
Improved non-adaptive algorithms for
threshold group testing with a gap

Thach V. Bui, Member, IEEE, Mahdi Cheraghchi, Senior Member, IEEE, and Isao Echizen, Member, IEEE

Abstract—The basic goal of threshold group testing is to
identify up to d defective items among a population of n items,
where d is usually much smaller than n. The outcome of a test on
a subset of items is positive if the subset has at least u defective
items, negative if it has up to ` defective items, where 0 ≤ ` < u,
and arbitrary otherwise. This is called threshold group testing.
The parameter g = u− `− 1 is called the gap. In this paper, we
focus on the case g > 0, i.e., threshold group testing with a gap.
Note that the results presented here are also applicable to the
case g = 0; however, the results are not as efficient as those in
related work. Currently, a few reported studies have investigated
test designs and decoding algorithms for identifying defective
items. Most of the previous studies have not been feasible because
there are numerous constraints on their problem settings or the
decoding complexities of their proposed schemes are relatively
large. Therefore, it is compulsory to reduce the number of tests
as well as the decoding complexity, i.e., the time for identifying
the defective items, for achieving practical schemes.

The work presented here makes five contributions. The first
is a more accurate theorem for a non-adaptive algorithm for
threshold group testing proposed by Chen and Fu. The second is
an improvement in the construction of disjunct matrices, which
are the main tools for tackling (threshold) group testing and
other tasks such as constructing cover-free families or learning
hidden graphs. Specifically, we present a better exact upper
bound on the number of tests for disjunct matrices compared
with that in related work. The third and fourth contributions
are a reduced exact upper bound on the number of tests and a
reduced asymptotic bound on the decoding time for identifying
defective items in a noisy setting on test outcomes. The fifth
contribution is a simulation on the number of tests of the resulting
improvements for previous work and the proposed theorems.

Index Terms—Non-adaptive threshold group testing with a gap,
combinatorial mathematics, algorithms, sparse recovery.

I. INTRODUCTION

Identification of up to d defective items in a large population
of n items is the main objective of group testing. Defective

Manuscript received May 26, 2020; revised March 21, 2021; accepted
August 1, 2021. Thach V. Bui was supported in part by Vietnam National
University Ho Chi Minh City (VNU-HCM) under Grant No. NCM2019-18-
01. M. Cheraghchi’s research was partially supported by the National Science
Foundation under Grant No. CCF-2006455. Isao Echizen was partially sup-
ported by JSPS KAKENHI Grants JP16H06302, JP18H04120, JP20K23355,
JP21H04907, and JP21K18023, and by JST CREST Grants JPMJCR18A6
and JPMJCR20D3, Japan. The material in this paper was presented in part at
the 2020 IEEE International Symposium on Information Theory [1].

Thach V. Bui was with the Department of Information Engineering,
University of Padova, Padova, Italy. He is now with the Department of
Computer Science, National University of Singapore, Singapore, on leave
from the Faculty of Information Technology, University of Science, VNU-
HCMC, Ho Chi Minh City, Vietnam (e-mail: bvthach@fit.hcmus.edu.vn).

Mahdi Cheraghchi is with the Department of EECS, University of Michi-
gan, Ann Arbor, MI 48109, USA (e-mail: mahdich@umich.edu).

Isao Echizen is with the National Institute of Informatics, Tokyo, 101-8430,
Japan and with the Department of Information and Communication Engineer-
ing, University of Tokyo, Tokyo 113-8654, Japan (e-mail: iechizen@nii.ac.jp).

items satisfy a specific property while negative (non-defective)
items do not. Dorfman [2], an economist who served during
World War II, initiated this research direction in an effort
to identify syphilitic draftees among a large population of
draftees. Rather than testing the draftees one by one, which
would have taken much time and money, he proposed pooling
the draftees into groups for testing, which is more efficient.
Ideally, if there was at least one syphilitic draftee present in
the group, the test outcome would be positive. Otherwise,
it would be negative. This approach can be generalized by
replacing “draftee” with “item,” “syphilis” with “a specific
property,” and “syphilitic draftee” with “defective item.” This
is classical group testing (CGT) without noise. Formally, in
CGT without noise, the outcome of a test on a subset of items
is positive if the subset has at least one defective item and
negative otherwise. If noise is present, the outcome may flip
from positive to negative and vice versa.

A generalization of CGT called threshold group testing
(TGT) was introduced by revising the definition of the test
outcome [3]. In this model, the outcome of a test on a subset
of items is positive if the subset has at least u defective items,
negative if it has up to ` defective items, where 0 ≤ ` < u,
and arbitrary otherwise. This model is denoted as (n, d, `, u)-
TGT. The parameter g = u − ` − 1 is called the gap. When
g = 0, i.e., ` = u − 1, threshold group testing has no gap.
When u = 1, TGT reduces to CGT. TGT can be considered
as a special case of complex group testing [4] or generalized
group testing with inhibitors [5]. Like previous reports such
as [3], [6]–[9], the focus of this paper is on threshold group
testing with a gap, i.e., g > 0. Note that the results here are
also applicable to the no-gap case (g = 0). However, this
case should be treated separately to attain efficient solutions
as presented in [7], [10], [11].

In general, TGT is more complicated than CGT even for
trivial testing since instead of testing all individuals as in
CGT, all groups of a certain size (depending on the threshold
parameters) have to be tested. It is intuitively obvious that the
outcome of a test on a certain subset of items in TGT has less
information than one in CGT. For example, if the outcome of
a test on a subset of items is negative, we can be sure that
there are no defectives in the subset if the test was done under
the CGT setting, whereas the subset has up to u−1 defectives
if the test was done under the TGT setting.

We illustrate TGT for two thresholds (u = 10 and ` = 2)
versus CGT in Fig. 1. The black and red dots represent
negatives and defectives, respectively. A subset containing
defectives and/or negatives is a blue circle containing black
and/or red dots. The outcome of a test on a subset of items

1

is positive (+) or negative (−). In CGT (“Classical” in the
figure), the outcome of a test on a subset of items is positive
if the subset has at least one red dot, and negative otherwise. In
TGT with two thresholds u and ` (“Threshold” in the figure),
the outcome of a test on a subset of items is positive if the
subset has at least u = 10 red dots, negative if the subset has
up to ` = 2 red dots, and arbitrary otherwise.

There are two approaches to designing tests. The first is
adaptive group testing (AGT) in which the design of a test
depends on the designs of the previous tests. This approach
usually achieves optimal bounds on the number of tests;
however, it takes much time. The second is non-adaptive group
testing (NAGT) which is an alternative solution for AGT.
With this approach, all tests are designed independently and
can be performed in parallel. Because of the resulting time
saving, NAGT has been widely applied in various fields such
as computational and molecular biology [12], networking [13],
and neuroscience [5]. Recently, group testing seems to be an
efficient way to economically and quickly identify infected
persons during the coronavirus pandemic of 2020–2021 [14],
[15].

NAGT can be represented by a (binary) measurement matrix
in which each row and each column represent a test and an
item, respectively. An entry in the matrix at row i and column
j that equals 1 naturally means that item j belongs to test i;
and an entry that equals 0 means otherwise. For every group
testing problem, we have a few possible cases:

1) The “for all” model (the worst case): we have a single
measurement matrix and the same matrix has to recover
any set of up to d defectives. Note that the matrix can be
randomized or explicit, but once we have the matrix, the
same matrix has to work correctly for any configuration
of up to d defectives.

2) The “for each” model: for every fixed set of defectives,
when we sample a measurement matrix, with high
probability (whp) from the measurement outcomes, we
can reconstruct the defectives.

3) The “average case” model: the matrix can be explicit
or random, and the defectives are chosen randomly
(often uniform, or iid). Then, whp over all randomness
involved, we should be able to recover the defectives
from the measurements.

NAGT generally refers to the “for all” model; otherwise,
the model is specified. The focus of the work reported here is
on NATGT (Non-Adaptive Threshold Group Testing), which
is TGT associated with NAGT (with the “for all” model).

There are two main requirements for efficiently tackling
group testing: minimize the number of tests and efficiently
identify the set of defective items. Lengthy and intensive
study of CGT has shown that the number of tests needed
for effective use of AGT is Ω(d lnn) [12], which is theo-
retically optimal. The decoding algorithm is usually included
in the test design. For NAGT, Porat and Rothschild [16] first
proposed explicit non-adaptive constructions using O(d2 lnn)
tests with no efficient (sublinear to n) decoding algorithm.
To have an efficient decoding algorithm, says poly(d, lnn),
while keeping the number of tests as small as possible,
says O(d1+o(1) ln1+o(1) n), several schemes have been pro-

posed [17]–[20]. Using probabilistic methods, Cai et al. [21]
required only O(d ln d · lnn) tests to find defective items in
time O(d(lnn+ln2 d)). Recently, Bondorf et al. [22] presented
a bit mixing coding that achieves asymptotically vanishing
error probability with O(d log n) tests to identify defective
items in time O(d2 log d·log n) as n→∞. For further reading,
we recommend readers to refer to the survey in [23].

From the genesis of TGT, Damaschke [3] showed that the
set of defective items can be identified with up to g false
positives (i.e., negative items are identified as defective items)
and g false negatives (i.e., defective items are identified as
negative items) by using

(
n
u

)
non-adaptive tests. Chen et al. [4]

gave an upper bound on the number of tests: t(n, d, u; z] =

O
(
z
(
d+u
u

)u (d+u
d

)d
(d+ u) ln n

d+u

)
, where b(z − 1)/2c is

usually referred to as the maximum number of errors in the
test outcomes. Cheraghchi [6] asserted that this bound is not
optimal. Therefore, he reduced it to O(dg+2 ln(n/d)·(8u)u) =
O(dg+2 ln(n/d)) tests under the assumption that u is constant,
which is asymptotically optimal. When d = `+ u, Ahlswede
et al. [24] gave an upper bound on the number of tests, which
is O(u22u log n). They also considered the case d 6= ` + u;
however, the bound on the number of tests has no constructive
approximations for inference.

There have been a few studies on decoding algorithms for
NATGT with a gap and with the “for all” or “for each” model.
By using models for the gap and considering the “for each”
model, Chan et al. [8] set that the number of defective items
to exactly d, u = o(d), and used O

(
ln 1

ε · d
√
u lnn

)
tests to

identify the defective items in time O(n lnn+ n ln 1
ε), which

is linear to the number of items, where ε ∈ (0, 1). Recently, by
setting d = O(nβ) for β ∈ (0, 1) and u = o(d), Reisizadeh et
al. [25] use Θ(

√
ud ln3 n) tests to identify all defective items

in time O(u1.5d ln4 n) whp with the aid of a O(u lnn)×
(
n
u

)
look-up matrix, which is unfeasible when n or u is large. To
the best of our knowledge, the first and only work to tackle the
“for all” model in NATGT with a decoding algorithm is that
by Chen and Fu [9]. They proposed schemes for finding the
defective items using t(n, d− `, u; z] tests in time O(nu lnn).
However, the decoding time becomes impractical as n or u
increases.

We consider here the potential use of threshold group testing
as a tool to tackle the problems in designing tests for detecting
viral infections [2], [15], [26] and chemical screening [3].
Damaschke [3] introduced threshold group testing with some
potential applications for chemical screening, without present-
ing a concrete application. Back to the work of Dorfman [2],
even for standard blood tests, the uncertainty in deciding
the outcome of a test on a pool of blood samples remains
problematic in practice. As mentioned in the first paragraph
of this section, the outcome of a test on a pool of blood
samples is positive if the pool contains at least one syphilitic
sample and negative otherwise. However, in practice, before
deciding the outcome of a test, we must get a reference value
associated with the test. A next procedure is to set a threshold
such that the outcome of a test is positive if its reference value
is larger than or equal to the threshold and negative otherwise.
Due to the presence of impurities in blood sample pools,

2

𝑢 = 10,
𝑙 = 2

𝑢 − 1 ≥ No. defectives ≥ ℓ + 1

TEST

Threshold

Classical

+

+

TEST

+/−

…

TEST

+/−

TEST

−

TEST

−

TEST

−

+ + + + −

≥ 𝑢 defectives ≤ ℓ defectives

Fig. 1: Illustration of threshold group testing for u = 10 and ` = 2 versus classical group testing.

it is difficult to set a unique threshold. Dorfman suggested
setting it to be the average of the impurities in the separate
samples. This would result in three ranges for the threshold:
positive, negative, and inconclusive. If the threshold is in the
positive (negative) range, the outcome of a test is positive
(negative) if its reference value is larger (smaller) than or
equal to the threshold. If the threshold is in the inconclusive
range, it is uncertain to decide whether the test outcome is
positive or negative. This is exactly what TGT with a gap tries
to capture. In 2014, Emad and Milenkovic [26] introduced
“semi-quantitative group testing” (SQGT) to tackle a model
for quantitative polymerase chain reaction (qPCR) tests. Since
TGT is a special case of SQGT, it can also be used in qPCR
tests. The work of Gabrys et al. [15] motivated the application
of TGT to reverse transcription PCR (RT-PCR) or quantitative
PCR (qPCR) tests for viral infections such as Covid-19. The
fluorescence values captured by the PCR process has different
levels, and again one can assign a positive range, a negative
range, and an inconclusive range in a manner similar to the
work of Dorfman.

