
Non-Asymptotic Capacity Upper Bounds for the
Discrete-Time Poisson Channel with

Positive Dark Current
Mahdi Cheraghchi and João Ribeiro

Abstract—We derive improved and easily computable upper
bounds on the capacity of the discrete-time Poisson channel
under an average-power constraint and an arbitrary constant
dark current term. This is accomplished by combining a gen-
eral convex duality framework with a modified version of the
digamma distribution considered in previous work of the authors.

Index Terms—Optical communication, Discrete-time Poisson
channel, Channel capacity, Dark current.

I. INTRODUCTION

We consider a well-studied model of direct detection optical
communication systems restricted to piecewise constant pulse-
amplitude modulation (PAM) transmission techniques [1]. The
transmitter is equipped with a photon-emitting source whose
time-dependent piecewise constant intensity X(t) can be mod-
ulated, and the receiver records the arrival times of photons,
which follows a Poisson process with rate X(t) + λ where
λ ≥ 0 is a dark current parameter modelling background
interference. With practicality in mind, we are interested in
determining the optimal transmission rate of this channel under
average- and/or peak-power constraints on the input. As shown
by Shamai [1], this is equivalent to determining the constrained
capacity of the Discrete-Time Poisson (DTP) channel with dark
current λ ≥ 0, a memoryless channel which on input x ∈ R+

0

outputs Yx following a Poisson distribution with mean λ+ x,
which we denote by Poiλ+x. Namely, it holds that

Yx(y) = Poiλ+x(y) = e−(λ+x) (λ+ x)y

y!
, y = 0, 1, 2, . . . ,

where Yx(y) denotes the probability that the output of the
DTP channel on input x equals y. We are thus interested in
the capacity of the DTP channel with dark current λ under an
average- and/or peak-power constraint, given by

C(λ, µ,A) = sup
X:E[X]≤µ,0≤X≤A

I(X;YX),

where YX denotes the output distribution of the DTP channel
with dark current λ and input distribution X , and the supre-
mum is taken over all distributions X supported on the non-
negative real numbers and satisfying the given constraints.
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Throughout this work, we measure capacity in nats/channel
use. For simplicity, when A =∞, we denote the correspond-
ing capacity of the DTP channel by C(λ, µ), and furthermore
when λ = 0 we denote the corresponding capacity of the DTP
channel by C(µ). For every λ, µ, and A, we have the chain
of inequalities C(µ) ≥ C(λ, µ) ≥ C(λ, µ,A).

Remarkably, although the capacity of the Poisson channel
without the restriction to PAM has been known for several
decades [2], the exact value of C(λ, µ,A) remains unknown
for any non-trivial choice of parameters, and we only have
some upper and lower bounds on this quantity along with some
asymptotic results. We discuss these in detail in Section I-A.
Notably, whenever the average-power constraint µ is neither
very small nor very large, and whenever the dark current λ is
not very large compared to µ, the best known analytical upper
bound on C(λ, µ) is actually an upper bound on C(µ).

A. Previous Work

Most previous work has focused on asymptotic settings
where µ → 0 or µ → ∞, although there exist some capacity
bounds applicable to non-asymptotic settings.

Brady and Verdú [3] were the first to study the asymptotic
capacity of the DTP channel when µ → ∞. They derived
bounds on C(λ, µ) when µ → ∞ and the ratio µ/λ stays
constant. A characterization of the asymptotic behavior of
C(λ, µ) when µ → ∞ and λ is constant was later obtained
by Martinez [4] and Lapidoth and Moser [5]. Overall, the best
upper bound on C(µ) for any µ outside the asymptotic regime
µ → 0 was obtained by the authors in [6], improving on a
previous upper bound of Martinez [4], and is given by

C(µ) ≤ µ ln

(
1 +

(
1 + e1+γ

)
µ+ 2µ2

e1+γµ+ 2µ2

)

+ ln

1 +
1√
2e

√1 + (1 + e1+γ)µ+ 2µ2

1 + µ
− 1


, (1)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.
The setting where µ→ 0 was first considered by Lapidoth,

Shapiro, Venkatesan, and Wang [7], who determined the first
order behavior of C(λ, µ,A) in this setting. In order to derive
their results, the authors [7, Expression (114)] derive an
explicit non-asymptotic upper bound on C(λ, µ) given by

