=1+f'(1 —1+Z —1)". (20)

This is because f(1) = 1, since g(1) = 1. Furthermore, since |f(w)| < 1+ p for all w € D,(1)
because f(w) € D,(1), by standard estimates [42, Section V.4, Expression (4.4)] it follows that

A E))
7!

< %. This allows us to bound the remainder of the Taylor expansion for all w € D, /2(1)

as
o0 (Z) 1 . /! o0 .
Z f i'( ) '|w*1|1§%'|U)*1‘2‘22_(l_2) Scl/|w71|2 (21)
=2 =2

with the constant ¢’/ = (ifp ) > 0.
s s

Assume that L is large enough so that e € D, 2(1) for all ¢ € [—f, f]. Then, we set
z, = f(e"¥). Note that gas(z,) = € by the definition of f, as required. Combining (20) and (21)
with w = € and the triangle inequality, we have

‘th — 1| = O( e’

as L — oo. On the other hand, combining (20) and (21) with the fact that

—1D—>O

1) == = = €R,

by the chain rule, we obtain

20| <

< \/14—2(115[;\2]82(@)) +C//902

<l ()

- E[M]? '
The second inequality holds because ‘ei“’ — 1‘ < |¢|. The last inequality follows by noting that
1 —cos(p) < p?/2 and 1+ < 1+ 2 for z > 0. Finally, we prove the last inequality in the
statement. By definition,

7= f(e¥) =1+ f(1 — 1) (22)
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Recall that f/(1) = m # 0. Then, since e — 1| > |¢|/2 because 1 — cos(p) > »?/8 for all
¢ € [—m,m, we can write

. < +()(1) ,
=11 = | e -+ 3 LB e - s
j=2

) @1y .
Zlf,(l)’ eup_l‘_ f .‘( )(eup_l)]
=
"P| /"2
> — .
=oEM] 7

The last inequality follows from (21). Finally, if L is large enough there is a constant ¢’ > 0 such

that 21‘5[01'\4] — "p? > | for all p € [-F, 7], which concludes the proof. O

4 Proof of Lemma 3

To conclude the argument, we prove Lemma 3 using an argument analogous to [11, Appendix
A 2] and the fact that M is sub-exponential.
Let My, M>, ..., M, be ii.d. according to M, and set M® = >, M;. Then, we have

< Pr[M®™ > ]

’Mw,i = M

for every 7. Since M is sub-exponential, a direct application of Bernstein’s inequality [44, Theorem
2.8.1] guarantees the existence of constants ¢y, cg > 0 such that for N = ¢4n and any j > 1 we have

Pr[M(n) >N+j]< 9e—c6(N+7)

Combining these observations with the assumption that |z| < ecan™?/?

o0 o
D Jpws = rarg |27 < 3 2wV eean D)
i=N+1 j=1

< e—C5TL

yields

for some constant ¢5 > 0 and n large enough.

5 The Conditions in Theorem 1 are Necessary

Our main result applies to oblivious synchronization channels that meet two conditions: M
must be a sub-exponential random variable and distributions formed from Rep and Flip must not
satisfy a certain equality. It is natural to ask whether these conditions are necessary. We do not
know whether the sub-exponentiality is necessary, but we now demonstrate that the requirements
on Rep and Flip are.

Corollary 11. Let Chps be an oblivious synchronization channel where M is a sub-exponential
random variable. If E[|Rep|] - gwy(2) = E[|Flip|] - gw(2), then mean-based trace reconstruction is
impossible.
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Proof. Let z,2' € {—1,1}". We show that their mean traces are identical. By combining our
assumption that E[|Repl] - gw (z) = E|[|Flip|] - gw, (2) with corollary 4, we have that

Pe(z) - E/(Z)‘ =|Pu(ga1(2)) = P (901 (2))| - |[ElIRepl] - guog (2) = E[|Flip]] - guye (2)]
=0

which implies that the power series P,(z) — P, (z) has all zero coefficients. This is the same as
saying that for all 4, p,; = p1,7 ;. This holds for any pair of messages x, ', so all possible messages
result in the same mean trace. Thus, mean-based trace reconstruction is impossible. ]

This corollary by itself does not show that we have to state the assumption E[|Rep|] - gw, (2) #
E[|Flip|] - gw(2) in our theorem. If all the channels we are concerned with had this property, then
the theorem’s assumption would be redundant and the above corollary would be vacuously true.