A. Contributions

The focus of this work is TGT with a gap; i.e., g = u −
` − 1 > 0. Note that the results here are also applicable to
the no-gap case, i.e., g = 0; however, the no-gap case should
be treated separately to attain efficient solutions, as explained
in [7], [10], [11].

The first contribution, which is summarized in Theorem 3,
is correction of the decoding complexity analysis by Chen
and Fu [9]. Their inaccurate analysis in decoding complexity
resulted in much smaller decoding complexity than the actual
one.

The second contribution is a better exact upper bound on
the number of tests of (n, d, u; z]-disjunct matrices (defined
later). We significantly reduce the upper bound on the number
of tests for constructing disjunct matrices compared with the
work of Chen et al. [4]. The basic idea is that instead of using a
hypergraph to generate a disjunct matrix as Chen et al. did, we
directly generate a random disjunct matrix. This improvement

paves the way to improved results not only in group testing,
but also in other fields such as graph learning [27] and cover-
free family construction [28].

The third and fourth contributions are a reduced exact upper
bound on the number of tests and a reduced asymptotic bound
on the decoding time for identifying defective items in a noisy
setting on test outcomes compared with the state-of-the-art
work of Chen and Fu [9]. The number of tests is directly
reduced by using a better upper bound on the number of
tests (the second contribution). The basic idea for reducing
decoding time is to pick subsets of potential defectives such
that each subset contains at least ` + 1 defectives and then
return the union of these subsets as an approximate defective
set. To attain a better approximate defective set (at the cost of a
longer decoding time), the approximate defective set derived as
described above is taken as the input to the existing algorithm
in [9].

Suppose there are up to b(z − 1)/2c erroneous outcomes.
Let S′ be the approximate defective set returned by decoding
procedure. Two sets S\S′ and S′\S are referred to as the sets
of false negatives and false positives, respectively. Chen and

Fu [9] use t(n, d − `, u; z] = O

(
z
(
k
u

)u (k
d−`

)d−`
k ln n

k

)
tests to recover a set S′ with |S′ \ S| ≤ g and |S \ S′| ≤
g, where k = d − ` + u. By using h(n, d − `, u; z] =

O

((
1 + z

α

)
·
(
k
u

)u (k
d−`

)d−`
k ln n

k

)
tests where k = d −

`+u and α = k ln en
k +u ln ek

u , we can recover a set S′ close
to the true defective set S as follows:

1) |S′ \ S| ≤ g and |S \ S′| ≤ g.
2) |S′ \ S| ≤ gw and |S \ S′| ≤ g, where w =(⌊

|S|
`+1

⌋
+ u− 1

)
g.

3) |S′ \ S| ≤ g and |S \ S′| ≤ 2g.

The decoding complexities of these three cases are always
smaller than the one (after correction) proposed by Chen and
Fu [9].

The last contribution is a simulation for previous work and
our proposed theorems. The results demonstrate the superiority
of our proposed theorems over previous ones and validate the

3

arguments presented here.
The contributions are summarized in Theorems 3, 4, 6, 7,

and 8 and illustrated in Fig. 2 (except Theorem 3). The ovals,
lines, parallelograms, and rectangles represent start or end
point, connectors showing relationships between the represen-
tative shapes, inputs or outputs, and processes, respectively.
The dash-dot line represents a comment on the representative
shapes. The blue arrows represent the previous schemes while
the other arrows represent our proposed theorems.

B. Comparison

The one proposed theorem for the number of tests and
three proposed non-adaptive algorithms are compared with
previous ones in Table I. Our proposed algorithms are error-
tolerant and their decoding algorithms are deterministic. Note
that Ahlswede et al. [24] also considered the case d 6= `+ u;
however, the bound on the number of tests has no constructive
approximations for easy inference. Therefore, we do not
include that bound in Table I for easy comparison.

1) Number of tests: When there are no models for the
gap g, the upper bound on the number of tests with our
proposed theorems is smaller than with the ones proposed by
Chen and Fu [9] and Chen et al. [4]. Note that the upper
bounds on the number of tests with Chen and Fu’s scheme
and Chen et al.’s scheme are equal, and so are our proposed
theorems. The number of tests O

(
dg+2 ln n

d

(1−p)2 · (8u)u
)

with
the scheme proposed by Cheraghchi [6] can be reduced to
O
(
dg+2 ln n

d

(1−p)2

)
as u is a constant; i.e., the multiplicity (8u)u

can be removed because it is constant. It is essentially the
optimal asymptotic number of tests. However, Cheraghchi [6]
does not focus on the finite length regime and refining the
bounds for that as well as the algorithmic recovery problem.
When d = ` + u, a similar number of tests, which is
O(u22u log n), is attained by Ahlswede et al. [24]. The big
O notation is not useful in practice for this case because this
multiplicity is extremely large and should not be removed. For
example, we have (8u)u = 220 = 1, 048, 576 when u = 4 and
(8u)u ≥ 102, 400, 000 when u ≥ 5. Therefore, in terms of
asymptotics, the number of tests with the scheme proposed by
Cheraghchi is good as u is constant, although it is extremely
large in practice.

The number of tests could be significantly reduced by set-
ting more conditions on g, u, and d, but such conditions would
likely make any proposed scheme impractical. Moreover, the
previous schemes that followed this approach do not take into
account erroneous outcomes. When the Bernoulli model is
applied to the gap, i.e., the number of defectives in a test
is between the thresholds, the outcome is positive/negative
with probability 0.5. Setting u = o(d) and error precision
ε > 0, Chan et al. [8] achieved a small number of tests
O
(

ln(1/ε) · d
√
` lnn

)
while Reisizadeh et al. [25] attained

Θ(
√
ud ln3 n) tests. When a linear model is applied to the

gap, i.e., the number of defectives in a test is between the
thresholds, the probability of a positive outcome linearly
increases with the number of defectives. The number of tests
with a linear model is O(g2n lnn+ n ln(1/ε)) [8].

Once g = 0, D’yachkov et al. [10] and Cheraghchi [6] show
that it is possible to obtain an optimal bound on the number
of tests, i.e., O

(
d2 lnn

)
tests, when u is a constant. Since

the objective of this work is to consider the case g > 0, we
recommend readers, who are interested in the case g = 0,
to [11] for further reading.

2) Decoding time: Let S′ and S be the recovered defective
set and the true defective set. For threshold group testing
with gap g, S′ and S are indistinguishable if |S′ \ S| ≤ g
and |S \ S′| ≤ g. Nevertheless, if a model is applied to the
gap, S′ ≡ S can be attained with some probability. With
this approach, the fastest decoding was at with the scheme of
Reisizadeh et al. [25]: O(u1.5d ln4 n). However, this scheme is
based on the assumption that ` < u = o(d), that the Bernoulli
model is applied to the gap, and that an auxiliary look-up
matrix of size O(u lnn) ×

(
n
u

)
is stored somewhere. The

need for a look-up matrix makes this scheme an impractical
solution. For example, if n = 106 and u = 5, the number
of columns in the look-up matrix is more than 8.3 octillion
(8.3 × 1027). Moreover, n and u are more likely larger in
practice. The scheme of Chan et al. [8] attains a near-optimal
decoding time: O

(
ln 1

ε · d
√
` lnn

)
or O(g2d lnn+d ln 1

ε) for
ε > 0. However, this decoding time is attained only under
certain constraints: the Bernoulli or a linear model is applied
to the gap, n and d = o(n) are large enough, and ` = o(d).
This scheme is thus also likely impractical.

The conditions on the gap and on n, `, u, and d make the
schemes proposed by Chan et al. [8] and Reisizadeh et al. [25]
impractical. Like Chen and Fu [9], we consider the case in
which there are no constraints on the gap and ` < u ≤ d < n.
Our decoding algorithms are deterministic. With the goal of
attaining |S′\S| ≤ g and |S \S′| ≤ g, the number of tests and
the decoding time with our proposed algorithms (summarized
in Theorems 6, 7, 8) are much lower than the one proposed
by Chen and Fu [9] (summarized in Theorem 3).

There are two terms in the decoding complexity of The-
orem 6 (in Proposed 1):

(
n
u

)
and (d − u)

(
n−u
g+1

)(
d−1
g

)(
d
u

)
. To

remove the second term, we relax the condition on |S′\S| from
|S′ \S| ≤ g to |S′ \S| ≤ wg, where w =

(⌊
|S|
`+1

⌋
+ u− 1

)
g.

This reduces the decoding complexity of Theorem 6 to
O
(
h(n, d− `, u; z]× u

(
n
u

))
, which is significantly less than

the original one in Theorem 6. This result is summarized in
Theorem 7 (in Proposed 2).

However, it is clear that the condition |S′ \ S| ≤ wg in
Theorem 7 is not as tight as the condition |S′ \S| ≤ g in The-
orem 6. To remedy this drawback, we derived Theorem 8 (in
Proposed 3), which slightly increases the decoding complexity
while attaining the conditions |S′ \ S| ≤ 2g and |S \ S′| ≤ g.

II. PRELIMINARIES

A. Notations

For consistency, we use capital calligraphic letters for ma-
trices, non-capital letters for scalars, bold letters for vectors,
and capital letters for sets. All matrix and vector entries are
binary. The frequently used notations are listed in Table II.

4

run a proposed decoding algorithm

run Chen-Fu’s decoding algorithm [8]

𝑡 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests ℎ 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests

use hypergraph [3] randomly generate tests

improved upper bound

𝑛 items

𝑆′ with
𝑆′ ∖ 𝑆 ≤ 𝑔𝑤 and 𝑆 ∖ 𝑆′ ≤ 𝑔

𝑆′ with
𝑆′ ∖ 𝑆 ≤ 𝑔 and 𝑆 ∖ 𝑆′ ≤ 𝑔

𝑆′′ with
𝑆′′ ∖ 𝑆 ≤ 𝑔 and 𝑆 ∖ 𝑆′′ ≤ 2𝑔

ℎ 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests

Theorem
4

Theorem
7

Theorem
8

Theorem
6

Fig. 2: Flow chart illustrating how contributions were attained in this work (excluding Theorem 3). Flow is from top to bottom.
Each output can be reached by following consistent arrow color. To avoid misunderstanding, S′′ is used instead of S′ for
Theorem 8. Both notations represent approximate defective sets recovered after running decoding algorithms. Set S is the true
defective set. Parameters t(n, d− `, u; z], h(n, d− `, u; z], and w are defined in Table I.

B. Problem definition

We index the population of n items from 1 to n. Let [n] =
{1, 2, . . . , n} and S be the defective set, where |S| ≤ d. A
test is defined by a subset of items P ⊆ [n]. A pool with
a negative (positive) outcome is called a negative (positive)
pool. The outcome of a test on a subset of items is positive if
the subset contains at least u defective items, is negative if the
subset contains up to ` defective items, and arbitrary otherwise.
Formally, the test outcome is positive if |P ∩S| ≥ u, negative
if |P ∩ S| ≤ `, and arbitrary if ` < |P ∩ S| < u. This model
is denoted as (n, d, `, u)-TGT. In addition, g = u − ` − 1 is
the gap.