C(λ, µ) ≤ F1(λ, µ) + F2(λ, µ) + F3(λ, µ) (2)



with F1, F2, and F3 defined as

F1(λ, µ) =

(
η ln η +

1

12η
+

1

2
ln(2πη) + λ

− η lnλ− ln(1− p)
)
e
η+η lnλ−η ln η+ µ

η−√η−λ ,

F2(λ, µ) = max

(
0,
(
1 + ln(1/p) + lnλ

)
·(

µ+
λµ

η −√η − λ
+ λeη−1−λ+(η−1) lnλ−(η−1) ln(η−1)

))
,

and

F3(λ, µ) = µ

(
1 +

λ

η − λ

)
max

(
0, ln(1/λ)

)
+µ

η ln(η/λ)

η − λ
,

where η is a free parameter that must be larger than some
non-explicit constant Cλ > 0 depending on λ, and p ∈ (0, 1)
is a free parameter. By inspection of [7, Section IV-B], it must
at the very least be the case that η−√η > λ for the bound to
hold. Therefore, the upper bound in (2) is always significantly
larger than

µ(1 + max(0, 1 + lnλ) + max(0, ln(1/λ))). (3)

We will use this conservative underestimate of (2) when
comparing the different bounds in Section III. Later, Wang
and Wornell [8] determined the second-order asymptotics of
the capacity of the DTP channel under an average-power
constraint µ with dark current λ = cµ for an arbitrary constant
c ≥ 0.

The best capacity lower bounds on C(µ) and C(λ, µ)
were obtained by Martinez [4], [9] and Cao, Hranilovic, and
Chen [10], respectively, by considering the rate achievable by
a gamma input distribution with arbitrary shape v for the DTP
channel. We will compare our improved capacity upper bounds
with the lower bound from [10, Expression (8)] in Section III.1

B. Notation

We denote random variables by uppercase letters such as X ,
Y , and Z. For a discrete random variable X , we denote by
X(x) the probability that X equals x, and the expected value
of X is denoted by E[X]. Moreover, we denote the Shannon
entropy of a discrete random variable X by H(X) and the
Kullback-Leibler divergence between two discrete random
variables X and Y by DKL(X‖Y ). The natural logarithm is
denoted by ln, and we measure capacity in nats/channel use.

II. THE MAIN RESULT

In this paper, we prove the following theorem, which yields
a significantly improved non-asymptotic upper bound on the
capacity of the DTP channel with constant dark current λ and
average-power constraint µ in non-asymptotic regimes of µ.

1It should be noted that the formula in [10, Expression (8)] has a typo: In
their notation, the first v log(ε+ λ) term should instead read v log(ε+ v).

Theorem 1: For every µ, λ ≥ 0 we have

C(λ, µ) ≤ ln

δλ +
1√
2e

(
1√

1− qλ,µ
− 1

)
− (µ+ λ) ln qλ,µ, (4)

with δλ = exp(−λeλE1(λ)), where E1(z) =
∫∞

1
e−zt

t dt is
the exponential integral function (with the convention that
0E1(0) = 0), and qλ,µ defined as

qλ,µ = 1− 1

1 + e1+γ(µ+ λ) + 2−e1+γ
1+µ+λ (µ+ λ)2

,

where γ ≈ 0.5772 is the Euler-Mascheroni constant.
Remark 1: Although the upper bound from Theorem 1

does not have a closed-form expression since it features the
exponential integral function (which is nevertheless easy to
compute numerically), we can derive a good closed-form and
elementary upper bound on C(λ, µ) by noting that [11, Section
5.1.20] and [12, Theorem 2] give the lower bound

eλE1(λ) ≥ max

(
1

2
ln(1 + 2/λ),−eλ ln

(
1− e−λe

γ
))

for all λ > 0, and thus

δλ ≤ min
(

(1 + 2/λ)−λ/2, (1− e−λe
γ

)λe
λ
)
. (5)

When λ is small, this elementary upper bound sharply ap-
proaches the upper bound from Theorem 1, and overall it
improves on previously known bounds whenever µ is not small
compared to λ.

As with most previous capacity upper bounds for the DTP
channel, we derive Theorem 1 with the help of a general con-
vex duality framework, which we state below in a specialized
form for the DTP channel. This framework was originally
derived in [13] and has also been used to derive the state-
of-the-art upper bound on C(µ) [6]. As discussed in [6], it is
equivalent to other existing frameworks (e.g., see [14], [4]).