It turns out that there are channels where this assumption does not hold. We prove that such
channels exist by describing one. Speciﬁcally, we describe an oblivious synchronization channel
where E[|Rep|] - gw, (2) = E[|Flip|] - g () and mean-based trace reconstruction is impossible, but
(non-mean-based) trace reconstruction is easy.

5.1 A Channel Where Mean-based Trace Reconstruction is Impossible

Let M = 2 be a constant, i.e. for each input bit the channel always outputs two bits. C_ = ()
always. Rep, Flip, and C'; are jointly distributed among three equally likely outcomes.

Rep Flip C4
Output 1 | {1,2} 0 0
Output 2 | ( {1} {1}
Output 3 | 0 {2} {1}

Equivalently, for a single input bit, the channel outputs the following three strings with equal
probability.

Input ‘ —1 +1

Output 1 | (=1,-1) (+1,+1)
Output 2 | (+1,+1) (—1,+1)
Output 3 | (+1,41) (+1,-1)

Regardless of input bit, both output bits have expected value 1/3. Thus, mean-based trace
reconstruction is impossible.

However, trace reconstruction is easy. On input —1, the channel outputs —1, —1 with probability
1/3. On input +1, the channel never outputs —1, —1. This can be used to distinguish any pair of
strings. Let z,y € {—1,1}" be two distinct strings. Without loss of generality, suppose z; = —1
and y; = +1 for an arbitrary index i. Let Tr(z) and Tr(y) denote traces of x and y. Then

Pr [Tr(x)zi_l = Tr(l’)gi = —1] = 1/3

and
Pr [Tf(y)gifl = Tl’(y)gi = —1] =0.

This leads to a simple reconstruction algorithm, which outputs a string z € {—1,1}" after looking
at the traces of a string zyue € {—1,1}".
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1. Look at t independent traces of ziye.

2. If any of the traces have (—1,—1) in the (2i — 1)'" and (24)"" coordinates, set z; = —1.
Otherwise, set z; = +1.

3. Output z.

To analyze this algorithm’s correctness, we consider the probability that a fixed coordinate is
correct, then union bound over all coordinates. Let j € [n] be a fixed coordinate. If (ztrue); = +1,
then z; = +1 with probability 1. If (2¢e); = —1, then z; = +1 with probability (2/3)t. Combining
this with a union bound over the n coordinates, we get

Pr [Zguess # Ztrue] <n- Pr[(zguess)j i (Ztrue)j]
<n-(2/3)".

Hence, O(log(n/d)) traces are enough to reconstruct the string with probability at least 1 — .

6 Future Work

We have shown that exp(O(n'/3)) traces suffice for mean-based worst-case trace reconstruction
over a broad class of oblivious synchronization channels. Because exp(Q(n'/3)) traces are required
for mean-based worst-case trace reconstuction over the deletion channel, this means that our result
cannot be improved in general. However, as discussed before, our channel model does not cover
all discrete memoryless synchronization channels as defined by Dobrushin [7, 8]. It would be
interesting to extend our result in some form to all such non-trivial channels. Furthermore, to
complement the above, it would be interesting to prove trace complexity lower bounds for mean-
based reconstruction over oblivious synchronization channels other than the deletion channel. It is
also unclear whether the assumption that M is sub-exponential is necessary for our result. A clear
extension of this work would be to either remove this condition or prove that it is necessary for mean-
based trace reconstruction from exp(O(n'/3)) traces. Alternatively, one could envision proving
tradeoffs between the tail behavior of M and the complexity of mean-based trace reconstruction
for the associated channel.
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