We can model non-adaptive (n, d, `, u)-TGT as follows. A
t × n binary matrix T = (tij) is defined as a measurement
matrix, where n is the number of items and t is the number of
tests. Vector x = (x1, . . . , xn)T is the binary representation
vector of n items, where |x| =

∑n
i=1 xi ≤ d. An entry xj =

1 indicates that item j is defective, and xj = 0 indicates
otherwise. The jth item corresponds to the jth column of the
matrix. An entry tij = 1 naturally means that item j belongs
to test i, and tij = 0 means otherwise. The outcome of all
tests is y = (y1, . . . , yt)

T , where yi = 1 if test i is positive
and yi = 0 otherwise. The procedure used to get outcome
vector y is called encoding. The procedure used to identify
defective items from y is called decoding. Outcome vector y
is given by

y = T ⊗`,u x =

T1,∗ ⊗`,u x...
Tt,∗ ⊗`,u x

 =

y1...
yt

 , (1)

where ⊗`,u is a notation for the test operation in non-adaptive
(n, d, `, u)-TGT; namely, yi = Ti,∗⊗`,ux = 1 if

∑n
j=1 xjtij ≥

u, yi = Ti,∗⊗`,u x = 0 if
∑n
j=1 xjtij ≤ `, and yi = Ti,∗⊗`,u

x = {0, 1} if ` <
∑n
j=1 xjtij < u, for i = 1, . . . , t.

Our objective is to find an efficient encoding and decoding
scheme with non-adaptive approach to identify up to d defec-
tive items in non-adaptive (n, d, `, u)-TGT. Precisely, our task
is to minimize the number of rows in matrix T and the time
for recovering x from y by using T .

C. Disjunct matrices

Disjunct matrices are a powerful tool to tackle the threshold
group testing problem [6], [9], [11]. They were first introduced
by Kautz and Singleton [29] as superimposed codes and then
generalized by Stinson and Wei [28] and D’yachkov et al. [30].
The support set for vector v = (v1, . . . , vw) is supp(v) =
{j | vj 6= 0}. The formal definition of a disjunct matrix is as
follows.

Definition 1. An m × n binary matrix M is called an
(n, d, r; z]-disjunct matrix if, for any two disjoint subsets
S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there
exists at least z rows in which there are all 1’s among the
columns in S2 while all the columns in S1 have 0’s, i.e.,

5

Scheme No. of
defectives Thresholds No. of

items (n)
Model on

gap interval
Error

tolerance
Number of tests

t
Decoding time

(Decoding complexity)

Defective
set

recovered

Decoding
type

Ahlswede et al. [24] d = `+ u ` < u ≤ d ≥ d No × O(u22u logn) × × ×

Chen et al. [4] ≤ d ` < u ≤ d ≥ d No z
t(n, d− `, u; z] =

O

(
z
(
k
u

)u (
k
d−`

)d−`
k ln n

k

)
× × ×

Cheraghchi [6] ≤ d ` < u ≤ d ≥ d No O

(
pd2 log n

d
(1−p)2

)
O

(
dg+2 ln n

d
(1−p)2 · (8u)u

)
× × ×

Proposed 0
(Theorem 4) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z

h(n, d− `, u; z]
= O

((
1 + z

α

)
·(

k
u

)u (
k
d−`

)d−`
k ln n

k

) × × ×

Chan et al. [8] d = o(n) ` < u = o(d) ω(d)
Bernoulli

Linear × O
(

ln 1
ε
· d
√
` lnn

)
O(g2d lnn+ d ln 1

ε
)

O(n lnn+ n ln 1
ε
)

O(g2n lnn+ n ln 1
ε
)

S′ ≡ S Rnd.

Reisizadeh et al. [25]
d = O(nβ)

for
0 < β < 1

` < u = o(d) O(d1/β) Bernoulli × Θ(
√
ud ln3 n)

O(u1.5d ln4 n)
with a O(u lnn)×

(n
u

)
look-up matrix

S′ ≡ S Rnd.

Chen and Fu [9]
(more accurate in Theorem 3) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z t(n, d− `, u; z]

O
(
t(n, d− `, u; z]× u

((n
u

)
+(d− u)

(n−u
g+1

)(d−1
g

)(d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ g Det.

Proposed 1
(Theorem 6) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z h(n, d− `, u; z]

O
(
h(n, d− `, u; z]× u

((n
u

)
+(d− u)

(n−u
g+1

)(d−1
g

)(d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ g Det.

Proposed 2
(Theorem 7) ≤ d ` < u < d ≥ e2(d+u)2

u
No z h(n, d− `, u; z] O

(
h(n, d− `, u; z] · u

(n
u

)) |S′ \ S| ≤ gw
|S \ S′| ≤ g Det.

Proposed 3
(Theorem 8) ≤ d ` < u < d ≥ e2(d+u)2

u
No z h(n, d− `, u; z]

O
(
h(n, d− `, u; z] · u ·

((n
u

)
+(d− u)

(w+d−u
g+1

)(d−1
g

)(d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ 2g

Det.

TABLE I: Comparison of proposed theorems with previous ones. A × symbol means that the criterion does not hold for that
scheme. The terms “Randomized” and “Deterministic” are abbreviated to “Rnd.” and “Det.”. Sets S′ and S are the recovered
defective set and true defective set, respectively. We define k = d−`+u, α = k ln en

k +u ln ek
u , w = (b|S|/(`+ 1)c+ u− 1) g,

and 0 ≤ p < 1. Parameters t(n, d−`, u; z] and h(n, d−`, u; z] are defined in rows 2 and 4 as well as in (2) and (6), respectively.

Notation Description
n Number of items
d Maximum number of defective items

x = (x1, . . . , xn)T Binary representation of n items

`
Lower bound in
non-adaptive (n, d, `, u)-TGT model

u
Upper bound in
non-adaptive (n, d, `, u)-TGT model

g = u− `− 1 Gap between ` and u

S = {j1, j2, . . . , j|S|}
Set of defective items;
cardinality of S is |S| ≤ d

N = [n] = {1, . . . , n} Set of n items

⊗`,u
Operation related to non-adaptive
(n, d, `, u)-TGT (to be defined later)

Ti,∗ Row i of matrix T
T∗,j Column j of matrix T
Mi,∗ Row i of matrix M
M∗,j Column j of matrix M

TABLE II: Notations frequently used in this paper.

∣∣∣⋂j∈S2
supp (M∗,j)

∖⋃
j∈S1

supp (M∗,j)
∣∣∣ ≥ z. Parameter

b(z − 1)/2c is usually referred to as the error tolerance.

Matrix M can be illustrated as follows.

M =


. . .
. . .
. . .
. . .
. . .
. . .

r︷ ︸︸ ︷
.
1 1
.
1 1
.
.

. . .

. . .

. . .

. . .

. . .

. . .

d︷ ︸︸ ︷
.
0 0
.
0 0
.
.

. . .

. . .

. . .

. . .

. . .

. . .


the 1st
specific row

the zth
specific row

Chen et al. [4] gave an upper bound on the number of rows
for (n, d, u; z]-disjunct matrices as follows.

Theorem 1. [4, Theorem 3.2] For any positive integers
d, u, z, and n with k = d + u ≤ n, there exists a t × n

(n, d, u; z]-disjunct matrix with

t(n, d, u; z] = z

(
k

u

)u(
k

d

)d [
1 + k

(
1 + ln

(n
k

+ 1
))]

= O

(
z

(
k

u

)u(
k

d

)d
k ln

n

k

)
= O(z · t(n, d, u; 1]). (2)

III. REVIEW AND ANALYSIS OF CHEN AND FU’S WORK

A. Preliminaries

To clarify the basis of our proposed algorithms, we review
Chen and Fu’s work [9] which is the first and only work
tackling the “for all” model in NATGT with a gap and with
a decoding algorithm. They proposed schemes for finding the
defective items using t(n, d− `, u; z] tests in time O(nu lnn).
However, the decoding time becomes impractical as n or
u increases. The intuition of Chen and Fu algorithm is to
initialize an approximate S′ of size u such that the outcome
of the test on S′ is positive. The algorithm then proceeds to
increase the size of S′ such that the cardinality of S′ is not
larger than the maximum number of defectives, i.e., d, and the
outcome of a test on every subset of u items in S′ is positive.

To facilitate the problem of identifying defectives, the graph
search problem is first introduced. Given a vertex set V =
{1, . . . , n}, the goal is to reconstruct a hidden graph H defined
on V by asking queries in the following format: for U ⊆ V ,
the query is “Does a complete graph induced by U contain
any edge of H?” In other words, a pool containing all vertices
in U is positive if at least one edge of H is also an edge of
the complete graph induced by U .

Given a finite set V , a hypergraph H = (V,F) is a family
F = {E1, E2, . . . , Em} of subsets of V . The elements of V
are called vertices, and the subsets Ei’s are the edges of the
hypergraph H.

6

A hypergraph is called a u-hypergraph if each edge consists
of exactly u vertices. A subset of a set is called a u-subset if
it contains exactly u elements of the set. Let W be a subset of
V . A hypergraph is u-complete with respect to W if and only
if (iff) every u-subset of W is an edge of the hypergraph.

Recall that our objective is to identify a set of defectives S
from a given set of items N = [n]. Let S′ be a set such that
|S′ \ S| ≤ g and |S \ S′| ≤ g. Note that there is more than
one set S′ satisfying these properties. Let [n] = {1, 2, . . . , n}
be vertex set V . Suppose that a set of edges F contains all
u-subsets of S and a fraction of all or all u-subsets of every
S′. We can convert threshold group testing with a gap into the
problem of reconstructing a hidden graph H in H = (V,F)
that is u-complete with respect to some S′.

B. Main idea
The main idea is to construct a family F such that, for any

subset X ∈ F, |X| = u, |X ∩ S| ≥ ` + 1 and every u-subset
X+ ⊆ S must be in F. An approximate defective set S′ is then
recovered by using F, where |S′ \ S| ≤ g and |S \ S′| ≤ g.
Note that S′ is the best defective set that can be recovered [3].

To construct F, an indicator of “false negatives” is intro-
duced. We say that a set X of the columns in a matrix appears
in a row if every column in X has a 1 in the row. For a subset
X of the columns in matrix M, we define tM0 (X) to be the
number of negative pools in which all columns in X appear.
Attaining S′ is done by increasing the size of an approximate
defective set S′ from u until the properties |S′ \ S| ≤ g and
|S\S′| ≤ g hold. In other words, the number of false positives
and false negatives are up to g.

Given measurement matrix M, Chen and Fu supposed
that y is the outcome vector with up to e erroneous out-
comes in non-adaptive (n, d, `, u)-TGT. By setting M as an
(n, d − `, u; 2e + 1]-disjunct matrix, the authors obtained a
decoding algorithm in which an approximate set S′ is attained,
as shown in Algorithm 1. Step 1 is to construct a family F
and a hypergraph H = (V,F). Step 2 is to attain S′ by using
H, as illustrated in Fig. 3. More precisely, the algorithm first
initializes set S1 consisting of the u vertices belonging to an
edge of the family F. A new set Si+1 is then created such that
|Si+1| = |Si|+1. Set Si+1 is made equal to set (Si∪Ai)\Bi
by selecting set Ai of g + 1 elements in V \ Si and set Bi
of g elements in Si such that H is u-complete with respect
to (Si ∪ Ai) \ Bi. It is obvious that |Si+1| = |Si| + 1. This
process stops once either Si is not extendable or |Si| ≥ d. If
the process stops when i = m, S′ is set to Sm.

By using an (n, d − `, u; z = 2e + 1]-disjunct matrix and
Algorithm 1, we can attain an approximate defective set S′ as
follows.

Theorem 2. [9, Theorem 4.4] For an (n, d, `, u)-TGT model
with at most e erroneous outcomes, there exists a non-adaptive
algorithm that successfully identifies some set S′ with |S′ \
S| ≤ g and |S \S′| ≤ g, using no more than t(n, d− `, u; z =
2e+ 1] tests. Moreover, the decoding complexity is

t(n, d− `, u; z]× u
(
n

u

)
+ (d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
(3)

Algorithm 1 [Algorithm 2 [9]] Decoding1(y,M): Decoding
procedure for non-adaptive (n, d, `, u)-TGT with up to e
erroneous outcomes.
Input: Outcome vector y, a (n, d− `, u; z = 2e+ 1]-disjunct
matrix M.
Output: Set of defective items S′ s.t. |S′ \ S| ≤ g and |S \
S′| ≤ g.

1: Construct a hypergraph H = (V,F), where V = [n] is the
vertex set of n items and a u-subset X ⊆ [n] is an edge
in F iff tM0 (X) ≤ e.