Lemma 1 ([13], [6]): Suppose that there exist constants a ∈
R+

0 , b ∈ R, and a distribution Y supported on {0, 1, 2, . . . }
such that

DKL(Poiz‖Y ) ≤ az + b (6)

for all z ≥ λ. Then, we have

C(λ, µ) ≤ a(µ+ λ) + b

for all λ, µ ≥ 0.
An important quantity related to Lemma 1 is the KL-

gap of the distribution Y with respect to the line az + b,
which quantifies the sharpness with which the constraint (6)
is satisfied, and is defined as

∆(z) = az + b−DKL(Poiz‖Y ).

Previous applications of Lemma 1 [13], [6], [15] suggest
that designing candidate distributions Y with overall smaller
associated KL-gap leads to sharper capacity upper bounds.
Although there is no known rigorous link between these two
properties, we find this to be an effective design principle and
we follow it in this work as well.



A. The Modified Digamma Distribution

The upper bounds presented are obtained by modifying the
family of digamma distributions Y (q) studied in [13], [6] with
q ∈ (0, 1), whose probability mass function satisfies

Y (q)(y) = y0q
y e

g(y)−y

y!
, y = 0, 1, 2, . . . ,

where g(0) = 0 and g(y) = yψ(y) otherwise, with ψ(·)
denoting the digamma function (which for integer y > 0
satisfies ψ(y) = −γ+

∑y−1
i=1 1/i [11, Section 6.3.2]), and y0 is

the normalizing factor. Using well-known properties of some
special functions, it is possible to compute DKL(Poiz‖Y (q))
exactly [13], [6], yielding

DKL(Poiz‖Y (q)) = − ln y0 − z ln q − zE1(z)

for all z ≥ 0 and q ∈ (0, 1), where we recall E1(·) is
the exponential integral (with the convention that 0E1(0) =
0). Therefore, every digamma distribution Y (q) has KL-gap
∆(z) = zE1(z).

Our modification consists in changing the value of the
digamma distribution Y (q) at y = 0 as a function of the dark
current λ and renormalizing the distribution. The motivation
behind this is that a careful choice of this function leads to a
significantly smaller KL-gap overall. Based on the discussion
above, we expect that this will lead to improved, easy-to-
compute capacity upper bounds, which we show is the case.
More precisely, for δ ∈ (0, 1] and q ∈ (0, 1) we consider the
modified digamma distribution Y (q)

δ defined as

Y
(q)
δ (y) =

{
αδ, if y = 0,
αY (q)(y)/y0, if y > 0,

where α is the new normalizing factor satisfying 1/α =
1/y0 + δ− 1, where we have used the fact that Y (q)(0) = y0.
An analogous approach was used by the authors in [15] to
derive improved capacity upper bounds on channels with syn-
chronization errors. Moreover, we note that a related approach
was employed by Martinez [4] in the special case where
λ = 0 to improve the upper bound given by his candidate
distribution, which originally had KL-gap bounded well away
from 0 everywhere. However, no rigorous proof is given in [4]
to show that this approach indeed works in that special case,
with only numerical evidence being presented.

We begin by computing DKL(Poiz‖Y (q)
δ ) for q ∈ (0, 1) and

δ ∈ (0, 1], which has a simple expression in terms of the
original KL-gap ∆(z) = zE1(z) of the digamma distribution
Y (q). We have

DKL(Poiz‖Y (q)
δ ) = −H(Poiz)−

∞∑
y=0

Poiz(y) lnY
(q)
δ (y)

= − lnα− z ln q − e−z ln δ −H(Poiz)

+ Ey∼Poiz [ln(y!) + y − g(y)]

= − lnα− z ln q − e−z ln δ − zE1(z). (7)

The last equality follows from the fact that

zE1(z) = H(Poiz)− Ey∼Poiz [ln(y!) + y − g(y)],
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Fig. 1. Comparison between the KL-gap ∆(z) of the digamma distribution
Y (q) and the KL-gap ∆λ(z) of the modified digamma distribution Y (q)

λ for
z ∈ [λ, 10] when λ = 0.5.

as shown in [13], [6]. Given λ ≥ 0, we consider the choice

δλ = exp(−λeλE1(λ)). (8)

Consequently, by defining Y (q)
λ = Y

(q)
δλ

and using (7) we have

DKL(Poiz‖Y (q)
λ ) = − lnα− z ln q + λeλ−zE1(λ)− zE1(z).