2: We want to establish increasing vertex-sets Si’s, |S1| <
|S2| . . . < |Sm|, such that the hypergraph H is u-complete
with respect to each Si. As an initial S1, we may choose
all u vertices of an arbitrary edge. To find Si+1 for i ≥ 1,
we check all possible cases to obtain some (g+ 1)-subset
Ai in V (H) \ Si and a g-subset Bi in Si such that H is
u-complete with respect to (Si ∪ Ai) \Bi. If such a pair
Ai, Bi exists, then set Si+1 = (Si ∪ Ai) \ Bi. Continue
this process till either Sm is not extendable or |Si| ≥ d.
Output the set S′ = Sm.

= O

(
z

(
k

u

)u(
k

d− `

)d−`
k ln

n

k
· u
(
n

u

))
,

where k = d− `+ u.

The complexity of the theorem above is attained by taking
the sum of the complexities of Steps 1 and 2. Step 1 is done
in time t(n, d − `, u; z] × u

(
n
u

)
. Step 2 is done in time (d −

u)
(
n−u
g+1

)(
d−1
g

)(
d
u

)
, which is inaccurate in general. A detailed

analysis is given in the Appendix. Here we present a more
accurate version of Theorem 2.

Theorem 3 (A more accurate version of Theorem 4.4 in [9]).
For an (n, d, `, u)-TGT model with at most e erroneous out-
comes, there exists a non-adaptive algorithm that successfully
identifies some set S′ with |S′ \S| ≤ g and |S \S′| ≤ g using
no more than t(n, d − `, u; z = 2e + 1] tests. Moreover, the
decoding complexity is

O

(
t(n, d− `, u; z]× u

((
n

u

)
+(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
(4)

=O

(
z

(
k

u

)u(
k

d− `

)d−`
k ln

n

k

×u
((

n

u

)
+ (d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
,

where k = d− `+ u.

C. Example for Algorithm 1

In this section, we demonstrate Algorithm 1 by setting n =
6, d = 4, ` = 0, u = 2, and z = 1. This means that g =
u− `− 1 = 1 and e = 0. We assume that the defective items
are 1, 2, 4, and 5; i.e., the input vector is x = (1, 1, 0, 1, 1, 0)T .
The true defective set is therefore S = {1, 2, 4, 5} = supp(x).

7

𝑆1 𝑆2 = 𝑆1 ∪ 𝐴1 ∖ 𝐵1

𝑆

…

𝐵1 𝐴1

𝑆′ = 𝑆𝑚
= 𝑆𝑚−1 ∪ 𝐴𝑚−1 ∖ 𝐵𝑚−1

𝑉

𝑆1

𝑆𝑉

𝐵𝑚−1 𝐴𝑚−1𝑆𝑚−1

𝑆𝑉 𝑆𝑉 𝑆𝑉

Initialization Find 𝐴1, 𝐵1 Create 𝑆2 Find
𝐴𝑚−1, 𝐵𝑚−1

Create 𝑆𝑚 then
set 𝑆′ = 𝑆𝑚

…

Fig. 3: Illustration of finding an approximate defective set S′ of the defective set S such that |S′ \ S| ≤ g and |S \ S′| ≤ g
for Algorithm 1. We set g = 7, u = 10, and ` = u− g − 1 = 2.

The (n = 6, d− ` = 4, u = 2; z = 1]-disjunct matrix M is as
follows:

M =



1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1
1 0 1 0 1 0
0 1 1 0 1 1
0 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 1



,y =M⊗0,2x =



1
1
1
1
0
1
1
1
0
1
1
0
1
0
1
1
1
0
1
0



.

(5)

We assume that the observed vector is y, as in (5).
Algorithm 1 proceeds as follows. In Step 1, hypergraph
H = (V,F) is constructed with the set of vertexes
V = [6] = {1, 2, 3, 4, 5, 6}. A search is made for all
2-subsets X ∈ V in order to form the set of edges
F such that tM0 (X) ≤ e = 0. From (5), we get F =
{{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5},

{5, 6}}1.
Step 2 starts with an initial 2-subset S1 = {1, 2}. All

possible cases are checked to obtain some 2-subset A1 (g +
1 = 2) in V \ S1 = {3, 4, 5, 6}, which is some element
of {{3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}}, and a 1-subset
B1 (g = 1) in S1, which is some element of {{1}, {2}}, such
that H is 2-complete with respect to (S1 ∪ A1) \ B1. Since
A1 = {3, 5} and B1 = {1} ensure that the condition holds,
set S2 = (S1 ∪A1) \B1 = {2, 3, 5}.

Since |S2| = 3 < 4 = d, we continue Step 2 by
choosing a 2-subset A2 ⊆ V \ S2 = {1, 4, 6} and a 1-subset
B2 ⊆ S2. The lists of potential subsets for A2 and B2 are
{{1, 4}, {1, 6}, {4, 6}} and {{2}, {3}, {5}}, respectively. We
choose A2 = {1, 4} and B2 = {3} because H is 2-complete
with respect to (S2 ∪ A2) \ B2. Set S3 = (S2 ∪ A2) \ B2 =
{1, 2, 4, 5}. Since |S3| = 4 ≥ 4 = d, the algorithm stops and
output S′ = S3 = {1, 2, 4, 5}. In this case, the approximate
defective set S′ is identical to the true defective set S.

IV. IMPROVED UPPER BOUNDS ON THE NUMBER OF TESTS
FOR DISJUNCT MATRIX

In this section, we present better exact upper bounds on the
number of tests compared to the one in Theorem 1.

A. First result

The upper bound on the number of tests with Theorem 1 is
large because of the multiplicity z. We present a better upper
bound on the number of tests as follows.

1We delineate this example to ensure understanding. Since we use u = 2,
hypergraph H becomes a normal graph in which an edge consists of two
vertices. However, once u ≥ 3, an edge in H consists of at least three vertices.
Graph H is thus no longer a normal graph.

8

Theorem 4. Let 2 ≤ u ≤ d < k = d+u ≤ n be integers with
(d + u)2/u ≤ n. Set α = k ln en

k + u ln ek
u . For any positive

integer z, there exists an h×n (n, d, u; z]-disjunct matrix with

h(n, d, u; z] = O

((
1 +

z

α

)
·
(
k

u

)u(
k

d

)d
k ln

n

k

)
. (6)

Proof: Consider a randomly generated h×n matrix G =
(gij)1≤i≤h,1≤j≤n in which each entry gij is assigned to 1 with
probability p and to 0 with probability 1− p. For any pair of
disjoint subsets S1, S2 ⊂ [n] such that |S1| = u and |S2| = d,
we denote the event that for a row, there are 1’s among the
columns in S1 and all 0’s among the columns in S2 on the
same row by a good event. The probability that the good event
happens is:

q = pu(1− p)d. (7)

Set α = k ln en
k +u ln ek

u and β = 1−2/α. It is obvious that
0 < α, β. We then set z = (1−δ)qh, where 0 < δ < 1. We will
later prove that there always exists δ which depends on n, u, d,
and z such that z = (1 − δ)qh. For a pair of disjoint subsets
S1, S2 ⊂ [n] such that |S1| = u and |S2| = d, let Xi = 1 be
an event that a good event occurs at row i and Xi = 0 be an
event that a good event does not occur at row i. It is obvious
that Pr[Xi = 1] = q, Pr[Xi = 0] = 1− q, and E[Xi] = q. Let
X =

∑h
i=1 Xi denote the number of the good events happen

for h rows. We get µ = E[X] =
∑h
i=1E[Xi] = qh.

By using Chernoff’s bound, for fixed S1 and S2, the
probability that a good event occurs for up to z rows among
h rows is

Pr[X ≤ z] = Pr[X ≤ (1− δ)µ]

≤ exp

(
−δ

2µ

2

)
= exp

(
−δ

2qh

2

)
.

Using a union bound, the expected value of the number of
good events in which each good event occurs for no more than
z rows among h rows for all disjoint subsets S1, S2 ⊂ [n] with
|S1| = u and |S2| = d, i.e., the probability that G is not an
(n, d, u; z]-disjunct matrix, is at most

g(p, h, u, d, n) =

(
n

d+ u

)(
d+ u

u

)
Pr[X ≤ z]

≤
(
n

k

)(
k

u

)
exp

(
−δ

2qh

2

)
. (8)

To ensure the existence of an (n, d, u, g; z]-disjunct matrix
G, one needs to find p and h such that g(p, h, u, d, n) < 1.
Set p = u

d+u = u
k and q = pu(1− p)d =

(
u
k

)u (d
k

)d
. We then

have

g(p, h, u, d, n) ≤
(
n

k

)(
k

u

)
exp

(
−δ

2qh

2

)
< 1.

For this to hold, it suffices that(
n

k

)(
k

u

)
≤
(en

k

)k (ek

u

)u
< exp

(
δ2qh

2

)
(9)

⇐⇒ h >
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
⇐⇒ >

2

δ2
·
(
k

u

)u(
k

d

)d(
k ln

en

k
+ u ln

ek

u

)
.

(10)

In the above, we have (9) because
(
a
b

)
≤
(
ea
b

)b
. Since p =

u
k , from (10), if we set

h = h(n, d, u; z]

=
3

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
=

3

δ2
· 1

q
· α, where α = k ln

en

k
+ u ln

ek

u
, (11)

=
3

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
,

then g(p, h, u, w, n) < 1; i.e., there exists an (n, d, u; z]-
disjunct matrix of size h× n.

We now calculate δ versus n, d, u, and z. Since z = (1 −
δ)qh and h = 3

δ2 ·
1
q · α in (11), we have:

z = (1− δ)qh = (1− δ) · 3α

δ2
(12)

⇐⇒ zδ2 + 3αδ − 3α = 0 (13)

Since the left side is a quadratic equation of δ and δ > 0,
we can derive

δ =
−3α+

√
9α2 + 12αz

2z
=

√
3α
(√

3α+ 4z −
√

3α
)

2z
.

(14)
Let f(x) =

√
x. We have f(x) is continuous on a closed

interval [3α, 3α + 4z] and differentiable on the open interval
(3α, 3α+ 4z). By using the Lagrange’s mean value theorem,
then there is at least one point b ∈ (3α, 3α+ 4z) such that

f(3α+ 4z)− f(3α) =
√

3α+ 4z −
√

3α

= 4z · f ′(b) = 4z · 1

2
√
b

=
2z√
b
. (15)

Combine with (14), we get

δ =

√
3α
(√

3α+ 4z −
√

3α
)

2z
=

√
3α

2z
· 2z√

b
=

√
3α

b
. (16)

Because b ∈ (3α, 3α + 4z), the following condition is
straightforwardly attained

1

δ2
=

b

3α
∈
(

1, 1 +
4z

3α

)
. (17)

Therefore, the number of tests required is

h = h(n, d, u; z]

=
3

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
< 3

(
1 +

4z

3α

)
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
.

9

Since α is always larger than 4/3, 4z/(3α) is always smaller
than z. It implies that the upper bound on the number of tests
in Theorem 4 is always tighter than the one in Theorem 1.

Discussion of number of tests for TGT and CGT: With
the same settings for n, d, and the maximum number of
erroneous outcomes b(z−1)/2c, what are the similarities and
differences for the number of tests between TGT and CGT?
We first transform (6):

h(n, d, u; z] = t(n, d, u; 1] +O
(z
α

)
· t(n, d, u; 1].

In Corollary 19 [18], Ngo, Porat, and Rudra show that
the number of tests needed to handle b(z − 1)/2c erroneous
outcomes is O(d2 log n)+O(zd) = t(n, d, 1; 1]+O

(
z

d logn

)
·

t(n, d, 1; 1]. It is well known that t(n, d, 1; 1] = O(d2 log n)
is the achievable bound on the number of tests for the
noiseless setting (z = 1). The authors prove that we only need
O
(

z
d logn

)
· t(n, d, 1; 1] additional tests to handle up to b(z−

1)/2c erroneous outcomes instead of using z×t(n, d, 1; 1]. The
result for Theorem 4 shares this property. Since t(n, d, u; 1] is
the achievable number of tests for the noiseless setting in TGT,
we need only O

(
z
α

)
· t(n, d, u; 1] additional tests to handle up

to b(z− 1)/2c erroneous outcomes instead of z× t(n, d, u; 1]
as in Theorem 1.

B. Second result
With an addition constraint on z, an alternative version of

Theorem 4 can be derived to directly attain a better upper
bound on the number of tests compared with the upper bound
in Theorem 1.

Theorem 5. Let 2 ≤ u ≤ d < k = d+u ≤ n be integers with
(d+ u)2/u ≤ n. Set α = k ln en

k + u ln ek
u and β = 1− 2/α.

For any integer z ≥ 4/β2+1, there exists an h×n (n, d, u; z]-
disjunct matrix with

h(n, d, u; z]

=

⌊
2

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

=O

(
1

δ2
·
(
k

u

)u(
k

d

)d
· k ln

n

k

)

<t(n, d, u; z] = z

(
k

u

)u(
k

d

)d [
1 + k

(
1 + ln

(n
k

+ 1
))]

,

where 0 < δ ≤ β.

Proof: By using the same construction and arguments in
the proof in Theorem 4 until (10), if we set

h = h(n, d, u; z]

=

⌊
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

=

⌊
2

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

= O

(
1

δ2
·
(
k

u

)u(
k

d

)d
· k ln

n

k

)

= O

(
1

(1− δ)k ln n
k

· z
(
k

u

)u(
k

d

)d
· k ln

n

k

)
(18)

= O

(
1

(1− δ)k ln n
k

)
· t(n, d, u; z],

then g(p, h, u, d, n) < 1, where t(n, d, u; z] is defined in (2);
i.e., there exists an (n, d, u; z]-disjunct matrix of size h × n.
Equation (18) is obtained because

2(1− δ)
δ2

·
(
k ln

en

k
+ u ln

ek

u

)
≤ z = (1− δ)qh (19)

= (1− δ)q
(⌊

2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

)
= Θ

(
1− δ
δ2
· k ln

n

k

)
≤ 2(1− δ)

δ2
·
(
k ln

en

k
+ u ln

ek

u

)
+ 1. (20)

We next prove that h(n, d, u; z] < t(n, d, u; z] once 0 <
δ ≤ 1− 2

k ln en
k +u ln ek

u

. Indeed, we have

h(n, d, u; z]

=

⌊
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1, where

1

q
=

(
k

u

)u(
k

d

)d
≤ 2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
+ 1

<
2

δ2
· 1

q
· 2k ln

n

k
. (21)

This equation is attained because k ln en
k + u ln ek

u <
2k ln en

k as (d+ u)2/u ≤ n. On the other hand, we have

t(n, d, u; z]

=z · 1

q
·
[
1 + k

(
1 + ln

(n
k

+ 1
))]

>z · 1

q
· k ln

n

k

≥2(1− δ)
δ2

·
(
k ln

en

k
+ u ln

ek

u

)
· 1

q
· k ln

n

k
, (22)

which is derived from the condition in (19). Combining (22)
and (21), we always get h(n, d, u; z] < t(n, d, u; z] if

2

δ2
· 1

q
· 2k ln

n

k
≤2(1− δ)

δ2
·
(
k ln

en

k

+u ln
ek

u

)
· 1

q
· k ln

n

k

⇐⇒ δ ≤1− 2

k ln en
k + u ln ek

u

= β.

Since 0 < δ ≤ β = 1−2/α, the quantity 2(1−δ)/δ2 ·α goes
from 4/β2 to infinity. Moreover, from (19) and (20), we have
z ∈

[
2(1−δ)
δ2 · α, 2(1−δ)δ2 · α+ 1

]
, where α = k ln en

k + u ln ek
u .

Therefore, z can range from d4/β2e to +∞. In other words,
for any integer z ≥ 4/β2 + 1, we can find a corresponding δ
in the interval (0, β] such that z = (1− δ)qh.

10

V. IMPROVED NON-ADAPTIVE ALGORITHMS FOR
THRESHOLD GROUP TESTING WITH A GAP

Here we present a reduced exact upper bound on the number
of tests and a reduced asymptotic bound on the decoding
time for identifying defective items in a noisy setting on test
outcomes compared with the state-of-the-art work of Chen and
Fu [9].

A. First proposed algorithm

By using the construction of an (n, d − `, u; z]-disjunct
matrix described in Section IV, we can reduce the number
of tests for encoding and the decoding time for decoding in
TGT with a gap. From Chen and Fu’s work [9], if we use the
(n, d− `, u; z]-disjunct matrix described in Theorem 4 as the
input to Algorithm 1, the following theorem is derived:

Theorem 6. Let `, 0 < g, 2 ≤ u = ` + g + 1 ≤ d < k =
d − ` + u ≤ n be integers with (d + u)2/u ≤ n. Set α =
k ln en

k + u ln ek
u . Let z be a positive integer and S be the

defective set with |S| ≤ d. For an (n, d, `, u)-TGT model with
at most e = b(z − 1)/2c erroneous outcomes, there exists a
non-adaptive algorithm that successfully identifies some set
S′ with |S′ \ S| ≤ g and |S \ S′| ≤ g using no more than
h(n, d− `, u; z] tests, where h(n, d− `, u; z] is defined in (6).
Moreover, the decoding complexity is

O (h(n, d− `, u; z] × u
((

n

u

)
+(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
.

(23)

B. Second proposed algorithm

We can see that the complexity of the decoding algorithm
in the theorem above remains relatively high due to the second
operator in (23). To reduce the decoding complexity, one can
relax the conditions on |S′\S| but keep the same condition on
|S \S′|. In other words, we accept more false positives while
keeping the same condition on the maximum number of false
negatives.

The main idea is to reduce the redundancy of u-subsets
created by the (n, d− `, u; z]-disjunct matrix in Algorithm 1.
Since every u-subset X+ ⊆ S must be in F, the total number
of such X+ is

(|S|
u

)
. In fact, we need only up to ζ =

⌊
|S|
u

⌋
disjoint u-subsets X+s in F to form S if |S| is divisible by
u. Therefore, we can use a simple procedure, i.e., collect ζ
disjoint u-subsets in F, to form S. However, it is uncertain
whether each u-subset we collected is truly a u-subset of S
because it may contain only `+ 1 defective items. Moreover,
|S| may not be divisible by u. As a result, the set formed, says
S′, may not be identical to S. To remedy this drawback, we
propose adding one more step: add the remaining defective
items in S \ S′ into S′ until S′ is not extendible.

The above strategy is formalized in the following theorem
which is associated with Algorithm 2.

Theorem 7. Let `, 0 < g, 2 ≤ u = ` + g + 1 < d < k =
d − ` + u ≤ n be integers with e2(d + u)2/u ≤ n. Set α =

Algorithm 2 Decoding2(y,M): Decoding procedure for non-
adaptive (n, d, `, u)-TGT with up to e erroneous outcomes.
Input: Outcome vector y, an (n, d− `, u; z = 2e+1]-disjunct
matrix M.
Output: Set of defective items S′ s.t. |S′ \ S| ≤(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ S′| ≤ g.

1: Construct a family F such that a u-subset X ⊆ [n] is an
edge in F iff tM0 (X) ≤ e, where tM0 (X) is the number
of negative pools in which all columns in X appear when
using M as a measurement matrix.

2: We first want to establish increasing vertex-sets Si’s,
|S1| < |S2| . . . < |Sr|, such that Si+1 contains exactly
u items more than Si. As an initial S1, we select all u
vertices of an arbitrary edge. To find Si+1 for i ≥ 1,
we check all possible cases to attain some u-subset
Ai ∈ F \ {A1, . . . , Ai−1} such that |Si ∪ Ai| = |Si|+ u.
If Ai exists, then set Si+1 = Si ∪ Ai. This process is
continued until Sr is not extendible.

3: We then want to establish increasing vertex-sets Si’s,
|Sr+1| < |Sr+2| . . . < |Sm|, such that Si+1 contains at
least one defective item more than Si. To find Si+1 for
i ≥ r, we check all possible cases to attain some u-subset
Ai ∈ F\{A1, . . . , Ai−1} such that |Si∪Ai| ≥ |Si|+g+1.
If Ai exists, then set Si+1 = Si ∪ Ai. This process is
continued until Sm is not extendible. Output set S′ = Sm.

k ln en
k + u ln ek

u . Let z be a positive integer and S be the
defective set with |S| ≤ d. For an (n, d, `, u)-TGT model with
at most e = b(z − 1)/2c erroneous outcomes, there exists a
non-adaptive algorithm that successfully identifies some set
S′ with |S′ \ S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g ≤

(
d
`+1 + u− 1

)
g

and |S \ S′| ≤ g using no more than h(n, d − `, u; z] tests,
where h(n, d−`, u; z] is defined in (6). Moreover, the decoding
complexity is

O

(
h(n, d− `, u; z] · u

(
n

u

))
.

The proof of this theorem is divided into two parts: cor-
rectness and decoding complexity. However, we first present
visualizations that convey the essence of Algorithm 2.

1) Visualization: Steps 2 and 3 of Algorithm 2 are depicted
in Fig. 4 for n = 49, g = 7, u = 10, l = u−g−1 = 2, d = 17,
and |S| = 17. There are many u-subsets belonging to F, but
we depict only five of them here. Step 2 proceeds as shown
in the upper five images as follows. Subset S1, containing
10 defectives, selected as the initial subset. Scanning every
subset of F reveals that A1 is a subset such that |S1 ∪A1| =
|S1|+|A1| = 20. Set S2 = S1∪A1. The process continues until
Sr consists of 13 defectives and 7 negatives. Since there are
no u-subsets Ar’s in F\{A1, . . . , Ar−1} such that |Sr∪Ar| =
|Sr|+ |Ar|, Sr is not extendible.

Step 3 proceeds as shown in the lower four images.
Starting with subset Sr, we try to find a u-subset Ar’s in
F \ {A1, . . . , Ar−1} such that |Sr ∪ Ar| = |Sr| + g + 1.
If Ar exists, a new subset Sr+1 = Sr ∪ Ar is attained.

11

This process is repeated until there are no u-subsets Am’s
in F \ {A1, . . . , Am−1} such that |Sm ∪Am| ≥ |Sm|+ g+ 1.
In other words, Sm is not extendible. The algorithm terminates
and S′ = Sm is attained.

2) Correctness: To prove the correctness of Algorithm 2,
we first prove that after Step 1, for every u-subset X ∈ F, X
contains no more than g items not in S, i.e., |X ∩S| ≥ `+ 1.
Moreover, every u-subset X+ ⊆ S is in F. Since the proof is
identical to the proof of Lemma 4.1 in [9], we omit it here.

Since every u-subset X+ ⊆ S must be in F, there exists⌊
|S|
u

⌋
≤ ζ ≤

⌈
|S|
u

⌉
disjoint u-subsets X+

1 , . . . , X
+
ζ in F such

that |S \ ∪ζj=1X
+
j | ≤ u− 1.

In Step 2, if another disjoint u-subset A1 ∈ F (|S1∩A1| = 0)
is found, set S2 = S1∪A1. In general, to find Si+1 for i ≥ 1,
all possible cases are checked to attain some u-subset Ai ∈
F\{A1, . . . , Ai−1} such that |Si∪Ai| = |Si|+|Ai| = |Si|+u.
If Ai exists, i.e., Si is extendible, set Si+1 = Si ∪Ai. On the
other hand, if Sr is not extendible (Ai does not exist), we can
infer that |S \ Sr| ≤ u − 1. We assume that |S \ Sr| ≥ u.
Select Ar ⊆ S \ Sr with |Ar| = u. Since Ar ⊆ S \ Sr ∈ F
and |Ar ∩Sr| = 0, we get |Sr ∪Ar| = |Sr|+ |Ar| = |Sr|+u;
i.e., Sr is extendible. This contradicts the assumption.

There is a special case that if |S \ Sr| ≤ `, this process
stops. If |S \ Sr| ≤ `, for any Ar ∈ F \ {A1, . . . , Ar−1}, we
have |Ar ∩Sr| ≥ 1 because |Ar ∩S| ≥ `+1. Therefore, there
does not exist Ar ∈ F such that |Sr ∪Ar| = |Sr|+ u because
|Sr ∪Ar| = |Sr|+ |Ar|− |Sr ∩Ar| ≤ |Sr|+u−1 < |Sr|+u.

Because each Ai can contain exactly `+ 1 defectives in the
worst case, Step 2 can run up to

⌊
|S|
`+1

⌋
times.