(9)
We now claim that the following result holds.

Theorem 2: For every z ≥ λ and q ∈ (0, 1) we have

DKL(Poiz‖Y (q)
λ ) ≤ − lnα− z ln q,

with KL-gap ∆λ satisfying

0 ≤ ∆λ(z) = zE1(z)− λeλ−zE1(λ) < zE1(z) = ∆(z).

Note that ∆λ(λ) = 0 and ∆λ(z) → 0 exponentially fast
when z → ∞ (in general, ∆λ is always smaller than ∆).
Theorem 2 and the observations above justify our choice
of δλ in (8); With this choice, we obtain a new family
of modified digamma distributions Y

(q)
λ with KL-gap ∆λ

that is always smaller than the original KL-gap ∆ of the
digamma distributions. Moreover, the KL-gap ∆λ equals 0
at z = λ and is significantly smaller than ∆ around z = λ.
Figure 1 illustrates the change in the KL-gap. Given the above,
intuitively we expect to obtain a sharper upper bound on
C(λ, µ) using this family of modified distributions.

Theorem 2 is an immediate consequence of (9) and the
following lemma.

Lemma 2: For every z ≥ λ we have

∆λ(z) = zE1(z)− eλ−zλE1(λ) ≥ 0.

Proof: Multiplying both sides of the inequality above by
ez , we conclude that the desired inequality holds provided we
can show that zezE1(z) ≥ λeλE1(λ) for all z ≥ λ. Equiv-
alently, we must show that the function f(z) = zezE1(z) is
non-decreasing when z > 0. Note that we have

f ′(z) = (1 + z)ezE1(z)− 1



for every z > 0, and we proceed to show that f ′(z) ≥ 0 for
all z > 0. This implies the desired result. According to [11,
Section 5.1.20], we can lower bound ezE1(z) as

ezE1(z) >
1

2
ln(1 + 2/z)

for all z > 0. Therefore, in order to show that f ′(z) ≥ 0 it is
enough to note that

1 + z

2
· ln(1 + 2/z) ≥ 1 + z

2
· 4/z

2 + 2/z
= 1

for all z > 0, which follows from the fact that ln(1+x) ≥ 2x
2+x

for all x ≥ 0.

B. Proof of Theorem 1

In this section, we prove our main result (Theorem 1) with
the help of Lemma 1 and Theorem 2. First, by combining
Lemma 1 and Theorem 2 we conclude that

C(λ, µ) ≤ inf
q∈(0,1)

[− lnα− (µ+ λ) ln q]. (10)

To obtain Theorem 1 from (10), we upper bound the term
− lnα by an easy-to-compute expression in terms of λ and q,
and then choose q appropriately as a function of λ and µ.

Recalling that 1/α = 1/y0 − 1 + δλ and the upper bound
1/y0 ≤ 1 + 1√

2e

(
1√
1−q − 1

)
from [13, Corollary 16], we

conclude that

− lnα ≤ ln

(
δλ +

1√
2e

(
1√

1− q
− 1

))
(11)

for every q ∈ (0, 1). It remains now to choose q = qλ,µ
appropriately. For the case where λ > 0, we consider the direct
extension of the choice of q for λ = 0 from [6], yielding

qλ,µ = 1− 1

1 + e1+γ(µ+ λ) + 2−e1+γ
1+µ+λ (µ+ λ)2

. (12)

Combining (10), (11), and (12) leads to Theorem 1.

III. COMPARISON BETWEEN BOUNDS

We present a comparison between the upper bound (4)
that we have derived via the modified digamma distribution
and previously known bounds on C(λ, µ) in Figure 2. As
can be observed, the upper bound (4) improves on previous
upper bounds whenever µ is not small compared to λ (more
concretely, when µ > 0.01 in the case pictured), and the
elementary upper bound obtained by replacing δλ with the
upper bound from (5) is extremely close to (4). It is interesting
to note that our upper bound (4) behaves like 1

2 lnµ when
µ → ∞ for any λ ≥ 0, which is optimal [5]. On the other
hand, the bound does not approach 0 when µ→ 0.
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