We now consider Step 3. Subset Sm is not extendible iff
there does not exist a u-subset Am ∈ F \ {A1, . . . , Am−1}
such that |Sm ∪ Am| ≥ |Sm| + g + 1. We then must have
|S\Sm| ≤ g. Indeed, let us assume that |S\Sm| ≥ g+1. Select
C ⊆ S \ Sm with |S| = g + 1 and D ⊆ S \ C with |D| = `.
Such a pair C,D always exists because |S| ≥ u = g + 1 + `.
Set Am = C ∪ D. Therefore, |Sm ∪ Am| ≥ |Sm| + g + 1
and Am ∈ F. Hence, Sm is extendible, which contradicts the
assumption that Sm is not extendible.

We have |S \ Sr| ≤ u − 1 after running Step 2. It follows
that Step 3 runs at most (u − 1) times, i.e., m − r ≤ u − 1,
because Si adds at least one defective for each iteration of
Step 3.

In summary, Steps 2 and 3 run up to
⌊
|S|
`+1

⌋
and (u − 1)

times, respectively. Because the subset considered at each
iteration adds a u-subset having at least ` + 1 defectives and
up to g negatives, we have |S′ \S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g and

|S \ S′| ≤ g when the algorithm terminates.
3) Decoding complexity: Step 1 takes h(n, d−`, u; z]·u

(
n
u

)
time. Since every u-subset in F has at least ` + 1 defectives
and up to g = u − ` + 1 negatives, the maximum cardinality
of F is:

f =
u∑

i=`+1

(
|S|
i

)(
n− |S|
u− i

)
<

u∑
i=0

(
|S|
i

)(
n− |S|
u− i

)
=

(
n

u

)
.

Because |S′\S| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S\S′| ≤ g, we

have |S′| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g+d. Since we scan the family

F up to
⌊
|S|
`+1

⌋
+ (u−1) times in both Steps 2 and 3, |F| ≤ f ,

and |Si| ≤ |S′| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g + d, the complexity of

Algorithm 2 is:

h(n, d− `, u; z] · u
(
n

u

)
+

(⌊
|S|
`+ 1

⌋
+ u− 1

)((⌊
|S|
`+ 1

⌋
+ u− 1

)
g + d

)
× uf

=h(n, d− `, u; z] · u
(
n

u

)
+ us(gs+ d)f, (24)

where s =
⌊
|S|
`+1

⌋
+ (u − 1) ≤ d + u and k = d − ` + u =

d+ g + 1.
We have

us(gs+ d)f ≤ u(d+ u)(g(d+ u) + d)

(
n

u

)
< (d+ u)2(g + 1) · u

(
n

u

)
, (25)

and

h(n, d− `, u; z] · u
(
n

u

)
≥
(

1 +
d− `
u

)u(
1 +

u

d− `

)d−`
(d+ g + 1) ln

n

k
· u
(
n

u

)
≥4(g + 1)

(
1 +

d− `
u

)u(
1 +

u

d− `

)d−`
· u
(
n

u

)
, (26)

because h(n, d − `, u; z] ≥
(
1 + d−`

u

)u (
1 + u

d−`

)d−`
(d +

g + 1) ln n
k as in Theorem 4, d ≥ u ≥ g + 1 and ln n

k ≥ 2
(n ≥ e2(d + u)2/u > e2(d − ` + u)). We next consider the
following inequality:

(d+ u)2(g + 1) · u
(
n

u

)
≤4(g + 1)

(
1 +

d− `
u

)u
×
(

1 +
u

d− `

)d−`
· u
(
n

u

)
(27)

⇐⇒ d+ u ≤ 2

(
1 +

d− `
u

)u/2(
1 +

u

d− `

)(d−`)/2

For this inequality to hold, by using Bernoulli’s inequality,
it suffices that

d+ u ≤ 2

(
1 +

d− `
u
× u

2

)(
1 +

u

d− `
× d− `

2

)
≤ 2

(
1 +

d− `
u

)u/2(
1 +

u

d− `

)(d−`)/2

⇐⇒ d+ u ≤ (d− `+ 2)(u+ 2)

2

≤ du

2
+ (d+ u) + 2− `(u+ 2)

2
⇐⇒ `(u+ 2) ≤ du+ 4.

The last inequality always holds because `(u + 2) ≤
(u − 1)(u + 2) < u(u + 1) + 4 ≤ du + 4 for d ≥ u + 1.
Combining (25), (26), and (27), we get

us(gs+ d)f ≤ h(n, d− `, u; z] · u
(
n

u

)
,

12

𝑆1

𝑆𝑁

Initialize 𝑆1 Find 𝐴1 Create 𝑆2 Find 𝐴𝑟 Get 𝑆𝑟…
𝑆𝑁

𝑆1𝐴1 𝑆2 = 𝑆1 ∪ 𝐴1 𝑆𝑟∄𝐴𝑟 𝑆𝑟

…

𝑆𝑁 𝑆𝑁 𝑆𝑁

(a) Step 2

Find 𝐴𝑟 Create 𝑆𝑟+1 Find 𝐴𝑚 Set 𝑆′ = 𝑆𝑚…

𝑆𝑚∄𝐴𝑚 𝑆′ = 𝑆𝑚

…

𝐴𝑟𝑆𝑟

𝑆𝑁

𝑆𝑟+1 = 𝑆𝑟 ∪ 𝐴𝑟

𝑆𝑁 𝑆𝑁 𝑆𝑁

(b) Step 3

Fig. 4: Illustration of finding an approximate defective set S′ of defective set S such that |S′ \ S| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g and

|S \ S′| ≤ g with g = 7, u = 10, and ` = u− g − 1 = 2 for Algorithm 2.

for any d ≥ u + 1 and n ≥ e2(d + u)2/u > e2(d − ` + u).
Therefore, the decoding complexity of Algorithm 2 is up to

h(n, d− `, u; z] · 2u
(
n

u

)
.

4) Example for Algorithm 2: We demonstrate Algorithm 2
by the same settings used to demonstrate Algorithm 1 (Sec-
tion III-C): n = 6, d = 4, ` = 0, u = 2, g = u − ` − 1 =
1, z = 1, e = 0, and S = {1, 2, 4, 5}. Input vector x,
(n = 6, d − ` = 4, u = 2; z = 1]-disjunct matrix M,
and outcome vector y are as in (5). Note that the condition
e2(d + u)2/u ≤ n does not hold though Algorithm 2 still
works well for this example.

Algorithm 2 proceeds as follows. In Step 1, a
family F of 2-subsets X ⊆ [n] is constructed such
that tM0 (X) ≤ e = 0. From (5), we get F =
{{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5}, {5, 6}}.

In Step 2, an initial 2-subset S1 belonging to F is arbitrarily
chosen. Without loss of generality, set S1 = {1, 2}. The next
phase is to find a 2-subset A1 ∈ F such that |S1∪A1| = |S1|+
u = 2+2 = 4. By exhausted searching in F, one of candidates
is {3, 5}. Set A1 = {3, 5} and S2 = S1 ∪ A1 = {1, 2, 3, 5}.
Because there does not exist any A2 ∈ F \ {A1} such that

|S2 ∪ A2| = |S2| + 2, Step 2 stops here because S2 is not
extendible.

Since set S2 returned by Step 2 may not contain some of
the defective items when |S \ S2| > g, Step 3 exhaustively
searches for them in order to produce the final approximate
set S′, where |S \ S′| ≤ g. It searches for a 2-subset A2 in
F \ {A1} such that |S2 ∪A2| = |S2|+ g+ 1 = 3 + 1 + 1 = 5.
Luckily, such an A2 does not exist, S′ = S2 = {1, 2, 3, 5} is
output.

Note that the approximate defective set S′ is not identical to
S as it is in Section III-C. However, set S′ is indistinguishable
from S because |S \S′| = 1 = g ≤ g and |S′ \S| = 1 = g ≤
g [3].

C. Third proposed algorithm

Our main idea here is to combine Algorithms 1 and 2. It is
obvious that |S′ \ S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g in Theorem 7,

which is worse than the condition |S′ \ S| ≤ g in Theo-
rem 6. Theorem 7 can be improved to achieve the conditions
|S′ \ S| ≤ g and |S \ S′| ≤ 2g by using the outcome
of Algorithm 2 as the input of Algorithm 1. An extension
of Algorithm 2 is described in Algorithm 3. The decoding

13

complexity of the improved algorithm is higher than that in
Theorem 7 but lower than that in Theorem 6. The conditions
on |S′ \ S| and |S \ S′|, i.e., the number of false positives
and the number of false negatives, are respectively looser than
and equal to the corresponding ones in Theorem 7. On the
other hand, the conditions on |S′ \S| and |S \S′| are equal to
and tighter than the corresponding ones in Theorem 6. These
comparisons are summarized in Table I.

Algorithm 3 Decoding3(y,M): Decoding procedure for non-
adaptive (n, d, `, u)-TGT with up to e erroneous outcomes.
Input: Outcome vector y, a (d − `, u; z = 2e + 1]-disjunct
matrix M.
Output: Set of defective items S′ s.t. |S′ \ S| ≤ g and |S \
S′| ≤ 2g.

1: Set V = Decoding2(y,M).
2: Construct hypergraph H = (V,F) where a u-subset
X ⊆ V is an edge in F iff tM0 (X) ≤ e, where tM0 (X) is
the number of negative pools in which all columns in X
appear when using M as a measurement matrix.

3: We want to establish increasing vertex-sets Si’s, |S1| <
|S2| . . . < |Sm| such that hypergraph H is u-complete
with respect to each Si. As an initial S1, we can select
all u vertices of an arbitrary edge. To find Si+1 for i ≥ 1,
we check all possible cases to attain some (g + 1)-subset
Ai in V (H) \ Si and a g-subset Bi in Si such that H is
u-complete with respect to (Si ∪ A) \ B. If such a pair
Ai, Bi exists, set Si+1 = (Si ∪ Ai) \ Bi. This process is
continued until either Sm is not extendable or |Si| ≥ d.
Output the set S′ = Sm.

The set S′ attained from Algorithm 3 satisfies two prop-
erties: |S \ S′| ≤ 2g and |S′ \ S| ≤ g. This can be
interpreted to mean that the number of defective items in S′,
i.e., |S′ ∩ S| ≥ |S| − 2g, is at least |S| − 2g . We summarize
this result as follows.

Theorem 8. Let `, 0 < g, 2 ≤ u = ` + g + 1 < d <
k = d − ` + u ≤ n be integers with e2(d + u)2/u ≤ n.
Let z be a positive integer and S be the defective set with
|S| ≤ d. Set w =

(⌊
|S|
`+1

⌋
+ u− 1

)
g and w + d ≤ n.

For an (n, d, `, u)-TGT model with at most e = b(z − 1)/2c
erroneous outcomes, there exists a non-adaptive algorithm that
successfully identifies some set S′ with |S′ \ S| ≤ g and
|S \ S′| ≤ 2g using no more than h(n, d − `, u; z] tests,
where h(n, d−`, u; z] is defined in (6). Moreover, the decoding
complexity is

O

(
h(n, d− `, u; z] · u ·

((
n

u

)
+(d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

)))
. (28)

As with the previous one, the proof is divided into two parts:
correctness and decoding complexity.

1) Correctness: From Theorem 7, we get |V \ S| ≤(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ V | ≤ g. Set P = V ∩ S. We

always have |P | ≥ |S| − g because |S \ V | ≤ g.

Using the same argument as in the first paragraph of
Section V-B2, for any u-subset X ∈ F, we get |X∩S| ≥ `+1
and every u-subset X+ ⊆ P must be in F. Because V (H) is
u-complete with respect to S′ = Sm, we attain |S′ \ S| ≤ g.

We now show that |S \ S′| ≤ 2g once S′ = Sm is not
extendable or |Sm| ≥ d. Consider the case |S′| ≥ d. Since
|S \ S′| ≤ g, we get |S′ ∩ S| ≥ d − g. This indicates that
|S \ S′| ≤ g ≤ 2g because |S| ≤ d.

It is now adequate to show that if S′ is not extendable,
then |S \S′| ≤ 2g. To prove this property, it suffices to prove
|P \ S′| ≤ g. The property is then straightforwardly attained
because P ⊆ S and |P | ≥ |S| − g. Assume for the sake of
contradiction that |P \S′| > g. Set Am ⊆ P \S′ and |Am| =
g+ 1, and let Bm be any subset with S′ \P ⊆ Bm ⊂ S′ and
|Bm| = g. Subset Bm always exists because |S′ \ S| ≤ g and
the initial S′ has u > g elements. Therefore, (S′ ∪Am) \Bm
is contained in P . It follows that H is u-complete with respect
to (S′ ∪Am) \Bm. This contradicts the assumption that S′ is
not extendable.

In summary, |S \ S′| ≤ 2g and |S′ \ S| ≤ g are always
attained after running Algorithm 3.

2) Complexity: From Theorem 7, the complexity of Step 1
is h(n, d− `, u; z] · u

(
n
u

)
.

Because |V | ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g + d = w + d, the

complexity of Step 2 is uh(n, d− `, u; z]×
(|V |
u

)
≤ uh(n, d−

`, u; z]×
(
w+d
u

)
.

We can verify whether “H is u-complete with respect to
(Si ∪ Ai) \ Bi” if tM0 (Z) ≤ e for every u-subset Z ⊆ V .
Using an argument similar to the one described in the second
paragraph of Appendix, we get that the complexity of Step 3
is (d − u)

(
w+d−u
g+1

)(
d−1
g

)(
d
u

)
× uh(n, d − `, u; z]. The total

complexity of Algorithm 3 is then at most

h(n, d− `, u; z] · u
(
n

u

)
+ uh(n, d− `, u; z]×

(
w + d

u

)
+ (d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

)
× uh(n, d− `, u; z]

= h(n, d− `, u; z]

× u
((

n

u

)
+ (d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

))
(29)

= h(n, d− `, u; z]× u
((

n

u

)

+(d− u)

((⌊ |S|
`+1

⌋
+ u− 1

)
g + d− u

g + 1

)(
d− 1

g

)(
d

u

) .

Equation (29) is attained if we suppose that w + d =(⌊
|S|
`+1

⌋
+ u− 1

)
g + d ≤ u

(
d
`+1 + u− 1

)
+ d ≤ n. This

condition is practical because n is much larger than d.
3) Example for Algorithm 3: We demonstrate Algorithm 3

using the same settings as before: n = 6, d = 4, ` = 0, u =
2, g = u− `− 1 = 1, z = 1, e = 0 and S = {1, 2, 4, 5}. Input
vector x, (n = 6, d− ` = 4, u = 2; z = 1]-disjunct matrix M,
and outcome vector y are as in (5). Note that the conditions
e2(d+u)2/u ≤ n and w+d =

(⌊
|S|
`+1

⌋
+ u− 1

)
g+d ≤ n do

not hold though Algorithm 3 still works well for this example.

14

Algorithm 3 proceeds as follows. In Step 1, the set of
vertices V = {1, 2, 3, 5} is first obtained as described in
Section V-B4. Our task now is to construct a hypergraph
H = (V,F) using that set. Note that the original set of
vertices, [n] = [6] = {1, 2, 3, 4, 5, 6}, is here reduced to V .
Using the same procedure described in Section III-C, Step 2
searches for all 2-subsets X ⊆ V in order to form a set
of edges F such that tM0 (X) ≤ e = 0. From (5), we get
F = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 5}}.

Step 3 starts with an initial 2-subset S1 = {1, 2} and checks
all possible cases to obtain some 2-subset A1 in V \ S1 =
{3, 5}, which is {3, 5}, and a 1-subset B1 in S1, which is some
element of {{1}, {2}}, such that H is 2-complete with respect
to (S1 ∪ A1) \ B1. Since A1 = {3, 5} and B1 = {1} ensure
that the condition holds, set S2 = (S1 ∪A1) \B1 = {2, 3, 5}.
Next, a 2-subset A2 ⊆ V \ S2 = {1} and a 1-subset B2 ⊆ S2

are chosen. Since |V \ S2| = 1 < 2 = u, there does not exist
such an A2; i.e., S2 is not extendible. Step 3 thus stops and
outputs S′ = S2 = {2, 3, 5}.

In this example, approximate defective set S′ satisfies the
two conditions |S′ \ S| ≤ g and |S \ S′| ≤ 2g in Theorem 8
because |S′\S| = |{3}| = 1 = g ≤ g and |S\S′| = |{1, 4}| =
2 = 2g ≤ 2g.

VI. SIMULATION

We visualized (upper bounds on) the number of tests for
threshold group testing with a gap using five parameters
n, d, u, `, and z using simulation. For each fixed z, we de-
rived δ in Theorem 4 accordingly. Since the number of tests
with Cheraghchi’s scheme and Ahlswede et al.’s scheme is
asymptotic while the number of tests with other works is exact,
we consider only the other works, which are our proposed
theorems, Chen et al.’s scheme, and Chen and Fu’s scheme.

Since the number of test with Chen and Fu’s scheme is
equal to the one with Chen et al.’s scheme, we only consider
Chen et al.’s scheme here. Similarly, since the numbers of tests
with the four proposed theorems (Theorems 4, 6, 7, 8) are
identical, we only consider the number of tests in Theorem 4.
The two schemes are visualized in Figures 5–6. The red and
green lines represent for Theorem 4 and Chen et al.’s scheme,
respectively.

Since Chan et al. [8] and Reisizadeh et al. [25] used a model
for the test outcome when the number of defectives in a test
fell between ` and u, we do not show the number of tests
for their work here. The numbers of tests for Theorem 4 and
Chen et al.’s scheme are plotted in the figures as log10 t versus
log10 n for various settings of n, d, u, `, and z, where t is the
number of tests.

Parameter z was set to {3, 11, 101} corresponding to error
tolerance e = {1, 5, 50}. The number of items n and the max-
imum number of defectives d were respectively set to {106 =
1M, 108 = 10M, 109 = 1B, 1010 = 10B, 1011 = 100B}
and {20, 100, 1000}. Finally, upper threshold u and lower
threshold ` were respectively set to 0.2d and 0.5u = 0.1d.

As shown in Fig. 5 for d = 20 and Fig. 6 for d = 100
and d = 1000, the number of tests with Theorem 4 was the
smallest for all settings compared to Chen et al.’s scheme.

Number of items in logarithm in base 10 (log10 n)

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11N
u
m
b
er

o
f
te
st
s
in

lo
g
a
ri
th
m

in
b
a
se

1
0
(l
o
g
1
0
t
)

7

7.5

8

8.5

9

9.5

Chen et al. for z = 3
Theorem 4 for z = 3
Chen et al. for z = 11
Theorem 4 for z = 11
Chen et al. for z = 101
Theorem 4 for z = 101

Fig. 5: Upper bounds on the number of tests versus number of
items in logarithm in base 10 for d = 20, z = {3, 11, 101}, and
n = {106 = 1M, 108 = 10M, 109 = 1B, 1010 = 10B, 1011 =
100B} for Chen et al.’s scheme and Theorem 4.

Number of items in logarithm in base 10 (log10 n)
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11N

u
m
b
er

o
f
te
st
s
in

lo
g
a
ri
th
m

in
b
a
se

1
0
(l
o
g
10
t
)

26

26.5

27

27.5

28

28.5

Chen et al. for z = 3
Theorem 4 for z = 3
Chen et al. for z = 11
Theorem 4 for z = 11
Chen et al. for z = 101
Theorem 4 for z = 101

(a) d = 100.

Number of items in logarithm in base 10 (log10 n)

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

N
u
m
b
er

o
f
te
st
s
in

lo
g
a
ri
th
m

in
b
a
se

1
0
(l
o
g
10
t
)

230.5

231

231.5

232

232.5

233

Chen et al. for z = 3
Theorem 4 for z = 3
Chen et al. for z = 11
Theorem 4 for z = 11
Chen et al. for z = 101
Theorem 4 for z = 101

(b) d = 1000.

Fig. 6: Upper bounds on the number of tests versus number
of items in logarithm in base 10 for d = {100, 1000},
z = {3, 11, 101}, and n = {106 = 1M, 108 = 10M, 109 =
1B, 1010 = 10B, 1011 = 100B} for Chen et al.’s scheme and
Theorem 4.

More importantly, the number was smaller than the number
of items (except for n = 106) while those with the other
schemes were mostly larger than the number of items.

When d = 20 (Fig. 5), for a small z, the number of
tests with Chen et al.’s scheme was relatively close to ours.
However, as z increased, the number of tests with Chen et al.’s
scheme quickly diverged from that with Theorem 4.

In summary, the results of simulation match those of our

15

analysis in Section IV-A: the upper bound on the number of
tests in Theorem 4 is always smaller than the one in Theorem 1
for any positive z.

VII. CONCLUSION

In this paper, we have presented a novel construction
scheme for disjunct matrices that is better than the construction
proposed by Chen et al. [4]. For threshold group testing,
Cheraghchi gave a hint that the number of tests can be
asymptotically to O(d2+g log(n/d) · cu), which is essentially
optimal, where cu = (8u)u. Therefore, it is an interesting
question that whether we can reduce the magnitude of the
constant cu and have a decoding algorithm associated with
that number of tests.

We next presented a more accurate theorem for Chen and
Fu’s scheme [9], three proposed algorithms on improving
non-adaptive encoding and decoding algorithms for threshold
group testing as well as simulation for verifying our arguments
throughout this work.

APPENDIX

We use the full expression for (3) instead of removing
(d− u)

(
n−u
g+1

)(
d
g

)(
d
u

)
as done by Chen and Fu [9]. Their inac-

curate analysis in the complexity of Step 2 led to inaccurate
decoding complexity in Algorithm 1. They presumed that
(d−u)

(
n−u
g+1

)(
d
g

)(
d
u

)
can be reduced to O(ng+1), and therefore

is smaller than
(
n
u

)
= O(nu).

We first analyze the complexity of Step 2. Let α be the
cardinality of Si. We always have u ≤ |Si| ≤ d−1 for i < m.
The time costs of finding all possible subsets Ai and Bi are(
n−α
g+1

)
and

(
α
g

)
, respectively. One can verify whether “H is

u-complete with respect to (Si ∪Ai) \Bi” if tM0 (Z) ≤ e for
every u-subset Z ⊆ V . The complexity of the verification is(
α+1
u

)
×u×t(n, d−`, u; z]. Chen and Fu claimed that this cost

is
(
α+1
u

)
≤
(
d
u

)
, which is simply equivalent to the complexity

of counting all possibilities of u-subsets in (Si ∪ Ai) \ Bi.
This claim is inaccurate. Since Step 2 is repeated up to d−u
times, the complexity of executing this step is

(d− u)

(
n− α
g + 1

)(
α

g

)(
α+ 1

u

)
u× t(n, d− `, u; z]

= O

(
u(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
t(n, d− `, u; z]

)
.

We next prove that the quantity (d−u)
(
n−u
g+1

)(
d−1
g

)(
d
u

)
in (3)

should not be removed because it is not always smaller than(
n
u

)
. Let us consider the case in which u ≥ 2, d = 2u, and

u = g + 1, i.e., ` = 0. We have:

(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
= u

(
n− u
u

)(
2u− 1

u− 1

)(
2u

u

)
= u · (n− u)(n− u− 1) . . . (n− u− (u− 1))

u!

· u

2u(2u− u+ 2)

(
2u

u

)
·
(

2u

u

)

>
(n− 2u+ 1)u

u!
· u

2(u+ 2)

(
2u

u

)2

>
(n− 2u+ 1)u

u!
· u

2(u+ 2)

(
1.08444

2e1/(8u)
√
u
· 22u

)2

, (30)

>
(n− 2u+ 1)u

u!
· 1

2(u+ 2)
·
(

1.08444

2e1/(8×2)

)2

· 16u

>
(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u,

and (
n

u

)
=
n(n− 1) . . . (n− (u− 1))

u!
<
nu

u!
,

where (30) is attained by using the inequality
(
mu
u

)
>

1.08444e−1/(8u)u−1/2 mm(u−1)+1

(m−1)(m−1)(u−1) for integers m > 1
and u ≥ 2 (Corollary 2.9 in [31]). Consider the following
inequality:

(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u ≥ nu

u!

⇐⇒ 1− 1

16
· (7(u+ 2))

1/u ≥ 2u− 1

n
. (31)

Since (7(u+ 2))
1/u is a decreasing function of u and u ≥ 2,

for (31) to hold, it suffices that

1− 1

16
· (7(u+ 2))

1/u ≥ 1−
√

28

16
≥ 2u− 1

n

⇐⇒ n ≥ 8(2u− 1)

8−
√

7
.

Therefore, when d = 2u, u = g + 1 ≥ 2, and n ≥ 8(2u−1)
8−
√
7

,
we always have the following inequality

(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
>

(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u

≥ nu

u!
>

(
n

u

)
.

In summary, the complexity in (3) is inaccurate.

ACKNOWLEDGMENT

The authors thank Jonathan Scarlett at the National Univer-
sity of Singapore for his constructive and insightful comments
on an early version of this paper. We also thank Roghayyeh
Haghvirdinezhad for her comments on Fig. 2. The authors
would like to thank the anonymous reviewers for their invalu-
able comments on an earlier draft of this work.

REFERENCES

[1] T. V. Bui, M. Cheraghchi, and I. Echizen, “Improved non-adaptive
algorithms for threshold group testing with a gap,” in Proc. IEEE In-
ternational Symposium on Information Theory, ISIT 2020, Los Angeles,
CA, USA, June 21-26, 2020, pp. 1414–1419, IEEE, 2020.

[2] R. Dorfman, “The detection of defective members of large populations,”
The Annals of Mathematical Statistics, vol. 14, no. 4, pp. 436–440, 1943.

[3] P. Damaschke, “Threshold group testing,” in General Theory of Infor-
mation Transfer and Combinatorics (R. Ahlswede, L. Bäumer, N. Cai,
H. K. Aydinian, V. M. Blinovsky, C. Deppe, and H. Mashurian, eds.),
vol. 4123 of Lecture Notes in Computer Science, pp. 707–718, Springer,
Berlin, Heidelberg, 2006.

[4] H. Chen, H. Fu, and F. K. Hwang, “An upper bound of the number of
tests in pooling designs for the error-tolerant complex model,” Optim.
Lett., vol. 2, no. 3, pp. 425–431, 2008.

16

[5] T. V. Bui, M. Kuribayashi, M. Cheraghchi, and I. Echizen, “A framework
for generalized group testing with inhibitors and its potential application
in neuroscience,” arXiv preprint arXiv:1810.01086, 2018.

[6] M. Cheraghchi, “Improved constructions for non-adaptive threshold
group testing,” Algorithmica, vol. 67, no. 3, pp. 384–417, 2013.

[7] G. D. Marco, T. Jurdzinski, D. R. Kowalski, M. Rózanski, and G. Sta-
chowiak, “Subquadratic non-adaptive threshold group testing,” J. Com-
put. Syst. Sci., vol. 111, pp. 42–56, 2020.

[8] C. L. Chan, S. Cai, M. Bakshi, S. Jaggi, and V. Saligrama, “Stochastic
threshold group testing,” in Proc. IEEE Information Theory Workshop,
ITW 2013, Sevilla, Spain, September 9-13, 2013, pp. 1–5, IEEE, 2013.

[9] H. Chen and H. Fu, “Nonadaptive algorithms for threshold group
testing,” Discret. Appl. Math., vol. 157, no. 7, pp. 1581–1585, 2009.

[10] A. G. D’yachkov, V. V. Rykov, C. Deppe, and V. S. Lebedev, “Su-
perimposed codes and threshold group testing,” in Information Theory,
Combinatorics, and Search Theory - In Memory of Rudolf Ahlswede
(H. K. Aydinian, F. Cicalese, and C. Deppe, eds.), vol. 7777 of Lecture
Notes in Computer Science, pp. 509–533, Springer, Berlin, Heidelberg,
2013.

[11] T. V. Bui, M. Kuribayashi, M. Cheraghchi, and I. Echizen, “Efficiently
decodable non-adaptive threshold group testing,” IEEE Trans. Inf. The-
ory, vol. 65, no. 9, pp. 5519–5528, 2019.

[12] D. Du, F. K. Hwang, and F. Hwang, Combinatorial group testing and
its applications, vol. 12. Singapore: World Scientific, 2000.

[13] A. G. D’yachkov, N. Polyanskii, V. Y. Shchukin, and I. Vorobyev,
“Separable codes for the symmetric multiple-access channel,” IEEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3738–3750, 2019.

[14] N. Shental, S. Levy, V. Wuvshet, S. Skorniakov, B. Shalem, A. Ot-
tolenghi, Y. Greenshpan, R. Steinberg, A. Edri, R. Gillis, et al., “Efficient
high-throughput sars-cov-2 testing to detect asymptomatic carriers,”
Science advances, vol. 6, no. 37, p. eabc5961, 2020.

[15] R. Gabrys, S. Pattabiraman, V. Rana, J. Ribeiro, M. Cheraghchi, V. Gu-
ruswami, and O. Milenkovic, “Ac-dc: Amplification curve diagnostics
for covid-19 group testing,” arXiv preprint arXiv:2011.05223, 2020.

[16] E. Porat and A. Rothschild, “Explicit nonadaptive combinatorial group
testing schemes,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7982–
7989, 2011.

[17] P. Indyk, H. Q. Ngo, and A. Rudra, “Efficiently decodable non-adaptive
group testing,” in Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010 (M. Charikar, ed.), pp. 1126–1142, SIAM, 2010.

[18] H. Q. Ngo, E. Porat, and A. Rudra, “Efficiently decodable error-
correcting list disjunct matrices and applications - (extended abstract),”
in Automata, Languages and Programming - 38th International Collo-
quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I (L. Aceto, M. Henzinger, and J. Sgall, eds.), vol. 6755 of Lecture
Notes in Computer Science, pp. 557–568, Springer, Berlin, Heidelberg,
2011.

[19] M. Cheraghchi, “Noise-resilient group testing: Limitations and construc-
tions,” Discret. Appl. Math., vol. 161, no. 1-2, pp. 81–95, 2013.

[20] T. V. Bui, M. Kuribayashi, T. Kojima, R. Haghvirdinezhad, and
I. Echizen, “Efficient (nonrandom) construction and decoding for non-
adaptive group testing,” J. Inf. Process., vol. 27, pp. 245–256, 2019.

[21] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi, “Efficient algorithms
for noisy group testing,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 2113–2136, 2017.

[22] S. Bondorf, B. Chen, J. Scarlett, H. Yu, and Y. Zhao, “Sublinear-time
non-adaptive group testing with o(k log n) tests via bit-mixing coding,”
IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1559–1570, 2021.

[23] M. Aldridge, O. Johnson, and J. Scarlett, “Group testing: An information
theory perspective,” Found. Trends Commun. Inf. Theory, vol. 15, no. 3-
4, pp. 196–392, 2019.

[24] R. Ahlswede, C. Deppe, and V. S. Lebedev, “Bounds for threshold
and majority group testing,” in Proc. IEEE International Symposium on
Information Theory Proceedings, ISIT 2011, St. Petersburg, Russia, July
31 - August 5, 2011 (A. Kuleshov, V. M. Blinovsky, and A. Ephremides,
eds.), pp. 69–73, IEEE, 2011.

[25] A. Reisizadeh, P. Abdalla, and R. Pedarsani, “Sub-linear time stochastic
threshold group testing via sparse-graph codes,” in Proc. IEEE Informa-
tion Theory Workshop, ITW 2018, Guangzhou, China, November 25-29,
2018, pp. 1–5, IEEE, 2018.

[26] A. Emad and O. Milenkovic, “Semiquantitative group testing,” IEEE
Trans. Inf. Theory, vol. 60, no. 8, pp. 4614–4636, 2014.

[27] H. Abasi, N. H. Bshouty, and H. Mazzawi, “Non-adaptive learning of a
hidden hypergraph,” Theor. Comput. Sci., vol. 716, pp. 15–27, 2018.

[28] D. R. Stinson and R. Wei, “Generalized cover-free families,” Discret.
Math., vol. 279, no. 1-3, pp. 463–477, 2004.

[29] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed
codes,” IEEE Trans. Inf. Theory, vol. 10, no. 4, pp. 363–377, 1964.

[30] A. G. D’yachkov, P. A. Vilenkin, D. C. Torney, and A. J. Macula,
“Families of finite sets in which no intersection of sets is covered by the
union of s others,” J. Comb. Theory, Ser. A, vol. 99, no. 2, pp. 195–218,
2002.

[31] P. Stanica, “Good lower and upper bounds on binomial coefficients,”
Journal of Inequalities in Pure and Applied Mathematics, vol. 2, no. 3,
p. 30, 2001.

Thach V. Bui received the B.Sc. degree in computer science of the honor
program from the Faculty of Information Technology, University of Science,
VNU-HCM, Vietnam, in 2012 and the Ph.D. degree in informatics from The
Graduate University of Advanced Studies (SOKENDAI), Kanagawa, Japan
affiliated with the National Institute of Informatics, Tokyo, Japan, in 2019.
He started his first postdoc as a postdoctoral researcher at the University of
Padova, Italy (2019-2020) working in computational biology. He is currently
a research fellow at the National University of Singapore, Singapore. His
research interest includes group testing, computational biology, information
theory, and neuroscience.

Mahdi Cheraghchi (S’05–M’10–SM’16) is an Assistant Professor of Com-
puter Science and Engineering at the University of Michigan–Ann Arbor. He
has been on the faculty of Imperial College London from 2015 to 2019, where
he maintains an honorary appointment. After completing his Ph.D. degree,
he was affiliated as a post-doctoral researcher with the University of Texas
at Austin (2010-11), Carnegie Mellon University (2011-13), MIT (2013-14),
and the University of California, Berkeley (2015). He obtained his M.Sc. and
Ph.D. degrees in computer science from Ecole Polytechnique Fédérale de
Lausanne (EPFL), in 2005 and 2010, respectively, and the B.Sc. degree in
computer engineering from Sharif University of Technology in 2004.

Dr. Cheraghchi is broadly interested in theoretical computer science, and
his research so far has mainly focused on the interconnections between
information and coding theory and theoretical computer science, sparse
recovery and high-dimensional geometry, information-theoretic privacy and
security, and approximation algorithms.

Isao Echizen received B.S., M.S., and D.E. degrees from the Tokyo Institute
of Technology, Japan, in 1995, 1997, and 2003, respectively. He joined
Hitachi, Ltd. in 1997 and until 2007 was a research engineer in the company’s
systems development laboratory. He is currently a director and a professor
of the Information and Society Research Division, the National Institute of
Informatics (NII), a director of the Global Research Center for Synthetic
Media, the NII, and a professor in the Department of Information and
Communication Engineering, Graduate School of Information Science and
Technology, The University of Tokyo, Japan. He was a visiting professor at
the Tsuda University, Japan, at the University of Freiburg, Germany, and at
the University of Halle-Wittenberg, Germany.

He is currently engaged in research on multimedia security and multimedia
forensics. He currently serves as a research director in CREST FakeMedia
project, Japan Science and Technology Agency (JST). He received the Best
Paper Award from the IPSJ in 2005 and 2014, the Fujio Frontier Award
and the Image Electronics Technology Award in 2010, the One of the Best
Papers Award from the Information Security and Privacy Conference in 2011,
the IPSJ Nagao Special Researcher Award in 2011, the DOCOMO Mobile
Science Award in 2014, the Information Security Cultural Award in 2016,
and the IEEE Workshop on Information Forensics and Security Best Paper
Award in 2017. He was a member of the Information Forensics and Security
Technical Committee and the IEEE Signal Processing Society. He is the
Japanese representative on IFIP TC11 (Security and Privacy Protection in
Information Processing Systems), a member-at-large of board-of-governors
of APSIPA, and an editorial board member of the IEEE Transactions on
Dependable and Secure Computing and the EURASIP Journal on Image and
Video processing.

17

	Introduction
	Contributions
	Comparison
	Number of tests
	Decoding time

	Preliminaries
	Notations
	Problem definition
	Disjunct matrices

	Review and analysis of Chen and Fu's work
	Preliminaries
	Main idea
	Example for Algorithm 1

	Improved upper bounds on the number of tests for disjunct matrix
	First result
	Second result

	Improved non-adaptive algorithms for threshold group testing with a gap
	First proposed algorithm
	Second proposed algorithm
	Visualization
	Correctness
	Decoding complexity
	Example for Algorithm 2

	Third proposed algorithm
	Correctness
	Complexity
	Example for Algorithm 3

	Simulation
	Conclusion
	Appendix
	References
	Biographies
	Thach V. Bui
	Mahdi Cheraghchi
	Isao Echizen

